


Assessing Security Levels & Functional Interoperability

Cybersecurity Vehicle Forum

May 2025

WEI YUAN

PUBLIC

AGENDA

Attack Potential & Attack Methods SESIP Assurance Levels & Protection Profiles

Final thoughts

Context

Automotive Security Today

Growth of Connected Vehicles

The number of connected vehicles is rapidly increasing.

Projections indicate that over **327 million connected vehicles will be in service by 2027**, encompassing advanced mobility platforms such as autonomous vehicles and electric vertical take-off and landing vehicles.

This surge significantly **expands the number of vehicle endpoints exposed** to potential cyberattacks.

Expanded Attack Surfaces

Modern vehicles integrate numerous electronic control units (ECUs) and communication interfaces, including Bluetooth, Wi-Fi, and cellular networks. This complexity introduces multiple potential entry points for cyberattacks.

•**Infotainment systems**: Vulnerable to control override and injection attacks.

•**Telematics units**: Susceptible to unauthorized remote access.

•On-Board Diagnostics (OBD-II) ports: Can be exploited for direct access to vehicle networks.

▲ Escalating Cybersecurity Challenges

The automotive industry faces significant cybersecurity threats, including **compromised safety, privacy breaches, financial losses, and reputational damage**.

Automotive cybersecurity market is projected to grow from **\$3.9 billion in 2023 to \$5.9 billion by 2025**, reflecting the industry's response to these escalating threats.

Automotive Cybersecurity from a different view

ENISA's Attack Methodology

- EUCC Scheme and CC evaluation methodology.
- Experience in Technical Domains for SCSD and HWSB.
- Set of State of the Art (SoTA) documentation.

SESIP Methodology and Protection Profiles

- Pragmatic (and industry friendly) view of CC
- Granularity to reinforce Composition and Reusability
- Compliance demonstration (with requirements mappings) against industry proposals.

00

	State-of-the-Art documents for EUCC	
Autom	To support the Implementing Act on the European Cybersecurity Certification Scheme on Common Criteria, EUCC, ENISA is publishing the related state-of-the-art (SotA) documents listed in its Annex I to clarify the understanding of requirements on specific scopes of assessment. As mentioned in the	
ENISA's	Implementing Act, a 'state-of-the-art document' is a document which specifies evaluation methods, techniques and tools that apply to the certification of ICT products or security requirements of a generic ICT product category in order to harmonize evaluation in technical domains or of protection profiles.	ogy and Protection
• EUCC	State-of-the-art documents may have 2 different statuses.	
metho	 The first is: "adopted with the EUCC Implementing Act or its amendments". The second is: "draft". State-of-the-art documents labelled as "drafts" have been endorsed by the ECCG as per the linked opinion, and are planned to be included in the Annex 1 of a next to come 	ndustry friendly) view of CC
 Exper and H 	amendment of the scheme.	inforce Composition and
	General EUCC level SotAs +	
 Set of docur 	SotA on Technical Domain Smart Cards & Similar Devices +	onstration (with requirements st industry proposals.
. * *	SotA on Technical Domain Hardware Devices with Security Boxes +	
t eni	Interpretations of Protection Profiles (PP) +	obal itform™
* * *	https://certification.enisa.europa.eu/certification-library/eucc-certification-scheme_en	SESIP

Automotive Cybersecurity from a different view

ENISA's Attack Methodology

- EUCC Scheme and CC evaluation methodology.
- Experience in Technical Domains for SCSD and HWSB.
- Set of State of the Art (SoTA) documentation.

SESIP Methodology and Protection Profiles

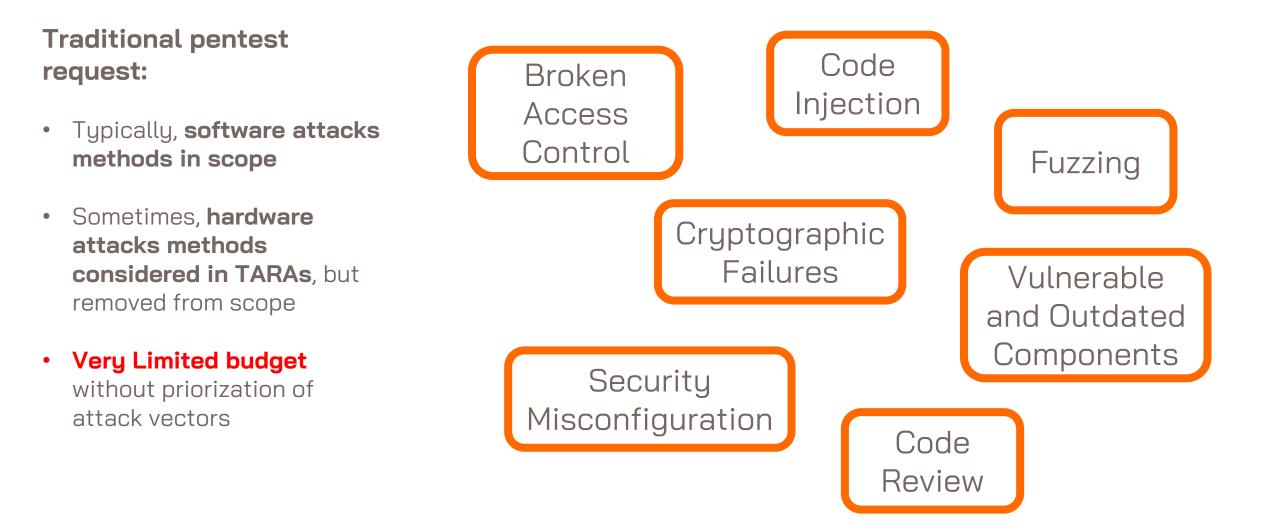
- Pragmatic (and industry friendly) view of CC
- Granularity to reinforce Composition and Reusability
- Compliance demonstration (with requirements mappings) against industry proposals.

Automotive Cybersecurity from a different view

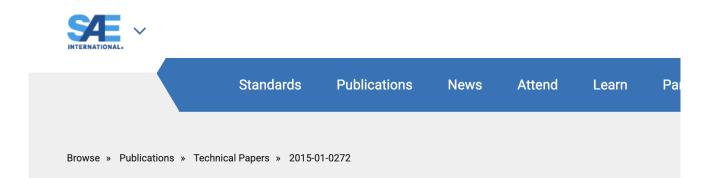
ENISA's Attack	LEVEL 1: SELF-ASSESSMENT Utilizing public tools to discover publicized potential vulnerabilities	חנ
 EUCC Scheme a methodology. 	LEVEL 2: BLACK-GREY BOX PENETRATION TESTING Adding vulnerability analysis and penetration testing	w of CC
• Experience in To and HWSB.	LEVEL 3: WHITE BOX VULNERABILITY ANALYSIS AND PENETRATION TESTING Adding source code review	1 and
• Set of State of documentation.	LEVEL 4: REUSE OF SOG-IS CC EVALUATION More evidence and higher attack potential	uirements ls.
* * * * * enisa ^{EU} CY CE	LEVEL 5: REUSE OF SOG-IS CC EVALUATION More evidence and higher attack potential (ex. for secure element)	

Context

Attack Potential & Attack Methods SESIP Assurance Levels & Protection Profiles

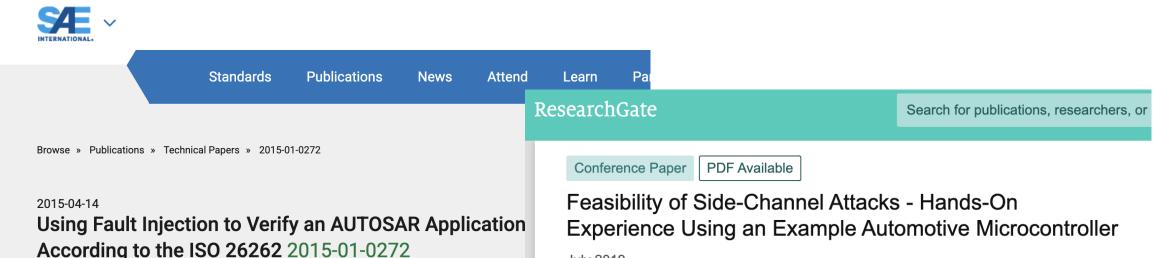

Final thoughts

Attack Potential & Attack Methods



Applus+ experience on automotive penetration testing

Applus+ experience on automotive penetration testing



2015-04-14 Using Fault Injection to Verify an AUTOSAR Application According to the ISO 26262 2015-01-0272

The complexity and the criticality of automotive electronic embedded systems are steadily increasing today, and that is particularly the case for software development. The new ISO 26262 standard for functional safety is one of the answers to these challenges. The ISO 26262 defines requirements on the development process in order to ensure the safety. Among these requirements, fault injection (FI) is introduced as a dedicated technique to assess the effectiveness of safety mechanisms and demonstrate the correct implementation of the safety requirements.

Applus+ experience on automotive penetration testing

The complexity and the criticality of automotive electronic embedded systems a increasing today, and that is particularly the case for software development. The 26262 standard for functional safety is one of the answers to these challenges. defines requirements on the development process in order to ensure the safety. requirements, fault injection (FI) is introduced as a dedicated technique to asses effectiveness of safety mechanisms and demonstrate the correct implementatic requirements.

July 2019

Conference: Applied Research Conference 2019 · At: Regensburg, Germany

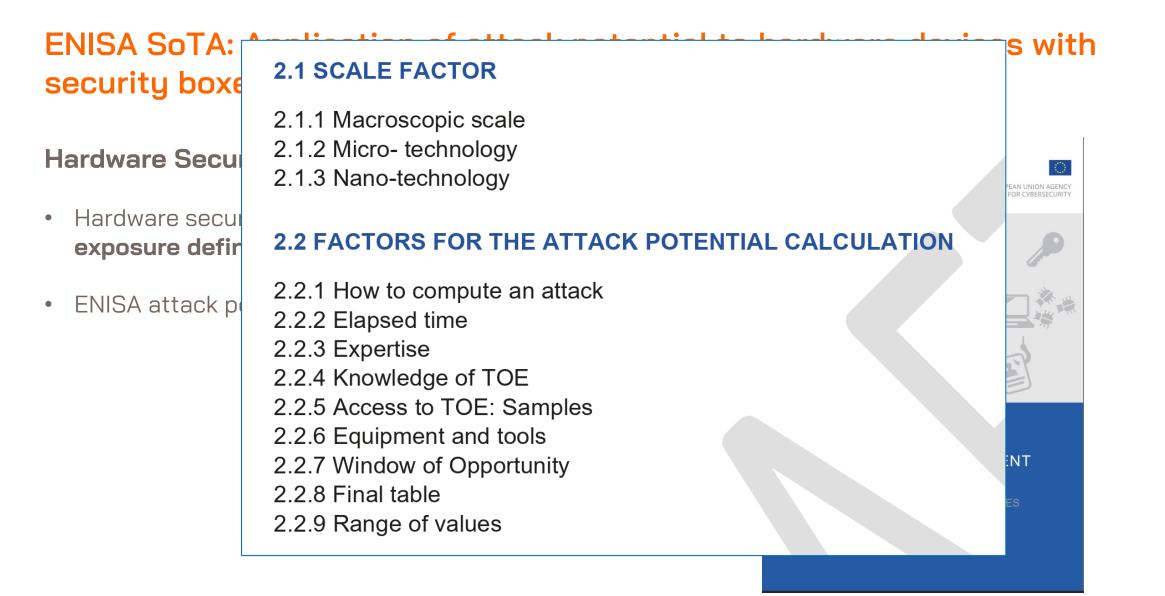
Authors:

Johannes Stark

Regensburg University of Applied Sciences

Rudolf Hackenberg

Applus+ experience on outemptive popetration testing ResearchGate Search for publications, researchers, or que Home > Automotive **Conference Paper** PDF Available Standards Fuzzy fault injection attacks against secure automotive bootloaders Search for publications, researchers, or October 2023 Browse » Publications » Technical Papers » 20 DOI:10.13154/294-10381 Conference: 21th escar Europe : The World's Leading Automotive Cyber Security Conference · At: Hamburg, Germany s - Hands-On 2015-04-14 Using Fault Injection to Ve **Jtomotive Microcontroller** Authors: According to the ISO 2626 **Enrico Pozzobon Regensburg University of Applied Sciences** t: Regensburg, Germany The complexity and the criticality of au increasing today, and that is particular 26262 standard for functional safety is Nils Weiss defines requirements on the developm **Regensburg University of Applied Sciences** requirements, fault injection (FI) is intreeffectiveness of safety mechanisms a S requirements. Juergen Mottok Václav Matoušek Regensburg University of Applied Sciences


Hardware Security Boxes and Automotive Parallels:

- Hardware security boxes and ECUs share attack exposure definition.
- ENISA attack potential model is mature and effective

01

ENISA SoTA: Application of security boxes (HWSB)

Hardware Security Boxes and Au

2.1 SCALE FACTOR

Har 2.1.1 Macroscopic scale 2.1.2 Micro- technology 2.1.3 Nano-technology

• ENI 2.2 FACTORS FOR THE ATTACK POTENTIAL

2.2.1 How to compute an attack

2.2.3 Expertise

2.2.4 Knowledge of TOE

2.2.5 Access to TOE: Samples

2.2.6 Equipment and tools

2.2.7 Window of Opportunity

2.2.8 Final table

2.2.9 Range of values

	Definition according to CEM	Detailed definition to be used in Security Boxes
Experts	Familiar with implemented: -Algorithms -Protocol -Hardware structures -Principles and concepts of security.	Professional experience with: -Security boxes hardware structures -Configuration and handling of specific equipment (milling/drills, x-rays,etc) -Electronic and microelectronic knowledge (sensors, actuators, etc.). and -Techniques and tools for the definition of new attacks.
Proficient	Familiar with: -Security behaviour	Familiar with: -Security behaviour and classical attacks to security boxes.
Laymen	No particular expertise	No particular expertise

Table 3: Extent of expertise

Table 4: Rating for Expertise		9
Expertise	Identification	Exploitation
Layman	0	0
Proficient	1	1
Expert	2	3
Multiple Expert	5	6

•

ENISA SoTA: Application of attack security boxes (HWSB)

Hardware Security Boxes and Automotiv

2.1 SCALE FACTOR

Har 2.1.1 Macroscopic scale 2.1.2 Micro- technology

2.1.3 Nano-technology

ENIC 2.2 FACTORS FOR THE ATTACK POTENTIAL CALCULATION

2.2.1 How to compute an attack

- 2.2.2 Elapsed time
- 2.2.3 Expertise
- 2.2.4 Knowledge of TOE
- 2.2.5 Access to TOE: Samples
- 2.2.6 Equipment and tools
- 2.2.7 Window of Opportunity
- 2.2.8 Final table
- 2.2.9 Range of values

FIB systems	Specialized
Standard thermal camera	Specialized
Standard tomography scanner	Specialized
Gamma-ray generator	Specialized
Radio-frequency generator	Specialized
Standard X-ray machine	Specialized
Anechoic chamber	Specialized
Climate chamber	Specialized
Tools for grinding	Specialized
Tools for chemical etching (plasma)	Specialized
Tools for chemical etching (wet)	Specialized
Signal/Protocol Analyser	Specialized
Digital Oscilloscope	Specialized
Signal and function processor	Specialized

Manufacturers know the purchasers of these tools and their location. The majority of the second hand tools market is also controlled by the manufacturers.

Efficient use of these tools requires a very long experience and can only be done by a small number of people. Nevertheless, one cannot exclude the fact that a certain type of equipment may be accessible through university laboratories or equivalent but expertise in using the equipment is quite difficult to obtain.

Table 9: Rating for tools (II)

Tool	Equipment
X-ray 3-D tomograph	Bespoke
New Tech Design Verification and Failure Analysis Tools	Bespoke

Note, that using bespoke equipment should lead to a moderate potential as a minimum.

The level "Multiple Bespoke" is introduced to allow for a situation, where different types of bespoke equipment are required for distinct steps of an attack.

Table 10: Rating for Equipment

Equipment	Identification	Exploitation
None	0	0
Standard	1	2
Specialized*	3	4
Bespoke	5	6
Multiple Bespoke	7	8

*If clearly different test benches consisting or specialised equipment are required for distinct steps or al attack this shall be rated as bespoke.

Equipment can always be rented but the same quotation applies with one exception: Bespoke equipment, which can

rdware Security Boxes ar	nd Automotive Parallels:
Range of Values*	TOE resistant to attackers with attack potential of
0 – 13.5	No rating
14– 15.5	Basic
16 – 24.5	Enhanced – Basic
25 – 34.5	Moderate
35 and above	High
	Version 2 February 2025

Attack potential rating example

Attack scenario:

- Target:
 - Bypass FW signature verification during FW update process with the target to load a forged FW with malicious code.
- Identification of (potential) vulnerability:
 - When wrong FW is processed, different error messages are received.
 - The verification of the FW might not be protected against faults.
 - Attack method:
 - Perturbation attack using Voltage glitch

2.1 SCALE FACTOR

2.1.1 Macroscopic scale 2.1.2 Micro- technology

- 2.1.2 Micro-technology
- 2.1.3 Nano-technology

2.2 FACTORS FOR THE ATTACK POTENTIAL CALCULATION

2.2.1 How to compute an attack
2.2.2 Elapsed time
2.2.3 Expertise
2.2.4 Knowledge of TOE
2.2.5 Access to TOE: Samples
2.2.6 Equipment and tools
2.2.7 Window of Opportunity
2.2.8 Final table
2.2.9 Range of values

	Identification	Exploitation		
Elapsed time	5	2		
Expertise	2	2		
Knowledge of TOE	2	2		
Access to TOE: Samples	2	4		
Equipment and tools	3	4		
Windows of Opportunity	0	0		
Final table	14	14		
Final table	28 (Moderate resistance)			

	Identifi	ication		Exploitati	on
Elapsed time		5			2
Expertise		2			2
Knowledge of TOE		Table 1: Rating for Elapsed 1	īme		
Access to TOE: Samples		Elapsed Time	Iden	tification	Exploitation
Equipment and tools		< one hour		0	0
Windows of Opportunity		≤ one day		1	2
		≤ one week		2	3
Final table		≤ one month		3	4
		> one month		5	1

	Identification	Exploitation		
Elapsed time	5	2		
Expertise	2	2		
Knowledge of TOE	2	2		
Access to TOE: Samples	2	4		
Equipment and tools	3	4		
Windows of Opportunity	0	0		
Final table	14	14		
Final table	28 (Moderate resistance)			

	Identification		Exploit	ation	
Elapsed time	5			2	
Expertise	2			2	
Knowledge of TOE	Table 4: Rating for Expertise			-	
Access to TOE: Samples		laloutifi ooti a		Evaloitation	
Equipment and tools	Expertise	Identificatio	n	Exploitation	
Windows of Opportunity	Layman	0		0	
	Proficient	1		1	
Final table	Expert	2		3	
	Multiple Expert	5		6	

	Identification	Exploitation	
Elapsed time	5	2	
Expertise	2	2	
Knowledge of TOE	2	2	
Access to TOE: Samples	2	4	
Equipment and tools	3	4	
Windows of Opportunity	0	0	
	14	14	
Final table	28 (Moderate resistance)		

	Identification		Exploitatio	n
Elapsed time	5		2	
Expertise	2		2	
Knowledge of TOE	2		2	
Access to TOE: Samples Table 5: Rating for Knowledge of TOE				
Equipment and tools	Knowledge	lala m tifi a		Fruitaitation
Windows of Opportunity	Knowledge	Identific	ation	Exploitation
	Public	0		0
Final table	Restricted	2		2
	Sensitive	3		4

	Identification	Exploitation	
Elapsed time	5	2	
Expertise	2	2	
Knowledge of TOE	2	2	
Access to TOE: Samples	2	4	
Equipment and tools	3	4	
Windows of Opportunity	0	0	
	14	14	
Final table	28 (Moderate resistance)		

	Identifi	Table 1: Rating for Access to T	OE	
	luentin	Access to TOE (samples)	Identification	Exploitation
Elapsed time		Non-functional sample	1	1
Expertise		Functional samples	2	2
Knowledge of TOE		Fully operational samples	4	4
Access to TOE: Samples		If more than one sample is required following factors must be used.	ired in any category, instead of r	multiplying the points by the num
Equipment and tools		Table 7: Factor to rate the samples		
Windows of Opportunity		Number of Devices	Factor	
		1	1	
Final table		2	1.5	
		3-4	2	
		5-10	4	

	Identification	Exploitation	
Elapsed time	5	2	
Expertise	2	2	
Knowledge of TOE	2	2	
Access to TOE: Samples	2	4	
Equipment and tools	3	4	
Windows of Opportunity	0	0	
	14	14	
Final table	28 (Moderate resistance)		

ENISA SoTA: Application of attack potential to hardware devices with

 Table 10: Rating for Equipment

security boxes (HWSB)

Attack potential rating exampl	Equipment	Identification	Exploitation
	None	0	0
	Standard	1	2
Elapsed time	Specialized [*]	3	4
Expertise	Bespoke	5	6
Knowledge of TOE	Multiple Bespoke	7	8
Access to TOE: Samples	2		4
Equipment and tools	3		4
Windows of Opportunity	0		0
	14		14
Final table	28 (Moderate resistance)		

	Identification	Exploitation	
Elapsed time	5	2	
Expertise	2	2	
Knowledge of TOE	2	2	
Access to TOE: Samples	2	4	
Equipment and tools	3	4	
Windows of Opportunity	0	0	
	14	14	
Final table	28 (Moderate resistance)		

		Table 11: Rating for the Windows of	of Oppor	tunity	
Attack potential rating example		Window of opportunity		Identification	Exploitation
	denti	Unlimited		0	0
Elapsed time	/	Easy		1	1
		Moderate		2	3
Expertise		Difficult		4	5
Knowledge of TOE		None		_*	-*
Access to TOE: Samples		2			4
Equipment and tools		3			4
Windows of Opportunity		0			0
Final table		14			14
	28 (Mod		lerate	e resistance)	

	Identification	Exploitation	
Elapsed time	5	2	
Expertise	2	2	
Knowledge of TOE	2	2	
Access to TOE: Samples	2	4	
Equipment and tools	3	4	
Windows of Opportunity	0	0	
	14	14	
Final table	28 (Moderate resistance)		

	Identification	Exploitation		
Elapsed time	and and a second se	2		
Expertise	2	O		
Knowledge of TOE	2	2		
Access to TOE: Samples	2	4		
Equipment and tools	3	4		
Windows of Opportunity	0	0		
	11	12		
Final table	21 (Enhanced	21 (Enhanced-Basic resistance)		

		Identification Evoluitation
Elapsed	Range of Values*	TOE resistant to attackers with attack potential of
Expertis	0 – 13.5	No rating
Knowled	14– 15.5	Basic
Access t Equipme	16 – 24.5	Enhanced – Basic
Windows	25 – 34.5	Moderate
	35 and above	High
Final tat		21 (Enhanced-Basic resistance)

Harmonized criteria to rate attack difficulty:

- **Supports layered defense strategy** helping to prioritize testing investment
- Easier quantification of cost of the attacks (in USD)
- Promotes **budget-efficiency** while clarifying criteria for laboratories.

EUCC SCHEME STATE-OF-THE-ART DOCUMENT

APPLICATION OF ATTACK POTENTIAL TO HARDWARE DEVICES WITH SECURITY BOXES Version 2, February 2025 Context

Attack Potential & Attack Methods SESIP Assurance Levels & Protection Profiles

Final thoughts

SESIP Assurance Levels & Protection Profiles

SESIP contribution for Automotive sector

- Objective to reduce the cost, complexity, and effort associated with security evaluations.
- Emphasis on modularity and the reuse of certified components.

Modular Evaluation:

Automotive systems comprise various components like ECUs, telematics units, and infotainment systems. SESIP allows for individual evaluation of these components, facilitating targeted security assessments.

Reuse of Certified Components:

Manufacturers can integrate previously certified components into new systems without re-evaluating the entire system, saving time and resources.

Support for ISO/SAE 21434 Compliance:

SESIP's methodology supports compliance with ISO/SAE 21434, the international standard for automotive cybersecurity risk management.

SESIP Assurance Levels

Adapt SESIP to your risk assessment:

- SESIP levels let you tailor assurance to risk
- Avoid overengineering: not every ECU needs SESIP 5
- Enables scalable security investment based on product criticality

LEVEL 1: SELF-ASSESSMENT Utilizing public tools to discover publicized potential v	ulnerabilities
LEVEL 2: BLACK-GREY BOX PENETRATION TESTING Adding vulnerability analysis and penetration testing	5
LEVEL 3: WHITE BOX VULNERABILITY ANALYSIS AN Adding source code review	ID PENETRATION TESTING
LEVEL 4: REUSE OF SOG-IS CC EVALUATION More evidence and higher attack potential	
LEVEL 5: REUSE OF SOG-IS CC EVALUATION More evidence and higher attack potential (ex. for sec	ure element)

Fragmented and cost-sensitive automotive supply chain, SESIP offers flexibility.

For example, you can assign SESIP 2 for a temperature sensor, and SESIP 3 for a gateway that handles over-the-air (OTA) updates.

This ensures resources are focused where they yield the highest security value. The SESIP model supports iterative and modular certification, reducing total cost of ownership.

SESIP Assurance Levels

ot SESIP to your risk assessment:		LEVEL 1: SELF-ASSESSMENT	
Range of Values*	TOE resistant to attackers with attack potential of		
0 – 13.5		No rating	
14– 15.5	Basic		
16 – 24.5		Enhanced – Basic	
25 – 34.5		Moderate	
35 and above		High	

ragmented and ever consiste datemetre supply enam, even eners texisting.

For example, you can assign SESIP 2 for a temperature sensor, and SESIP 3 for a gateway that handles over-the-air (OTA) updates.

This ensures resources are focused where they yield the highest security value. The SESIP model supports iterative and modular certification, reducing total cost of ownership.

SESIP Protection Profiles

Why Protection Profiles Matter

- Define security objectives and scope early
- Enable harmonization across the supply chain
- Lower certification cost

Global ABOUT SESIP TECHNOLOGY CERTIFICATION EDUCATION COMMUNITY NEWS & EVENTS Platform®	LOGIN Q ENGLISH
SESIP to RED-hEN Mapping v1.0 GPS_NOT_021 Published Mar 2024	•
SESIP Profile for DTSec Connected Diabetes Device Platforms v1.0 GPT_SPE_151 Published Jan 2024	•
Security Evaluation Standard for IoT Platforms (SESIP) Methodology v1.2 GP_FST_070 Published Jul 2023	•
Security Evaluation Standard for IoT Platforms (SESIP) FAQ v1.0 GP_FAQ_112 Published Jun 2021	•
SESIP Profile for Secure External Memories v1.1 GPT_SPE_148 Published Sep 2024	•
SESIP Profile for Secure MCUs and MPUs v1.0 GPT_SPE_150 Published Nov 2021	•
Cryptographic Algorithm Recommendations v3.0 GP_TEN_053 Published Apr 2025	0

GlobalPlatform role within the certification ecosystem

Continuous work to adapt to industry needs:

- **Technical working groups** to standardize criteria and requirements
 - Harmonize criteria for attacks (i.e., minimum/maximum attack scoring for specific attack scenarios)
 - Harmonize acceptance on ad-hoc approaches (i.e., test witnessing in vendor facilities)
- **ITSEFs** in alignment with certification bodies to adapt requirements to discuss ad-hoc approaches for specific use cases.
 - Workshop to go though implementation instead of in-house code review
 - Specific test-setups to facilities exposure of attack surface
 - Alternative functional test methods to demonstrate compliance

SESIP Assurance Levels and Protection Profiles

A common and optimized approach for evaluating the security of connected products:

- General model similar to CC
- Granularity
- Requirement hierarchy
- Profiles

Attack Potential & Attack Methods SESIP Assurance Levels & Protection Profiles

Final thoughts

Final thoughts

Key Takeaways

ENISA's Attack Potential Method:

Harmonized criteria to rate attack difficulty

SESIP Certification:

A common and optimized approach for evaluating the security of connected products

Thanks!

Join us on

TESTING AND CERTIFICATION CENTER www.appluslaboratories.com