
1

PQC: Practical issues that will
impact the future of hardware
protected security environments

Global Platform Automotive Security

December 4, 2024

Mike Ounsworth

2

MIKE’S INTERNET STANDARDS WORK

2

LAMPS : Limited Additional Mechanisms for PKIX
and SMIME

• PQC and migration:

– X.509 / CMS: draft-ounsworth-pq-composite-sigs

– X.509 / CMS: draft-ietf-lamps-pq-composite-kem

– X.509: draft-bonnell-lamps-chameleon-certs

– X.509: draft-ounsworth-lamps-pq-external-pubkeys

– X.509: draft-lamps-okubo-certdiscovery

– CMS: RFC 9629 - adding KEMs to CMS

– CMS: draft-ietf-lamps-cms-kyber

• CMPv3:

– RFC 9480 (CMPv3)

– RFC 9481 (CMP Algorithm Updates)

– draft-ietf-lamps-rfc4210bis

– draft-ietf-lamps-rfc6712bis

• Attestation: draft-ietf-lamps-csr-attestation-00

CFRG: Cryptographic Research Forum
• draft-fluhrer-cfrg-ntru-00

• draft-ounsworth-cfrg-kem-combiners

OpenPGP
• draft-wussler-openpgp-pqc-00

ACME
• draft-vanbrouwershaven-acme-auto-discovery-01

• draft-acme-device-attest

PQUIP: Post-Quantum Use in Protocols
• https://datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/

• draft-vaira-pquip-pqc-use-cases

Remote Attestation (RATS)
• draft-ietf-rats-pkix-evidence

• I contribute heavily to the Internet Engineering Taskforce (IETF)!
• Getting the Internet ready for Post-Quantum Cryptography
• Internet Drafts that I am an author or contributor on:

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-kem/
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/
https://datatracker.ietf.org/doc/draft-ounsworth-lamps-pq-external-pubkeys/
https://www.ietf.org/id/draft-lamps-okubo-certdiscovery-00.html
https://datatracker.ietf.org/doc/rfc9629/
https://datatracker.ietf.org/doc/draft-ietf-lamps-cms-kyber/
https://datatracker.ietf.org/doc/html/rfc9480
https://datatracker.ietf.org/doc/html/rfc9481
https://datatracker.ietf.org/doc/draft-ietf-lamps-rfc4210bis/
https://datatracker.ietf.org/doc/draft-ietf-lamps-rfc6712bis/
https://datatracker.ietf.org/doc/draft-ietf-lamps-csr-attestation/
https://datatracker.ietf.org/doc/draft-vanbrouwershaven-acme-auto-discovery/
https://datatracker.ietf.org/doc/html/draft-vaira-pquip-pqc-use-cases-00
draft-ietf-pquip-pqc-engineers
draft-ietf-pquip-pqc-engineers
https://datatracker.ietf.org/doc/draft-ietf-rats-pkix-evidence/

3

Deep-dive on

“surprising points”

with deploying

ML-DSA and ML-KEM

4

• Mike Ounsworth was asked to give a 30 min presentation to the PQUIP WG (Post-

Quantum Use In Protocols) on “friction points” with how FIPS 203 (ML-KEM) and FIPS

204 (ML-DSA) are written.

⎼ https://datatracker.ietf.org/doc/slides-121-pquip-fips-issues-with-deploying-ml-kem-

and-ml-dsa/

• The main points.

⎼ ML-DSA Context (ctx)

⎼ ML-DSA and ML-KEM private keys – seeds vs expanded

⎼ Direct Seed vs Derived Seed

⎼ Hybrids - KDF(mlkem || ec) vs KDF(ec || mlkem)

⎼ ML-DSA pre-hash mode (“HashML-DSA” vs “ExternalMu-ML-DSA”)

• Audience: developers of embedded crypto systems.

FIPS “issues” with deploying ML-KEM and ML-DSA
PrivKeys, P12, P11, Hybrids, and beyond!

https://datatracker.ietf.org/doc/slides-121-pquip-fips-issues-with-deploying-ml-kem-and-ml-dsa/

5

ML-DSA Context (ctx) parameter

6

• Since EdDSA (RFC 8032, published 2017), and now with ML-DSA (FIPS 204) and

SLH-DSA (FIPS 205) signature APIs accept a “context string”:
Sign(sk, M, ctx)

• The benefit here is that, for example, S/MIME email and signed PDF use the same message

structure, so a client might be tricked into confusing them.

• A well-chosen ctx hard-coded into both signer and verifier strongly prevents

this by failing the signature.

ML-DSA Context (ctx)

ctx=“smime-v4”
Sign()

ctx=“smime-v4”
Verify()

7

• The problem is that very few protocols used the ctx in EdDSA, so many crypto libraries

never implemented an API for it. Ex.: python cryptography:

• IETF asks: “When is ctx no longer ‘new’?”

• Can we just start designing network protocols to require
ML-DSA.Sign(sk, M, ctx)

and hope that crypto libraries, HSMs, smartcards, etc will catch up?

Signature context ctx

8

ML-DSA and ML-KEM private keys

seeds vs expanded

9

• Both output a big complicated private key object.

• Both chain to KeyGen_internal(seed)

⎼ ML-DSA: ξ is 32 bytes

⎼ ML-KEM: (d, z) is 64 bytes

• KeyGen_internal(seed) is actually very fast, fast enough that there’s no real penalty to doing

it every time I need to use the private key

• So, can I just store those seeds instead of storing the expanded key? 🧐

… the answer is Yes (but this is something “you just have to know”,

FIPS 203 / 204 does not say it clearly enough for my liking).

ML-DSA and ML-KEM KeyGen() – seeds vs expanded

10

• The IETF wants “Internet” private key file formats like PKCS#12, JWK to only support seed-based

private keys because of both performance and security gains.

⎼ Performance: obviously, size.

⎼ Security: if you re-derive the key from a seed, then you know that it is well-formed and not

tampered with.

• That means hardware needs to keep the seed when doing a KeyGen() so that it can later export it.

• … I expect this will be a compatibility issue that will affect us for many years.

ML-DSA and ML-KEM KeyGen() – seeds vs expanded

ExportPrivKey() ExportPrivKey()VS

FIPS 203

FIPS 204

11

Direct Seed vs Derived Seed

Seed
KeyGen_internal()

Expanded

private key
pause to file

Seed
KeyGen_internal()

KDF(extra_entropy)

FIPS 203

FIPS 204

FIPS 203

FIPS 204

12

Direct Seed vs Derived Seed

Seed
KeyGen_internal()KDF(“key1”)

KeyGen_internal()KDF(“key2”)

… but we’re
considering it
… with some
“guard rails”

• But some devices really need to be able to do this.

• Consider, for example, a FIDO2 token

which is too small to have a good onboard RNG, but needs unique keys per website.

Here,

KDF(high_entropy_seed + website_url)

is a totally reasonable strategy.

• So, if you make a device like this, be aware that there is (currently) no way to do it and be compliant

with FIPS 203 / 204.

KeyGen_internal()

FIPS 203

FIPS 204

13

Hybrids and Composites

14

Hybrids and Composites

• I have done a lot of work on hybrids.

• These are mostly progressing through the IETF

standardization process without issue.

• Except …

15

Hybrid ML-KEM - KDF(mlkem || ec) vs KDF(ec || mlkem)

ML-KEM -> mlkemSS

ECDH -> ecSS

ss = KDF(mlkemSS, ecSS, fixedInfo)

As long as your
ML-KEM is FIPS-
140-3 certified.

If your ECDH is the FIPS-
140-3 certified part,
then flip the order.

ss = KDF(ecSS, mlkemSS, fixedInfo)

• This is somewhat crazy that we would need different algorithm codepoints depending on which

component is currently the FIPS-approved one (which will change over time).

• NIST agrees and has promised to fix this in SP 800-227 (we will see a draft in February 2025).

SP 800-56Cr2

16

ML-DSA and pre-hash modes

17

• With RSA or ECDSA, you are free to split the pre-hash step from the core signature step.

• Both “modes” produce the same output, so this is just “implementation detail”.

Background: Pre-hashed Modes

Application HSM

sha256WithRSAEncryption

OR
Application HSM

RSAEncryption
sha256()

18

• ML-DSA’s design includes a security improvement by including the hash of the public

key (tr) in the message digest that will be signed:

• This makes collision attacks harder – the attacker would need to perform per-public-key

collision searches – and prevents some types of “key swapping” attacks.

⎼ If RSA / ECDSA had done this, then we would not have had any panic when

collision attacks were discovered in SHA-1. 🧐

• ☝️🧐 but we still want to do pre-hashing for performance reasons!

Background: ML-DSA

19

• In the final FIPS 204, NIST gave us this:

• Problem solved? … NOPE!

1. Security: Cryptographers are unhappy that this completely un-does the security

gains of hashing in tr.

2. Implementation: These are different, incompatible, algorithms with different
.Verify() functions, and because of … stupid OID-related reasons … you have

to choose “pure” or “prehash” mode when you generate the key, and then that key

can only ever be used in that mode for the lifetime of the key (well, technically of

the cert).

• ☝️🧐BUT WAIT … FIPS 204 gives us a 3rd (hidden) option!

ML-DSA pre-hash mode (“HashML-DSA” vs “ExternalMu-ML-DSA”)

20

• ☝️🧐BUT WAIT … FIPS 204 gives us a 3rd (hidden) option!

• Great! Being able to pull mu out front is actually what we wanted in the first place! It

makes everybody happy.

• Good: this mode is clearly allowed by FIPS 204.

• Bad: they have not written this in an obvious way.

⎼ The “External Mu mode” deserves to be written out in full.

⎼ There are two allowed ways of doing a pre-hash: External Mu and HashML-DSA.

ML-DSA pre-hash mode (“HashML-DSA” vs “ExternalMu-ML-DSA”)

21

https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/

ML-DSA pre-hash mode (“HashML-DSA” vs “ExternalMu-ML-DSA”)

ML-DSA

(FIPS 204)

“Pure”

ML-DSA
(s. 5.2, 6.2)

“Pre-hash”

HashML-DSA
Sign(sk, M, ctx, PH)

(s. 5.4)

“One-shot”
Sign(sk, M, ctx)

“External-Mu”
Prehash(pk, M, ctx)

Sign(sk, µ)

FIPS 204
FIPS 204

FIPS 204

22

entrust.com

© Entrust Corporation

mike.ounsworth@entrust.com

Thank you!

Seed
Expanded

private key

ML-DSA

“Pure”

ML-DSA

“Pre-hash”

HashML-DSA

“One-shot” “External-Mu”

