
TEEs on automotive ECUs, mixed
criticalities, spectrum: today &
tomorrow

Richard Hayton

Chief Strategy and Innovation Office, Trustonic Ltd.

Chair Automotive Task Force, GlobalPlatform

Chair Trusted Environments and Services Committee, GlobalPlatform

2

The story so far

Device (ECU) per function

Requirements specified in concrete
hardware terms from a “real time”
perspective

Complex physical system. Expensive to
build and dependant on many
suppliers

Lowest common denominator system
security (e.g. CAN)

Fixed function

Hardware Centric Approach

‘App’ per function

Functions specified in software, sharing
common hardware / peripherals

Commodity hardware

But - commodity hardware

Up to the minute security

Promise of feature updates.

Complex software system

(but needs constant update)

(But need to change business model?)

Software Centric Approach

Customers expect app-like
update frequency

Regulators demand better
security

Money to be saved?

Perhaps requirements were
too strong(?)

Is software a better way

Software Defined Vehicles

3

(Commodity) Hardware Platform

Software Applications

(Commodity) Software Platform

Robustness Needs for Mixed Criticality

4

(Commodity) Hardware Platform

Low Criticality

(E.g. Infotainment)

(Commodity) Software Platform

High Criticality

(E.g. Drivetrain)

• - Security (attack on low criticality does not impact high criticality)

• - Failure (failure of low criticality does not impact high criticality)

• - Performance (degradation of low criticality does not impact high criticality)

• - Update Resilience (update to low criticality does not impact high criticality)

Sharing & Isolation
Technologies

5

Hypervisor

GETTY IMAGES HTTPS://WWW.WIRED.COM/STORY/A-ROBOT-TEACHES-ITSELF-TO-PLAY-JENGA/

• Modern CPUs are incredibly powerful (but
not cheap)

• Processors, Containers and Hypervisors
allow compute resources to be shared
whilst
providing isolation

• This is great for flexibility

• How does it stack up for robustness?

Containers
& Processes

Regular Operating System Sharing (Processes)

The operating system is shared

• It is responsible for isolating each process
and for sharing of other resource

• Processor (CPU) allocation

• Physical memory allocation

• File/Network/Peripheral access

Whilst the OS provides strong process
isolation, it is far from perfect especially when
shared services are considered

Most operating systems have limited
isolation in terms of Performance
and Update.

6

Process A Process B Process C

Operating System
(kernel, libraries, services,…)

Shared Resources (e.g. Files, Network)

Containers

Containers are a brilliant solution to manage
much of the software complexity in Linux

They allow a multi-process solution to be
bundled and run against a known set of
libraries

They also make it easier to update and
manage software, improving isolation for
Update and Failure

However, containers don’t change the
security or performance equations.

An attack on a process can still affect all
other processes on the same host.

7

Operating System
(kernel, libraries, services,…)

Shared Resources (e.g. Files, Network)

Containers are for management not security

Process A

Process B

Service C

Process D

Process E

Service F

Function 1 Function 2

Process D

Process E

Service F

Function 3

Hypervisors

Hypervisors provide another layer of
isolation and sharing

They isolate multiple operating systems
(Guests) from each other, and allow each
“virtualized” hardware, so that each acts as
if it was on its own box.

Hypervisors must share (or allocate) cores,
memory and peripherals to guests.

Memory is usually statically allocated, but
separation Hypervisors also statically
allocate cores. This means better isolation
at the cost of overall performance.

8
Confidential

Hypervisor

Shared Resources (e.g. Network, Flash)

Hypervisors are the accepted “best option” for providing strong isolation

Guest 1 Guest 2 Guest 3

Trusted Execution Environments

9

General Purpose
Operating System

Security Focused
Operating SystemTEEREE

Public © Trustonic 2024

Comparing a TEE OS to a Regular OS

A TEE OS is conceptually very similar to a
regular OS in terms of isolation

However, as TEEs are built for security the
security isolation is very good

GlobalPlatform standardizes APIs and
Security isolation – but says nothing about
isolation related to Performance, Failure or
System Update.

This is a new area of discussion within
GlobalPlatform

10
Confidential

TEE OS

Trusted
App A

Trusted
App B

Trusted Apps are used to provide trusted sub-function for REE applications
rather than full ECU functions

11

A TEE OS is a service OS

REE OS TEE OS

Trusted
App

Regular
App

• Cryptography / Key Storage
• Protected media (DRM)
• Data Management
• Secure Biometrics…

Trusted
App

TEE may not
provide resource

isolation across TAs

Trusted Apps
compete for

resources

Features like storage or networking are usually delegate back to the REE

12

TEE OS usually relies on [a] REE OS

REE OS TEE OS

Trusted
App

Regular
App

Trusted
App

• Access to physical storage
• Access to physical network
• ….

TEE is not isolated
from REE

degregation

• Priority Inversion; shared services; unexpected reliance on low criticality systems

13

Hidden isolation challenges

Hypervisor TEE OS

Trusted
App A

Trusted
App B

OS#1 OS#2

TEE
Support

Key
Store

TEE Driver

App#1
App #2

Function 1 (e.g. High Criticality) Function 2 (e.g. Low Criticality) Function 1 Function 2

!

Scheduler MMU!

!

! Scheduler

TEE Driver

• We can [in theory] introduce a hypervisor to secure world – but this is very heavyweight!

14

Meeting TEE Challenges (1)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

Guest 1 Guest 2 Guest 3 TEE 1 TEE 2 TEE 3

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

SWD Hypervisor

• Could ‘containerizing’ the TEE and spreading support across guests solve isolation problems?

15

Meeting TEE Challenges (2)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

Guest 1 Guest 2 Guest 3

TEE
Support

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

TEE OS

TEE
Support

TEE
Support

Guest 1
Services

Container 1 Container 2 Container 3

Guest 2
Services

Guest 3
Services

• A common pragmatic option is to ensure the TEE support services are in a High Criticality guest

16

Meeting TEE Challenges (3)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

TEE OS

Guest 1 Guest 2 Guest 3

TEE
Support

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

Summary
• Software Defined Vehicles need a combination of

technologies
• Containers
• Hypervisors
• TEEs

• The first-generation solutions
statically allocated resources for different
criticalities
• Cores/Memory (Separation Hypervisors)
• TEEs/Security Processors (Allocated to a single

guest)

• There is a desire for more sharing to reduces
costs / improve efficiency

• Different commercial solutions “may exist”
• Not currently covered by standards
• But GlobalPlatform is starting discussions

	Slide 1: TEEs on automotive ECUs, mixed criticalities, spectrum: today & tomorrow
	Slide 2: The story so far
	Slide 3: Software Defined Vehicles
	Slide 4: Robustness Needs for Mixed Criticality
	Slide 5: Sharing & Isolation Technologies
	Slide 6: Regular Operating System Sharing (Processes)
	Slide 7: Containers
	Slide 8: Hypervisors
	Slide 9: Trusted Execution Environments
	Slide 10: Comparing a TEE OS to a Regular OS
	Slide 11: A TEE OS is a service OS
	Slide 12: TEE OS usually relies on [a] REE OS
	Slide 13: Hidden isolation challenges
	Slide 14: Meeting TEE Challenges (1)
	Slide 15: Meeting TEE Challenges (2)
	Slide 16: Meeting TEE Challenges (3)
	Slide 17: Summary

