

Cybersecurity Vehicle Forum Berlin

4 December 2024

Richard Hayton, Chair of Automotive Task Force, Trustonic Francesca Forestieri, Automotive Lead

Ground Rules for Cybersecurity Vehicle Forum

We aim to create a trusted environment to understand and resolve complex problems and identify future potential synergies.

We have representatives from key players and from key standardisation organisations.

Each speaker is speaking as an expert in the field, and not necessarily speaking on behalf of his company or standards organisation.

Therefore, participants are free to use the information received, but not attribute the affiliation of the speaker(s). After the Cybersecurity Vehicle Forum, we will post the recording on our website, as well as the relevant slides (as made available by speakers) for your reference.

https://globalplatform.org/blog -overview/

Welcome to **GlobalPlatform's Cybersecurity Vehicle** Forum in Berlin

What is the Cybersecurity Vehicle Forum?

Players

Relevant Security Technologies

GlobalPlatform's Cybersecurity Vehicle Forum

- Trusted Service Experts
- Automotive Value Chain
- Governments
- Development Partnerships
- Trade Associations

- Hardware Protected Secure Environments
- Security APIs
- Security Lifecycle Management
- SESIP Security Evaluation Methodology

Objective: To Identify Outstanding Automotive Requirements and Use Cases where cross-industry work on security standardisation would aid deployment

Driving Requirements into GlobalPlatform

Automakers and **Automotive** Technology

Jaguar Land Rover Mercedes-Benz AG **Toyota Motor Europe** Stellantis **KTM AG** Panasonic Automotive **ZF** Automotive UK Limited DENSO MHP Management- und **IT-Beratung** GmbH (Subsidiary of Porsche) AMPERE ETAS (Bosch) Woven

.....

Semiconductor and **Electronics**

Trusted Execution

Suppliers

ARM Infineon NXP Semiconductors Oracle **Renesas Electronics STMicroelectronics Giesecke & Devrient** Thales

CSVF Berlin Dec 4th **Registered Participants**

39

56

Virtual

TOTAL

Environment (TEE)

Trustonic ProvenRun

Agenda

09:30	Meet and Greet			
10:00	Welcome, GlobalPlatform & Automotive		Francesca Forestieri, GlobalPlatform	
	SESIP For Automotive			
10:30	SESIP Evaluation Methodology: a Tool for Automotive?		Jorge Ruiz Wallace, Dekra	
10:50	Fireside Chat (Moderated by Francesca	What are the curent challenges of ISO 21434 without product security targets & certification? Can Composite Certification support Type	Jorge Ruiz Wallace, Dekra Bill Mazarra, Stellantis	
11:30	Developments v	with Regulations and Standards		
11:30	Lindate on POC	for Secure Elements	Sebastian Hans, Oracle	
11:50				
13:00	PQC: practical issues that will impact the future of hardware protected security environments		Mike Ounsworth, Entrust	
13:20	Evolution of ISO/SAE 21434 and progress on CAL/TAF		John Krzeszewski, Eaton	
13:40	Updates on Evolution of Functional Safety of ISO 26262		David Ward, Horiba-Mira	
13:40	SDV: The Inters	ection of Safety with Security Isolation		
14:00	OEM Use Case on fusion & Managing Mixed Criticalities		Redouane SOUM, AMPERE	
14:30	Different Strategies for Managing Mixed Criticalities: Standardisation Useful?		Richard Hayton, Trustonic	
	Panel Topics	What is the role of standards for security isolation within a SDV?	David Ward, Horiba-Mira	
14:50		Mixed Criticality in software? Is it practical to	Andrew Jones, AVCC	
		run safety critical or real time services that	Richard Hayton, Trustonic	
		share CPUs with other guests.	SOUM Redouane, AMPERE	
15:20	Evolution of Secure Silicon			
15:20	Secure Boot		Philip Lapczynski, Renesas	
15:40	Coffee Break			
16:00	Extension of HSM Capabilities with Secure Elements		Yves Le Bobinnec, Thales	
16:20	Potential Roadmap Moving Forward		Laurent Tabaries, STM	
16:40	Evolving Industry Requirements for Security		Craig Rawlings, Stellantis	
17:00	Panel Topics		Craig Rawlings, Stellantis	
		Opportunity for Secure Elements for HSM 2.0?	Riemenschneider Lukas (ETAS-SEC/XPC-Bo2)	
			Laurence Bringer, Thales	
	Does safety critical mean silicon?		Laurent Tabaries, STM	
17:30	Closing		Richard Hayton, Trustonic	

Cybersecurity 2024

Cybersecurity: The Perfect Storm

International Cybersecurity Regulations for Automotive

Increase in Attacker Types National Cybersecurity Regulations

Increase in Attack Surfaces Evolution of Connected Cars

What Are the Consequences of Cyber Incidents?

Today's Cybersecurity Challenges

https://www.etas.com/download-center-files/DLC_products_ESCRYPT/etas-automotive-cyber-maturity-report-2024-en-20240719.pdf

Platform™

Cybersecurity Challenges 2024

15. What measures does your company take to secure its product's ecosystem?

Page 12

https://www.etas.com/download-center-files/DLC_products_ESCRYPT/etas-automotive-cyber-maturity-report-2024-en-20240719.pdf

https://www.darkreading.com/endpoint-security/cartoon-connected-car-security

Relevance of GlobalPlatform

GlobalPlatform

Mass Market deployment of industries has required: agreed functionality for transactions and transparent robust security to create trust among competitors and in the overall ecosystem

Global Platform[™] GlobalPlatform Specifications: Royalty Free Use: <u>https://globalplatform.org/specs-library/</u>

GlobalPlatform's Market Adoption

- 62 billion+ Secure Elements shipped worldwide are based on GlobalPlatform specifications
- Over 10's of billions GlobalPlatform-compliant Trusted Execution Environment in the market today

GlobalPlatform's Success in International Digital Security Services

Secure Component Specifications

Protection Profiles

Publicly available on a royalty free basis

- Common set of security needs
- "I want" this level of security

 A mechanism to provide Vendors the ability to make claims regarding their security products

3rd Party

Certification

• I "Provide"

GlobalPlatform Members

Solution Providers

Semiconductors and System on Chip (SoC) Providers Identity Solutions and Smart Cards Security Firmware IP Providers for Silicon Security Software

Labs/ Research Institutes

Software and Services Government and Defence Payments and Financial Services Consumer Electronics and Devices Automotive Telecommunications

Our Members

Collaborative Partnerships: Underpinning Deployment

GlobalPlatform Foundation Technologies

Global

tform

Secure Element

- A secure enclave protected against physical and software attack
- Tamper resistant hardware
- Install, update OTA applications (not just keys)
- In OVER 192 Million Connected Cars in 2023 (Juniper Research) Mathematical Annual Provided Values 307 million

•

- A secure operating system running on a standard CPU alongside regular OS/Applications
 - Protected against attack by hardware chip features
 + software mechanisms
- In Over 100 Million Vehicles as of 2023 (Confidential Source)

Isolated Technologies

New Technologies that create isolated execution environments

- Runs a full operating system providing standardized APIs and functions
 - 3rd party Security Certification
 - Full support for App and OS update over-the-air

Automotive in GlobalPlatform

GlobalPlatform

Technical Committees

GlobalPlatform & In-Vehicle Multi-Tenant Services

Digital Car Key

General Purpose Security

GlobalPlatform Approach

2. Trusted Applications/Applets developed/ deployed by the ecosystem, to meet the specific requirements of a particular ECU or a customer solution using standardized APIs

Example Standardized Primary Key Injection

1. Platform: Standardized APIs & Management command, update, state-of-theart crypto, crypto agility ...

SIM Sec Boot DRM ECU ID Key FOTA/ ADAS IDS Negotiation SOTA Sec Auth **Digital Car** Payment Logging Cmd Keys MACsec Firewall SecOC IVI Secure Component Platform: **Functionally and Security Certified**

OEMs and Tier 1s can manage key rotation

This approach fits well with Software Defined Vehicles with upper layer security certification

Hardware

Securing Any SDV Service with GlobalPlatform

Standards Alignment in Automotive

How UNECE 155 Compliance Possible with Process and Product Security Relevant for 64 Countries

- ISO/PAS 5112:2022 Road vehicles Guidelines for auditing cybersecurity engineering. Security, safety & risk
- ISO/SAE PAS 8475 Road vehicles Cybersecurity Assurance Levels (CAL) and Targeted Attack Feasibility (TAF) (under development)
- ISO/SAE PWI 8477 Road Vehicles Cybersecurity Validation and Verification (under development)

Global Platform™

SAE J3101 Hardware Protected Security Environments

Automotive computer systems are required to establish trustworthiness through device identity, sealing, attestation, data integrity, and availability.

These systems must be resilient to a wide range of attacks that cannot be thwarted through softwareonly security mechanisms. A hardware root of trust and the hardware-based security primitives are fundamentally necessary to satisfy demands of connected and highly or fully automated vehicles.

Table 1 - Common requirements of each profile

				Critical			Secure	
	Key	Cryptographic	Random	Security	Algorithm	Interface	Execution	
	Protection	Algorithms	Number	Parameters	Agility	Control	Environment	Self-Test
Profile	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
Confidentiality	Х	Х			?		X	X
Integrity	Х	Х		Х	?		Х	X
Availability	Х	Х			?	Х	Х	X
Access Control	Х	Х	Х		?	Х	Х	X
Non-Repudiation	Х	Х	Х	Х	?		Х	Х

NOTE: If algorithm agility is not supported, the profile shall be classified as "limited use" (7.6).

Source: SAE, Surface Vehicle Recommended Practice, *Hardware Protected Security for Ground Vehicles* J3101[™] FEB2020, Issued 2020-02

Methodology – GlobalPlatform Specifications Assessed

GP TECHNOLOGY	DOCUMENT REFERENCE	TITLE	VERSION	REFERENCE LINK
SE	GPC_SPE_034	Card Specification [GPCS]	2.3.1	https://globalplatform.org/specs-library/card-specification-v2- 3-1/
	GPC_SPE_174	Secure Element Protection Profile [SE PP]	1.0	https://globalplatform.org/specs-library/secure-element- protection-profile/
		GlobalPlatform Card API	1.7.1	https://globalplatform.org/specs-library/globalplatform-card- api-org-globalplatform/
TEE	GPD_SPE_009	TEE System Architecture [TEE Sys Arch]	1.3	https://globalplatform.org/specs-library/tee-system- architecture/
	GPD_SPE_010	GPD TEE Internal Core API [TEE Core]	1.3.1 / 1.4	https://globalplatform.org/specs-library/tee-internal-core-api- specification/
	GPD_SPE_021	TEE Protection Profile [TEE PP]	1.3	https://globalplatform.org/specs-library/tee-protection-profile- v1-3/
	GPD_SPE_025	TEE TA Debug Specification [TEE Debug]	1.0.1	https://globalplatform.org/specs-library/tee-ta-debug- specification-v1-0-1/
	GPD_SPE_120	TEE Management Framework (TMF) including ASN.1 Profile [TMF]	1.1.2	https://globalplatform.org/specs-library/tee-management- framework-including-asn1-profile-1-1-2/
	GPD_GUI_069	TEE Initial Configuration [TEE Config]	1.1	https://globalplatform.org/specs-library/tee-initial- configuration-v1-1/
	GPD_GUI_089	TMF Initial Configuration [TMF Config]	1.0	https://globalplatform.org/specs-library/tmf-initial- configuration-v1-0/
SE and TEE	GP_TEN_053	Cryptographic Algorithm Recommendations [Crypto Rec]	2.0	https://globalplatform.org/specs-library/globalplatform- technology-cryptographic-algorithm-recommendations/
	GP_REQ_025	Root of Trust Definitions and Requirements [RoT]	1.1.1	https://globalplatform.org/specs-library/root-of-trust- definitions-and-requirements-v1-1-gp-req_025/

Analysis Results: GlobalPlatform Specifications

Trusted Execution Environments Fully Meet 95% J3101 Requirements

Why Cooperation with SAE on Hardware Protected Security Environments Is Optimal

SAE USA J3101

Defines Common Glossary of Required Hardware Protected Secure Environment Characteristics GlobalPlatform

Detailed specifications and Implementation guidelines

- Cover these HPSE requirements and more
- Globally relevant

Certification of components by SE or TEE providers to:

- Ensure interoperability/ portability and
- Proven security robustness (protection against attack) obtained
- Possibility of composite certification

Panel 1: SESIP

(CEN/CENLAC 17927)

Overview SESIP

SESIP is methodology that reduces the cost, complexity and effort of security evaluation and certification.

Allows to designate specific security requirements

Defines common security vulnerability assessment and testing approach.

Technology agnostic approach

Built around the security services provided by all layers of a system from subcomponent to final product

Re-uses security testing

• Resulting in cost/time effective

What is SESIP?

Global

atform

Key Features

Automotive Focus

Aligns with key standards and regulations:

- •ISO/SAE 21434 for cybersecurity engineering.
- •UNECE WP.29 R155/R156 for cybersecurity management and software updates.

Promotes reusability of security evidence across the automotive supply chain.

Why are Protection Profiles so Important?

Existence of all of the factors required to create an isolated environment and to protect device and application assets

Factors have been implemented correctly.

Producer decides whether or not the Secure Component should be protected from a specific attack based upon the use case. Products are state of the art for the expected countermeasures on the platform

Secure Component products certified by GlobalPlatform offer

a clearly-defined level of security
are protected against vulnerabilities that are subject to widespread, software-based exploitation. GlobalPlatform evaluation methodology has been created from the ISO standard.

Used by multiple security communities.

SESIP Adoption

Panel 1: SESIP Certification (CEN/CENLAC 17927) : Value Proposition for Automotive ?

Driving back home after printing out the vulnerability scan report

Jorge Ruiz Wallace, Dekra

Bill Mazarra,Stellantis

https://images.app.goo.gl/UkcDfyHUbDNeWF1s7

Segment 2: Evolution of Regulations and Standards

You are in the right Place for the Cybersecurity Vehicle Forum Berlin We are in a break until 16:05 CET!

© GlobalPlatform 2024 | Confidential

Segment 2: Developments of Regulations and Standards

Sebastian Hans, Oracle • PQC Secure Elements	Mike Ounsworth, Entrust • PQC: practical issues impacting the future	"There really is no need for confusion. Rule 10, section 5, article a, subsection 3 exception 4 quite clearly states " https://www.cartoonstock.com/ directory/m/motor_vehicle_reg ulations.asp
John Krzeszewski, Eaton	David Ward, Horiba-Mira	
Evolution of ISO/SAE 21434 and progress on CAL/TAF	 Updates on Evolution of Functional Safety of ISO 26262 	

Panel 3: Intersection of Safety with Security Isolation

Panel 3: Intersection of Safety with Security Isolation

https://www.cartoonstock.com/cartoon?searchID=CX916324

Panel 4: **Evolution of** Secure Silicon

Traditional Automotive HSMs Have Important Gaps

Limited Control of Key Injection and Rotation

Requires a unique development path specific per ECU

Limited access to ecosystem for trusted applications (based upon proprietary networks)

No Common Hardware APIs

No Common Platform Administration

•OS Update •Multi-actor

Different Compliance Scenarios Possible

Patch Legacy O Architecture & Generate Evidence Transition Legacy Architecture: Extending Traditional Capabilities

New Architecture to Support Full Flexibility

Panel 4: Evolution of Secure Silicon

Riemenschneider Lukas (ETAS-SEC/XPC-Bo2)

"I think there's more to cyber security than hiding your laptop under the bed."

https://www.cartoonstock.com/cartoo n?searchID=CS162634

If you are interested in joining in on the fun...

https://www.cartoonstock.com/cartoon?searchID=EC326385

Global Platform™

The standard for secure digital services and devices

 \rightarrow globalplatform.org

Panel Questions

Panel 1: SESIP Certification: Value Proposition for Automotive? Based upon the different development models (including V-model), where could SESIP certification contribute the most?

Could SESIP reduce the efforts during the verification and validation phases?

Would SESIP certification @ different levels contribute to the TARA development process?

What would likely be the motivation for Tier 1's to adopt SESIP?

How important is mutual recognition by different regulatory bodies be for adoption of SESIP in Automotive?

What standardized protection profiles are needed most by the automotive industry to drive the market?

How can SESIP help sort the good, better, and best of Hardware Protected Security for autos?

Segment 2: Developments of Regulations and Standards

Panel 3: Intersection of Safety with Security Isolation

Is there a role for Safety and Security to be compatibly managed in sharing & isolation technologies in Automotive?

How are

Are there standardisation opportunities?

<u>ר</u>ה'

artificial intelligence and machine learning transforming the landscape of automotive security, and what opportunities do they present for predictive threat detection and Cespense?used in Asil B?

Asil D?

David

In what way does the emerging role of Cloud computing in automotive change the requirements for hardware security use cases (both functional safety & nonsafety critical use cases)?

С, Г

How do you manage mixed criticalities in isolation? priority inversion'. shared services ? What may be the use case differences that decide between the implementation choices?

•••

Is there a desire to increase sharing across isolation domains to reduce costs/improve

efficiency? If so, is this compatible for safety critical areas? Or can it only happen with general purpose

Andrew

compute in Automotive?

How do you manage trust relationships in future open architectures across vendors?

David

David Andrew

David Andrew

Page 51

Panel 4: Evolution of Secure Silicon

What role will standardisation play in the evolution of HPSEs?

development of ECUs foster more efficient and effective SDV realisation?

How do you ensure key provision & management effective over the whole life of the vehicle?

Is there a business case to extend HSM capabilities with Secure Elements for specific use cases?

How business logic in SE can improve the overall security of the solution?

Should the multitenant characteristics of the automotive value chain drive the ownership for the provisioning of keys?

How important is portability for trusted applications across ECUs?

Global

How do we

migrate from

*

Do we expect requirements for HPSEs?

What are the real time and start up requirements of HSM that could drive future evolutions?

M.

Would guidelines on minimum requirements for secure boot be beneficial for the ecosystem?

Global Platform™

The standard for secure digital services and devices

 \rightarrow globalplatform.org