
Different strategies for Mixed
Criticality

Dr Richard Hayton

Chief Strategy and Innovation Office, Trustonic Ltd.

Chair Automotive Task Force, GlobalPlatform

Chair Trusted Environments and Services Committee, GlobalPlatform

• Safety critical services need to be robust

• The traditional approach is to build separate ‘hardware’ solutions for each safety problem

• This

2

Isolation for Safety

• The automotive industry is being
challenged to adopt “software
defined” approaches to reduce
cost and increase flexibility

• How can we maintain robust
systems in a software defined
world

• And how does “security” change
the picture?

Software Defined Vehicles

3

(Commodity) Hardware Platform

Software Applications

(Commodity) Software Platform

Robustness Needs for Mixed Criticality

4

(Commodity) Hardware Platform

Low Criticality

(E.g. Infotainment)

(Commodity) Software Platform

High Criticality

(E.g. Drivetrain)

• - Failure (failure of low criticality does not impact high criticality)

• - Performance (degradation of low criticality does not impact high criticality)

• - Update Resilience (update to low criticality does not impact high criticality)

• - Security (attack on low criticality does not impact high criticality)

Sharing & Isolation
Technologies

5

Hypervisor

GETTY IMAGES HTTPS://WWW.WIRED.COM/STORY/A-ROBOT-TEACHES-ITSELF-TO-PLAY-JENGA/

• Modern CPUs are incredibly powerful (but
not cheap)

• Processors, Containers and Hypervisors
allow compute resources to be shared
whilst
providing isolation

• This is great for flexibility

• How does it stack up for robustness?

Containers
& Processes

Regular Operating System Sharing (Processes)

The operating system is shared

• It is responsible for isolating each process
and for sharing of other resource

• Processor (CPU) allocation

• Physical memory allocation

• File/Network/Peripheral access

Whilst the OS provides strong process
isolation, it is far from perfect especially when
shared services are considered

Most “general purpose” operating systems
have limited isolation in terms of
Performance and Update.

6

Process A Process B Process C

Operating System
(kernel, libraries, services,…)

Shared Resources (e.g. Files, Network)

Containers

Containers are a brilliant solution to manage
much of the software complexity in Linux

They allow a multi-process solution to be
bundled and run against a known set of
libraries

They also make it easier to update and
manage software, improving isolation for
Update and Failure

However, containers don’t change the
security or performance equations.

An attack on a process can still affect all other
processes on the same host.

7

Operating System
(kernel, libraries, services,…)

Shared Resources (e.g. Files, Network)

Containers are for management not security

Process A

Process B

Service C

Process D

Process E

Service F

Function 1 Function 2

Process D

Process E

Service F

Function 3

Hypervisors

Hypervisors provide another layer of
isolation and sharing

They isolate multiple operating systems
(Guests) from each other, and allow each
“virtualized” hardware, so that each acts as
if it was on its own box.

Hypervisors must share (or allocate) cores,
memory and peripherals to guests.

Memory is usually statically allocated, but
separation Hypervisors also statically
allocate cores. This means better isolation
at the cost of overall performance.

8
Confidential

Hypervisor

Shared Resources (e.g. Network, Flash)

Hypervisors are the accepted “best option” for providing strong isolation

Guest 1 Guest 2 Guest 3

• Security sensitive services need to be isolated against both errors and attacks

• It is very hard to sufficiently isolate security systems using the techniques described so far

• Security services are therefore usually built “another way”

9

Isolation for Security

Trusted Execution Environments

10

General Purpose
Operating System

Security Focused
Operating SystemTEEREE

Public © Trustonic 2024

Comparing a TEE OS to a Regular OS

A TEE OS is conceptually very similar to a
regular OS in terms of isolation

However, as TEEs are built for security the
security isolation is very good

GlobalPlatform standardizes APIs and
Security isolation – but says nothing about
isolation related to Performance, Failure or
effect on external systems
(all critical for safety).

This is a new area of discussion within
GlobalPlatform

11
Confidential

TEE OS

Trusted
App A

Trusted
App B

Trusted Apps are used to provide trusted sub-function for REE applications
rather than full ECU functions

12

A TEE OS is a service OS

REE OS TEE OS

Trusted
App

Regular
App

• Cryptography / Key Storage
• Protected media (DRM)
• Data Management
• Secure Biometrics…

Trusted
App

TEE may not
provide resource

isolation across TAs

Trusted Apps
compete for

resources

Features like storage or networking are usually delegate back to the REE

13

TEE OS usually relies on [a] REE OS

REE OS TEE OS

Trusted
App

Regular
App

Trusted
App

• Access to physical storage
• Access to physical network
• ….

TEE is not isolated
from REE

degradation

• Priority Inversion; shared services; unexpected reliance on low criticality systems

14

Hidden isolation challenges

Hypervisor TEE OS

Trusted
App A

Trusted
App B

OS#1 OS#2

TEE
Support

Key
Store

TEE Driver

App#1
App #2

Function 1 (e.g. High Criticality) Function 2 (e.g. Low Criticality) Function 1 Function 2

!

Scheduler MMU!

!

! Scheduler

TEE Driver

• We can [in theory] introduce a hypervisor to secure world – but this is very heavyweight!

15

Meeting TEE Challenges (1)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

Guest 1 Guest 2 Guest 3 TEE 1 TEE 2 TEE 3

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

SWD Hypervisor

• Could ‘containerizing’ the TEE and spreading support across guests solve isolation problems?

16

Meeting TEE Challenges (2)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

Guest 1 Guest 2 Guest 3

TEE
Support

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

TEE OS

TEE
Support

TEE
Support

Guest 1
Services

Container 1 Container 2 Container 3

Guest 2
Services

Guest 3
Services

• A common pragmatic option is to ensure the TEE support services are in a High Criticality guest

17

Meeting TEE Challenges (3)

REE Hypervisor

Shared Resources (e.g. Network, Flash)

TEE OS

Guest 1 Guest 2 Guest 3

TEE
Support

Guest 1
TAs

Guest 2
TAs

Guest 3
TAs

Summary
• Software Defined Vehicles need a combination of

technologies
• Containers
• Hypervisors
• TEEs

• The first-generation solutions
statically allocated resources for different
criticalities

• Cores/Memory (Separation Hypervisors)
• TEEs/Security Processors (Allocated to a single

guest)

• There is a desire for more sharing to reduces
costs / improve efficiency

• Different commercial solutions “may exist”
• Not currently covered by standards
• But GlobalPlatform is starting discussions

