

Global Platform GP Automotive JVC Applet

Laurent TABARIES

STMicroelectronics

December 2024

How to classify security robustness?

ISO21434 and TARA analysis : where is executed my function?

How is it possible to cope with security functions execution place uncertainty: HSM HW or CPU ?

There is a fundamental need to identify the real level of security robustness needed to be reach

Which functions have to be **bake or harden** from security point of view ?

For exemple, could you accept an ECDSA-256 signature generation perfomed on a standard CPU (without demonstrated robustness) ?

"Automotive security" : a galaxy of different use cases

Many use cases with different expectations..... **BUT SW vehicle must become a reality without security tradeoff**

Focusing on MCU, there are regular complains about how to improve today solution to manage all the security cases because of:

- lack of crypto field solution to be enhanced, updated for the next decade
- lack of customization/personalization capabilities
- difficulty to match supported features with targeted security goals

For MCU point of view, HSM inside Autosar using CSM APIs is the security backbone, and there is a demand to fill the gap, to enhance it, but not to replace it.

Use Case "security needs" driven by

What is the rational to improve security, and what are the legacy constraints?

Ex: solution using EVITA with Autosar to implement new crypto functions or secure PQC Ex: Generate localy and regularly new MasterKey due to new Hacker attack reducing MasterKey lifetime

eSE on top of HSM (and not to replace HSM) !

Because today mainstream Automotive MCU is HSM based with Autosar, Proposal is to have an « HSM augmented by an eSE with services based on standardized GP-APIs » Such services will be based on GP-JVC applet to be run inside an eSE connected on top of legacy HSM

This proposal could enhance today solution with complementary APIs:

- Standardized
- Flexible
- Level of security robustness guaranteed

Why JVC Applet Automotive ?

Because already adopted everywhere, ruling most of everyday life use cases (Banking, ID, Telecom, Wallets, ...)

- Agnotsic from any silicon vendor; just rely on top of JVC 3.x with standardized APIs
- Flexible, easy to patch or to personalize
- Customization remains possible
- Global solution (HW+SW) can be certified (composite certification, and protection profile reference is also possible)
- Code of the GP JVC Applet Automotive to be given as a reference code
- Testsuite for compliancy can be managed to guarantee good intgeration (free JVC simulator is available like JCARDSIM)

GP Automotive security convergence for MCU

HSM to remain the solution when priority is given to performances eSE on top of HSM (with GP JVC Automotive Applet) as a proxy to extend HSM capabilities

GP JVC Applet Automotive in 3 steps

To identify and list expected APIs, functions and services :

- RoT
- Key Generation, Derivation and Key Management
- Crypto, MAC, Hash, PQC
- Remote services
- Data personalization
- Etc

To formalize a GP specification

setup early JVC Applet (to rely on top of default JVC 3.*x*) with incremental approach based on regular field feedbacks

To implement a GP Automotive JVC Applet POC

provide integration guide and metrics for performances and security robustness assesment

