Updates on Activities in PWI 8475 CAL/TAF PAS, & PWI 8477 V&V TR and 2nd edition of ISO/SAE 21434

John T. Krzeszewski December 4, 2024

© 2024 Eaton. All rights reserved.

There is no better time than now to be an intelligent power management company.

Speaker Introduction

- Member and co-convener of ISO/SAE Joint-Working-Group
- Previous chair of ISO/SAE 21434 (TARA)
- Chair, SAE Vehicle Cybersecurity Systems Engineering Committee
- Eaton Functional Excellence, Cybersecurity & Functional Safety lead

Today's Discussion

Ongoing joint activities Enhance existing concepts, introduce new concept, additional guidance

> Timing Release of specification and technical report

ISO/SAE 21434 Current activities as a precursor to version 2

AGENDA

ISO/SAE PWI 8475 CAL/TAF

- History/motivation
- Current state & open items
- Timing

ISO/SAE PWI 8477 V&V

- History/motivation
- Current state & open items
- Timing

ISO/SAE 21434 2nd Edition

- Current state
- Timing

ISO/SAE PWI 8475 project

Cybersecurity Assurance Level (CAL) & Targeted Attack Feasibility (TAF)

Cybersecurity Assurance Level Concept origin & motivation

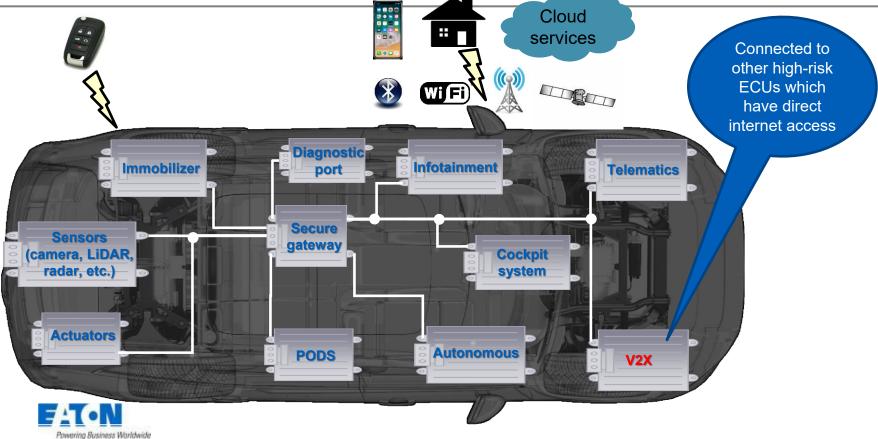
History

- Concept development started in 2017
- Initial version released as annex in 21434 in 2021

Motivation

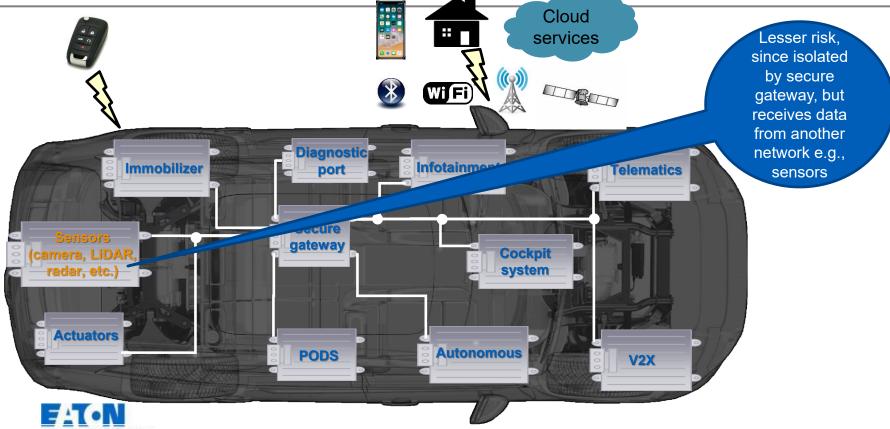
- Introduced to scale process rigor according to criticality in supply chain
- Desire to leverage other static risk factors in CAL determination
- Desire to expand application to all applicable 21434 requirements
- Ensure consistent application to facilitate efficient communications and provide justifiable confidence

Current state of CAL development

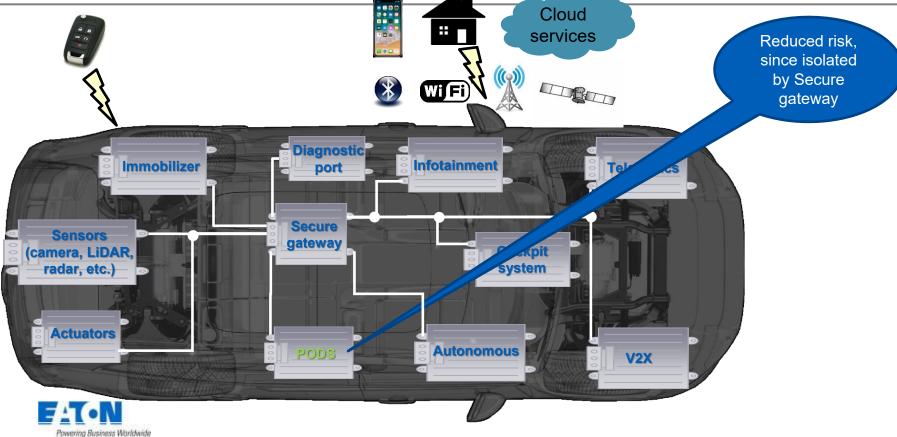


- CAL determination
 - Early in as possible when all required inputs are available
 - Before activities that use CAL
 - Uses same parameters as defined in 21434
 - Optionally can include other static factors (with justification)
 - Architectural considerations
 - Depth, accessibility, exposure, degree of separation, operational environment, etc.
 - Examples on subsequent slides

V2X


- Low degree of separation: highest static risk

Immobilizer


Powering Business Worldwide

- Additional degree of separation: reduced static risk

© 2024 Eaton. All rights reserved.

PODS - High degree of separation: lowest static risk

Current state of CAL development

- Higher CAL ⇔ requires additional assurance measures / effort
- Expanding and clarifying applicability by clause/requirements of 21434
 - Applicable to the following
 - Some requirements in clause 9
 - Clause 10
 - Clause 11
 - Not applicable to the following
 - Clause 5
 - Clause 6 (except for independence of assessment)
 - TARA in clause 9
 - Clauses 8, 12, 13, 14 and 15

Current state of CAL development

- Providing simple definitions of CAL levels and application
 - Now only 3-levels (CAL1 [basic], CAL2 [intermediate], CAL3 [advanced])
 - ✤ Tables to provide examples of how to apply i.e., activities/rigor per CAL

Can always do more than the specified CAL

- Help ensure consistency in interpretation, while providing flexibility
- CAL is an attribute of a CS goal
 - Intended to be stable; required updates to be done via change mgt.
- No discussion of
 - Application in an out-of-context situation
 - Usage for off-the-shelf components

CAL open items

- Examples of deriving test cases based on CAL
- How isolation can impact CAL assignment

PWI 8475 CAL/TAF group members

- ISO/SAE PWI 8475 CAL-TAF member countries
 - o Austria
 - o Belgium
 - o Canada
 - o China
 - France
 - o Germany
 - o Israel
 - o Italy
 - o Japan
 - Republic of Korea
 - o Romania
 - o Sweden
 - United Kingdom
 - United States (SAE)

ISO/SAE PWI 8475 project

Cybersecurity Assurance Level (CAL) & *Targeted Attack Feasibility (TAF)*

Targeted Attack Feasibility

Concept origin & motivation

History

Concept introduced during 21434 development

Postponed due to inadequate development time

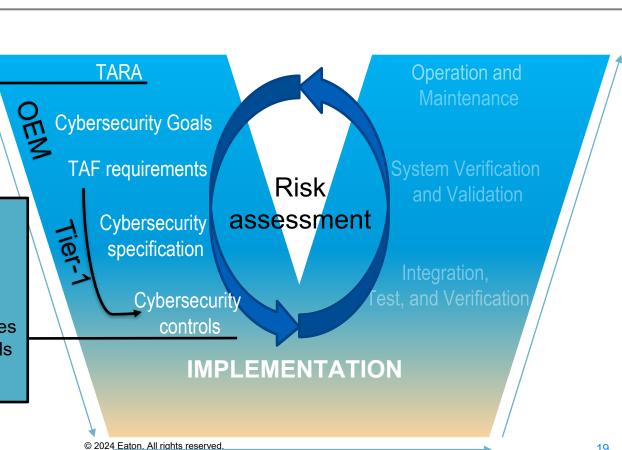
Motivation

- As a result of the TARA, the risk treatment decision for certain threats will be to 'reduce the risk'
 - How do you specify the required strength of counter-measures?
 - ✓ How do you know if the countermeasure strength is 'sufficient'?
- Communicate required strength of countermeasures in supply chain

What is TAF?

- Based on attack feasibility (AF) as defined in 21434
 - 'Attribute of an attack path describing the ease of successfully carrying out the corresponding set of actions'
- Current attack feasibility
 - Attack feasibility, considering current counter-measures, but before risk treatment
 - ✤ A factor to be considered when deciding risk treatment
- Targeted attack feasibility (TAF)
 - The target level of attack feasibility after implementation of countermeasures used to reduce residual risk to acceptable level
 - TAF and impact determine residual risk

TAF selection


- The intent is to lower current attack feasibility
 - Selection of method to mitigate the risk could also reduce impact
 - Target level is communicated with supplier
 - TAF 1 (medium AF), TAF 2 (low AF), TAF3 (very low AF)
 - > Illustrated below, where "C" is current, and "T" is targeted attack feasibility

Attack Feasibility Rating	High				
	Medium				treatment
	Low				ent
	Very low				Ī
		Negligible	Moderate	Major	Severe
Risk		Impact Rating			
Value					

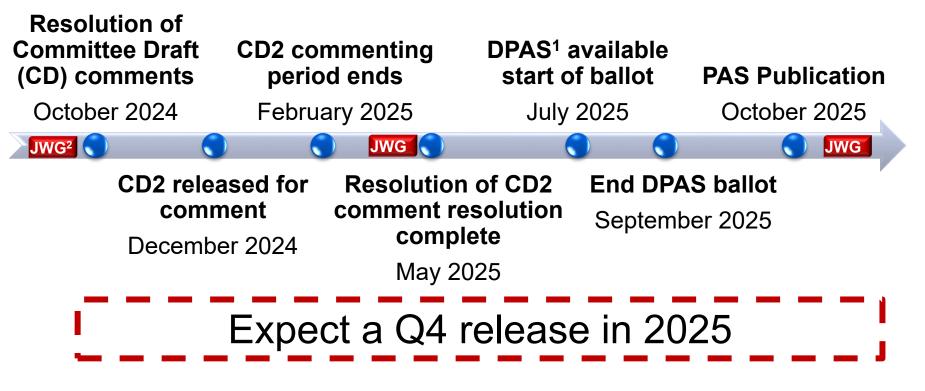
Potential application of TAF during design phase

- "TARA"=> output risk value, relative to threat/damage scenario (impact and attack feasibility)
- Derive CS goals and associated TAF
- Determines how to layer the protections (DiD)
- Refine & verify CS requirements, architecture, design: selection of controls (considering interfaces)
- Allocation of requirements to architectural elements
- Identify and manage vulnerabilities
- Selection of cybersecurity controls due to TAF (strength, depth)

Current state of TAF development

- Will be included as an informational concept in an annex
- Agreed upon TAF concept principles
 - TAF determined for each threat scenario necessitating 'reduction' of risk
 - Used to determine controls (technical, perhaps procedural)
 - Can be used to describe strength of controls
 - For distributed development
 - Can be applied in an out-of-context situation
 - Inputs to TAF determination
 - Attack feasibility and corresponding attack path

Architectural design information; CS requirements; stakeholder defined parameters © 2024 Eaton. All rights reserved.



- TAF concept may be renamed e.g. "Required Attack Feasibility ("RAF"), Necessary Attack Feasibility ("NAF")
- Improvement in examples of TAF usage

ISO/SAE PWI 8475 CAL/TAF timeline

ISO/SAE PWI 8477 V&V

Technical Report - Verification and Validation Concept origin & motivation

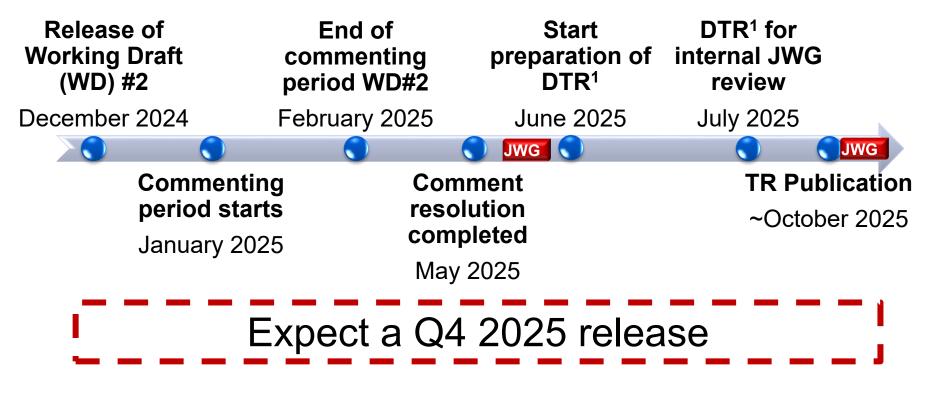
History

Some content originally in annex of earlier draft of 21434

Removed from 21434 before publication due to lack of content

Motivation

- Provide clarity on verification and validation and their relationship
- Describe verification activities relative the 21434 requirements
- Describe validation activities relative to cybersecurity goals, claims, etc.
- Provide strategic guidance on V&V activities
- Publish as a Technical Report (TR)

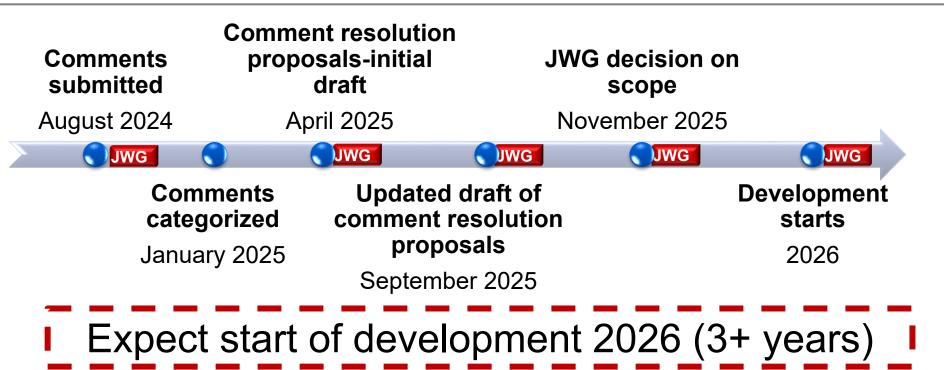


- Topics-current state
 - Defining verification and validation
 - Confirmation that CS requirements are adequate
 - Confirmation that implementation satisfies the CS requirements
 - Confirmation that assumptions hold true
 - Relationship between V&V and CS requirements, risk, activities
 - Example V&V methods
 - Discussion of pros/cons of various types of testing
 - Application to off-the-shelf, reused & out-of-context components

¹Draft Technical Report (DTR)

© 2024 Eaton. All rights reserved.

ISO/SAE 21434 2nd edition



- Collected feedback from industry in 2024
- Content from current CAL, TAF and V&V projects will be leveraged
- Topics and concepts discussed during current projects as input
- Work delayed due to current projects (CAL/TAF, V&V)

ISO/SAE 21434 v2 timeline

Thank you!

John Krzeszewski, MSEE, GSEC

Senior Specialist, Functional Safety and Cybersecurity

Eaton.com/WhatMatters