Oct 24/25th, 2024

Post Quantum Cryptography Update

Olivier Van Nieuwenhuyze

© GlobalPlatform 2024 | Confidential

GlobalPlatform Policies

Please be aware that this meeting is being held in accordance with **GlobalPlatform's Bylaws and GlobalPlatform policies issued thereunder**, including but not limited to:

- Antitrust Policy
- IPR Policy
- Member Confidentiality Requirements
- Meeting Protocol and Guidelines

Above policies are set forth in the <u>GlobalPlatform Process and</u> <u>Procedures Manual</u> or <u>IPR Policy v5.0</u>, available on the Member website: Resources \rightarrow Documents

Patent Call

"Please be aware that this meeting is being held under the GlobalPlatform Intellectual Property Rights Policy. If you do not have a copy of this policy, please contact (or inform) the chairperson during this meeting. You may also view and download a copy of the policy at the Membership section of the GlobalPlatform Website.

At this time, each person in attendance is required to inform the chairperson if they are personally aware of any claims under any patent applications or issued patents which would be likely to be infringed by an implementation of any specification or other work product which is the subject of this meeting. You need not be he inventor of such patent or patent application in order to inform GlobalPlatform of its existence, nor will you be held responsible for expressing a good faith belief which proves to be inaccurate."

The Quantum Computer

QUBIT

BIT Classical Computing 0

QUBIT Quantum Computing 0

How Quantum Computer Impacts Cryptography?

CRYPTOGRAPHIC ALGORITHM TARGETED	TYPE	PE PURPOSE IMPACT FROM LARGE SCALE (
RSA		Signatures, Key establishment	No	Peter
Digital Signature Algorithm ECDSA	Public key	Signatures, Key exchange	longer secure	SHOR
(Elliptic Curve DSA) CRYPTOGRAPHIC ALGORITHM TARGETED	ТҮРЕ	PURPOSE	IMPACT FROM LARGE SCALE QC	
AES	Symmetric key	Encryption	e.g. longer keys needed	GROVER
SHA-2, SHA-3		Hash functions	e.g. larger output needed	

Platform[®]

PQC predictions (2022)

Global Platform Source: https://www.cisoforum.com/wp-content/uploads/2022/01/chinese-threats-quantum-era.pdf

PQC Predictions (2023)

2023 OPINION-BASED ESTIMATES OF THE CUMULATIVE PROBABILITY OF A DIGITAL QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS, AS FUNCTION OF TIMEFRAME

Estimates of the cumulative probability of a cryptographically-relevant quantum computer in time: range between average of an optimistic (top value) or pessimistic (bottom value) interpretation of the estimates indicated by the respondents, and mid-point. [*Shaded grey area corresponds to the 25-year period, not considered in the questionnaire.]

Source : https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/

The development of quantum computing

Platform™ Source: <u>https://www.ibm.com/quantum/technology</u> IBM Quantum

The challenges facing current cryptography

The limitations of current cryptographic systems

Vulnerability to quantum attacks Long-Term security concerns

The threat posed by quantum computers

Quantum supremacy Risk of data breaches

Re-evaluation of security protocols Urgency of the transition

PQC: is it really a problem?

Yes.

- Finding the right solution can require significant effort.
- Migrating / deploying the solution is difficult and time-intensive.
- It is also urgent. There is a real risk today of "store now, decrypt later" attacks.

What is the solution?

What are the challenges of PQC migration?

Compatibility issues

- Legacy systems
- Interoperability

Performance concerns

- Computational overhead
- Resource constraints

Implementation complexities

- Algorithm selection
- Security assurance

Transition strategy

- Phased approach
- Training and awareness

Timeline

NIST Solution

Global Platform™

Standard

- ML-KEM FIPS 203: Published August 2024.
- <u>ML-DSA FIPS 204</u>: Published August 2024.
- SHL-DSA FIPS 205: coming soon.

Additional round with remaining algorithms

New Round for Additional Round for Digital Signature

PQC development challenges

- Availability of standardized PQC algorithm (e.g. : ML-KEM, ML-DSA ...)
- Replacing existing protocols such as Diffie Hellman to other mechanism (modify the exchange dynamic)
- Cryptography security strength vs the HW feasibility

Security strength / Crypto algos	Symm. Algos	Factoring (RSA)	DLP (DSA, DH)	ECC (ECDSA, ECDH)	Hash	ML-KEM	ML-DSA
≤ 80 bits	3DES 2 keys	1024	1024	160	SHA-1		
112 bits	3DES 3 keys	2048	2048	224	SHA-224		
128 bits	AES-128	3072	3072	256	SHA-256	ML-KEM- 512	ML- DSA-44
192 bits	AES-192	7680	7680	384	SHA-384	ML-KEM- 768	ML- DSA-65
256 bits	AES-256	15360	15360	512	SHA-512	ML-KEM- 1024	ML- DSA-87
■ Diatform™							

PQC migration into the existing infrastructure

CONSTRAINT OF THE DEPLOYMENT

CRYPTOGRAPHY AGILITY

REGULATION

USAGE OF THE HYBRIDIZATION

Regulations Increase the complexity

CNSA 2.0 Timeline

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 Software/firmware signing Web browsers/servers and cloud services Traditional networking equipment Operating systems Niche equipment Custom application and legacy equipment

SMM CNSA 2.0 added as an option and tested CNSA 2.0 as the default and preferred Exclusively use CNSA 2.0 by this year

EU required different security levels (than US) but some countries mandate the hybridization

Conclusions

CHALLENGE TO MIGRATE AND DEPLOY SYSTEM ON THE CURRENT INFRASTRUCTURE CHALLENGE TO BE COMPLIANT WITH THE REGULATION

TECHNOLOGY DEPLOYMENT AND FEASABILITY

Global Platform™

The standard for secure digital services and devices

 \rightarrow globalplatform.org