Housekeeping

In the room

- Please download Zoom on your device ٠
- Please join Zoom so you can take part in polls and ٠ interactive sessions

Please DO NOT join Zoom audio(!)

Muting is not enough, you also have to have your speaker ٠ turned off

Everyone:

- Please put your name + company in Zoom (if you prefer not to share, please put 'OEM' or 'SIP' or '...')
- Please activate the Closed Caption (subtitles) to the speeches selecting the relevant languages of interest

Zoom Link: https://zoom.us/j/2660561185?pwd=ovMgDmwbaayZuw 3yjl4IFEJPo2UZew.1&omn=91777893524 **Meeting ID**: 266 056 1185 Passcode: CSVF2025

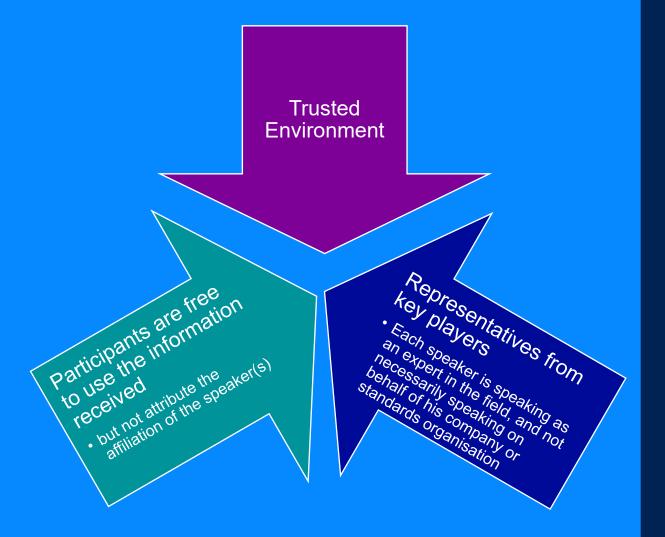
Online

- Please respond to polls
- Please use chat if there are audio/video problems ٠

(CC)

- Please mute when not speaking. ٠
- Please raise hand to speak ٠

E සී


Cybersecurity Vehicle Forum – Shanghai

15th May 2025

Ana Lattibeaudiere, CEO GlobalPlatform Gil Bernabeu, CTO GlobalPlatform Francesca Forestieri, Automotive Lead

© GlobalPlatform 2025 | Confidential

Ground Rules CSVF

GlobalPlatform will post the recording on our website, as well as

- the relevant slides (as made available by speakers) for your reference.
- https://globalplatform.org/blogoverview/

GlobalPlatform

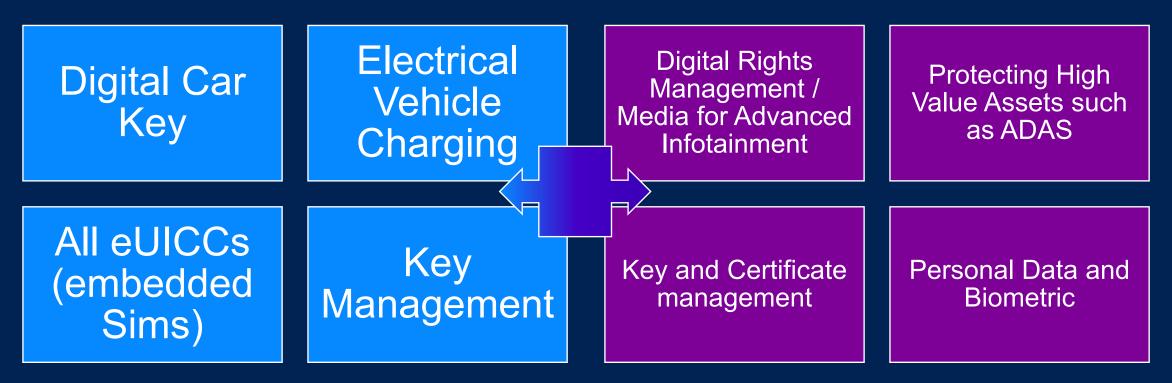
Mass Market deployment of industries has required: agreed functionality for transactions and transparent robust security to create trust among competitors and in the overall ecosystem

Global Platform[™] GlobalPlatform Specifications: Royalty Free Use: <u>https://globalplatform.org/specs-library/</u>

CSVF	
Agenda:	
May	
15th	

Lunch is on the 37th Floor

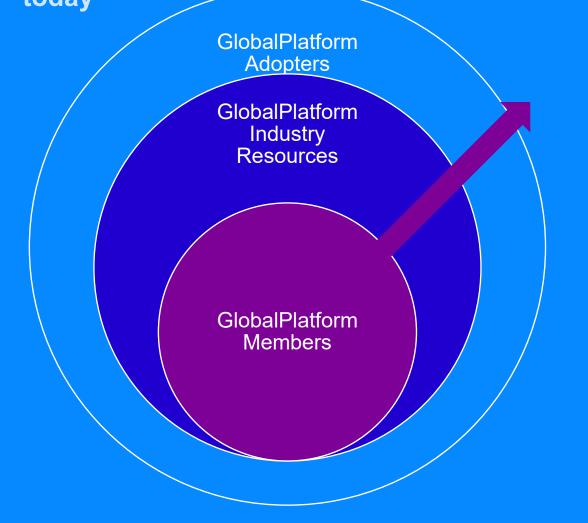
Coffee Break is Outside the Meeting Room

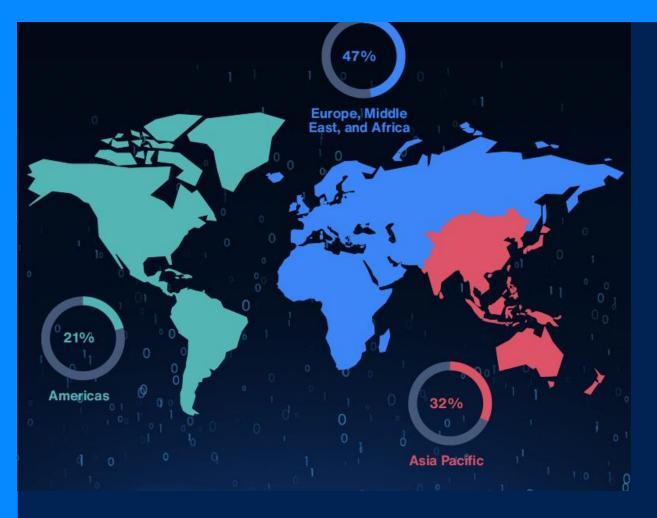

0:00:00	Welcome		Ana Tavares Lattibeaudiere, CEO of GlobalPlatform		
0:10:00		dards and Test Technologies for the Application of Cryptography in the Automotive Field	Bao Yue, CATARC		
0:30:00		n Technologies	Gil Bernabeu, CTO of GlobalPlatform		
0:50:00		ts; International Regulatory Developments, including			
1:20:00	Automotive Se	ecurity Use Cases			
1:20:00	Platform-Based Full-Vehicle Cybersecurity Framework for Next-Gen Connected Vehicles		David Wei Wang, Head of Digital Security Development of NIO		
1:40:00	Lunch				
2:40:00 3:00:00		HSM evolutions: opportunities for standardisation? Automotive Security: Trends and Standardisation Opportunities	Raymond Li, Co-founder, Uni-Sentry Xiaochao Xie, UAES		
3:20:00		Automotive iHSM Security Solution	Kevin Zhang, RAMBUS Senior Principal Field Application Engineer for Security IP		
3:40:00	Introduction to	Automotive in GlobalPlatform	Francesca Forestieri, Head of Automotive, GlobalPlatform		
4:00:00	Hardware Pro on J3101 Req	tected Security Environments: Ground for Synergies uirements	Francesca Forestieri, Head of Automotive, GlobalPlatform		
4:15:00	SESIP Certific	ation: How it works and its use in Automotive	Francesca Forestieri, Head of Automotive and Gil Bernabeu, CTO GlobalPlatform		
4:45:00	Assessing Se	curity Levels & Functional Interoperability	Wei Yuan Mao, APPlus		
5:15:00		Attack Methodology			
5:15:00		Protection Profiles			
5:15:00	Coffee Break				
5:45:00		tion between Chip and Component Security Testing System and the Information Security Compliance of icle	Bai ZhiChao, Vice General Manager, DPLS Labss		
6:15:00		SE, Building the Digital Security Foundation for Automobiles	Song Weifeng, Senior Product Manager, G&D		
6:35:00		Secure Elements: Topics of Interest in Automotive	Gil Bernabeau, CTO of GlobalPlatform		
6:55:00	Trusted Execu	ition Environments: Evolution in Automotive	Richard Hayton, Chair of Automotive Task Force		
7:25:00	Wrap-up and	Goodbye	Francesca Forestieri, Head of Automotive, GlobalPlatform		

Why GlobalPlatform: Market Presence in Automotive

Secure Element OVER 192 Million Connected Cars in 2023 Trusted Execution Environment

In Over 100 Million Vehicles as of 2023*




192 Million Connected Cars in 2023 by Juniper Research https://www.juniperresearch.com/press/connected-vehicles-to-surpass-367-millionglobally#:~:text=Hampshire%2C%20UK%20– %209th%20January%202023,from%20192%20million%20in%202023.

Global Platform™ *Confidential Source on Market Presence

GlobalPlatform's Market Adoption

- 70 billion+ Secure Elements shipped worldwide are based on GlobalPlatform specifications
- Over 10's of billions GlobalPlatform-compliant Trusted Execution Environment in the market today

Global Platform™

Payment Services American Express **Cartes Bancaires Discover Financial Services** FeliCa Networks, Inc. JCB Co. Ltd. Licel Cooperation Mastercard Visa Inc.

Mobile Device Manufacturers Apple Inc. Huawei Device Co., Ltd. Xiaomi Mobile Network Operators (MNOs) AT&T, Deutsche Telekom KONA International, Orange SK Telink, Synapse Mobile Networks, **T-Mobile**

Automotive **Tech Providers** CARIAD SE ETAS GmbH Woven

Semiconductor & Hardware Vendors Kigen Lda

Analog Devices Inc. (ADI) Arm Limited Austriacard Bundesdruckerei GmbH Dai Nippon Printing Eastcompeace Technology Co., Ltd Feitian Technologies Co., Ltd Giesecke+Devrient **HID Global** Infineon Technologies AG

MaskTech Intl GmbH Thales MK Smart JSC **NXP** Semiconductors Qualcomm Technologies Inc. XCure **PQShield** Valid Renesas Samsung Electronics Shanghai Fudan Microelectronics GroupWiseSecurity Technology Spreadtrum Communications **STMicroelectronics**

Toshiba Ubivelox Xard Pay Watchdata System Winbond Technology Ltd. Zwipe Germany

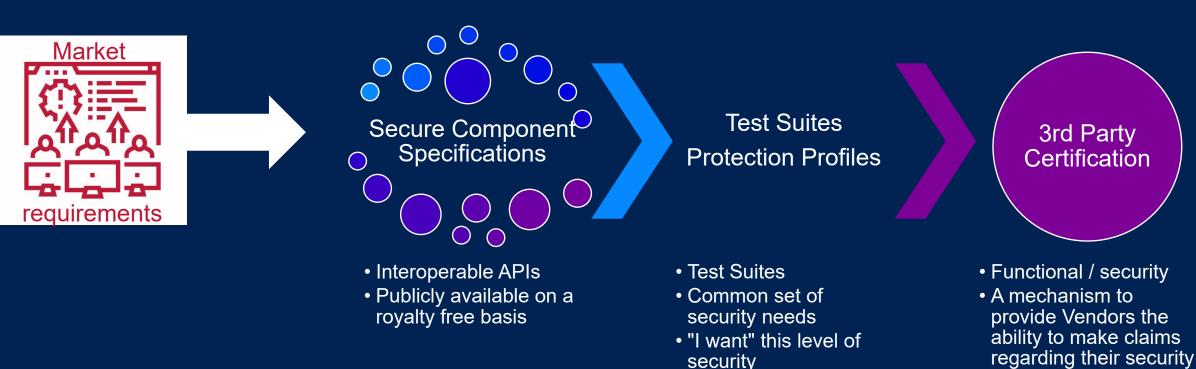
OS & Software Platform Providers CISCO Google Oracle Rambus Trustonic Linaro

Public Sector & Government Entities BSI - Bundesamt für Sicherheit in der Informationstechnik Department of Defense (USA) Institute for Information Industry Wuhan University **Consulting & Integration Firms Digital Cubes** Galitt Internet of Trust SAS Monetech **Nextendis** NthPermutation Security LLC Safepay Systems

Security, Certification & Testing Labs Applus+ **BacTech** Beijing Unionpay Card Technology Beijing ZhiHuiYunCe (DPLS Lab) **Brightsight BV** CEA - Leti **COMPRION GmbH** DEKRA FIME Kaspersky Lab Keysight **SERMA TrustCB** Quarkslab UL (Underwriters Laboratories)

Your Partner for Security Standards

Collaboration is KEY


Our strong collaborative relationships across the world, from international standards organizations to regional industry bodies, are key to realizing <u>our</u> <u>vision</u> of:

- Fully open ecosystems that focus on interoperability
- Efficiently delivers innovative digital services
- Across vertical markets
- Supporting different levels of security, while
- Providing privacy, simplicity, and convenience for the user.

GlobalPlatform has 34 Industry partners from around the world, integrating our specifications and services in their work.

GlobalPlatform's Success in International Digital Security Transformation

As a security foundation for service / device innovation in mass market deployments for different industries, e.g. mobile market and services

products

GlobalPlatform Brings Lessons to Automotive: How to Create the Security Foundation for a Healthy, Innovative Ecosystem

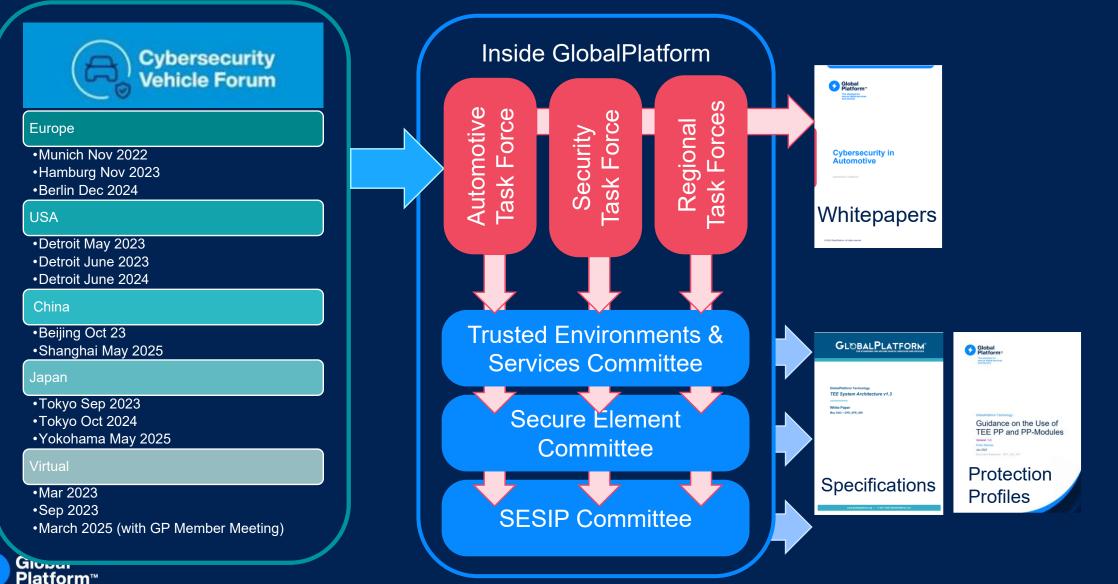
Services

GlobalPlatform standards create a fertile environment for mass market growth and innovation of services and hardware

Services are key dynamic of industry BUT hardware remains a critical base for trust

High Evolution in Markets over time, with issuance of new services on very short timelines (3-6 months).

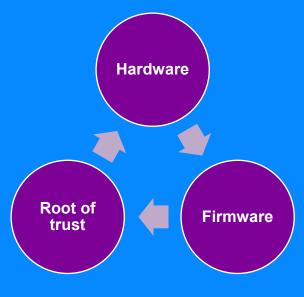
With standardised portability and updatability, device product life is extended since it can adapt to requirements of new services.



Synergistic opportunities (also across "Frenemies") for the development of new services (not everything has to be developed from scratch by a provider)

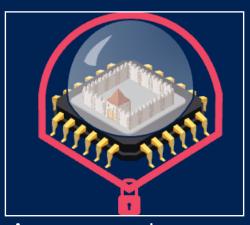
Based upon GlobalPlatform's Experience in Over 25 Years with Smart Cards, Mobile, IoT

Driving Requirements into GlobalPlatform



Page 13

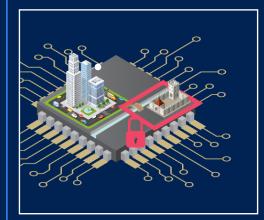
GlobalPlatform Technology


GlobalPlatform Foundation Technologies

Global

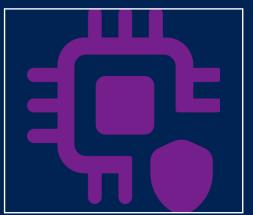
tform

Secure Element


A secure enclave protected against physical and software attack

 Tamper resistant hardware

•


- Install, update OTA applications (not just keys)

Trusted Execution Environment

- A secure operating system running on a standard CPU alongside regular OS/Applications
- Protected against attack by hardware chip features + software mechanisms
- In Over 100 Million Vehicles as of 2023 (Confidential Source)

Isolated Technologies

- New Technologies that create isolated execution environments
- Chipsets offer new security services and isolation mechanisms
- GlobalPlatform focus on simplifying access to security services and security evaluation
- Extending the range of SE and TEE offering to address different implementation market needs

- Runs a full operating system providing standardized APIs and functions
- 3rd party Security Certification
 - Full support for App and OS update over-the-air

Roots of Trust for Secure Software: Providing OEMs Standardised Management Capabilities

Plenty of hardware, root of trusts, each with secure crypto OEM Manage Objects across different producers

 Key management + crypto between hardware and service layers

GlobalPlatform provides a bridge between hardware and software security – as well as supporting across multi-tenant service providers. Standardisation of the common security requirements, augments hardware and software with interoperable functionality and transparent security robustness levels.

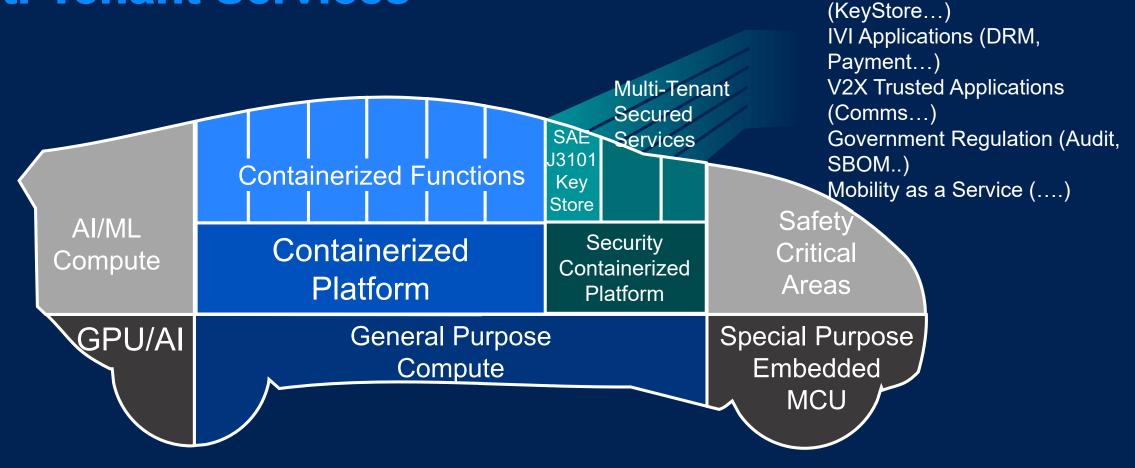
GlobalPlatform Setting the Standards for Common Security Specifications

Vehicle Services

• Broader Vehicle Services (building upon Trusted Applications)

MULTITENANT

Automakers & Standardised Auto Solutions
OEM Controlled Trusted Applications (using GP standardized APIs)



Supporting Software Defined Vehicle Use Cases: Examples of Functional Security Primitives

Device Attestation	Secure Updates	Secure Onboarding and Offboarding	Secure Provisioning and Decommissioning	Secure Communication (Protocols)	Secure Debug and Test
Secure Backup and Recovery	Account Authentication and Management	(Attested) Secure State and Life Cycle Management	Genuine Identification	Secure Initialization	Anomaly Detection and Reaction
Cryptographic Key Generation and Injection	Cryptographic Key and Certificate Store	Secure (Encrypted) Storage	Cryptographic Operation	Cryptographic Random Number Generation	System Event Logging
Silicon Root of Trust	Residual Information Purging	Software Isolation	Monotonic Time	Reliable Control Transfer	Cyber Resilience

GlobalPlatform & In-Vehicle Multi-Tenant Services

Digital Car Key

General Purpose Security

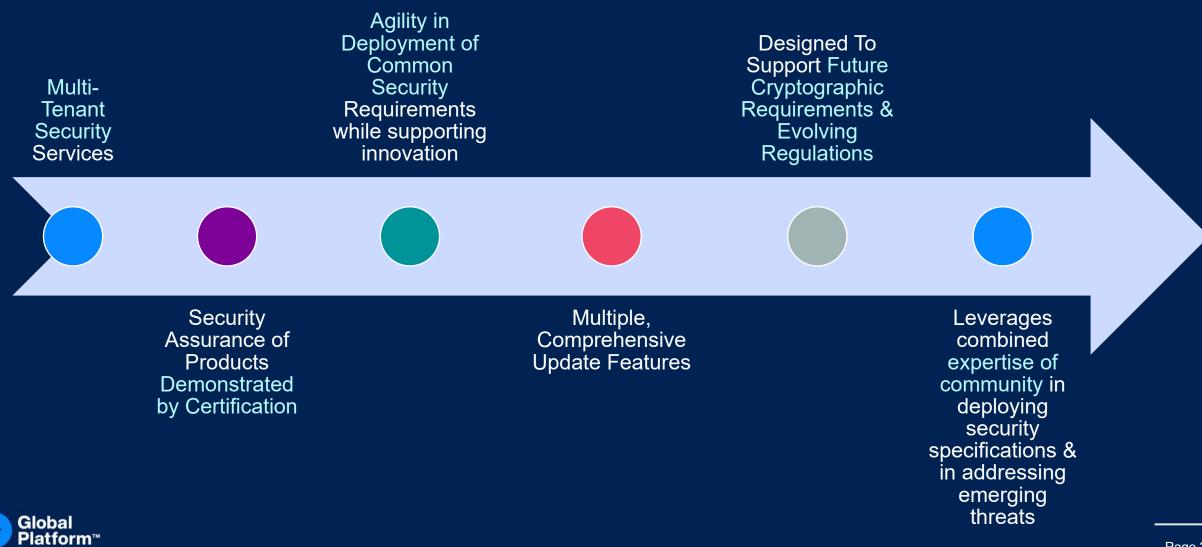
GlobalPlatform Approach

2. Trusted Applications/Applets developed/ deployed by the ecosystem, to meet the specific requirements of a particular ECU or a customer solution using standardized APIs

Example Standardized Primary Key Injection

1. Platform: Standardized APIs & Management command, update, state-of-theart crypto, crypto agility ...

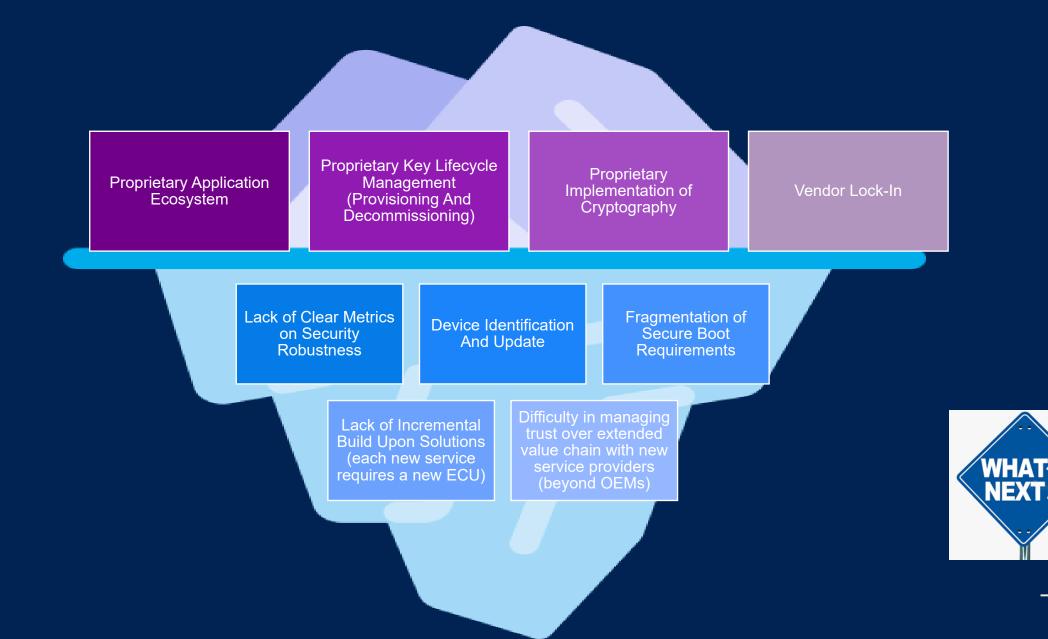
SIM Sec Boot DRM ECU ID Key FOTA/ ADAS IDS Negotiation SOTA Sec Auth **Digital Car** Payment Logging Cmd Keys MACsec Firewall SecOC IVI Secure Component Platform: **Functionally and Security Certified**


OEMs and Tier 1s can manage key rotation

This approach fits well with Software Defined Vehicles with upper layer security certification

Hardware

Securing Any SDV Service with GlobalPlatform



Automotive GlobalPlatform

Need for New Tools in Automotive to Meet SDV Promises: Standards, Certification, APIs, Guidelines

Challenges of Automotive Security Market Today

Global Platform™

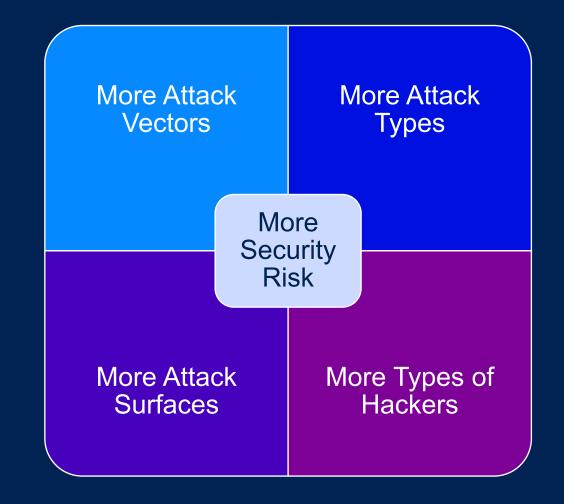
Page 23

Big Changes are Coming with Software Defined Vehicles

New Architectures, New Services, New Players

Evolving architecture consolidating multiple functions on specialized processing

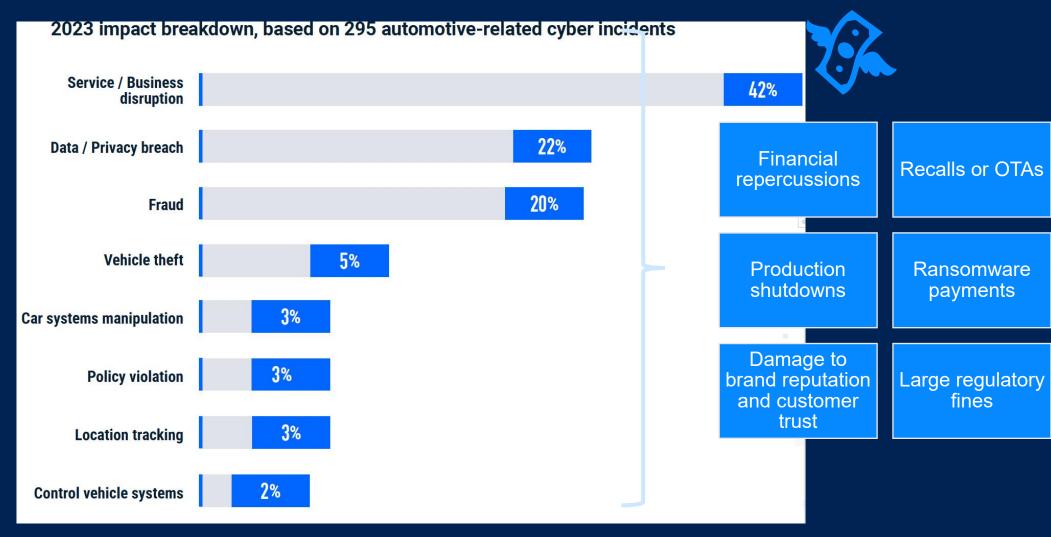
Global


tform™



Cloud-native - develop in the cloud, deploy in the car

Evolving value chain becoming more complex and distributed



Platform™

https://www.microsoft.com/en-us/industry/blog/manufacturing-and-mobility/automotive/2023/10/31/the-security-cultural-transformation-of-the-automotive-industry/

Cyber Incidents Are Expensive

Source:(Upstream 2024). https://upstream.auto

Forecasted Revenue in Cybersecurity by Security Type

Automotive Cyber Security Market Size - By Type

Market Size in USD Billion

	Total Revenue	Wireless Security Revenue	Network Security Revenue	Endpoint Security Revenue	Application Security Revenue	Cloud Security Revenue
2032	22.2	8	6	3	2	2
2031	17.8	6	5	3	2	2
2030	14.6	5	4	2	2	2
2029	12.3	4	3	2	1	1
2028	10	4	3	2	1	1
2027	8.8	3	3	1	1	1
2026	7.4	3	2	1	1	1
2025	5.9	2	2	1	1	1
2024	4.7	2	1	1	1	0
2023	3.9	1	1	1	0	0
2022	3.2	1	1	0	0	0
(Size in USD Billion) Source: Market us Scoop						

Who Pays?

No one wants to pay for "Security" BUT OEMs have Increased Skin in the game to warrant Cybersecurity Spend

Regulatory Compliance & Reducing Liability

- Compliance with Cybersecurity Management Processes for type approval (UNECE 155 64 countries)
- Evidence of implementation of best practices

Protecting Investments

- Protecting High Value of Software Assets of Vehicle
- Protecting Against Unpaid Feature Enablement
- Reduction of Warranty Fraud

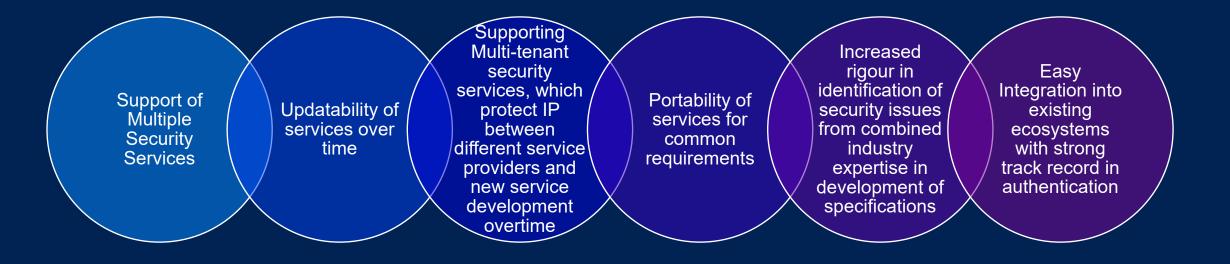
Different Security Paths by Automotive OEMs

Everyone on their Own

- "Lowest Cost Minimal Security" -
- "Customers don't pay extra for security"
- "We will deal with it later"

Highest Investment to Protect IP

- "We will buy the best security out there"
- But...will that be enough?
- will vendor lock-in be a problem?


Implementing Standardisation for Common Automotive Security Requirements

- Community determines jointly key features
- Community monitors evolving threats and develop solutions to platforms
- Individual Vendors focus Engineering on Differentiating Services
- Portability of Security Services

Global Platform™ Low Cost, High Risk Potentially Untenable Future Higher Cost, Lower Risk Today Unclear Future Shared Cost (split between participants) Lower Risk Today & Future Provides Needed Future Flexibility Page 29

GlobalPlatform Provides Future Proofing of Security Services & Adds Flexibility

Unlike traditional automotive HSMs/SHEs, GlobalPlatform offers standard requirements, common APIs, testing suites, and certification of compliance with specifications on security robustness and interoperability

Possibility of reuse, incremental developments across ECU evolution (without having to start over from scratch each time for every new ECU project)

Example of SDV Security Standardisation Benefits

...Resulting in Flexibility & Transparency on Robustness

Hardware Protected Security Environments SAE J3101-5

Why was J3101 created?

Global Automotive Market uses different references to for hardware protected security environments.

Some names include:

- HSM
- SHE/SHE++
- EVITA

BUT

- Each vendor means something different
- Has different characteristics
- No framework to compare across products

SAME WORD - DIFFERENT MEANINGS ' ቬ ሮ • key mouse chest 3 G arms comb

www.enulishfurishis.com

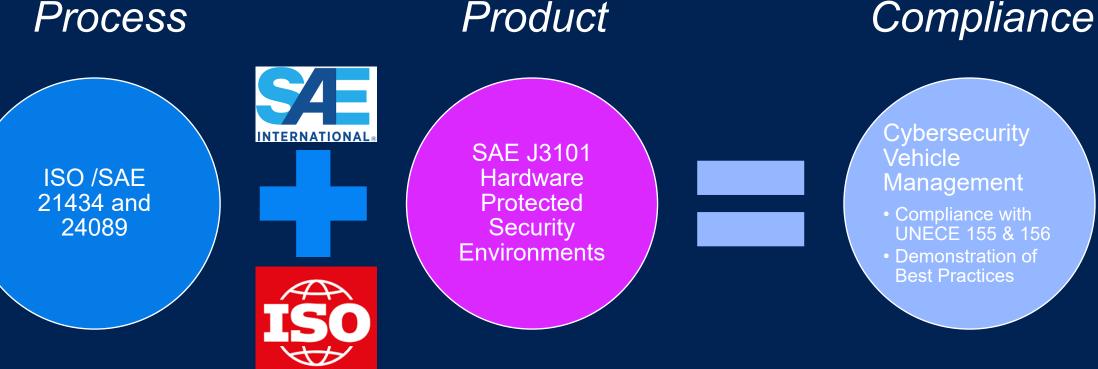
SAE J3101: A Common Reference for Hardware Protected Security Environments

Basic characteristics

Requirements for a hardware protected security environment Establish trustworthiness through device identity, sealing, attestation, data integrity, and availability. Must be resilient to a wide range of attacks that cannot be thwarted through software-only security mechanisms.

A hardware root of trust and the hardware-based security primitives are fundamentally necessary to satisfy demands of connected and highly or fully automated vehicles.

Source: SAE, Surface Vehicle Recommended Practice, *Hardware Protected Security for Ground Vehicles* J3101[™] FEB2020, Issued 2020-02



Role of J3101 in Cybersecurity Compliance: Framework for Product Security

Relevant for 64 Countries

Process

Global Platform™

Product

- ISO/PAS 5112:2022 Road vehicles Guidelines for auditing cybersecurity engineering. Security, safety & risk
- ISO/SAE PAS 8475 Road vehicles Cybersecurity Assurance Levels (CAL) and Targeted Attack Feasibility (TAF) (under development)
- ISO/SAE PWI 8477 Road Vehicles Cybersecurity Validation and Verification (under development)

Hardware Protected Security Environments (J3101): Application Use Cases

IPR Protection

Satisfying the requirements of the IP protection use case requires implementation of the base confidentiality profile (7.1). Secure Diagnosis at the ECU Level

Implementation of the secure ECU diagnostics use case requires implementation of the following profiles:

Base Confidentiality (7.1):
Base Integrity (7.2):
Access Control (7.4):

Additionally, the following profiles should be considered depending on the system implementation:

•Base Availability (7.3): •Assurance Level (7.7):

Secure Logging

To satisfy the minimum, fundamental secure logging requirements of authentication and non-repudiation, three profiles are required:

Base Confidentiality (7.1)
Base Integrity (7.2)
Non-Repudiation (7.5)

To satisfy additional security objectives which could be specified for certain usages of secure logging, the following additional profiles may be required and should be considered based on the context provided above:

Base Availability Profile (7.3)High Assurance Level Profile (7.7)

SAE J3101 Hardware Protected Security Environments

		Table 1 -	Common	requirements	s of each pro	ofile		
	Kau	Counto granhia	Dendem	Critical	Algorithm	Interface	Secure	
	Key Protection	Cryptographic Algorithms	Random Number	Security Parameters	Algorithm Agility	Interface Control	Execution Environment	Self-Test
Profile	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
Confidentiality	X	Х			?		X	X
Integrity	Х	Х		Х	?		X	Х
Availability	Х	Х			?	Х	X	X
Access Control	Х	Х	Х		?	Х	X	X
Non-Repudiation	X	Х	Х	Х	?		X	X

NOTE: If algorithm agility is not supported, the profile shall be classified as "limited use" (7.6).

Source: SAE, Surface Vehicle Recommended Practice, *Hardware Protected Security for Ground Vehicles* J3101[™] FEB2020, Issued 2020-02

Why Cooperation with SAE on Hardware Protected Security Environments Is Optimal

SAE USA J3101

Defines Common Glossary of Required Hardware Protected Secure Environment Characteristics GlobalPlatform

Detailed specifications and Implementation guidelines

- Cover these HPSE requirements and more
- Globally relevant

Certification of components by SE or TEE providers to:

- Ensure interoperability/ portability and
- Proven security robustness (protection against attack) obtained
- Possibility of composite certification

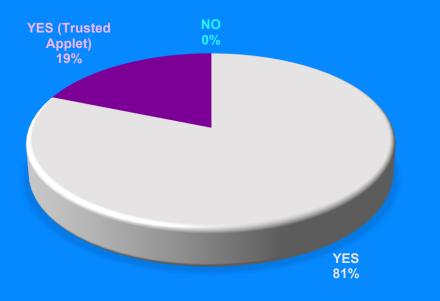
Methodology – GlobalPlatform Specifications Assessed

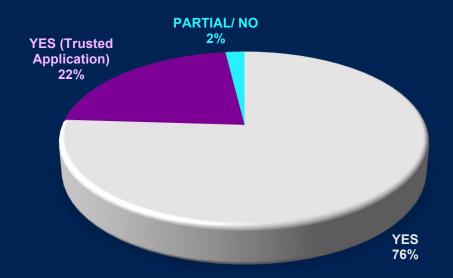
GP TECHNOLOGY	DOCUMENT REFERENCE	TITLE	VERSION	REFERENCE LINK
	GPC_SPE_034	Card Specification [GPCS]	2.3.1	https://globalplatform.org/specs-library/card-specification-v2- 3-1/
SE	GPC_SPE_174	Secure Element Protection Profile [SE PP]	1.0	https://globalplatform.org/specs-library/secure-element- protection-profile/
		GlobalPlatform Card API	1.7.1	https://globalplatform.org/specs-library/globalplatform-card- api-org-globalplatform/
	GPD_SPE_009	TEE System Architecture [TEE Sys Arch]	1.3	https://globalplatform.org/specs-library/tee-system- architecture/
	GPD_SPE_010	GPD TEE Internal Core API [TEE Core]	1.3.1 / 1.4	https://globalplatform.org/specs-library/tee-internal-core-api- specification/
	GPD_SPE_021	TEE Protection Profile [TEE PP]	1.3	https://globalplatform.org/specs-library/tee-protection-profile- v1-3/
TEE	GPD_SPE_025	TEE TA Debug Specification [TEE Debug]	1.0.1	https://globalplatform.org/specs-library/tee-ta-debug- specification-v1-0-1/
	GPD_SPE_120	TEE Management Framework (TMF) including ASN.1 Profile [TMF]	1.1.2	https://globalplatform.org/specs-library/tee-management- framework-including-asn1-profile-1-1-2/
	GPD_GUI_069	TEE Initial Configuration [TEE Config]	1.1	https://globalplatform.org/specs-library/tee-initial- configuration-v1-1/
	GPD_GUI_089	TMF Initial Configuration [TMF Config]	1.0	https://globalplatform.org/specs-library/tmf-initial- configuration-v1-0/
SE and TEE	GP_TEN_053	Cryptographic Algorithm Recommendations [Crypto Rec]	2.0	https://globalplatform.org/specs-library/globalplatform- technology-cryptographic-algorithm-recommendations/
	GP_REQ_025	Root of Trust Definitions and Requirements [RoT]	1.1.1	https://globalplatform.org/specs-library/root-of-trust- definitions-and-requirements-v1-1-gp-req_025/

Mapping Conducted for Secure Elements and **SEC** Trusted Execution Environments

5. MAPPING OF GLOBALPLATFORM TECHNOLOGY SUPPORT WITH COMMENTS

Requirement ID	Condition	Requirement Description	SE Supported	SE Mapping	TEE	TEE Mapping
					Supported	
		Types of Keys	_			
REQ_6.2.3.1_10:	[MANDATORY]	The hardware protected security environment shall support digital	Yes (TA)	X.509 is supported.	Yes (TA)	X.509 is supported.
		certificates if public keys (asymmetric cryptography) are employed.		IEEE 1609.2 is supported		IEEE 1609.2 is supported
		The digital certificates should be X.509 or IEEE 1609.2 compatible		through an		through an
		formats.		Application/Configuration.		Application/Configuration.
REQ_6.2.3.1_20:	[OPTIONAL]	The hardware protected security environment shall support either	YES		YES	
		ephemeral or long-term symmetric keys, or both.				
	Key Storage					
REQ_6.2.3.2_10:	[MANDATORY]	A hardware protected security environment must securely store all	YES	Mandated by [SE PP].	YES	Mandated by [TEE PP].
		cryptographic keys and explicitly control access to each.				


Coverage Definitions



Analysis Results: GlobalPlatform Specifications

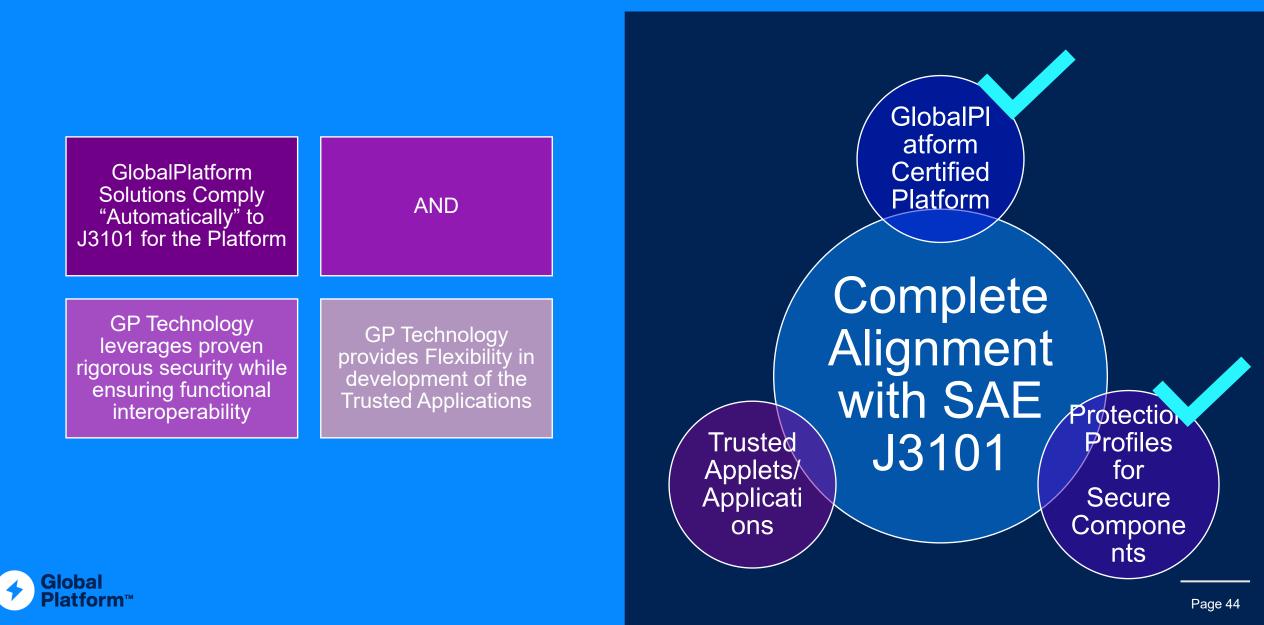
Secure Element Satisfaction Of 100% OF J3101 Requirements

Trusted Execution Environment Satisfaction Of 98% Of J3101 Requirements

Evaluated using Common Criteria (CC) existing Protection Profile

SAE's Vehicle Electrical System Security Committee – Final Ballot J3101-5

INTERNAT


SAE has provided this Draft document for the SAE Committee. This document is SAE-copyrighted, intellectual property. It may not be shared, downloaded, duplicated, or transmitted in any matter outside of the SAE Committee without SAE's approval. Please contact your staff representative for additional information.

- Final confirmation
 Ballot Concluded
- Awaiting SAE Technical Writer Edits and Publication

	SURFACE VEHICLE	J3101-5™	MAY2025
ONAL⊕	INFORMATION REPORT	Issued XXXX-X Reaffirmed XXXX-X Stabilized XXXX-X Revised XXXX-X	x x
	Hardware Protected Security I	Environment –	
	GlobalPlatform Technologies Inf	ormation Report	
	RATIONALE	X	

What is the importance of J3101-5?

SAE J3101 Demonstrating Compliance with SESIP Profiles for GlobalPlatform Secure Components

GlobalPlatform Protection Profiles (~76/81% of requirements)

Detailed Implementation Guidelines have been Defined by GlobalPlatform as well as How to Test J3101 Trusted Application/ Applet Protection Profile (~19/22% of requirements)

No Implementation Guidelines have been Defined by GlobalPlatform nor How to Test

Going Forward

GlobalPlatform is developing SESIP Profile for J3101 Trusted Application requirements

Would a **standard trusted application** be useful?

- Meet Industry desire for standardize policy management for key usage
- Extend to new use cases?

autorm

Hardware Protected Security Environments in China: Open Questions

Is SAE's work on J3101 a departure point for discussing Chinese requirements?

Is there interest in standardising a Chinese version?

Would it be useful to cooperate with GlobalPlatform to explore how GlobalPlatform technologies meet eventual Chinese specific requirements?

Would it be useful to provide some educational opportunities on GlobalPlatform technologies?

SESIP Certification: How it works and its use in Automotive Francesca Forestieri, Head of Automotive Gil Bernabeu, CTO

Why does security certification matter?

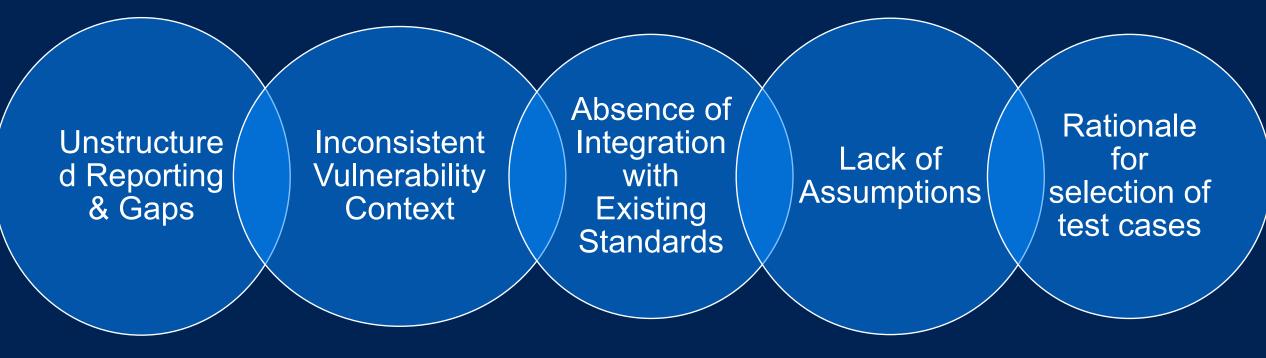
1. World is a scary place?

Cybercrime and cyber insecurity are new entrants into the Top 10 rankings of the most severe global risks over the next decade, according to the <u>World</u> <u>Economic Forum</u>.

Now taking the 8th spot, cybercrime now stands sideby-side with threats including climate change and involuntary migration.

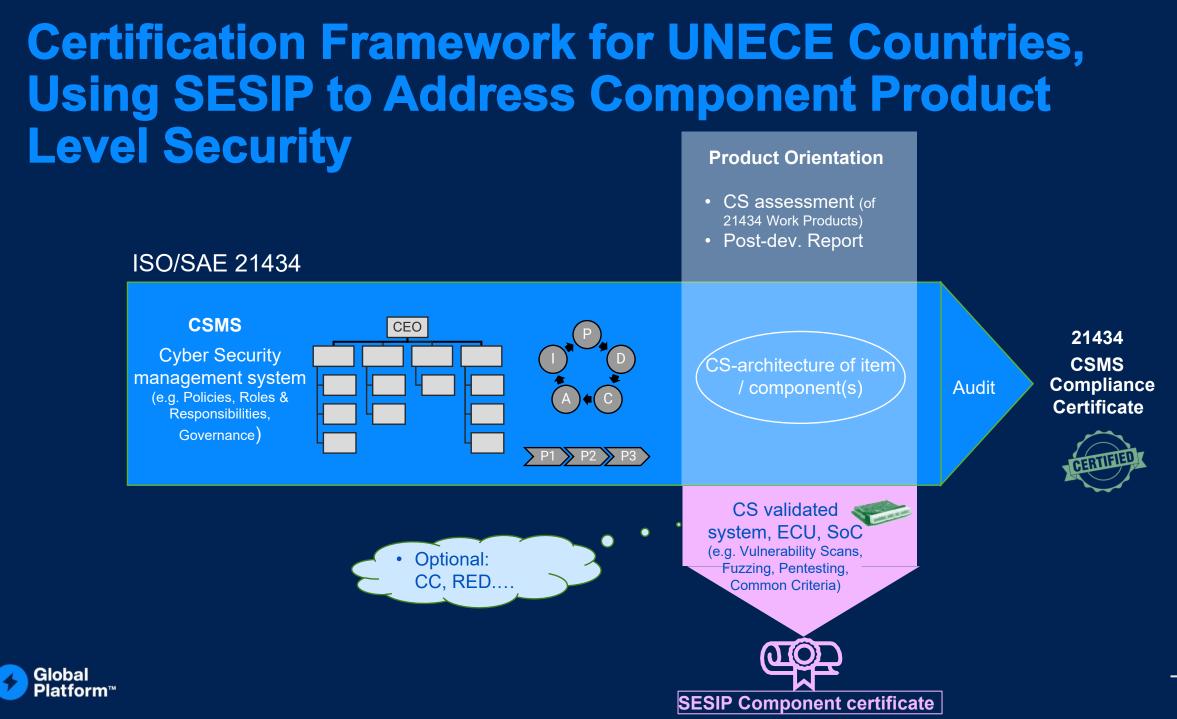
lobal

2. Emergence of Regulations and Standards on CyberSecurity?

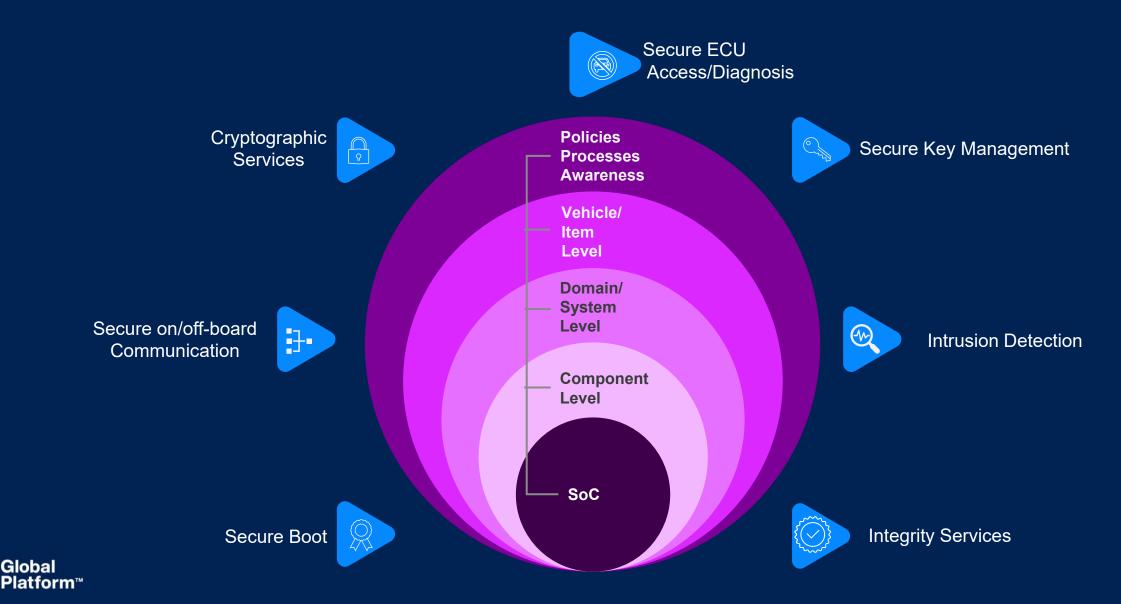

CN CS Law GB

UN R155 / 156 AND ISO/SAE 21434 and 24089 64 Countries

SAE/ISO 21434 and 24089


https://cybersecurityventures.com/cybersecurity-almanac-2023/

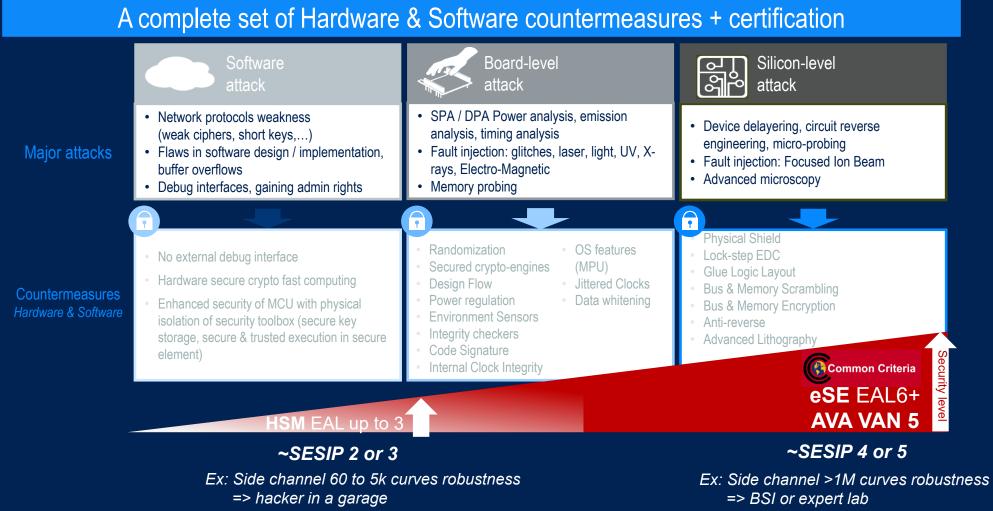
Implementation of UNECE 155 & 156 Complicated Frequent Rejection of Reports at Type Approval


Examples of Common Reasons

Page 51

SESIP Opportunity: Beyond SoCs

SESIP Evaluation: Goal Oriented


Focuses on whether security outcomes are achieved not just whether processes are followed.

Less emphasis on extensive formal documentation

More on evidence that requirements are met (as compared to Common. Criteria)

Page 53

Certifying to Desired Security Robustness Levels

SESIP Process for Certification: Based on Vendor Positioning Market

Select applicable Protection Profiles for product

Detail Security Target

•Developed by Vendor

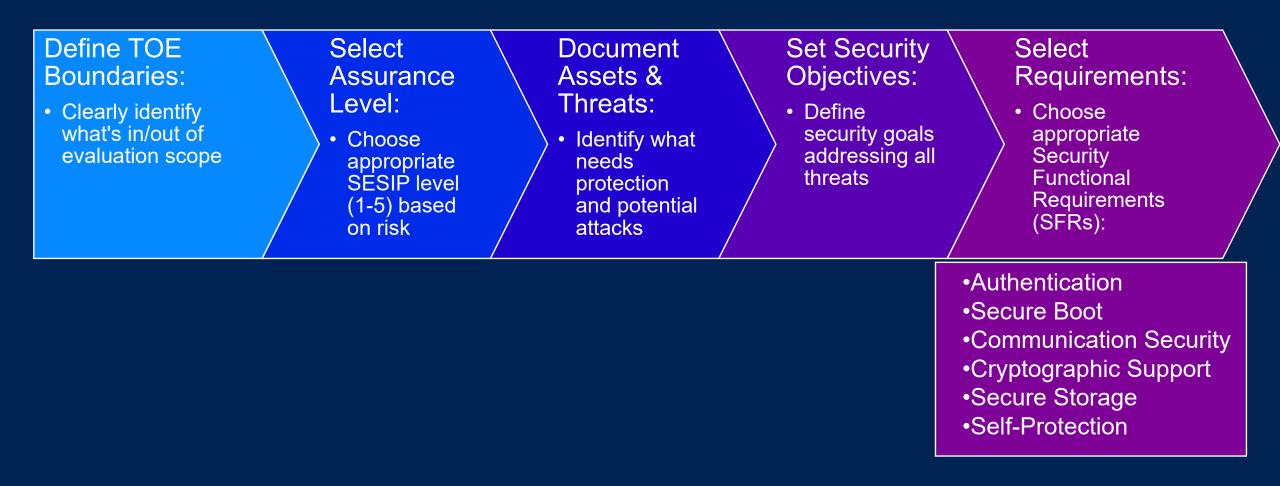
- •Definition of Standardised protection profile for product
- •Definition of the Target of Evaluation (scope of system to be tested)

Select a SESIP Certified Lab & Certification Body

provide product and documentation
sign contract with lab

Lab Testing

- •development of test plan for product
- according to
- Protection profile,
- •security targets,
- •target of evaluation, and
- •latest rules of implementation of the SESIP methodology, including:
- •attack, functional tests, process/document verifications, audit etc.
- Validation of testing plan by certification body


Issuance of SESIP Certificate with Level for Product X

Validation of testing results by certification body
Certificate indicates which PPs are satisfied

Benefits of Scale Common Hardware System Requirements for Platform As a basis for SDV

Security Target Definition: Key Decisions

Role of Protection Profiles in SESIP

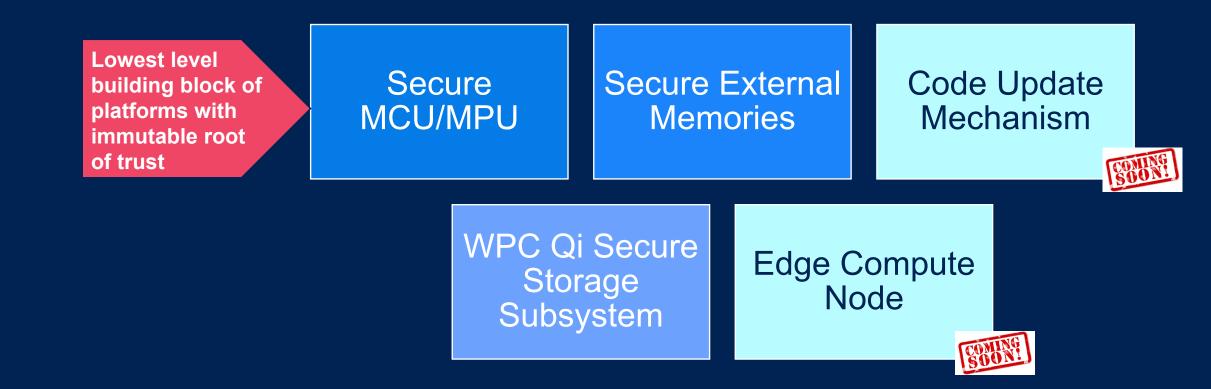
Setting Standardized Requirements

- Establish baseline security requirements for product categories
- Represent industry consensus on necessary security features
- Create common security language across manufacturers
- Define appropriate security level based on product risk

Streamlining Security Target Development

- Provide ready-made template for Security Target creation
- Reduce effort for product developers and evaluators
- Ensure consistent security approach across similar products
- Simplify conformance demonstration through structured requirements

Enabling Consistent Evaluation


- Create uniform evaluation criteria for certification laboratories
- Establish standard test methodologies for specific product types
- Reduce subjective interpretation of security requirements

Facilitating Market Comparability

- Enables "apples-toapples" security comparison between products
- Create recognizable security profiles for procurement
- Establish clear security expectations for specific product categories
- Support security differentiation while ensuring baseline protection

Standardised SESIP Profiles Exist can be point of Departure for Product Specific Profiles

Please Download @ https://globalplatform.org/specs-library/?filter-committee=sesip

Why Certify?

Regulatory Requirements

Regulatory Compliance

 Structured evidence demonstrates real product achievements

Supply Chain Management

- Simplifies procurement with transparency on security characteristics and interoperability functionality
- Streamlines collaboration through reusable 3rd party certifications

Supports Risk Management

Structured approach to evaluating supplier security capabilities Brand Protection:

Prevents costly and damaging security incidents

Checks & Balances in SESIP Certification using Standard SESIP Profiles

Vendor

level)

• Definition of Security Target & Target of Evaluation Selection of Protection Profiles (with pre-defined Assurance Level or identification of desired assurance

SESIP Lab

• Confirmation of Appropriateness of Scope and Protection Profile (based upon context (i.e. implementation in product)) • Develop Test Plan •Run Tests

SESIP Certification Body

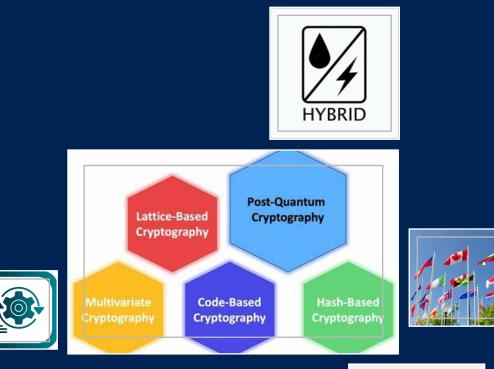
• Confirmation of Appropriateness of Test Plan (based upon recent developments in threats and for objective)

 Confirmation of Test Results Issuing Certificate

Attack Working Groups

•Up-to-Date Attack Knowledge Working for all protection profiles International Working Groups Attack Subgroup from the EU Senior Officials Group Information Systems Security (JHAS SOG-IS) GlobalPlatform

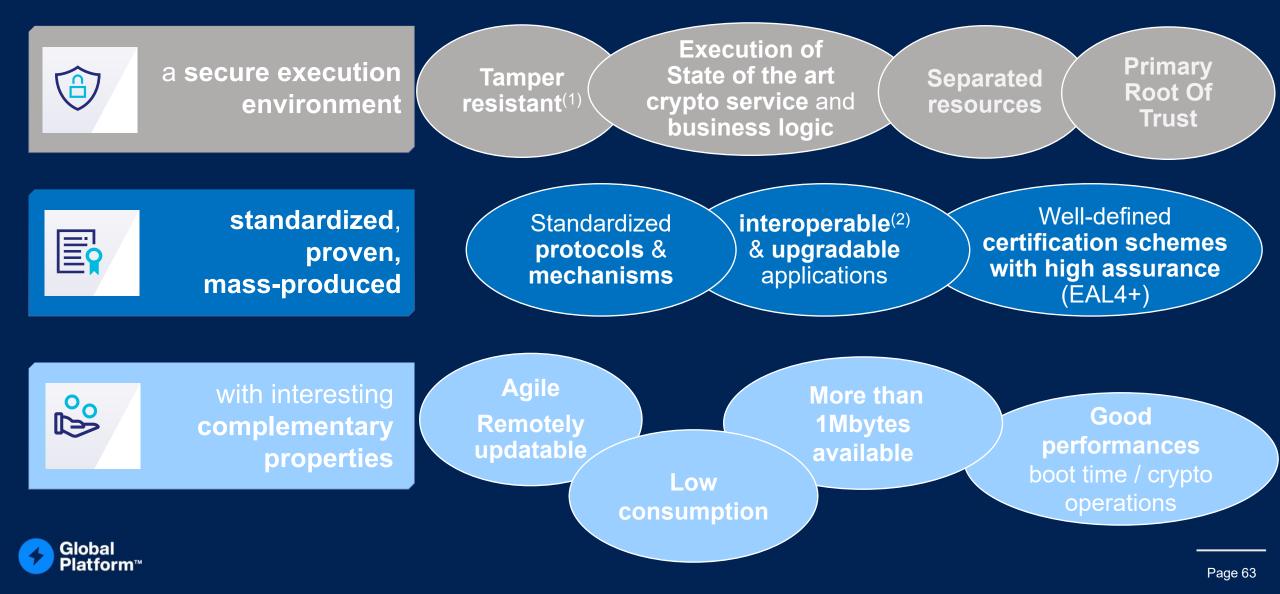
•Working for all protection profiles



Secure Elements: **Topics of Interest in** Automotive Gil Bernabeu, CTO

Context of the high security uses cases

BY CYBER SECURITY AGENCY OF SIN



Benefits of embedded Secure Elements in Automotive

Use cases with embedded Secure Elements in Automotive

Key management life cycle

- Personalize eSE during its production
- Ease transition phases from development to production
- Allow secure key provisioning at Tier1 manufacturing and OEM assembly line

Business logic control

- Business logic implemented eSE
- Enforce control of key and crypto engine usage

Crypto agility

- Provide secure key provisioning onfield, at repair
- Tackle circular economy
- Support OS and Applet upgrade
- Ensure PQC readiness

Leverage Digital Car Key SE and eSIM deployment to support new use cases

Many cars are already equipped at least with on eSE for DigitalKey, or eSIM for connectivity and most the SE could propose additional room for complementary use cases:

Qi	Car BlackBox	Specific parts serial number check
Specifics car settings check	Driver Biometrics credentials management • Privacy regulation	Car driver preference settings record • User applicative and dynamic rights management

Leveraging investments to deliver higher cybersecurity robustness for identified use cases

USECASE	HSM ROLE	eSE ROLE				
Secure binding between MCU and eSE	 Secure storage of SCP¹ Key / MCU side ¹ Secure Channel Protocol (e.g. SCP03) 	 Secure storage of SCP¹ Key / eSE side Secure Channel Protocol implementation 				
Secure Boot of MCU	 Before releasing from reset, CMAC signature verification of immutable boot area Hash computation 	 Asymmetric signature verification of updatable area(s) against pre-defined Root Of Trust 				
MACSec between 2 ECUs	 GMAC computation/verification using Secure Association Key 	 CAK¹ provisioning/learning MACSec key agreement and SAK² creation ¹ Connectivity Association Key ² Secure Association Key 				
Vehicle to Cloud mTLS	Not supported	Manage critical steps during mTLS handshake				
Digital Key (DK)	 Not relevant in DK protocol Secure transfer of UWB keys to UWB sub-system 	 Digital Key storage Implementation of the CCC protocol between vehicle and device 				

	Lack of cla how/where services impleme	e crypto s are		associated	Crypto ities and I interfaces et specific	relevant) and API	Ware (when capabilities are vendor ecific.
Today's Autosar Crypto Service		own resistance rdware attacks		Lack of agility for extending capabilities post deployment		High impact on resources (incl. non- recurring engineering) to address needed changes	
Manager Implementations		Fixed ar crypto algoi	gr	aphic	post-dep	to address loyment ities is not seen	

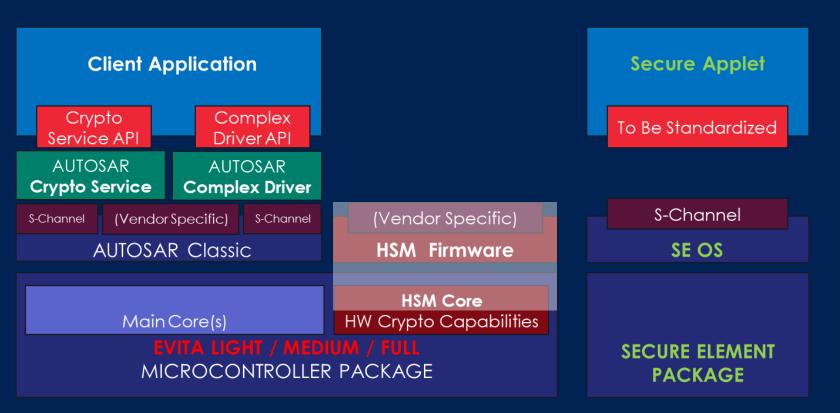
Use cases with embedded Secure Elements in Automotive

Automotive ECUs are more and more challenged to address risks with higher level of security robustness sometimes with

- unclear visibility about the strategy to setup and
- how to maintain it "state of the art" over more than a decade

ECUs can rely on AUTOSAR CSM APIs to answer many cybersecurity challenges

• Higher level of security (>SESIP 3 or EAL4+/5+) is sometimes required


- eSE must be understood as a complementary solution on top of ECU HSM used in AUTOSAR with CSM APIs
- Any customer who wants to keep going using AUTOSAR for practical and legacy reason and just delegate specific tasks to eSE as a companion chip.
- eSE standardized APIs is likely to address generic services :

Migration towards SDV

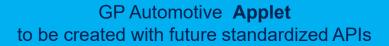
GlobalPlatform is working on leveraging Secure Elements to extend proprietary HSM within the AUTOSAR framework

<u>HSM</u>

- Legacy implementation
- Access to internal resources

<u>eSE</u>

- Tamper resistance
- Certification
- Advanced crypto algorithms Diffie Hellman, miscellaneous ECC curves, etc.
- Crypto agility.
 Upgradable, PQC readiness
- Key Management Life Cycle
- Business logic


Leverage Capabilities of both HSM and Secure Element.

Crypto services always running in secure environment (HSM or SE) Global Platform[™]

USECASE	HSM ROLE	eSE ROLE				
Secure binding between MCU and eSE	 Secure storage of SCP¹ Key / MCU side ¹ Secure Channel Protocol (e.g. SCP03) 	 Secure storage of SCP¹ Key / eSE side Secure Channel Protocol implementation 				
Secure Boot of MCU	 Before releasing from reset, CMAC signature verification of immutable boot area Hash computation 	 Asymmetric signature verification of updatable area(s) against pre-defined Root Of Trust 				
MACSec between 2 ECUs	 GMAC computation/verification using Secure Association Key 	 CAK¹ provisioning/learning MACSec key agreement and SAK² creation ¹ Connectivity Association Key ² Secure Association Key 				
Vehicle to Cloud mTLS	Not supported	Manage critical steps during mTLS handshake				
Digital Key (DK)	 Not relevant in DK protocol Secure transfer of UWB keys to UWB sub-system 	 Digital Key storage Implementation of the CCC protocol between vehicle and device 				

Opportunity for Standardized APIs, interoperability testing and security certification?

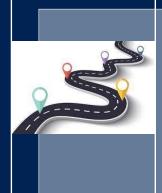
Java Card 3.x + GP 2.3 (Amd CDEFH)

HW eSE (GP T=1 SPI/I2C) EAL6+

Wrap-Up

Francesca Forestieri

Topics Discussed in GlobalPlatform


Automotive & Cybersecurity Vehicle Forums

Join Us: Cooperation for Security Specifications

Standardise minimum common interoperable security services that allow service providers to develop applications for SDVs

Determine how product certification can provide evidence for the CSMS (UNECE 155/156) process

If you are interested in joining in on the fun...

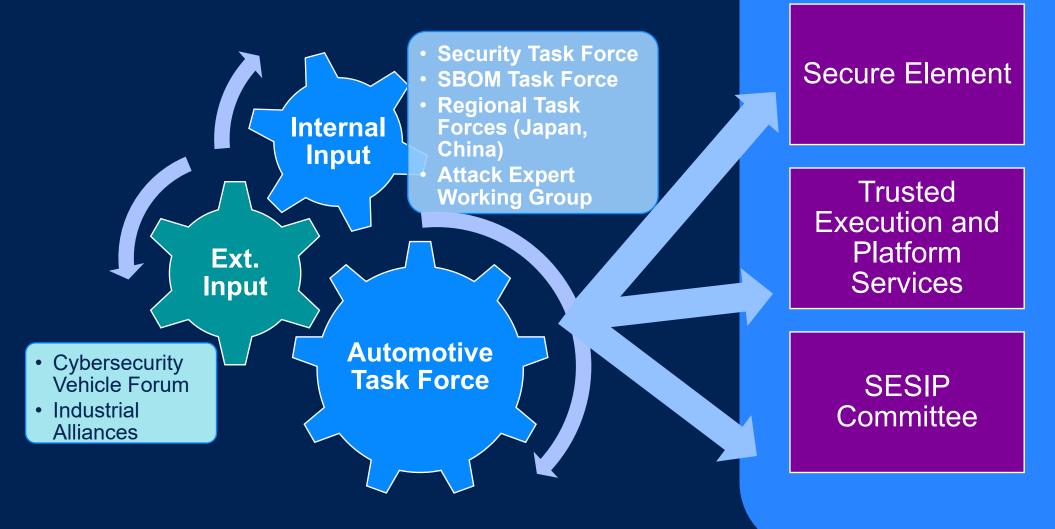
https://www.cartoonstock.com/cartoon?searchID=EC326385

Automotive Lead

Francesca Forestieri, Based in Italy Harry Wang, Based in Shanghai

Global Platform™

The standard for secure digital services and devices


 \rightarrow globalplatform.org

Global Platform™

The standard for secure digital services and devices

 \rightarrow globalplatform.org

Automotive in GlobalPlatform

GlobalPlatform

Technical Committees

J3101-1: Hardware Protected Security Environments (HPSEs) for Ground Vehicles

Goal:

Provide a common glossary for describing security mechanisms (i.e. hardware root of trust and the hardware-based security primitives) supported in hardware for automotive use cases, along with best practices for using such mechanisms.

Additional Complementary Standardization Around Hardware Protected

You are in the right place for the: **Cybersecurity Vehicle Forum – Shanghai**

We are on Break and will return @

SESIP Certification Benefits: OEMs

SESIP: Business Benefits

Faster Development:

- Pre-certified components speed time-to-market
- Avoid redundant security evaluations across vehicle models

Cost Efficiency:

• Test once, use across multiple vehicle platforms

Competitive Edge:

 Demonstrates security commitment to customers

Future-Proof:

• Structured approach to managing security updates

SESIP: Implementation Path for OEMs

Identify priority components (gateways, telematics, OTA systems) Set appropriate security levels based on risk Integrate certification into supplier requirements Build security assurance into vehicle development lifecycle

Security Target Definitions: Best Practices

Be Specific:

 Include implementation details for each security feature

Ensure Traceability:

 Clear links between threats, objectives, and requirements

Balance Detail:

 Technical enough for evaluators, clear enough for stakeholders

Address Standards:

 Include relevant Protection Profile conformance

The Security Target is your security blueprint comprehensive enough to guide evaluation while precisely defining what security claims you're making about your product."

Protection Profiles in SESIP: Industry-Standard Security Templates

Protection Profiles (PPs) define consensus-based security expectations for specific product categories, creating:

• a common foundation for security evaluation.

Protection Profiles transform SESIP certification:

- from a custom evaluation process into a standardized framework that balances security rigor with evaluation efficiency, creating:
 - recognizable security benchmarks for IoT and embedded systems across industries.

SAE J3101: Application-Level Protection Profile

Scope

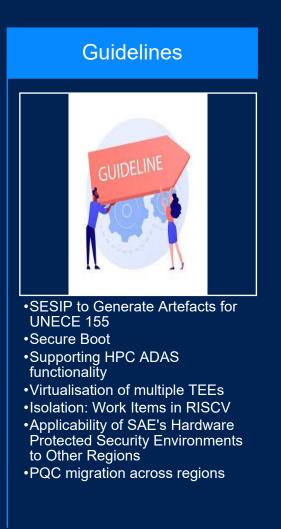
Clearly define :

 scope of the protection profile to cover application-specific requirements

Ensure the profile addresses both:

- mandatory and
- optional application-layer requirements

Challenges


- Application nature (boundaries, granularity, ...)
- Lifecycle management
- Composition
- Self test vs Crypto validation

Reference Parameters

Intent and range of variables (minutes vs. years)
Utility of defining specific testability requirements for key elements
Industry Expectations / Annex of Current Best Practice

GlobalPlatform Automotive Topics Under Exploration

Technical Requirements

Embedded Se as an Extension to HSM
Managing Mixed Criticalities for Safety
Standardisation of TEE Non-Security Attributes (e.g. performance, profile, memory usage, start up time, etc.)

