Trends of Automotive Threats and Attacks

Global Technical & Cybersecurity Advisor Dennis Kengo Oka dennis.kengo.oka@iav.jp

GlobalPlatform Cybersecurity Vehicle Forum May 22, 2025, Tokyo, Japan

Introduction of IAV

Dr. Dennis Kengo Oka

- Started working on automotive security in 2006
- Involved in standardization and best practices activities
- 70+ publications and presentations at events
- Global Technical & Cybersecurity Advisor

Building Secure Automotive IoT Application

Author of books: "Building Secure Cars: Assuring the Automotive Software Development Lifecycle" and "Building Secure Automotive IoT Applications: Developing Robust IoT Solutions for Next-Gen Automotive Software"

ADAS: Advanced Driver Assistance System IVI: In-Vehicle Infotainment

Overview of Automotive Threats in 2024

Incidents targeting IT systems, IVI systems and ADAS were most prevalent

Ref: VicOne 2025 Automotive Cybersecurity Report VIcOne Automotive Cybersecurity Snapshot

Increasing number of automotive vulnerabilities published year over year

Ref: VicOne 2025 Automotive Cybersecurity Report VIcOne Automotive Cybersecurity Snapshot

Estimated Cost of Cyberattacks in the Automotive Industry

2024 \$22.5B

 $I \land \lor$

8 IAV 05/2025 IAVJ DKO Status: draft, confidential

2022

\$1.0B

Ref: VicOne 2025 Automotive Cybersecurity Report VIcOne Automotive Cybersecurity Snapshot

SDV: Software-Defined Vehicle V2X: Vehicle to X

SDV Ecosystem – New Use Cases and Technologies

Advanced software and increased connectivity to support new SDV use cases

Increased Attack Surface

Exploit software vulnerabilities Replay attacks

Spoofing

Bypass/break weak authentication

API abuse Data leakage of vehicle/user data Unauthorized access

Bruteforce attempts

Reverse-engineering of mobile apps

Session hijacking/Man-inthe-middle attacks

Unauthorized access to mobile app's memory

Advanced software and increased connectivity lead to increased attack surface

Future Technologies – Quantum Computing

Microsoft's Majorana 1 chip carves new path for quantum computing

Check out the world's first Quantum Operating System

2441 Views 24 Apr 2025, 06:00 PM Abhijeet V Singh

Written by Catherine Bolgar Published February 19, 2025

Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer Kawasaki and Wako, Japan, April 22, 2025

New advancements in Quantum Computing

Ref: https://content.techgig.com/technology/the-dawn-of-quantum-computing-introducing-qnodeos-the-first-quantum-operating-system/articleshow/120586133.cms https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/ https://www.fujitsu.com/global/about/resources/news/press-releases/2025/0422-01.html

Quantum Computing Impact on Cybersecurity

Shor's algorithm

- Can factor large integers exponentially faster than best-known classical algorithms
- Affects: Asymmetric encryption algorithms that rely on the difficulty of factoring large integers or finding discrete logarithms
- Result: Big threat e.g., RSA and ECC could be completely broken – private keys can be extracted from public keys

Grover's algorithm

- Can speed up bruteforce attacks (but only by a square root)
- Affects: Symmetric encryption algorithms that rely on key size and infeasibility of bruteforcing all possible keys
- Result: Partial threat e.g., AES-128 would be weakened to half the security (64-bit strength)

Quantum Computing has severe impact on Cybersecurity

PQC Approaches

PQC: Post-Quantum Cryptography RSA: Rivest Shamir Adleman ECC: Elliptic Curve Cryptography ECDSA: Elliptic Curve Digital Signing Algorithm ECDH: Elliptic Curve Diffie Hellman AES: Advanced Encryption Standard SHA: Secure Hash Algorithm HMAC: Hash-based Message Authentication Code

Traditional Algorithm	Quantum Vulnerability	PQC Approach
RSA	Broken by Shor's algorithm	CRYSTALS-Kyber (key exchange)
ECC	Broken by Shor's algorithm	CRYSTALS-Dilithium (signatures)
AES-128	Grover's algorithm halves security (64 bits)	Use AES-256
SHA-2 (SHA-256)	Grover's algorithm halves preimage resistance (128 bits)	Continue with SHA-2 or use SHA- 512 for extra margin
SHA-3-256	Grover's algorithm halves preimage resistance (128 bits)	Continue with SHA-3-256 or use SHA-3-512 for extra margin
HMAC	Depends on underlying hash (SHA-2 or SHA-3)	See above for SHA-2 and SHA-3- 256
ChaCha20 (256 bits)	Grover's algorithm halves security (128 bits)	Continue with ChaCha20 (256 bits)

Post Quantum Computing Crypto solutions are needed to address the risks

EV: Electric Vehicle DoS: Denial of Service IVI: In-Vehicle Infotainment

Examples of Past Attacks

- Entry point: Vehicle key fob
- **Vulnerability**: in the keyless entry system/immobilizer (weak cryptographic authentication)
- Attack device uses specific algorithm and calculates the correct key ⇒ sends to vehicle
- Impact: use attack device as key and drive off with target vehicle

- Entry point: Physical access to the EV charging station interface
- Vulnerability: in firmware (not checking lower bounds) and proprietary communication protocol (allows malformed frames)
- Send custom malformed payloads
- Impact: DoS, undefined behavior or command injection

- Entry point: Bluetooth interface on IVI
- Vulnerability: in Bluetooth implementation
- Exposed unauthenticated Bluetooth services, firmware allows unsigned code execution
- Inject malware, extract vehicle data
- **Impact**: extract vehicle location data, contact and call history, record microphone audio etc.

Deep Dive

Weaknesses

No.	Component	Weakness	Results
1.	Dealer Web Portal	No access restriction and no approval process for newly created dealer accounts	Attacker can register as a dealer
2.	Dealer Web Portal	Exposed sensitive functionality via client- side JavaScript	Attacker as fake dealer can call privileged backend APIs
3.	Backend APIs	Missing authorization validation	Attacker can reassign a vehicle without owning it
4.	Backend APIs	No rate limiting	Attacker can brute-force or automate attacks
5.	Backend APIs	Sensitive data exposure	Attacker can extract user details including name, phone number and email address

Summary of the Attack

- An attacker could remotely access and control any vehicle associated with the VIN/license plate:
 - unlock the car
 - start the car
 - track its location and access location history

- An attacker could remotely extract information associated with the VIN/license plate:
 - Full name of vehicle owner
 - Mobile phone number
 - Email address
 - Vehicle information (VIN, license plate number, make, model, year)

Attacker could gain control of vehicles and extract personal information

Disclosure & Remediation

• Discovery: June 11, 2024, by security researchers

• Reported to OEM: Immediately upon discovery

• Patch Released: August 14, 2024

Enable vulnerability disclosure program and remediate quickly

Call to Action

• Stay up-to-date on automotive risks for the SDV ecosystem

• Get ready for PQC

- Apply best practices for secure end-to-end development lifecycle
 - Secure design and development
 - Security testing
 - Software updates/patches

Contact

Dr. Dennis Kengo Oka IAV Co., Ltd. <u>dennis.kengo.oka@iav.jp</u> www.iav.com

