Cybersecurity Threats and Risks; International Regulatory Developments; PQC (Post-Quantum Cryptography)

Global Technical & Cybersecurity Advisor Dennis Kengo Oka dennis.kengo.oka@iav.jp

GlobalPlatform Cybersecurity Vehicle Forum May 15, 2025, Shanghai, China

Introduction of IAV

Dr. Dennis Kengo Oka

- Started working on automotive security in 2006
- Involved in standardization and best practices activities
- 70+ publications and presentations at events
- Global Technical & Cybersecurity Advisor

Building Secure Automotive IoT Application

Author of books: "Building Secure Cars: Assuring the Automotive Software Development Lifecycle" and "Building Secure Automotive IoT Applications: Developing Robust IoT Solutions for Next-Gen Automotive Software"

Δ

ADAS: Advanced Driver Assistance System IVI: In-Vehicle Infotainment

Overview of Automotive Threats in 2024

Incidents targeting IT systems, IVI systems and ADAS were most prevalent

Ref: VicOne 2025 Automotive Cybersecurity Report VIcOne Automotive Cybersecurity Snapshot

Increasing number of automotive vulnerabilities published year over year

Ref: VicOne 2025 Automotive Cybersecurity Report VIcOne Automotive Cybersecurity Snapshot

SDV: Software-Defined Vehicle V2X: Vehicle to X

SDV Ecosystem – New Use Cases and Technologies

Advanced software and increased connectivity to support new SDV use cases

Increased Attack Surface

Exploit software vulnerabilities Replay attacks

Spoofing

Bypass/break weak authentication

API abuse Data leakage of vehicle/user data Unauthorized access

Bruteforce attempts

Reverse-engineering of mobile apps

Session hijacking/Man-inthe-middle attacks

Unauthorized access to mobile app's memory

Advanced software and increased connectivity lead to increased attack surface

End-to-End Cybersecurity Solutions

SDV: Software-define vehicle TLS: Transport Layer Security SecOC: Secure Onboard Communication API: Application Programming Interface IAM: Identity and Access Management

End-to-end cybersecurity solutions are needed to reduce the risks

TARA: Threat Analysis and Risk Assessment SecOC: Secure Onboard Communication

Secure End-to-End Lifecycle

IDS: Intrusion Detection System TEE: Trusted Execution Environment CI/CD: Continuous Integration/ Continuous Delivery

Ē

CSMS: Cybersecurity Management System SUMS: Software Update Management System VSOC: Vehicle Security Operations Center OTA: Over the Air ECU: Electronic Control Unit

Security Functions

- Digital Vehicle Key
- Key Management
- SecOC
- Secure Communication

•

•

End-to-End Encryption • Secure APIs

Optimizations

IDS

Secure Boot

- DevSecOps CI/CD
- Al tooling

Processes

Security Testing

- Code Review
- Functional Security Tests
- Fuzz Testing
- Pentesting (full vehicle/ ECU/cloud/mobile apps)

Security Engineering

Security Requirements

Security Concepts

TARA

•

 $I \land \lor$

Security Regulations Worldwide at a Glance

							today					
	Country / Region	Regulation / Standards	Details	2022	2023	2024	2025		2026 Expected to	2027	2028	2029
Ð	Global	ISO/CD 24882	Tractors and Agricultural Machinery – Cybersecurity Engineering			WD 4/24	CD 1/25		applicable	nid 26		
		ISO/SAE 21434	Cybersecurity for Road Vehicles	DIS 1/22	released 2/23							
()	UNECE WP29	R155	Approval for M&N vehicle types and OEMs according ISO21434	new types T	7/22	all vehicl	les produced	7/24				
	EU	EU Data Act	Fair access to and use of data			in force 01/24				appl	icable 09/2025	•
		New Machinery Regulations	Industrial machinery/machinery products		partly effec	tive 6/23				fully applicable1/27		
		Cyber Resilience Act (CRA) Regulation EU 2024/2847	cybersecurity requirements for products with digital elements				in force 12/2	4	Repo	t obligation 09/26 fu	lly applicable 12/27	
		NIS2 & RCE / CRITICAL	directives for cyber resilience of critical entities / infrastructure					Exp in fo	ected to be prce 10/25			
	United Kingdom	Product Security and Telecommunications Infrastructure Act	Radio equipment		law	9/23 in force 4/24						
•	Japan	Regulations on Terminal Equipment, etc.	Security of wireless/IoT devices									
		UNECE R155	Approval for M&N vehicle types and OEMs with OTA-Update	new types	7/22	all vehicl	les produced	7/24				
			Approval for M&N vehicle types and OEMs without OTA-Update			new types 1/24			all vehicles pr	oduced 5/26		
4	United States	U.S. Cyber Trust Mark	Security certification system for wireless devices/IoT products				Offical lau	nch 01/25				
*	China	GB 44495-2024	Technical requirements for vehicle cybersecurity			•	published 10	/24 ne	w types end 25	al	l vehicles produced e	and 27

Cybersecurity – R155 vs. CRA vs. GB-44495 (1)

Торіс	UN R155	CRA	GB-44495
Products effected	Road vehicles (M, N, O (at least one ECU), L)	Products with digital elements	Road vehicles (M, N, O (at least one ECU))
Required management system	Mandates formal CSMS certification, renewal every 3 years	Approved quality system would be sufficient	Requires CSMS audit but does not issue certificate, expects renewal every 3 years
Risk assessment	Risk assessment as part of CSMS alongside with mitigation	Simple risk assessment sufficient; needs to be part of technical documentation	Requires risk assessment of threats and vulnerabilities for products and systems

Cybersecurity – R155 vs. CRA vs. GB-44495 (2)

Торіс	UN R155	CRA	GB-44495
Technical requirements	Threats and abstract countermeasures specified in Annex 5	Essential abstract requirements are defined in Annex I	Includes specific technical controls, such as authentication protocols, intrusion detection, and data security measures
Testing and certification	CSMS & Vehicle Types needs to be tested by technical service and certified by approval authority	Depending on type of product: self-declaration, third-party conformity assessment, or European cybersecurity certification	Testing of cybersecurity functions is required based on 27 defined security tests (e.g., external interfaces, access control, communications security); third-party labs may conduct evaluations
Cryptography requirements	Does not mandate specific algorithms but expects appropriate cryptographic measures aligned with best practices	No fixed algorithms, but secure, up-to-date cryptographic standards must be used	Specifies international, national or industry standard crypto modules (e.g., Chinese cryptographic algorithms)

Cybersecurity – R155 vs. CRA vs. GB-44495 (3)

Торіс	UN R155	CRA	GB-44495
Reporting obligations	OEM to report yearly new attacks and actions effectiveness of implemented mitigation / additional actions	Manufacturer to report actively exploited vulnerabilities or severe incidents to ENISA within 24 hours, and more detailed incident notification within 72 hours	Processes in place for vulnerability management but no specific reporting timelines or authorities to report to
Fixing vulnerabilities	Remediation of threats and vulnerabilities in the product within a reasonable timeframe	Manufacturers shall ensure that vulnerabilities of that product, including its components, are handled effectively	Must implement vulnerability handling processes (e.g., NVDB-CAVD); known high- risk vulnerabilities must be fixed within 6 months
Service duration	until end-of-life of all vehicles	Support period shall be at least 5 years If expected to be in use for longer, support period shall correspond to the expected usage time	No specific minimum update period but manufacturers are expected to maintain processes that ensure continued cybersecurity of vehicles throughout their operational life

17

Future Technologies – Quantum Computing

Microsoft's Majorana 1 chip carves new path for quantum computing

Check out the world's <mark>first Quantum Operating System</mark>

2441 Views 24 Apr 2025, 06:00 PM Abhijeet V Singh

Written by				
Catherine Bolgar				
Published				
February 19, 2025				

Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer Kawasaki and Wako, Japan, April 22, 2025

New advancements in Quantum Computing

Ref: https://content.techgig.com/technology/the-dawn-of-quantum-computing-introducing-qnodeos-the-first-quantum-operating-system/articleshow/120586133.cms https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/ https://www.fujitsu.com/global/about/resources/news/press-releases/2025/0422-01.html

Quantum Computing Impact on Cybersecurity

Shor's algorithm

- Can factor large integers exponentially faster than best-known classical algorithms
- Affects: Asymmetric encryption algorithms that rely on the difficulty of factoring large integers or finding discrete logarithms
- Result: Big threat e.g., RSA and ECC could be completely broken – private keys can be extracted from public keys

Grover's algorithm

- Can speed up bruteforce attacks (but only by a square root)
- Affects: Symmetric encryption algorithms that rely on key size and infeasibility of bruteforcing all possible keys
- Result: Partial threat e.g., AES-128 would be weakened to half the security (64-bit strength)

Quantum Computing has severe impact on Cybersecurity

PQC Approaches

PQC: Post-Quantum Cryptography RSA: Rivest Shamir Adleman ECC: Elliptic Curve Cryptography ECDSA: Elliptic Curve Digital Signing Algorithm ECDH: Elliptic Curve Diffie Hellman AES: Advanced Encryption Standard SHA: Secure Hash Algorithm HMAC: Hash-based Message Authentication Code

Traditional Algorithm	Quantum Vulnerability	PQC Approach
RSA	Broken by Shor's algorithm	CRYSTALS-Kyber (key exchange)
ECC (ECDSA, ECDH)	Broken by Shor's algorithm	CRYSTALS-Dilithium (signatures)
AES-128	Grover's algorithm halves security (64 bits)	Use AES-256
SHA-2 (SHA-256)	Grover's algorithm halves preimage resistance (128 bits)	Continue with SHA-2 or use SHA- 512 for extra margin
SHA-3-256	Grover's algorithm halves preimage resistance (128 bits)	Continue with SHA-3-256 or use SHA-3-512 for extra margin
HMAC	Depends on underlying hash (SHA-2 or SHA-3)	See above for SHA-2 and SHA-3- 256
ChaCha20 (256 bits)	Grover's algorithm halves security (128 bits)	Continue with ChaCha20 (256 bits)

Post Quantum Computing Crypto solutions are needed to address the risks

Crypto Agility Cryptographic algorithms can get outdated \Rightarrow need to be updatable

Crypto Agility - IAV quantumSAR Concept

- IAV quantumSAR is divided into two parts
 - Post-Quantum Algorithm: platform-independent library with all algorithm standardized by NIST
 - Implemented in C and RUST
 - Available as open-source repository on GitHub (C available now, RUST to follow in 2025)
 - Extendable design for future standardized algorithm (e.g., NIST PQC selection round 4)
 - Wrapper: platform-dependent wrapper for adaption on different software architectures
 - Implementation for AUTOSAR Classic Platform

Crypto Agility - Firmware Security Module Securable, scalable and updatable Trusted Execution Environment

- Full support of all necessary security functionalities
 - Secure Boot and Secure Update
 - Secure Logging
 - Intrusion Handling
 - Cryptographic Algorithm
 - Including Post-Quantum Cryptography (PQC)
 - Secure Key Management
 - etc.

Crypto Agility - Firmware Security Module Securable, scalable and updatable Trusted Execution Environment

Integration approaches

- Hardware Security Module (HSM)
- Isolated Main Cores
- Isolated Virtual Machines (VM)
- Combination of approaches
 possible
 - Adaptable for different system designs
 - Flexible for future extensions

Call to Action

Stay up-to-date on automotive risks for the SDV ecosystem

• Deploy end-to-end security solutions (vehicle, cloud, mobile device)

Apply best practices for secure end-to-end development lifecycle

• Be aware of differences in regulatory requirements

• Get ready for PQC

Contact

Dr. Dennis Kengo Oka IAV Co., Ltd. <u>dennis.kengo.oka@iav.jp</u> www.iav.com

