Hitachi Solutions Technology

Cyber Security Vehicle Forum Problems in the development field and challenges Hitachi Solutions Technology observes.

Kimitaka Asaka

Hitachi Solutions Technology, Ltd. Security Solution Design 2nd Dept

May 22, 2025

Contents

- 1. 私たちの紹介 (Our introduction)
- 2. 開発現場の声 (Voices from developers)
- 3. 日立ソリューションズ・テクノロジーが直面する課題

(Challenges Hitachi Solutions Technology observes)

4. まとめ (Summary)

私たちの紹介

(Our introduction)

会社概要 company introduction

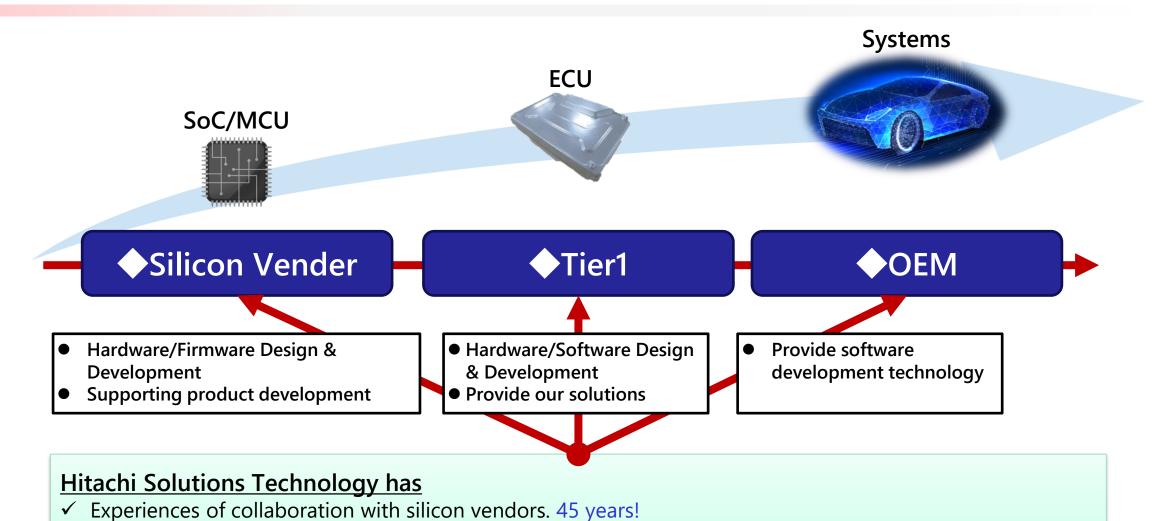
Overview

Company	Hitachi Solutions Technology, Ltd.
Headquarters	7-1, Midori-cho, Tachikawa-shi, Tokyo , 190-0014, Japan
Phone number	042-512-0888 (main line)
Representative	Kenichi Hirama, President
Established	June 1, 1980
Capital	310 million yen
Number of employees	636 (as of the end of March 2024)

History

June 1980

Established as a design specialist of the Hitachi Group's Semiconductor Division


April 2009

Focusing on automotive embedded systems (software and hardware) business

April 2019

Became a group company of Hitachi Solutions and changed its name to Hitachi Solutions Technology

私たちのミッション Our mission

✓ Expanding security solutions in the embedded software field. Starting in 2024!

✓ Capability in developing hardware and software for the automotive field. 16 years!

お客さまの課題を理解し、解決策を創出・提供・運用するセキュリティソリューションを提供

(We understand our customers' issues and provide security solutions that create, provide and operate solutions)

運用

Operation

4 Managed Services

- セキュリティ監視運用支援 (Security monitoring operation support)
- PSIRT運用支援

(PSIRT operation support)

解決策を

創出

解決策を 提供

- セキュリティ技術支援およびコンサル (Security technology support and consulting)
- PSIRT構築支援およびコンサル (PSIRT construction support and consulting)

- セキュアIoT製品&運用システム開発 (Development of secure IoT products & operational systems)
- セキュアOTシステム開発 (Development of secure OT systems)

開発 Development

2System Integration

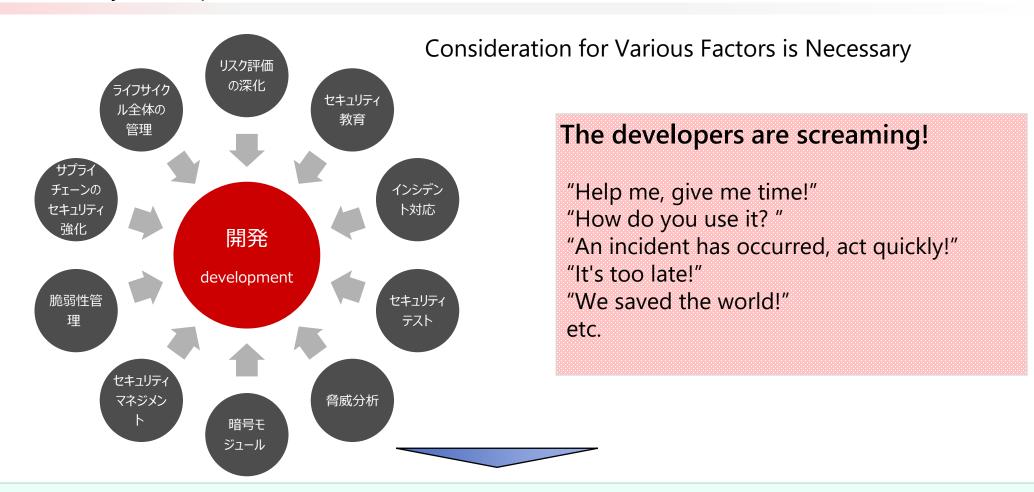
1 Digital Engineering

- ECUソフトウェア/ハードウェア設計 (ECU software/hardware design)
- TEE製品販売、TEE搭載ソフトウェア開発 (Sales of TEE products and other security products)

PSIRT: Product Security Incident Response Team

開発現場の声

(Voices from developers)


Keywords for attractive cars

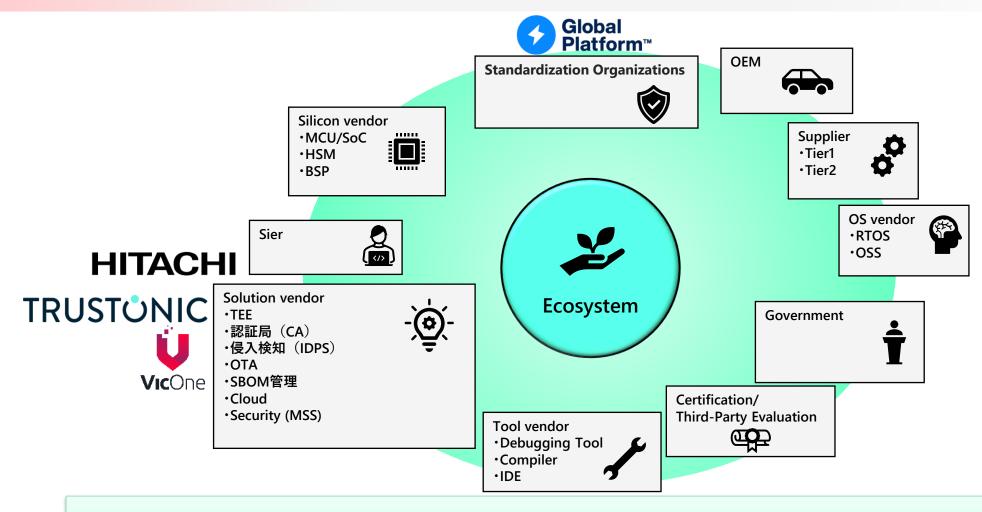
継続的なセキュリティ改善による保護が必要だが、セキュリティ開発に割り当てられる時間が大幅に不足! (Needs to be protected by continuous security improvements. But, there is a significant shortage of time allocated for security development!)

セキュリティ開発のキーワード

Keywords in security development

<u>Challenges Hitachi Solutions Technology observes</u>

- ① 先進的な技術とプラットフォームで開発スピードアップ (Accelerating Development with Advanced Technologies and Platforms)
- ② バラバラに提供されたソリューションのインテグレーション (Integration of Disparate Solutions)



日立ソリューションズ・テクノロジーが直面する課題

(Challenges Hitachi Solutions Technology observes)

セキュリティパートナーエコシステムの構築推進

Promote the creation of a security partner ecosystem

すべてのステークホルダーの力を結集し、優れたテクノロジーやスキルをつなぐ HSMとTEEにフォーカス!

(Harnessing the Power of All Stakeholders and Connecting Excellent Technology and Skills Focus on HSM and TEE!)

TEE/HSMの技術と開発現場の課題

TEE/HSM techniques and problems in the development field

● TEE/HSM技術 (TEE/HSM techniques)

	TEE (Trusted Execution Environment)	HSM (Hardware Security Module)
特徴 (Feature)	セキュリティ実装の自由度が高い (High degree of freedom in security implementation)	セキュリティ実装の自由度が低いが、堅牢な耐タンパ性を実現 (Limited freedom in security implementation, but robust tamper resistance)
導入効果 (Benefits)	・柔軟な設計/アップデートが可能 (Flexible design/update possible) ・汎用MCU/SoCで実現可能 (Can be realized with general-purpose MCU/SoC) ・高い移植性 (標準Interfaceの活用) (High portability (utilization of standard interfaces))	 ・CPU処理負荷をオフロード可能 (CPU processing load can be offloaded) ・高いセキュリティ要求(物理耐タンパ性)に対応 (Meet tamper resistance requirements) ・悪意のある書き換えが困難 (Difficult to Maliciously Rewrite)

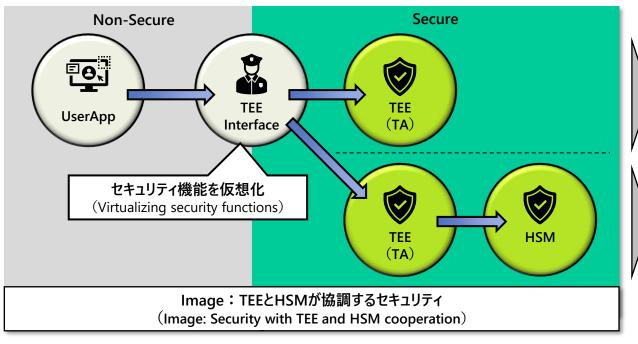
● 開発現場の課題 (problems in the development field)

(Now)

● 日本市場はSoCに標準搭載されたHSMを使う場合が多く、TEEの認知度は高くない (The Japanese market often uses HSMs that are standard on SoCs, and TEE awareness is low)

● 市場投入前に実車検証を十分に行うため、開発効率化が必要

(It is necessary to improve development efficiency to conduct thorough real vehicle testing before market launch)


(Try)

- TEEの認知度向上 (Raising awareness of TEE)
- TEEとHSMが協調する実装技術の標準化推進 (Promoting standardization of mounting technology in which TEE and HSM collaborate)

セキュリティ機能の仮想化の提案

Proposal for virtualization of security functions

● TEE Interfaceを活用したセキュリティ機能の仮想化(Virtualization of Security Functions(utilizing TEE Interface))

- ✓ ソフトウェアセキュリティ要件への対応
 (Addressing software security requirements)
 ✓ ハードウェア完成までプロトタイピング環境として活用
 (Utilization of Prototyping Environment until Hardware Completion)
- ✓ ハードウェアセキュリティ要件への対応 (Addressing hardware security requirements)

利点 (Benefits)

① 派生開発の効率向上 (Improving efficiency in derivative development)

② 開発プロセスの改善 (Improvement of development process)

③ セキュリティ強度の向上 (Improving security strength)

④ ソフトウェアおよびハードウェアの要件対応への柔軟性向上 (Improving Flexibility in Responding to Software and Hardware Requirements)

自動車関連規格の技術要求

HITACHI

Technical requirements for automotive-related standards

rechnical requirements for automotive-related standards				Currently considering details!		
Ctondard Name	Oversions	Requirements	Scope			
Standard Name	Overview		Software	Hardware	Other	
ISO/SAE 21434	自動車のサイバーセキュリティリスクを 管理するための国際規格	 セキュアブート(Secure Boot) 暗号化通信(Encrypted Communication) メッセージ認証(Message Authentication) アップデート(OTA) アクセス制御(Access Control) 	0			
		TPM/HSM (Trusted Platform Module / Hardware Security Module)		0		
		その他 脅威分析とリスク評価(TARA)、セキュリティログと監査証跡、 セキュリティテスト(Penetration Testing / Fuzzing)、セキュリティインシデント対応(SIRT)			0	
UN-R155	国連の車両型式認証におけるサイバーセキュリティ要件(CSMS)	 セキュア通信 セキュアブートとソフトウェア整合性検証 侵入検知システム (IDS) とモニタリング 	0			
		その他 CSMS(Cyber Security Management System)、リスク分析と脅威モデリング(TARA)、 インシデント対応体制(SIRT)、サプライチェーンセキュリティ、継続的な改善と監査			0	
UN-R156	ソフトウェアアップデートの安全性と信頼性を確保する規則(SUMS)	 ソフトウェア整合性検証 改ざん防止技術 互換性・依存性の検証 アップデートのセキュリティ 	0			
		その他 RxSWIN(ソフトウェア識別番号)管理、セキュリティログと記録保持、CSMSとの連携			0	
FIPS 140-3	暗号モジュールのセキュリティ要件	• 暗号アルゴリズムの認証、鍵管理	0			
	(NIST)	• 暗号処理用ハード(TPM, HSM)		0		

様々な規格の要求を満たすために、TEEとHSMが協調したアーキテクチャの構築が重要

(It is important to build an architecture that coordinates TEE and HSM to meet the requirements of various standards)

まとめ (Summary)

まとめ Summary

- ・魅力的な製品を作り続けるために、セキュリティ開発の効率化が必要 In order to continue to create attractive products, it is necessary to streamline security development
- ・開発の効率化には、各ステークホルダーの有機結合が必要 Improving development efficiency requires organic bonding among each stakeholder
- ・TEEはセキュリティ機能を仮想化するために有効 TEE is useful for virtualizing security functions
- ・TEE/HSMを有効活用するガイドラインが必要 Guidelines are needed to make effective use of TEEs/HSMs
- ・パートナーの力を集結させて世界を守ろう!(パートナーのパートナーはパートナー) Let's gather the power of our partners to save the world! (Partner's partner is partner)

