TRUSTONIC

Global
Platform™

Criticality

Dr Richard Hayton

Chief Strategy and Innovation Office, Trustonic Ltd.
Chair Automotive Task Force, GlobalPlatform :
Chair Trusted Environments and Services Committee, GlQbalBla%fOT

Isolation for Safety

Safety critical services need to be robust

The traditional approach is to build separate ‘hardware’ solutions for each safety problem

Driver EventData Active
Alertness Recorder Cabin Moise Cabin Entertainment
]) Monitaring Auto-Dimming Suppression Environment Systemn
Windshield : . Contral il
- Head-Up Mirror / Contrals f
Wiper Contrel Accident j / Battery

o Display ident .
e Py Recorder Interior /1 ce/Data J fl I'1anagur'nenr
ns

Might Wision

- DSRC |/
Communicatio

Y N Lighting .-"
. T \\\ K Lane
Airbag Engine - Instrument |) -
Deployment Control Parental \ \ Cluster v Correction

"x\\ Controls / r /

| g y /" Electranic
ive Fro RN L / Toll Collection
Aiaphiva Front NN \ A X -

ightin — T4 y

Ennne xﬁ‘ e i . g W __ Digital Turn Signals

Adaptive Cruise ——— M1 sz-"?

Mavigation
Control

System
Autamatic

Braking

r'.,,..-"""- A
Electric ™~ P .
Power Steering e

Iy
i} aBON

Security System

e . '
“\‘ T ~.._ Moise Suppression

- it
- T Activ eE.uhau st
e
‘ Elp‘_tr:mic lnhll: K S \:\““‘-‘,\‘A_HUE Suspension
“Jransmission L Braking ™. Hill-Hald

Electranic Throttle /-"'/ idle £/ \ Cantrol
i lig+]
Contral / Stop Cantrol

|’
y start f Activa Heml:t-—- S
Electronic Vibration Kevless Seat Position™,

Ve len P Parking

\alve: Control kel
C Entry . Brakin

Timing Contral '~ Lane System Tire g

Stability o
. R Contral
. \-._\

. Regenarative

Cylinder Blindspot Departure Active Fressure
De-activation Detection Warning Yaw Maonitoring
Control

The automotive industry is being
challenged to adopt “software
defined” approaches to reduce
cost and increase flexibility

How can we maintain robust
systems in a software defined
world

And how does “security” change
the picture?

Software Defined Vehicles

Software Applications

(Commaodity) Software Platform

(Commodity) Hardware Platform

\—

Robustness Needs for Mixed Criticality

High Criticality
(E.g. Drivetrain)

(Commodity) Hardware Platform

Failure (failure of low criticality does not impact high criticality)

Performance (degradation of low criticality does not impact high criticality)

Update Resilience (update to low criticality does not impact high criticality)

Security (attack on low criticality does not impact high criticality)

Sharing & Isolation
Technologies

. ! /
* Modern CPUs are incredibly powerful (but 1 : I —

not cheap) : 4 8 Al FIT [

* Processors, Containers and Hypervisors A) A - £

allow compute resources to be shared
whilst
providing isolation

Containers
& Processes

* This is great for flexibility

* How does it stack up for robustness?

Hypervisor

Regular Operating System Sharing (Processes)

Operating System
(kernel, libraries, services,...)

The operating system is shared
 ltis responsible for isolating each process
and for sharing of other resource
« Processor (CPU) allocation
« Physical memory allocation
- File/Network/Peripheral access

Whilst the OS provides strong process
isolation, it is far from perfect especially when
shared services are considered

Most “general purpose” operating systems
have limited isolation in terms of
Performance and Update.

Containers

-~

Function 1 \ / Function 2 \ K Function 3 \

Operating System
(kernel, libraries—services,..

Containers are a brilliant solution to manage
much of the software complexity in Linux

They allow a multi-process solution to be
bundled and run against a known set of
libraries

They also make it easier to update and
manage software, improving isolation for
Update and Failure

However, containers don’t change the
security or performance equations.

An attack on a process can still affect all other
processes on the same host.

Containers are for management not security

Hypervisors

Guest 1 Guest 2 Guest 3 Hypervisors provide another layer of
isolation and sharing

They isolate multiple operating systems
(Guests) from each other, and allow each
“virtualized” hardware, so that each acts as
if it was on its own box.

. Hypervisors must share (or allocate) cores,
Hypervisor memory and peripherals to guests.

Memory is usually statically allocated, but
separation Hypervisors also statically
allocate cores. This means better isolation
at the cost of overall performance.

ConfigSiis Hypervisors are the accepted “best option” for providing strong isolation

Isolation for Security

Security sensitive services need to be isolated against both errors and attacks
It is very hard to sufficiently isolate security systems using the techniques described so far

Security services are therefore usually built “another way”

Trusted Execution Environments

s
1
H
1
i
e
llll
lllll
llll
''''
1t
]

General Purpose i
Operating System .

Public © Trustonic 2024

TEE

Security Focused
Operating System

10

Comparing a TEE OS to a Regular OS

Confidential

A TEE OS is conceptually very similar to a
regular OS in terms of isolation

However, as TEEs are built for security the
security isolation is very good

GlobalPlatform standardizes APIs and
Security isolation — but says nothing about
isolation related to Performance, Failure or
effect on external systems

(all critical for safety).

This is a new area of discussion within
GlobalPlatform

11

A TEE OS is a service OS

_ . o Trusted Apps
Trusted Apps are used to provide trusted sub-function for REE applications compete for

rather than full ECU functions

resources

TEE may not
provide resource
isolation across TAs

REE OS

12

TEE OS usually relies on [a] REE OS

Features like storage or networking are usually delegate back to the REE

TEE OS
from REE
degradation

TEE is not isolated

13

Hidden isolation challenges

Priority Inversion; shared services; unexpected reliance on low criticality systems

Function 1 (e.g. High Criticality)

OS#1

TEE Driver

/ Function 2 (e.g. Low Criticality) \

Function 1 (Function 2

. W,

\.

A\ Scheduler Hypervisor

Scheduler g4\ MMU

14

Meeting TEE Challenges (1)

« We can [in theory] introduce a hypervisor to secure world — but this is very heavyweight!

TEE 2 TEE 3

Guest 2 Guest 3
TAs TAs

REE Hypervisor SWD Hypervisor

Meeting TEE Challenges (2)

Could ‘containerizing’ the TEE and spreading support across guests solve isolation problems?

s

REE Hypervisor

Container 1

Guest 1
Services

~

s

Container 2

Guest 2
TAs

Guest 2
Services

~N

s

Container 3

Guest 3
TAS

Guest 3
Services

~N

Meeting TEE Challenges (3)

« A common pragmatic option is to ensure the TEE support services are in a High Criticality guest

Guest 3
TAS

REE Hypervisor

Summary

* Software Defined Vehicles need a combination of
technologies
* Containers
* Hypervisors
* TEEs

* The first-generation solutions
statically allocated resources for different
criticalities
* Cores/Memory (Separation Hypervisors)
* TEEs/Security Processors (Allocated to a single
guest)

* There is a desire for more sharing to reduces
costs / improve efficiency

* Different commercial solutions “may exist”
* Not currently covered by standards
e But GlobalPlatform is starting discussions

