

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.

Recipients of this document are invited to submit, with their comments, notification of any
relevant patents or other intellectual property rights of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in
this document, and to provide supporting documentation. This document (and the information
herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be
disseminated without restriction. Use of the information herein (whether or not obtained directly
from GlobalPlatform) is subject to the terms of the corresponding GlobalPlatform license
agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to
sublicensing) inconsistent with the License is strictly prohibited.

GlobalPlatform Technology

TPS Client API Specification
Version 0.0.0.26
Public Review

December 2024

Document Reference: GPP_SPE_009

 TPS Client API Specification

Public Review v0.0.0.26 Page 2 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR
INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

 TPS Client API Specification

Public Review v0.0.0.26 Page 3 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Contents
1 Introduction .. 7
1.1 Audience ... 7
1.2 IPR Disclaimer .. 8
1.3 References .. 8
1.4 Terminology and Definitions ... 9
1.5 Abbreviations .. 11
1.6 Revision History .. 12
2 Overview ... 13
2.1 Standardization Scope .. 13
2.2 TPS Client API Architecture .. 14
3 Principles and Concepts ... 15
3.1 Design Principles .. 15
3.2 Fundamental Concepts ... 16

3.2.1 TPS Client .. 16
3.2.2 TPS Service ... 16
3.2.3 TPS Service Identifiers... 17

3.2.3.1 Elements of the TPS Service Identifier .. 17
3.2.3.2 UUIDs .. 17

3.2.3.2.1 UUID Namespace .. 17
3.2.3.2.2 Defining the tps-service-name in a UUID ... 18

3.2.3.3 tps-service-id ... 18
3.2.3.3.1 Informative Examples ... 19

3.2.3.4 tps-service-version .. 19
3.2.3.4.1 Major Version ... 19
3.2.3.4.2 Minor Version ... 19
3.2.3.4.3 Patch Version ... 19
3.2.3.4.4 Service Version Constraints ... 20

3.2.3.5 tps-secure-component-type ... 20
3.2.3.6 tps-secure-component-instance .. 21

3.2.3.6.1 TEE instances .. 21
3.2.3.6.2 Secure Element instances ... 21

3.2.3.7 tps-service-instance ... 22
3.2.3.7.1 TEE-hosted Services ... 22
3.2.3.7.2 Secure Element Hosted Services .. 23

3.2.4 TPS Session .. 23
3.2.4.1 Connection Methods .. 23

3.2.5 TPS Operation ... 23
3.2.6 TPS Transaction .. 24
3.2.7 Communication Stack .. 24
3.2.8 Language Specific API and Binding ... 24

3.3 Usage Concepts .. 25
3.3.1 TPSC_MessageBuffer Semantics ... 25
3.3.2 Multi-threading ... 25
3.3.3 Memory Layout and Management ... 26

3.3.3.1 General Principles ... 26
3.3.3.2 Memory Management .. 26
3.3.3.3 Structure Field Alignment .. 26
3.3.3.4 Buffer Size ... 27

 TPS Client API Specification

Public Review v0.0.0.26 Page 4 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.3.3.5 Finalization ... 27
3.3.4 Short Buffer Handling ... 28

3.4 Security ... 29
3.4.1 Security of the TPS Client API ... 29
3.4.2 Security of the Regular Operating System .. 29
3.4.3 Security of the Communication Channel .. 29

4 TPS Client API .. 30
4.1 Implementation-Defined Behavior and Programmer Errors .. 30
4.2 Header File .. 30
4.3 Data Types .. 31

4.3.1 Basic Types .. 31
4.3.2 TPSC_ConnectionData .. 31
4.3.3 TPSC_MessageBuffer ... 33
4.3.4 TPSC_Result ... 33
4.3.5 TPSC_ServiceBound ... 34
4.3.6 TPSC_ServiceIdentifier .. 35
4.3.7 TPSC_ServiceRange ... 36
4.3.8 TPSC_ServiceSelector .. 37
4.3.9 TPSC_ServiceVersion ... 38
4.3.10 TPSC_Session ... 38
4.3.11 TPSC_UUID ... 39

4.4 Constants .. 40
4.4.1 Return Codes ... 40
4.4.2 Session Login Methods .. 41
4.4.3 TPSC_UUID_NIL ... 42

4.5 Functions ... 43
4.5.1 Documentation Format... 44
4.5.2 TPSC_CancelTransaction ... 45
4.5.3 TPSC_CloseSession .. 47
4.5.4 TPSC_DiscoverServices .. 48
4.5.5 TPSC_ExecuteTransaction .. 50
4.5.6 TPSC_FinalizeTransaction .. 52
4.5.7 TPSC_InitializeTransaction .. 53
4.5.8 TPSC_OpenSession .. 55

5 Connector Interface to Communication Stack .. 57
5.1 Conceptual Architecture .. 57
5.2 Connector Messaging ... 58

5.2.1 TPS_GetFeatures_Req ... 58
5.2.2 TPS_GetFeatures_Rsp .. 59

5.3 Connector API ... 59
5.4 Connector Structures .. 60

5.4.1 TPSCC_Connector .. 60
5.4.1.1 cancel_transaction ... 61
5.4.1.2 close_session .. 61
5.4.1.3 connect .. 62
5.4.1.4 disconnect .. 63
5.4.1.5 discover_services .. 64
5.4.1.6 execute_transaction .. 65
5.4.1.7 open_session ... 66

6 [Informative] Rust Language API .. 67
6.1 Behavior .. 67

 TPS Client API Specification

Public Review v0.0.0.26 Page 5 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.2 Mapping C API Names to Rust Names ... 67
6.3 Rust Data Types ... 68

6.3.1 mod c_structs ... 68
6.3.2 Additional Structures .. 70

6.3.2.1 mod r_structs ... 70
6.4 Constants .. 71

6.4.1 mod c_errors .. 71
6.4.2 mod c_login .. 71
6.4.3 mod c_uuid ... 72

6.5 Errors... 73
6.6 Functions ... 74
7 [Informative] Sample Code for Calling the TPS API from a Client Application 75

 TPS Client API Specification

Public Review v0.0.0.26 Page 6 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Tables
Table 1-1: Normative References .. 8

Table 1-2: Informative References .. 8

Table 1-3: Terminology and Definitions ... 9

Table 1-4: Abbreviations .. 11

Table 1-5: Revision History ... 12
Table 3-1: tps-secure-component-type Values ... 20

Table 4-1: TPSC_ConnectionData for Core Login Types .. 32

Table 4-2: API Return Code Constants ... 40

Table 4-3: API Session Login Methods ... 41

Figures
Figure 1-1: Active Modules of TPS Client API ... 7
Figure 2-1: TPS Client API Architecture .. 14

Figure 3-1: TPS Entities and Concepts ... 16

Figure 4-1: Typical Call Sequence .. 43
Figure 5-1: Conceptual Architecture of TPS Client Connector Interface... 58

 TPS Client API Specification

Public Review v0.0.0.26 Page 7 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1 INTRODUCTION 1

This specification defines the TPS Client API, a communications API for connecting TPS Clients with TPS 2
Services where the TPS Client connecting to a TPS Service can be either an Application or another TPS 3
Service. The TPS Client API provides a C language interface used to discover, open a session, communicate, 4
and close the session with a TPS Service. The details of TPS Services and the communication protocols to 5
communicate with them are specified in separate documents. 6

Figure 1-1: Active Modules of TPS Client API 7

 8
 9

1.1 Audience 10

This document is suitable for software developers implementing: 11

• Applications that use TPS Services 12

• TPS Services 13

• the TPS Client API and the communications infrastructure required to access TPS Services 14

As this API is the base layer upon which higher level protocols providing TPS Services are built, it will also be 15
of interest to developers of future TPS Service specifications which build higher-level APIs on top of it. 16

 17

If you are implementing this specification and you think it is not clear on something:

1. Check with a colleague.

And if that fails:

2. Contact GlobalPlatform at TPS-Client-API-issues-GPP_SPE_009@globalplatform.org

 18

mailto:TPS-Client-API-issues-GPP_SPE_009@globalplatform.org

 TPS Client API Specification

Public Review v0.0.0.26 Page 8 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1.2 IPR Disclaimer 19

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work 20
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For 21
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, 22
please visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held 23
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the 24
evidence, validity, or scope of any such IPR. 25

1.3 References 26

This section lists references applicable to this specification. The latest version of each reference applies unless 27
a publication date or version is explicitly stated. 28

Table 1-1: Normative References 29

Standard / Specification Description Ref

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification

[TEE Core]

IETF RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

RFC 8174 Amendment to RFC 2119 [RFC 8174]

ISO/IEC 9899:1999 Programming languages – C [C99]

Semantic Versioning Semantic Versioning (https://semver.org/) [Sem Ver]

 30

Table 1-2: Informative References 31

Standard / Specification Description Ref

GPC_SPE_034 GlobalPlatform Technology
Card Specification

[GPCS]

GPD_SPE_007 GlobalPlatform Technology
TEE Client API Specification

[TEE Client]

GPD_SPE_075 GlobalPlatform Technology
Open Mobile API Specification

[OMAPI]

IETF RFC 4122 A Universally Unique IDentifier (UUID) URN
Namespace

[RFC 4122]

TCG FAPI Trusted Computing Group Feature API [FAPI]

 32

https://globalplatform.org/specifications/ip-disclaimers/
https://semver.org/

 TPS Client API Specification

Public Review v0.0.0.26 Page 9 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1.4 Terminology and Definitions 33

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and 34
MAY in this document (refer to [RFC 2119] as amended by [RFC 8174]): 35

• SHALL indicates an absolute requirement, as does MUST. 36

• SHALL NOT indicates an absolute prohibition, as does MUST NOT. 37

• SHOULD and SHOULD NOT indicate recommendations. 38

• MAY indicates an option. 39

Note that as clarified in the [RFC 8174] amendment, lower case use of these words is not normative. 40

Selected terms used in this document are included in Table 1-3. 41

Table 1-3: Terminology and Definitions 42

Term Definition

Applet General term for a Secure Element application: An application as
described in GlobalPlatform Card Specification ([GPCS]) that is installed
in the SE and runs within the SE.

Application Device/terminal/mobile application. An application that is installed in and
runs within the Regular Execution Environment.

Binding A mapping between a Language Specific API and the TPS Client API
which translates Language Specific API calls to TPS Service Protocol
messages specified in a TPS Service specification, and vice versa.

Communication stack The mechanisms by which a TPS Service present in a Secure
Component is accessed via the TPS Client API.
For more information, see section 3.2.7.

Connector See TPS Client Connector.

Device An end-user product that includes at least one Platform.

Execution Environment An environment that hosts and executes software. This could be a REE,
with hardware hosting Android, Linux, Windows, an RTOS, or other
software; it could be a Secure Element or a TEE.

Implementation The TPS Client API implementation and underlying Communication stack
implementations enabling the usage of TPS Services supported by
various Secure Components.

Language Specific API An API that enables the usage of a TPS Service using a native
programmatic interface for a specific programming language.
See also Binding.

Platform One computing engine and executable code that provides a set of
functionalities. SE, TEE, and REE are examples of platforms.
In the context of this document, Platform is used specifically to denote the
Platform on which the TPS Client API executes, rather than any other
Platform on the Device.

 TPS Client API Specification

Public Review v0.0.0.26 Page 10 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Term Definition
Regular Execution
Environment (REE)

An Execution Environment comprising at least one Regular OS and all
other components of the device (IC packages, other discrete components,
firmware, and software) that execute, host, and support the Regular OSes
(excluding any Secure Components included in the device).
From the viewpoint of a Secure Component, everything in the REE is
considered untrusted, though from the Regular OS point of view there
may be internal trust structures.
(Formerly referred to as a Rich Execution Environment (REE).)
Contrast Trusted Execution Environment (TEE).

Regular OS An OS executing in a Regular Execution Environment. May be anything
from a large OS such as Linux down to a minimal set of statically linked
libraries providing services such as a TCP/IP stack.
(Formerly referred to as a Rich OS or Device OS.)

Secure Component A security hardware/firmware combination that acts as an on-device trust
anchor. Facilitates collaboration between service providers and device
manufacturers, empowering them to ensure adequate security within all
devices to protect against threats.

Secure Element (SE) A tamper-resistant secure hardware component that is used in a device to
provide the security, confidentiality, and multiple application environment
required to support various business models. May exist in any form factor,
such as embedded or integrated SE, SIM/UICC, smart card, smart
microSD, etc.

TPS Client An entity that uses the TPS Client API to discover and communicate with
a TPS Service. A TPS Client can be either an Application or another TPS
Service.

TPS Client API The API defined in this specification: Enables generic mechanisms for
discovering and communicating with a TPS Service.

TPS Client Connector An interface to a Communication stack for a particular type of Secure
Component.

TPS Operation An operation that is executed by a TPS Service upon a request from a
TPS Client. A TPS Operation consists of one or more TPS Transactions.

TPS Service A service in a Secure Component, providing a service to entities in the
operating system; accessed using a TPS Service Protocol that is
specified in a TPS Service specification.

TPS Service Name Uniquely identifies a TPS Service implementation.

TPS Service Protocol A protocol that is used to communicate with the TPS Service; consists of
a set of TPS Operations.

TPS Service request
message

A protocol message specified by a TPS Service specification. It is
constructed and sent by the TPS Client to the TPS Service using the TPS
Client API.

TPS Service response
message

A protocol message specified by a TPS Service specification. It is
constructed and sent by the TPS Service to the TPS Client in response to
a TPS Service request message.

 TPS Client API Specification

Public Review v0.0.0.26 Page 11 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Term Definition
TPS Session An abstraction of a logical connection between a TPS Client and a TPS

Service instance.

TPS Transaction A single exchange of messages between the TPS Client and TPS
Service: a TPS Service request message created and sent by a TPS
Client to a TPS Service, and a TPS Service response message created
by the TPS Service and sent to the TPS Client in response to the TPS
Service request message.

Trusted Execution
Environment (TEE)

An Execution Environment that runs alongside but isolated from
Execution Environments outside of the TEE. A TEE has security
capabilities and meets certain security-related requirements: It protects
TEE assets against a set of defined threats which include general
software attacks as well as some hardware attacks, and defines rigid
safeguards as to data and functions that a program can access. There
are multiple technologies that can be used to implement a TEE, and the
level of security achieved varies accordingly.
Contrast Regular Execution Environment (REE).

Trusted Platform Module
(TPM)

A computer chip (microcontroller) that can securely store artifacts used to
authenticate the platform. These artifacts can include passwords,
certificates, or encryption keys. A TPM can also be used to store platform
measurements that help ensure that the platform remains trustworthy.

UUIDv5 In this document, UUIDv5 is used to denote a name-based Universally
Unique Identifier constructed using SHA-1 hashing, as described in
[RFC 4122].

 43

1.5 Abbreviations 44

Table 1-4: Abbreviations 45

Abbreviation Meaning

API Application Programming Interface

CBOR Concise Binary Object Representation

FFI Foreign Function Interface

OS Operating System

REE Regular Execution Environment

RFU Reserved for Future Use

SE Secure Element

TEE Trusted Execution Environment

TPS Trusted Platform Service

 46

 TPS Client API Specification

Public Review v0.0.0.26 Page 12 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1.6 Revision History 47

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are 48
minor releases where changes typically introduce supplementary items that do not impact backward 49
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance 50
releases that incorporate errata and clarifications; all non-trivial changes are indicated, often with revision 51
marks. 52

Table 1-5: Revision History 53

Date Version Description

July 2019 0.0.0.4 Committee Review

November 2020 0.0.0.9 Member Review #1

April 2022 0.0.0.16 Member Review #2

December 2024 0.0.0.26 Public Review

TBD v1.0 Public Release

 54

 TPS Client API Specification

Public Review v0.0.0.26 Page 13 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

2 OVERVIEW 55

This specification defines a communications API for connecting TPS Clients with TPS Services where the TPS 56
Client connecting to a TPS Service can be either an Application or another TPS Service. The TPS Client API 57
provides a C language interface and an optional Rust language interface that can be used to discover, open 58
a session, communicate, and close the session with a TPS Service. 59

The TPS Client API executes on a Platform. It has been designed to be implementable on many possible 60
systems. In particular, the TPS Client API is designed to be implemented both on many instances of REE and 61
on a GlobalPlatform TEE. 62

The details of TPS Services and the communication protocols to communicate with the TPS Services are 63
specified in separate specifications. 64

2.1 Standardization Scope 65

Instead of trying to standardize a single monolithic API that covers a significant proportion of the interactions 66
between TPS Entities and TPS Services, the approach of the GlobalPlatform standardization effort is modular. 67
The TPS Client API covered by this specification concentrates on the interface to enable efficient 68
communications between a TPS Client (i.e. an Application or a TPS Service) and a TPS Service. 69

Higher level specifications and protocol layers providing TPS Services can be built on top of the foundation 70
provided by the TPS Client API. These interfaces are out of scope of this specification. 71

 TPS Client API Specification

Public Review v0.0.0.26 Page 14 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

2.2 TPS Client API Architecture 72

The relationships between the system components related to the TPS Client API are outlined in the block 73
architecture in Figure 2-1. The TPS Client API connects a TPS Client with a TPS Service. A TPS Client can 74
be either an Application or another TPS Service. TPS Services may be used via a Language Specific API 75
implemented using a Binding between the Language Specific API and the TPS Service. The Binding uses the 76
TPS Client API to make use of services provided by the TPS Service, which are then provided to the TPS 77
Client (an Application or another TPS Service) via the Language Specific API. 78

Figure 2-1: TPS Client API Architecture 79

 80
 81

The TPS Client API is connected to one or more TPS Services, each available to the TPS Client API via a 82
Communication stack. The Communication stack is used to establish the communication channel between the 83
TPS Client API and the TPS Service implementation. 84

The TPS Client API is the main component of this architecture. It is used to establish a TPS Session between 85
a TPS Client and a TPS Service and subsequently to execute TPS Operations through the session. The 86
session can be viewed as a connection, or as a channel between the client and the service through which a 87
set of operations can be executed. A TPS Operation consists of one or more TPS Transactions, which are 88
request-response pair messages instructing a TPS Service to do operations specific to the service. (TPS 89
Session, TPS Operation, and TPS Transaction are further discussed in section 3.2.) 90

 91

 TPS Client API Specification

Public Review v0.0.0.26 Page 15 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3 PRINCIPLES AND CONCEPTS 92

This section explains the underlying principles and concepts of the TPS Client API in detail and describes how 93
each class of features should be used. 94

3.1 Design Principles 95

Note: An optional, equivalent native Rust language external interface is provided in section 6. 96

The key design principles of the TPS Client API are: 97

• C language API 98

Note: While a C language API is presented to clients, this does not constrain the programming 99
environment used for a given implementation except that it must be able to expose the C language API 100
described in this document. 101

o C is the common denominator for the application frameworks and operating systems hosting 102
Applications that use the TPS Client API and can be supported by almost all other platform 103
programming language options. 104

• Blocking functions 105

o Most Application developers are familiar with synchronous functions that block while waiting for the 106
underlying task to complete before returning to the calling code. An asynchronous interface is hard 107
to design, hard to port to Regular OS environments, and is generally difficult for developers familiar 108
with synchronous APIs to use. 109

o A mechanism to support cancellation of blocking API functions is optional. Where the OS supports 110
multi-threading, implementations SHOULD support cancellation. 111

• Source-level portability 112

o To enable compile-time and design-time optimization, this specification places no requirement on 113
binary compatibility beyond that provided by the OS. Application developers may need to recompile 114
their code against an implementation-provided version of the TPS Client API headers and libraries 115
to build correctly on that implementation. 116

• Specify both the communication mechanism and the format of messages 117

o This API focuses on defining the underlying communications channel. TPS Service specifications 118
will define the format of the messages that are passed over the channel. 119

 TPS Client API Specification

Public Review v0.0.0.26 Page 16 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2 Fundamental Concepts 120

This section outlines the behavior of the TPS Client API and introduces key concepts and terminology. 121
Figure 3-1 shows these graphically. 122

Figure 3-1: TPS Entities and Concepts 123

 124
 125

3.2.1 TPS Client 126

A TPS Client is an entity that uses the TPS Client API to access services provided by a TPS Service. A TPS 127
Client can be an Application or another TPS Service. 128

3.2.2 TPS Service 129

A TPS Service is an entity that provides a service to TPS Clients. A TPS Service is discovered, connected to, 130
communicated with, and disconnected from using the TPS Client API. 131

 TPS Client API Specification

Public Review v0.0.0.26 Page 17 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3 TPS Service Identifiers 132

The TPS Service Identifier allow a client to select which TPS Services provided by a Platform it might wish to 133
use. It enables use cases such as: 134

• A client application wishes to use the same instance of a TPS Service whenever it runs. 135

• A client application wishes to select one from any of the available instances of a particular service. 136

• A client application wishes to select a TPS Service residing on a particular type of Secure Component. 137

• A client application wishes to select a TPS Service residing on a specific instance of a specific type of 138
Secure Component. 139

• A client application wishes to select a TPS Service with at least a specified version. 140

3.2.3.1 Elements of the TPS Service Identifier 141

The TPS Service Identifier is composed of the following information: 142

• An identifier, tps-service-id, for the functionality provided by the TPS Service 143

• An identifier, tps-service-version, for the version of the TPS Service 144

• An identifier, tps-secure-component-type, indicating the type of security environment supporting 145
the TPS Service 146

• A Platform unique identifier, tps-secure-component-instance, for the security environment 147
instance. This can be used, for example, to differentiate between multiple TEEs on a Platform. 148

• A Platform unique identifier, tps-service-instance, for a specific instance of a TPS Service on a 149
particular security environment on the Platform 150

3.2.3.2 UUIDs 151

Many of the values that define a TPS Service are presented as UUID [RFC 4122] values. 152

Note: For convenience of representation, informative examples in this document use the string 153
representation defined in [RFC 4122] with the urn prefix removed. 154

Implementers are advised that the TPS APIs represent UUIDs as an array of 16 bytes of type TPSC_UUID. 155
See section 4.3.11. 156

Except where stated otherwise, UUID types in this document are constructed using the Algorithm for Creating 157
a Name-based UUID using SHA-1 hashing, described in [RFC 4122] and often abbreviated to UUIDv5. This 158
constructs values from a UUID Namespace and a Name. 159

3.2.3.2.1 UUID Namespace 160

For TPS Services, where a UUIDv5 is required, the UUIDv5 namespace SHALL be set to: 161

9913673c-233e-422c-8213-1ec1f74936e8 162

This value is a randomly generated UUIDv4 and serves to ensure a low probability of collision between UUIDs 163
describing TPS Services and other UUIDv5 namespaces. 164

 TPS Client API Specification

Public Review v0.0.0.26 Page 18 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.2.2 Defining the tps-service-name in a UUID 165

This specification generally uses UTF-8 strings to define tps-service-name values to be used as UUID 166
names. Where the UUID name is implementation defined, the name can be constructed from any type that 167
has a canonical transformation into an array of bytes. 168

To reduce the probability of UUID value collisions, there are rules constraining UUID names defined as strings 169
and UUID names defined otherwise. 170

Names defined as UTF-8 Strings 171

One of the prefixes below SHALL be prepended to all UUID names defined as UTF-8 strings. 172

• One of the prefixes "GPP", "GPD", “GPT” and "GPC" MUST be selected for TPS Services defined by 173
GlobalPlatform specifications. These prefixes are reserved and MUST NOT be used by bodies other 174
than GlobalPlatform to define a name within the context of a TPS Service. 175

• The prefix "TCG" MUST be used for TPS Services defined by Trusted Computing Group 176
specifications. This prefix is reserved and MUST NOT be used by bodies other than the Trusted 177
Computing Group to define a name within the context of a TPS Service. 178

• The prefix "STD" SHOULD be used for TPS Services defined in specifications published by other 179
standards bodies and industry groups. Bodies SHOULD take reasonable care to avoid name 180
collisions, for example by including the name of the standards body in the name. 181

• The prefix "VND" is reserved for proprietary TPS Service definitions. Proprietary definitions SHOULD 182
include the name of the defining entity to reduce the chance of naming collisions. 183

Names not defined as UTF-8 Strings 184

• There MUST be a canonical method to transform the type used as the base for the name into a 185
sequence of bytes. 186

• The sequence of bytes generated from the type MUST NOT start with any of the following reserved 187
sequences of bytes (these correspond to the reserved UTF-8 string prefixes): 188

o [0x47, 0x50, 0x50] 189

o [0x47, 0x50, 0x44] 190

o [0x47, 0x50, 0x54] 191

o [0x47, 0x50, 0x43] 192

o [0x54, 0x43, 0x47] 193

o [0x53, 0x54, 0x44] 194

o [0x56, 0x4e, 0x44] 195

3.2.3.3 tps-service-id 196

The tps-service-id allows a client to determine the class of functionality provided by a TPS Service 197
instance. 198

Any specification defining a TPS Service SHALL define tps-service-name to uniquely identify the service 199
within the set of all TPS Services. 200

The tps-service-id is a UUIDv5 as defined in section 3.2.3.2 where the name field is set to tps-201
service-name. 202

 TPS Client API Specification

Public Review v0.0.0.26 Page 19 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.3.1 Informative Examples 203

The informative examples below are intended to assist specification writers in defining an interoperable tps-204
service-name. 205

tps-service-name = "GPP ROT13" 206

tps-service-id is the generated UUIDv5: 87bae713-b08f-5e28-b9ee-4aa6e202440e 207

 208

tps-service-name = "VND Acme Detonator Service" 209

tps-service-id is the generated UUIDv5: bd04103d-9ff4-5b40-a8f9-fdffc07ffce8 210

 211

tps-service-name = "STD StandardsBody ServiceName" 212

tps-service-id is the generated UUIDv5: 4876bf7f-367a-5e30-bd7e-a0d8bd66b77b 213

3.2.3.4 tps-service-version 214

tps-service-version represents the version of the service, following Semantic Versioning ([Sem Ver]) 215
conventions. It has three parts: the Major Version; Minor Version, and Patch Version. 216

Where tps-service-version is expressed as a string, e.g. in the derivation of new UUIDs, it shall be 217
serialized as a sequence of concatenated 32bit hexadecimal values including leading zeroes. 218

As an example, tps-service-version where Major Version is 2, Minor Version is 13, and Patch version 219
is 21 is expressed as the string "000000020000000d00000015". 220

3.2.3.4.1 Major Version 221

The Major Version MUST be incremented if any backward-incompatible change is made to the service API. 222

If GlobalPlatform manages the TPS Service specification, the Major Version of the service MUST match the 223
major version of the specification. That is, any backward incompatible change to a TPS Service requires an 224
increment to the major version of the specification. 225

An exception to the above rules is made for Major Version 0. This version is used for initial development of a 226
service API and indicates that it is unstable. This means that anything MAY change at any time. 227

3.2.3.4.2 Minor Version 228

The Minor Version SHOULD be incremented if any backward-compatible change is made to the service API. 229

If GlobalPlatform manages the TPS Service specification, the Minor Version of the service MUST match the 230
minor version of the specification. That is, any backward compatible change to a TPS Service requires an 231
increment to the minor version of the specification. 232

3.2.3.4.3 Patch Version 233

The Patch Version SHOULD be incremented if any backward-compatible change is made to the service API. 234

The Patch Version is used to distinguish between different versions of work in progress, such as a draft 235
proposal. Patch Version additions and changes are unstable and may change at any time. End-users of the 236
API SHOULD NOT rely on the behavior of Patch Versions. 237

 TPS Client API Specification

Public Review v0.0.0.26 Page 20 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.4.4 Service Version Constraints 238

During service discovery, the caller may wish to limit acceptable service versions. The TPS Client API provides 239
a mechanism to enable this in which the client specifies: 240

• The lowest acceptable version of the service. 241

o For inclusive bounds, acceptable versions are >= lowest_acceptable_version. 242

o For exclusive bounds, acceptable versions are > lowest_acceptable_version. 243

o If lowest_acceptable_version is set to TPSC_NoBounds, then the lowest version available 244
(and not excluded) is acceptable. 245

• A single intermediate range of versions of the service that are unacceptable. 246

o For inclusive bounds, excluded versions are >= first_excluded_version. 247

o For exclusive bounds, excluded versions are > first_excluded_version. 248

o For inclusive bounds, excluded versions are <= last_excluded_version. 249

o For exclusive bounds, excluded versions are < last_excluded_version. 250

o If no bounds are specified for both the first excluded version and the last excluded version, no 251
version is excluded. 252

• The highest acceptable version of the service. 253

o For inclusive bounds, acceptable versions are <= highest_acceptable_version. 254

o For exclusive bounds, acceptable versions are < highest_acceptable_version. 255

o If highest_acceptable_version is set to TPSC_NoBounds, then the highest version available 256
(and not excluded) is acceptable. 257

See section 4.3.7 for the definition of the TPSC_ServiceRange structure which allows the caller to specify 258
service version constraints. 259

3.2.3.5 tps-secure-component-type 260

The tps-secure-component-type defines the environment used to host a TPS Service. It is a UUIDv5 as 261
defined in section 3.2.3.2 where the name field is set to a value uniquely identifying the type of secure 262
component. 263

This specification defines the following values for the name field in tps-secure-component-type: 264

Table 3-1: tps-secure-component-type Values 265

Secure Component UUID Name Field Generated UUIDv5

GlobalPlatform compliant Trusted
Execution Environment

"GPD-TEE" 59846875-1e02-53c8-922f-5d60dd103a58

GlobalPlatform compliant Secure
Element

"GPC-SE" bdd658fa-44c1-5e59-b3a1-1a8f038ceb50

Regular Execution Environment
(e.g. Linux, Windows, RTOS)

"GPP-REE" d2dc120c-3e4a-5b1f-bece-df3825c933ae

 266

Other specifications MAY define further values for tps-secure-component-type. 267

 TPS Client API Specification

Public Review v0.0.0.26 Page 21 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.6 tps-secure-component-instance 268

tps-secure-component-instance is used to identify a Secure Component on a Platform. It is a UUIDv5 269
as described in section 3.2.3.2. 270

This specification defines mechanisms which MAY be used for GlobalPlatform TEE and GlobalPlatform SE. 271
Implementers MAY choose other mechanisms that produce values that are unique on a Platform. 272

Implementers MUST ensure that the same value is generated for tps-secure-component-instance each 273
time the Platform is booted. 274

Privacy Note: tps-secure-component-instance is a privacy-sensitive identifier. Client applications 275
need to consider privacy requirements if they plan to make tps-secure-component-instance 276
available outside the Platform. 277

3.2.3.6.1 TEE instances 278

Where the Secure Component hosting a TPS Service is a GlobalPlatform compliant TEE, the name field in 279
the UUIDv5 MAY be the concatenation of: 280

• The UTF-8 String "GPD-TEE" 281

• The string representation of the value of the gpd.tee.deviceID property (which is itself a UUID 282
expected to be unique). 283

Informative Example 284

Secure Component= "GPD-TEE" 285
gpd.tee.deviceID = "11567663-9fa5-4e44-9da7-174cc864cbb4" 286

tps-secure-component-instance is the generated UUIDv5: 287

a493ca80-f44e-5eb1-9bcd-838bce418813 288

3.2.3.6.2 Secure Element instances 289

Where the Secure Component hosting a TPS Service is a GlobalPlatform compliant Secure Element, the name 290
field in the UUIDv5 MAY be the concatenation of: 291

• The UTF-8 String "GPC-SE" 292

• iin, a UTF-8 string containing the representation in decimal of the Issuer Identification Number (see 293
[GPCS] section 7.4.1.1). 294

• cin, a UTF-8 string containing the representation in decimal of the Card Image Number (see [GPCS] 295
section 7.4.1.2) 296

Informative Example 297

Secure Component = "GPC-SE" 298
iin = "98268021" 299
cin = "38001635" 300

tps-secure-component-instance is the generated UUIDv5: 301

a381e1d5-6f0b-5b3f-a2fa-aa078fb00fff 302

 TPS Client API Specification

Public Review v0.0.0.26 Page 22 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.7 tps-service-instance 303

tps-service-instance provides a Platform unique identifier for a TPS Service. It is a UUIDv5 as described 304
in section 3.2.3.2. 305

The value of tps-service-instance can be used by a Connector to identify and correctly map 306
communications to the correct service on a given Secure Component, which may host multiple services. 307

This specification defines mechanisms which MAY be used for GlobalPlatform compliant TEE and 308
GlobalPlatform SE. Implementers MAY choose other mechanisms provided that the final value of tps-309
service-instance is unique on the platform. 310

Privacy Note: tps-service-instance is a privacy-sensitive identifier. Client applications need to 311
consider privacy requirements if they plan to make tps-service-instance available outside the 312
Platform. 313

Implementers MUST ensure that the same value for tps-service-instance is generated after a software 314
update that does not change tps-service-version, or when the Platform is rebooted. 315

Implementers MUST also ensure that tps-service-instance changes if tps-service-version Major 316
Version is changed (e.g. in a software update). If the Minor Version or Patch Version change, tps-service-317
instance MUST NOT change. 318

3.2.3.7.1 TEE-hosted Services 319

Where the Secure Component hosting a TPS Service is a GlobalPlatform compliant TEE, the name field in 320
the UUIDv5 MAY be the concatenation of tps-secure-component-instance, ta-id, tps-service-321
name, and tps-service-version. 322

• tps-secure-component-instance: Defined in section 3.2.3.6 323

• ta-id: The UUID of the TA providing a TPS Service. 324

o If TPS Service is provided as one or more TAs, ta-id is set to the UUID of the destination TA to 325
which a TEE Client API ([TEE Client]) session underlying the TPS Client API session will be 326
bound. 327

o If TEE does not use a TA to provide the service, ta-id is Nil as defined in [RFC 4122]. 328

o TEEs supporting UUIDv5-based TA naming schemes SHOULD NOT use these for TAs hosting 329
TPS Services. This ensures that the identity of a service instance remains stable if a TA receives 330
e.g. a security update. 331

• tps-service-id: Defined in section 3.2.3.3 332

• tps-service-version: Defined in section 3.2.3.4. Only the Major Version field is used, expressed 333
as a hexadecimal 32-bit string with leading zeroes. 334

Informative Example 335

tps-secure-component-instance = "a493ca80-f44e-5eb1-9bcd-838bce418813" 336
ta-id = "d4e61725-1501-4bee-8dfd-dd19a81984b5" 337
tps-service-id = "87bae713-b08f-5e28-b9ee-4aa6e202440e" 338
tps-service-version = "00000002" 339

tps-service-instance is the generated UUIDv5: 340

9fc7dfd4-28c1-58f5-89dd-d17887a5c937 341

 TPS Client API Specification

Public Review v0.0.0.26 Page 23 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.3.7.2 Secure Element Hosted Services 342

Where the Secure Component hosting a TPS Service is a GlobalPlatform compliant Secure Element, the name 343
field in the UUIDv5 SHOULD be the concatenation of tps-secure-component-instance, aid, and tps-344
service-version, where: 345

• tps-secure-component-instance: Defined in section 3.2.3.6 346

• aid: The Application Identifier of the Applet providing the TPS Service 347

o If the Secure Element does not require SELECT of an AID to provide the TPS Service, aid is Nil as 348
defined in [RFC 4122]. 349

• tps-service-version: Defined in section 3.2.3.4. Only the Major Version field is used, expressed 350
as a hexadecimal 32-bit string with leading zeroes. 351

Informative Example 352

tps-secure-component-instance = "a381e1d5-6f0b-5b3f-a2fa-aa078fb00fff" 353
aid = "DEADBEEF" 354
tps-service-version = "00000002" 355

tps-service-instance is the generated UUIDv5: 356

00f84a6a-8cb1-539f-9250-cc9c38793f1b 357

 358

3.2.4 TPS Session 359

A TPS Session is an abstraction of a logical connection between a TPS Client and a TPS Service instance. 360
The maximum number of concurrent TPS Sessions is implementation-defined, depending on the design of the 361
TPS Service, and may depend on runtime resource constraints. 362

When creating a new TPS Session the Client must identify the TPS Service that it wishes to connect to by 363
using a tps-service-name. 364

3.2.4.1 Connection Methods 365

A TPS Service implementation MAY require identification or authentication of the TPS Client or the User 366
executing it. For instance, a TPS Service implementation may restrict access to a certain set of provided 367
services to one or more TPS Clients or Users, or identify resources hosted by the TPS Service belonging to a 368
TPS Client and a User. 369

When opening a session, the TPS Client can indicate a connection method it will use to identify itself. 370
Attempting to open a session with an incorrect connection method may result in a failed attempt. 371

3.2.5 TPS Operation 372

A TPS Service specifies a set of TPS Operations through which the TPS Client utilizes the TPS Service. A TPS 373
Operation consists of one or more TPS Transactions. 374

 TPS Client API Specification

Public Review v0.0.0.26 Page 24 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.2.6 TPS Transaction 375

A TPS Transaction is the unit of communication between a TPS Client and a TPS Service within a session. 376

• The TPS Client constructs a TPS Service request message and sends it to the TPS Service using the 377
TPS Client API. 378

• The TPS Service receives the TPS Service request message via the TPS Client API, processes it, 379
constructs a TPS Service response message, and sends the TPS Service response message to the 380
TPS Client. 381

• The TPS Client receives the TPS Service response message and processes it. The TPS Client may 382
continue by constructing a new TPS Service request message and sending it to the TPS Service in 383
the same fashion. 384

The usage and content of the TPS Service request and TPS Service response messages depends on the TPS 385
Service specification and the TPS Client’s application logic. 386

The transaction invocation blocks the TPS Client thread, waiting for an answer from the TPS Service. A TPS 387
Client MUST NOT use multiple threads to invoke transactions within a single TPS Session. 388

3.2.7 Communication Stack 389

The Communication stack contains required support libraries to bind the TPS Client API functionality to a 390
particular TPS Service implementation. The Communication stack is specific to an Implementation of a 391
particular TPS Client API and the TPS Service. 392

Informative Examples: 393

• If a TPS Service implementation is an Applet in a Secure Element, the Communication stack would 394
contain the logic to access the Applet, including OMAPI (see [OMAPI]). 395

• If a TPS Service implementation is a Trusted Application in a Trusted Execution Environment, the 396
Communication stack would contain the logic to access the Trusted Application, including the TEE 397
Client API (defined in [TEE Client]). 398

3.2.8 Language Specific API and Binding 399

Applications and TPS Services can use a Language Specific API and a Binding to use a TPS Service. 400

A Language Specific API and the corresponding Binding provide an additional and optional abstraction layer 401
on top of the TPS Client API to provide an idiomatic API for using the TPS Service from a particular 402
programming language environment. 403

The Language Specific API provides a well-defined API specified using the target programming language used 404
to develop the Application or TPS Service. The Binding provides the mapping from Language Specific API 405
functions and function parameters to the TPS Service Protocol requests and responses and makes use of the 406
TPS Client API to connect and communicate with the TPS Service using the TPS Service Protocol. 407

This document defines an optional Rust language binding in section 6. 408

 TPS Client API Specification

Public Review v0.0.0.26 Page 25 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.3 Usage Concepts 409

This section outlines some of the usage concepts underlying the TPS Client API. 410

3.3.1 TPSC_MessageBuffer Semantics 411

The TPSC_MessageBuffer structure manages the integrity and atomicity of operations performed between 412
a TPS Client and a TPS Service via the TPS Client API. As such, some fields in the structure are intended to 413
be managed via specific function invocations and should be treated as read-only from the perspective of 414
applications using the TPS Client API. 415

• A TPSC_MessageBuffer cannot be initialized directly by an application. It MUST be initialized via a 416
call to TPSC_InitializeTransaction. This ensures that any implementation-specific data is 417
properly allocated and initialized. 418

• A TPSC_MessageBuffer cannot be finalized directly by an application. It MUST be finalized via a 419
call to TPSC_FinalizeTransaction. This ensures that any implementation-specific data is properly 420
freed. 421

If the Platform on which the TPS Client API executes supports multi-threading, functions that have a 422
TPSC_MessageBuffer parameter MAY use it to manage reentrancy and thread safety. 423

3.3.2 Multi-threading 424

The TPS Client API is designed to support use from multiple threads concurrently, using a combination of 425
internal thread safety within the implementation of the API, and explicit locks and serialization in the TPS Client 426
code. TPS Client developers can assume that API functions can be used concurrently unless an exception is 427
documented in this specification. The main exceptions are indicated below. 428

Note that the API can be used from multiple processes, but it may not be possible to share contexts and 429
sessions between multiple processes due to Regular OS memory privilege separation mechanisms. 430

Behavior that is not thread-safe 431

Session structures and their corresponding lifecycle states are defined by pairs of bounding “start” and “stop” 432
functions: 433

• TPSC_OpenSession / TPSC_CloseSession 434

• TPSC_InitializeTransaction / TPSC_FinalizeTransaction 435

These functions are not internally thread-safe with respect to the object being initialized or finalized. For 436
instance, it is not valid to call TPSC_OpenSession concurrently using the same TPSC_Session structure. 437
However, it is valid for the TPS Client to concurrently use these functions to initialize or finalize different objects; 438
for example, two threads could initialize different TPSC_Session structures. 439

If globally shared structures need to be initialized, the TPS Client MUST use appropriate platform-specific 440
locking schemes to ensure that the initialization of each structure occurs only once. 441

Once the structures described above have been initialized, it is possible to use them concurrently in other API 442
functions, provided that the TPS Service in use supports such concurrent use. 443

 TPS Client API Specification

Public Review v0.0.0.26 Page 26 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.3.3 Memory Layout and Management 444

3.3.3.1 General Principles 445

It is a general principle of the design of the TPS Client API that memory buffers are allocated and freed by the 446
caller. This simple memory model reduces the likelihood of memory leaks and use-after-free errors by 447
guaranteeing that the caller always controls memory allocation and deallocation. 448

3.3.3.2 Memory Management 449

The calling application MUST obey the following rules when managing the memory interface with the TPS 450
Client API: 451

• Caller allocates and frees memory buffers. 452

• Caller MUST provide the correct size of an allocated memory buffer to the callee. Please take care to 453
check whether the API requires the size to be provided in bytes, or in "number of objects of some 454
type" that the buffer can hold. 455

• Caller MUST NOT move an allocated block while any other reference to it exists. 456

o As an example, this can occur if an allocated block is part of a C++ vector that is resized. 457

• A called TPS Client API owns the contents of a buffer from the point where it is called to the point 458
where it returns. This means in particular: 459

o Caller MUST NOT mutate buffer memory until the callee has returned. On platforms where 460
cancellation is supported, the caller only regains ownership of the buffer after the cancelled API call 461
returns. 462

o Caller MUST NOT read from a buffer which is mutated by the callee until it has returned as TPS 463
Client API may change the contents of the memory at any time, and caller could see inconsistent 464
memory contents. 465

o Caller MAY read buffers that are not mutated by the callee. 466

o TPS Client API is unaware of any synchronization primitives (semaphores, mutexes, etc.) that 467
might be used by the caller to manage shared memory resources. It is the caller's responsibility to 468
ensure that TPS Client API has ownership of buffer memory until the callee returns. 469

3.3.3.3 Structure Field Alignment 470

The TPS Client API will construct appropriate data structures for data within the provided buffer, including any 471
items that are accessed via C pointers. The TPS Client API library ensures that any data structures are 472
appropriately aligned for the caller. 473

Many structures contain a private imp field. This holds implementation-specific data whose size in memory 474
may differ between implementations or between different versions of the same implementation. It is therefore 475
not safe to link object code that has been compiled against different implementations or different versions of 476
the same library. API compatibility is guaranteed only at the source code level in this version of the 477
specification. 478

Note: It is recommended that the TPS Client API is built with the natural structure and object alignment for 479
the target. 480

Implementations of the TPS Client API MUST provide information on the layout of structures so that callers 481
can be appropriately compiled. This information MUST be present in the exported headers, and 482
implementers are reminded that the specification of packing in the C language is compiler-dependent. 483

 TPS Client API Specification

Public Review v0.0.0.26 Page 27 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

The reference implementation of the TPS Client API uses the C language representation of structures 484
without packing directives. 485

3.3.3.4 Buffer Size 486

Where a buffer provided by the calling application is not large enough to hold the returned data structure(s), 487
the TPS Client API indicates this to the caller. See section 3.3.4. 488

The calling application is responsible for enforcing ownership semantics for the buffer. Specifically, the calling 489
application does not access the contents of the buffer after a call to the TPS Client API until after the function 490
call has returned. 491

3.3.3.5 Finalization 492

This specification uses the term “finalize” to describe the process of cleaning up TPS Client API resources 493
used by a TPS Client. This specifically includes any necessary checks that the operation is legal, necessary 494
changes to the internal state of the TPS Client API including sanitization of the contents, and freeing of 495
allocated memory for the structures specified in the “finalize” function. 496

The specification of the “finalize” functions described in section 3.3.2 is stateful and requires clean TPS Client 497
resource unwinding: 498

• When finalizing a TPSC_MessageBuffer structure, the TPS Client code MUST ensure that it is not 499
referenced in a pending TPSC_ExecuteTransaction operation. 500

• When closing a TPSC_Session structure, the TPS Client code MUST ensure that there are no 501
pending operations within the session and that all related TPSC_MessageBuffer structures have 502
been finalized. 503

• When finalizing a TPSC_ServiceIdentifier structure, the TPS Client code MUST ensure that 504
there are no pending TPSC_OpenSession operations pending on the structure. It can be finalized 505
any other time, including during open sessions that were opened using the 506
TPSC_ServiceIdentifier structure. 507

TPS Clients SHALL ensure these requirements are met, using platform-specific locking mechanisms to 508
synchronize threads if needed. Failing to meet these obligations is a programmer error and may result in 509
undefined behavior. 510

 TPS Client API Specification

Public Review v0.0.0.26 Page 28 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.3.4 Short Buffer Handling 511

In this specification, memory buffers are generally defined in one of two ways: 512

• If the memory buffer is used only as input, a pointer (e.g. void* buf) holds the start of the buffer and 513
a size parameter (e.g. size_t size) defines the number of entries in the buffer. This scenario is not 514
discussed further here. 515

• If the memory buffer is used for both input and output, a pointer (e.g. void* buf) holds the start of 516
the buffer, a size pointer (e.g. size_t* size) holds the size of the current contents of the buffer, and 517
a maximum size parameter (e.g. size_t maxsize) holds the size of the allocated buffer (which may 518
be larger than the current contents). 519

If the memory buffer provided as a parameter to a function is not large enough to contain the output from the 520
function, handling is as follows: 521

The data buffer, buf, SHALL be allocated by the TPS Client and passed in the buf parameter. Because the 522
size of the output buffer cannot generally be determined in advance, the following convention is used: 523

• On entry: 524

o maxsz contains the number of bytes actually allocated in buf. The buffer with this number of 525
bytes SHALL be entirely writable by the TPS Client. 526

o *sz contains the number of bytes used by any input message in buf. 527

• On return: 528

o If the output fits in the output buffer, then the Implementation SHALL write the output in buf and 529
SHALL update *sz with the actual size of the output in bytes. 530

o If the output does not fit in the output buffer, then the Implementation SHALL update *sz with the 531
required number of bytes and SHALL return TPSC_ERROR_SHORT_BUFFER. It is implementation-532
dependent whether the output buffer is left untouched or contains part of the output. In any case, 533
the TPS Client SHOULD consider that the content of the output buffer is undefined after the 534
function returns. 535

If the caller sets *sz to 0, then: 536

• The function will always return TPSC_ERROR_SHORT_BUFFER unless the actual output data is empty. 537

• The parameter buf can take any value, e.g. NULL, as it will not be accessed by the Implementation. 538

If the caller sets *sz to a non-zero value, then buf MUST NOT be NULL because the buffer starting from 539
the NULL address is never writable. 540

 541

 TPS Client API Specification

Public Review v0.0.0.26 Page 29 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

3.4 Security 542

3.4.1 Security of the TPS Client API 543

The TPS Client API implementation MUST treat any input from the TPS Client as potentially malicious. TPS 544
Services MUST assume that TPS Clients may be compromised by attack or may be purposefully malicious. 545

Login Connection Methods 546

This specification defines several connection methods that allow an identity token for a TPS Client to be 547
generated by the implementation and presented to the TPS Service. This identity information is generated 548
based on parameters controlled by some entity on the Platform, such as the OS kernel, or by a trusted entity 549
in a Secure Component. It is a valid security model for these login tokens to be generated by a trusted process 550
within the Platform rather than by the TPS Service itself. TPS Service developers must therefore note that the 551
validity of this login token is bounded by the security of the Platform, not the security of the TPS Service. 552

3.4.2 Security of the Regular Operating System 553

In most implementations, the TPS Service is running in a separate Execution Environment, i.e. within a Secure 554
Component, which exists in parallel to the Platform that runs the TPS Clients. It is important that the integration 555
of the TPS Service alongside the Platform cannot be used to weaken the security of the Platform itself. The 556
implementation of the TPS Service must ensure that TPS Clients cannot use the features they expose to 557
bypass the security sandbox used by the Platform to isolate processes. 558

3.4.3 Security of the Communication Channel 559

TPS Service does not trust the TPS Client. There is no requirement to ensure confidentiality or integrity 560
properties on the communication channel between them. TPS Services MUST treat all input as potentially 561
malicious. 562

 563

 TPS Client API Specification

Public Review v0.0.0.26 Page 30 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4 TPS CLIENT API 564

4.1 Implementation-Defined Behavior and Programmer Errors 565

Several functionalities within this specification are described as either implementation-defined or as 566
programmer errors. 567

Implementation-Defined Behavior 568

When a functional behavior is described as implementation-defined it means that an implementation of the 569
TPS Client API MUST consistently implement the behavior and MUST document it. However, the actual 570
behavior is not specified as part of this specification. Application developers can choose to depend on this 571
implementation-defined behavior but need to be aware that their code may not be portable to another 572
Implementation. 573

Implementation-Defined Fields 574

Implementations are allowed to extend some of the data structures defined in this specification to include a 575
single field of implementation-defined type, named imp. Implementations MUST NOT add new fields outside 576
of imp. The size of the imp field MUST be known at compile time. 577

The implementation can use the imp field to hold any private data that it wants to attach to the structure, and 578
clients of the TPS Client API MUST NOT directly access the contents of the imp field. 579

Programmer Error 580

This specification identifies errors that can only occur due to mistakes by the programmer. They are triggered 581
through incorrect use of the API by a program rather than by run-time errors such as out-of-memory conditions. 582

The Implementation is not required to gracefully handle programmer errors, or even to behave consistently, 583
but MAY choose to generate a programmer-visible response. This response could include a failing assertion, 584
an informative return code if the function can return one, a diagnostic log file, etc. In the event of a programmer 585
error, the Implementation MUST ensure the stability and security of the TPS Service and the shared 586
communication subsystem in the Regular OS environment, because these modules are shared amongst all 587
Applications and MUST NOT be affected by the misbehavior of a single Application. 588

4.2 Header File 589

The header file for the TPS Client API SHALL have the name "tpsc_client_api.h". 590

#include "tpsc_client_api.h" 591

 592

 TPS Client API Specification

Public Review v0.0.0.26 Page 31 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3 Data Types 593

4.3.1 Basic Types 594

This specification makes use of the integer and Boolean C types as defined in the C99 standard (ISO/IEC 595
9899:1999 – [C99]). In the event of any difference between the definitions in this specification and those in 596
[C99], C99 shall prevail. The following standard C types are used: 597

• uint32_t: a 32-bit unsigned integer 598

• uint16_t: a 16-bit unsigned integer 599

• uint8_t: an 8-bit unsigned integer 600

• char: a character 601

• size_t: an unsigned integer large enough to hold the size of an object in memory 602

4.3.2 TPSC_ConnectionData 603

Since: TPS Client API v1.0 604

#include <sys/types.h> 605
 606
typedef enum { 607
 TPSC_NoConnectionData, 608
 TPSC_GID, 609
 TPSC_Proprietary 610
} TPSC_ConnectionData_Tag; 611
 612
typedef struct { 613
 TPSC_ConnectionData_Tag tag; 614
 union { 615
 gid_t gid; 616
 const void *proprietary; 617
 }; 618
} TPSC_ConnectionData; 619

Description 620

Note: In this version of the specification, TPSC_ConnectionData data fields are defined for Unix-based 621
platforms and platforms that can emulate Unix group and process behavior. 622

The definition for gid_t used above is found in sys/types.h on Unix systems. 623

The TPSC_ConnectionData structure allows a caller to provide any data required to authorize a connection 624
to a Secure Component, with content that depends on the Session Login Method used (see section 4.4.2). It 625
consists of the following fields: 626

• tag is set to a value which distinguishes the type of any additional information required to authorize 627
the connection, which is provided by one of the options in the union. At most, one of the union fields is 628
set. When tag is TPSC_NoConnectionData, the contents of the union are ignored by the callee 629
and SHOULD NOT be set by the caller. 630

• gid is set by the caller, and considered valid by the callee when the tag field is TPSC_GID. It is set to 631
the value of a Unix group ID. 632

 TPS Client API Specification

Public Review v0.0.0.26 Page 32 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

• proprietary is set by the caller and considered valid by the callee when the tag field is 633
TPSC_Proprietary. It is set to point to a value that is understood by the callee. 634

Table 4-1 defines how TPSC_ConnectionData is used for different values of Session Login Method. 635

Table 4-1: TPSC_ConnectionData for Core Login Types 636

Login Type TPSC_ConnectionData

TPSC_LOGIN_PUBLIC
TPSC_LOGIN_USER
TPSC_LOGIN_APPLICATION
TPSC_LOGIN_USER_APPLICATION

TPSC_ConnectionData.tag field is set to
TPSC_CONNECTIONDATA_NONE.
TPSC_ConnectionData union fields are all ignored.

TPSC_LOGIN_GROUP
TPSC_LOGIN_GROUP_APPLICATION

TPSC_ConnectionData.tag field is set to
TPSC_CONNECTIONDATA_GID.
The value in TPSC_ConnectionData.gid field is set to the
Group ID that this TPS Client wants to connect as.

Any reserved value from Table 4-3 TPSC_ConnectionData.tag field is set to
TPSC_CONNECTIONDATA_PROPRIETARY.
The value in TPSC_ConnectionData.proprietary MAY be
set to an implementation-defined value.

 637

Note: The API intentionally omits any form of support for static login credentials, such as PIN or password 638
entry. The login methods supported in the API are only those that have been identified as requiring support 639
by the Platform. 640

 TPS Client API Specification

Public Review v0.0.0.26 Page 33 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.3 TPSC_MessageBuffer 641

Since: TPS Client API v1.0 642

typedef struct 643
{ 644
 uint8_t* message; 645
 size_t size; 646
 const size_t maxsize; 647
 const TPSC_MessageBufferPriv imp; 648
} TPSC_MessageBuffer; 649

Description 650

This type is used as a container for TPS Service request and response messages. 651

The fields of this structure have the following meaning: 652

• message is a pointer to the first byte of a region of memory, i.e. a message buffer, of length 653
maxsize, which can contain a TPS Service request or response message. 654

• size is the size of the current message, in bytes. When an operation completes, the Implementation 655
must update this field to reflect the actual or required size of the output. 656

o When the TPS Client has written the request message in the message field, then it MUST update 657
the size field with the actual size of the request message in bytes. 658

o When the Implementation has written the response message in the message field, then it MUST 659
update the size field with the actual size of the response message in bytes. 660

o If the maximum size of the message field was not large enough to contain the whole response 661
message, the Implementation MUST update the size field with the size of the message buffer 662
requested by the TPS Service. 663

• maxsize is the size of the referenced memory region, in bytes, denoting the maximum size for the 664
message. 665

• imp contains any additional implementation-defined data structure of type 666
TPSC_MessageBufferPriv attached to the TPSC_MessageBuffer structure. 667

o imp MUST contain any data fields necessary to allow an implementation of the TPS Client API to 668
support the usage concepts defined in section 3.3. 669

o Clients of the TPS Client API SHOULD NOT access this field. 670

4.3.4 TPSC_Result 671

Since: TPS Client API v1.0 672

Typedef uint32_t TPSC_Result; 673

This type is used to contain return codes that are the results of invoking TPS Client API functions. See 674
section 4.4.1 for a list of return codes defined by this specification. 675

 TPS Client API Specification

Public Review v0.0.0.26 Page 34 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.5 TPSC_ServiceBound 676

Since: TPS Client API v1.0 677

typedef enum { 678
 TPSC_Inclusive, 679
 TPSC_Exclusive, 680
 TPSC_NoBounds 681
} TPSC_ServiceBound_Tag; 682
 683
typedef struct { 684
 TPSC_ServiceBound_Tag tag; 685
 union { 686
 struct { 687
 TPSC_ServiceVersion inclusive; 688
 }; 689
 struct { 690
 TPSC_ServiceVersion exclusive; 691
 }; 692
 }; 693
} TPSC_ServiceBound; 694

Description 695

This type allows specification of service version bounds. It is used only in the context of a TPS_ServiceRange 696
(see section 4.3.7) 697

The fields of this structure have the following meaning: 698

• tag is set to (see section 3.2.3.4.4 for a detailed description of inclusive and exclusive version range 699
behavior): 700

o TPSC_Inclusive to indicate that the service version bound specified by this instance of 701
TPSC_ServiceBound is inclusive. 702

o TPSC_Exclusive to indicate that the service version bound specified by this instance of 703
TPSC_ServiceBound is exclusive. 704

o TPSC_NoBounds to indicate that no service version bound is specified. 705

• The contents of the union define the service version as follows: 706

o inclusive is set to a TPSC_ServiceVersion value indicating inclusive version bounds when 707
tag is TPSC_Inclusive. 708

o exclusive is set to a TPSC_ServiceVersion value indicating exclusive version bounds when 709
tag is TPSC_Exclusive. 710

o No union field is set when tag is TPSC_NoBounds, and the callee will ignore any value. 711

 TPS Client API Specification

Public Review v0.0.0.26 Page 35 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.6 TPSC_ServiceIdentifier 712

Since: TPS Client API v1.0 713

typedef struct 714
{ 715
 TPSC_UUID service_instance; 716
 TPSC_UUID service_id; 717
 TPSC_UUID secure_component_type; 718
 TPSC_UUID secure_component_instance; 719
 TPSC_ServiceVersion service_version; 720
} TPSC_ServiceIdentifier; 721

Description 722

This type denotes a TPS Service instance, the logical container identifying a particular TPS Service 723
implementation on the Platform. 724

The fields of this structure have the following meaning: 725

• service_instance is a TPSC_UUID that uniquely distinguishes a particular TPS Service on a 726
given Platform. See section 3.2.3.7. 727

• service_id is a TPSC_UUID that identifies the TPS Service being provided. See section 3.2.3.3. 728

• secure_component_type is a TPSC_UUID that identifies the type of Secure Component providing 729
a TPS Service. See section 3.2.3.5. 730

• secure_component_instance is a TPSC_UUID that distinguishes a particular Secure Component 731
providing a TPS Service. See section 3.2.3.6. 732

• service_version is a TPSC_ServiceVersion indicating the version of the TPS Service identified 733
by this TPSC_ServiceIdentifier. 734

 TPS Client API Specification

Public Review v0.0.0.26 Page 36 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.7 TPSC_ServiceRange 735

Since: TPS Client API v1.0 736

typedef struct { 737
 TPSC_ServiceBound lowest_acceptable_version; 738
 TPSC_ServiceBound first_excluded_version; 739
 TPSC_ServiceBound last_excluded_version; 740
 TPSC_ServiceBound highest_acceptable_version; 741
} TPSC_ServiceRange; 742

Description 743

TPSC_ServiceRange allows a caller to specify which versions of a TPS Service implementation are 744
acceptable to it, allowing version constraints to be used in the service discovery process. This is described in 745
more detail in section 3.2.3.4.4. 746

TPSC_ServiceRange consists of four values which allow the caller to specify the lowest and highest 747
acceptable versions of a TPS Service to be specified, as well as permitting a specific set of service versions 748
to be excluded, should a need for this arise. 749

• lowest_acceptable_version: Specifies the lowest acceptable version of a service implementation 750
to be returned in service discovery. 751

• first_excluded_version: Specifies the lowest version to be excluded from the service 752
implementations returned in service discovery. 753

• last_excluded_version: Specifies the highest version to be excluded from the service 754
implementations returned in service discovery. 755

• highest_acceptable_version: Specifies the highest acceptable version of a service 756
implementation to be returned in service discovery. 757

 TPS Client API Specification

Public Review v0.0.0.26 Page 37 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.8 TPSC_ServiceSelector 758

Since: TPS Client API v1.0 759

typedef struct { 760
 TPSC_UUID service_id; 761
 TPSC_UUID secure_component_type; 762
 TPSC_UUID secure_component_instance; 763
 TPSC_ServiceRange service_version_range; 764
} TPSC_ServiceSelector; 765

Description 766

The TPSC_ServiceSelector structure is populated prior to calling the TPSC_DiscoverServices 767
function. It specifies to TPSC_DiscoverServices which services the caller wants included in the returned 768
list of services. 769

The structure members are used to filter from the full set of TPS Services available on a Platform as follows: 770

• service_id 771

o If this is a valid UUID, the returned list of services includes only services with this UUID as their 772
tps-service-id. 773

o If this is TPSC_UUID_NIL, the returned list of services matches any TPS Service. 774

• secure_component_type 775

o If this is a valid UUID, the returned list of services includes only services hosted by Secure 776
Components with a matching tps-secure-component-type. 777

o If this is TPSC_UUID_NIL, the returned list of services will include those hosted by any type of 778
Secure Component. 779

• secure_component_instance 780

o If this is a valid UUID, the returned list of services includes only services hosted by a Secure 781
Component with tps-secure-component-instance matching the value provided. 782

o If this is TPSC_UUID_NIL, the returned list of services will include those hosted by any Secure 783
Component instance. 784

• service_version_range 785

o A TPSC_ServiceRange instance containing a version range specification as described in 786
section 3.2.3.4.4. The returned list of services will contain only services where tps-service-787
version matches the range specification. 788

 If the caller does not care about the service version range, the fields of TPSC_ServiceRange 789
can all be set to TPSC_NoBounds. 790

 791

 TPS Client API Specification

Public Review v0.0.0.26 Page 38 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.9 TPSC_ServiceVersion 792

Since: TPS Client API v1.0 793

typedef struct TPSC_ServiceVersion { 794
 uint32_t major_version; 795
 uint32_t minor_version; 796
 uint32_t patch_version; 797
}; 798

Description 799

This type denotes a tps-service-version. See section 3.2.3.4. 800

• TPSC_ServiceVersion.major_version holds the Major Version of the TPS Service. 801

• TPSC_ServiceVersion.minor_version holds the Minor Version of the TPS Service. 802

• TPSC_ServiceVersion.patch_version holds the Patch Version of the TPS Service. 803

 804

4.3.10 TPSC_Session 805

Since: TPS Client API v1.0 806

typedef struct 807
{ 808
 const TPSC_UUID* const service_id; 809
 uint32_t session_id; 810
 const TPSC_SessionPriv imp; 811
} TPSC_Session; 812

Description 813

This type denotes a TPS Service session, the logical container linking a TPS Client and a particular TPS 814
Service implementation. 815

The fields of this structure have the following meaning: 816

• service_id is a pointer to a TPSC_UUID that is a tps-service-id. This is associated with the 817
TPSC_Session. 818

• session_id uniquely identifies the session. 819

• imp contains any additional implementation-defined data structure of type TPSC_SessionPriv 820
attached to the TPSC_Session structure. 821

o imp MUST contain any data fields necessary to allow an implementation of the TPS Client API to 822
support the usage concepts defined in section 3.3. 823

o Clients of the TPS Client API MUST NOT access this field. 824

 TPS Client API Specification

Public Review v0.0.0.26 Page 39 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.3.11 TPSC_UUID 825

Since: TPS Client API v1.0 826

typedef struct 827
{ 828
 uint8_t bytes[16]; 829
} TPSC_UUID; 830

Description 831

This type is used to encapsulate a UUID. 832

The fields of this structure have the following meaning: 833

• bytes is an array of 16 x uint8_t which represents a UUID encoded as bytes. 834

Informative Example 835

If the string representation of the UUID of a tps-service-id is 720eeb3d-058d-5bdf-80d0-836
958c74f6de57, then the corresponding TPSC_UUID can be initialized as follows: 837

TPSC_UUID example = { 838
 .bytes = { 0x72, 0x0e, 0xeb, 0x3d, 0x05, 0x8d, 0x5b, 0xdf, 839
 0x80, 0xd0, 0x95, 0x8c, 0x74, 0xf6, 0xde, 0x57 } 840
}; 841

 TPS Client API Specification

Public Review v0.0.0.26 Page 40 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.4 Constants 842

4.4.1 Return Codes 843

The following function return codes, of type TPSC_Result (see section 4.3.3), are defined by this 844
specification. 845

Table 4-2: API Return Code Constants 846

Name Value Description / Cause
TPSC_SUCCESS 0x00000000 The operation was successful.

TPSC_ERROR_GENERIC 0xF0090000 Non-specific cause.

TPSC_ERROR_ACCESS_DENIED 0xF0090001 Access privileges are not sufficient.

TPSC_ERROR_CANCEL 0xF0090002 The operation was cancelled.

TPSC_ERROR_BAD_FORMAT 0xF0090003 Input data was of invalid format.

TPSC_ERROR_NOT_IMPLEMENTED 0xF0090004 The requested operation should exist but is not
yet implemented. See note following table.

TPSC_ERROR_NOT_SUPPORTED 0xF0090005 The requested operation is valid but is not
supported in this implementation.

TPSC_ERROR_NO_DATA 0xF0090006 Expected data was missing.

TPSC_ERROR_OUT_OF_MEMORY 0xF0090007 System ran out of resources.

TPSC_ERROR_BUSY 0xF0090008 The system is busy working on something else.

TPSC_ERROR_COMMUNICATION 0xF0090009 Communication with a remote party failed.

TPSC_ERROR_SECURITY 0xF009000A A security fault was detected.

TPSC_ERROR_SHORT_BUFFER 0xF009000B The supplied buffer is too short for the
generated output.

TPSC_ERROR_DEPRECATED 0xF009000C A warning that the called function is deprecated.
The implementation is assumed to have
returned a correct result when this value is set.

TPSC_ERROR_BAD_IDENTIFIER 0xF009000D A supplied UUID was not recognized for the
requested usage.

TPSC_ERROR_NULL_POINTER 0xF009000E A pointer value passed was NULL.

TPSC_ERROR_BAD_STATE 0xF009000F A transaction was incorrectly initialized or was
returned in an incorrect state.

TPSC_ERROR_TIMEOUT 0xF0090010 A timeout occurred when waiting for some
action to complete.

TPSC_ERROR_PLATFORM 0xF0090011 An unrecoverable error was reported by the
platform.

TPSC_ERROR_RUNTIME_ERROR 0xF0090012 A runtime error was reported by the platform.

Implementation-Defined 0xF0000001 – 0xF000FFFE

Reserved for Future Use All other values

 TPS Client API Specification

Public Review v0.0.0.26 Page 41 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 847

Note: Production implementations of the TPS Client API SHOULD NOT return 848
TPSC_ERROR_NOT_IMPLEMENTED. It is intended for use by implementers of the TPS Client API during 849
development. To denote non-implementation of an optional feature, implementations SHOULD return 850
TPSC_ERROR_NOT_SUPPORTED. 851

4.4.2 Session Login Methods 852

The following constants, of type uint32_t, are defined by this specification. These are used to indicate which 853
of the Application’s identity credentials the implementation will use to determine access control permission to 854
functionality provided by, or keys stored by, the TPS Service. 855

Login types are designed to be orthogonal from each other, in accordance with the identity token(s) defined 856
for each constant. For example, the credentials generated for TPSC_LOGIN_APPLICATION MUST only 857
depend on the identity of the TPS Client, and not the user running it. If two users use the same TPS Client, 858
the Implementation MUST assign the same login identity to both users so that they can access the same 859
assets held inside the TPS Service. These identity tokens MUST also be persistent within one Implementation, 860
across multiple invocations of the application and across power cycles, enabling them to be used to 861
disambiguate persistent storage. 862

Note that this specification does not guarantee separation based on use of different login types. In many 863
embedded platforms there is no notation of “group” or “user” so these login types may fall back to 864
TPSC_LOGIN_PUBLIC. Details of generating the credential for each login type are implementation-defined. 865

Table 4-3: API Session Login Methods 866

Name Value Comment
TPSC_LOGIN_PUBLIC 0x00000000 No login data is provided.

TPSC_LOGIN_USER 0x00000001 The Platform provides login data about the
user running the Application process.

TPSC_LOGIN_GROUP 0x00000002 The Platform provides login data about the
group running the Application process.

TPSC_LOGIN_APPLICATION 0x00000003 The Platform provides login data about the
running Application itself.

TPSC_LOGIN_USER_APPLICATION 0x00000004 The Platform provides login data about the
user running the Application and about the
Application itself.

TPSC_LOGIN_GROUP_APPLICATION 0x00000005 The Platform provides login data about the
group running the Application and about the
Application itself.

TPSC_LOGIN_ILLEGAL_VALUE 0x7FFFFFFF This value MUST NOT be used by
application programmers. It is reserved for
functional compliance use.

Reserved for Implementation-Defined
connection methods.

0x80000000 –
0xFFFFFFFF

Behavior is implementation-defined.

All other constant values Reserved for Future Use

 867

 TPS Client API Specification

Public Review v0.0.0.26 Page 42 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.4.3 TPSC_UUID_NIL 868

The Nil UUID, as defined in [RFC 4122] section 4.1.7 869

#define TPSC_UUID_NIL { \ 870
 .bytes = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }\ 871
} 872

 TPS Client API Specification

Public Review v0.0.0.26 Page 43 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5 Functions 873

The following sub-sections specify the behavior of the functions within the TPS Client API. Figure 4-1 shows 874
a highly simplified outline of how these functions might be called in a real application. 875

 876

Figure 4-1: Typical Call Sequence 877

 878

 TPS Client API Specification

Public Review v0.0.0.26 Page 44 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.1 Documentation Format 879

Since: TPS Client API version that first defined this function 880

Function Prototype 881

Description 882

This topic describes the behavior of the function. 883

Parameters 884

This topic describes each of the function parameters. 885

Return 886

This topic lists the possible return values. Note that this list is not comprehensive, and often leaves some 887
choice over error return codes to the Implementation. However, if restrictions do exist, then this topic will 888
document them. 889

Programmer Error 890

This topic documents cases of programmer error – error cases that MAY be detected by the Implementation, 891
but that MAY also perform in an unpredictable manner. This topic is not exhaustive and does not document 892
cases such as passing an invalid pointer or a NULL pointer where the body text states that the pointer must 893
point to a valid structure. 894

Implementer Notes 895

This topic highlights key points about the intended use of the function. 896

 897

 TPS Client API Specification

Public Review v0.0.0.26 Page 45 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.2 TPSC_CancelTransaction 898

Since: TPS Client API v1.0 899

TPSC_Result TPSC_CancelTransaction (900
 TPSC_MessageBuffer* transaction 901
); 902

Description 903

Note: The implementation MUST maintain an association of each TPSC_MessageBuffer instance to any 904
ongoing transaction of which it is a part, and this association determines which transaction to cancel. See 905
section 4.5.4. 906

The function requests the cancellation of a pending transaction invocation operation. As this is a synchronous 907
API, this function must be called from a thread other than the one executing the TPSC_OpenSession or 908
TPSC_ExecuteTransaction function. 909

This function just sends a cancellation signal to the TPS Client API and returns immediately; the operation is 910
not guaranteed to have been cancelled when this function returns. In addition, the cancellation request is just 911
a hint; the TPS Client API or the TPS Service MAY ignore the cancellation request. 912

It is valid to call this function using a TPSC_MessageBuffer structure any time after the TPS Client has 913
called TPSC_ExecuteTransaction. A TPSC_CancelTransaction can be requested on a transaction 914
before it is invoked, during invocation, and after invocation. 915

TPS Clients MUST NOT reuse the TPSC_MessageBuffer structure for another transaction until the 916
cancelled transaction has returned in the thread executing the TPSC_OpenSession or 917
TPSC_ExecuteTransaction function. 918

If TPSC_CancelTransaction is called with transaction set to NULL, the implementation MUST return 919
TPSC_ERROR_CANCEL if the implementation supports cancellation or TPSC_ERROR_NOT_SUPPORTED if 920
cancellation is not supported. This mechanism can be used by a TPS Client to determine whether an 921
implementation supports cancellation. 922

In many cases it will be necessary for the TPS Client to detect whether the transaction was cancelled, or 923
whether it completed normally. If the transaction was cancelled, the return code of the TPSC_OpenSession 924
or TPSC_ExecuteTransaction function MUST be TPSC_ERROR_CANCEL. 925

Parameters 926

• transaction: A pointer to a TPS Client instantiated TPSC_MessageBuffer structure, or NULL. 927

Return 928

• TPSC_SUCCESS: transaction was not NULL and the implementation received the cancellation 929
request. 930

• TPSC_ERROR_CANCEL: transaction was NULL and the TPS Client API implementation supports 931
cancellation. 932

• TPSC_ERROR_NOT_SUPPORTED: The TPS Client API implementation does not support cancellation. 933

• TPSC_ERROR_NULL_POINTER: transaction was NULL. 934

• TPSC_ERROR_GENERIC: Any other error. 935

Programmer Error 936

None 937

 TPS Client API Specification

Public Review v0.0.0.26 Page 46 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Implementer Notes 938

None 939

 940

 TPS Client API Specification

Public Review v0.0.0.26 Page 47 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.3 TPSC_CloseSession 941

Since: TPS Client API v1.0 942

TPSC_Result TPSC_CloseSession(943
 TPSC_Session* session 944
); 945

Description 946

The function closes a session that was opened with a TPS Service. 947

All transactions within the session MUST have completed before calling this function. 948

The Implementation MUST do nothing if the session parameter is NULL. 949

Parameters 950

• session: The session to close. 951

Return 952

• TPSC_SUCCESS: Session closed successfully. 953

• TPSC_ERROR_COMMUNICATION: No instance of the Connector to which this session refers can be 954
found. This could occur because the Secure Component to which a Connector is associated has been 955
removed. 956

• TPSC_ERROR_NULL_POINTER: session is NULL. 957

• TPSC_ERROR_BADSTATE: The session state information is incorrect or corrupted. 958

Programmer Error 959

The following usage of the API is a programmer error: 960

• Calling with a session that still has transactions running. 961

• Attempting to close the same session concurrently from multiple threads. 962

• Attempting to close the same session more than once. 963

Implementer Notes 964

None 965

 966

 TPS Client API Specification

Public Review v0.0.0.26 Page 48 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.4 TPSC_DiscoverServices 967

Since: TPS Client API v1.0 968

TPSC_Result TPSC_DiscoverServices (969
 const TPSC_ServiceSelector* const service_selector, 970
 TPSC_ServiceIdentifier* const service_array 971
 size_t* const num_services, 972
); 973

Description 974

The function discovers all TPS Services available via the TPS Client API that match the service_selector 975
criteria. 976

The Implementation MUST assume that on entry, all fields of the service_array structure are in an 977
undefined state. When this function returns TPSC_SUCCESS, the Implementation MUST have populated this 978
structure with any information necessary for subsequent operations within the TPSC_ServiceIdentifier 979
array structure. 980

The caller is responsible for ensuring that service_array is appropriately aligned to contain instances of 981
TPSC_ServiceIdentifier. 982

Parameters 983

• service_selector: A pointer to an instance of a TPSC_ServiceSelector structure which 984
specifies the search parameters to be used when populating the returned array of 985
TPSC_ServiceIdentifier. 986

• service_array: A pointer to a contiguously allocated memory block of at least 987
(sizeof(TPSC_ServiceIdentifier) * (*num_services)) bytes which will be used to hold 988
TPSC_ServiceIdentifier structures. On return, this will contain an array of 989
TPSC_ServiceIdentifier structures that identify the list of TPS Services that are available and 990
match the selector criteria. 991

• num_services: On entry, a pointer to an integer that indicates the number of instances of 992
TPSC_ServiceIdentifier that service_array can hold. On return, points to the number of 993
items in the list. If TPSC_ERROR_SHORT_BUFFER is returned, the value pointed to by num_services 994
indicates the number of service items that service_array needs to hold for a successful return. 995

Return 996

• TPSC_SUCCESS: Discovery was successful. 997

• TPSC_ERROR_BAD_FORMAT: service_selector was not valid. 998

• TPSC_ERROR_COMMUNICATION: Failed to establish communication with the Secure Component(s) 999
implementing the service. 1000

• TPSC_ERROR_NULL_POINTER: One or more of the pointer values passed were NULL. 1001

• TPSC_ERROR_SHORT_BUFFER: Provided service_array was not large enough to hold the 1002
TPSC_ServiceIdentifier array. 1003

• TPSC_ERROR_GENERIC: Any other error. 1004

Programmer Error 1005

None 1006

 TPS Client API Specification

Public Review v0.0.0.26 Page 49 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Implementer Notes 1007

TPSC_DiscoverServices MUST be reentrant and thread-safe on Platforms permitting such an 1008
implementation. 1009

 1010

 TPS Client API Specification

Public Review v0.0.0.26 Page 50 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.5 TPSC_ExecuteTransaction 1011

Since: TPS Client API v1.0 1012

TPSC_Result TPSC_ExecuteTransaction(1013
 const TPSC_Session* session, 1014
 const TPSC_MessageBuffer* send_buf, 1015
 TPSC_MessageBuffer* recv_buf) 1016

Description 1017

The function sends a request message and receives a response message within the context of the specified 1018
session. 1019

The parameter session MUST point to a valid open session. 1020

Transaction Handling 1021

A transaction MUST carry a transaction payload. The parameters send_buf and recv_buf MUST point to 1022
TPSC_MessageBuffer structures previously initialized by the TPS Client. 1023

The send_buf and recv_buf structures contain state information that is used to manage cancellation of 1024
the transaction and may be shared with other threads. 1025

The transaction payload is handled by sequentially executing the following steps: 1026

1. TPS Client has initialized the TPSC_MessageBuffer structures by using the 1027
TPSC_InitializeTransaction function. 1028

2. TPS Client has prepared a TPS Service request message. 1029

3. TPS Client populates the send_buf structure with the TPS Service request message after which the 1030
message field contains the TPS Service request message and the size field contains the size of 1031
the TPS Service request message in bytes. 1032

4. TPS Client invokes the TPSC_ExecuteTransaction function with the send_buf and recv_buf 1033
parameters. If the Implementation supports cancellation, internal state information managing 1034
cancellation MUST be set to indicate that a transaction is in progress. 1035

5. The send_buf contents are sent to the TPS Service. During the execution of the transaction, the 1036
TPS Service reads the TPS Service request message held in the message field of the send_buf, 1037
executes the request and creates a TPS Service response message, populates the message field of 1038
the recv_buf to contain the TPS Service response message, and updates the size parameter of 1039
the recv_buf to indicate the size of the TPS Service response message. 1040

6. When the TPS Service completes the transaction, control is passed back to the calling TPS Client 1041
code. When the transaction is complete, internal state information managing cancellation, if supported, 1042
MUST be set to indicate that there is no transaction in progress. 1043

Parameters 1044

• session: The open session in which the transaction will be invoked. 1045

• send_buf: A pointer to a TPS Client initialized TPSC_MessageBuffer structure holding the 1046
message to send. 1047

• recv_buf: A pointer to a TPS Client initialized TPSC_MessageBuffer structure which will hold the 1048
returned data. 1049

 TPS Client API Specification

Public Review v0.0.0.26 Page 51 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Return 1050

• TPSC_SUCCESS: Transaction was successfully executed. 1051

• TPSC_ERROR_NO_DATA: send_buf, recv_buf, or session is NULL. 1052

• TPSC_ERROR_BAD_FORMAT: send_buf or recv_buf was not initialized before the function was 1053
called. 1054

• TPSC_ERROR_SHORT_BUFFER: The buffer allocated in recv_buf is not large enough to contain the 1055
response. In this case, the handling in section 3.3.4 applies and recv_buf->size contains the size 1056
of the buffer required to hold the TPS Service response message. 1057

Programmer Error 1058

The following usage of the API is a programmer error: 1059

• Calling with a session that is not an open session. 1060

• Using the same session concurrently for multiple operations. 1061

• Calling with invalid content in the message field of the TPSC_MessageBuffer structure. 1062

• Using the same TPSC_MessageBuffer structure on different threads. 1063

Implementer Notes 1064

None 1065

 1066

 TPS Client API Specification

Public Review v0.0.0.26 Page 52 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.6 TPSC_FinalizeTransaction 1067

Since: TPS Client API v1.0 1068

TPSC_Result TPSC_FinalizeTransaction(1069
 TPSC_MessageBuffer* const transaction 1070
); 1071

Description 1072

The function finalizes a transaction structure, allowing the transaction->message buffer to be safely 1073
freed by the caller. 1074

Parameters 1075

• transaction: A previously initialized TPSC_MessageBuffer instance. 1076

Return 1077

The following values can be returned. 1078

• TPSC_SUCCESS: transaction was successfully finalized. 1079

• TPSC_ERROR_BAD_STATE: transaction was not correctly initialized. 1080

• TPSC_ERROR_NULL_POINTER: transaction was NULL. 1081

• TPSC_ERROR_GENERIC: Any other error. 1082

Programmer Error 1083

It is an error to call TPSC_FinalizeTransaction on a TPSC_MessageBuffer that is still owned by an 1084
ongoing transaction. 1085

Implementer Notes 1086

It is strongly recommended that the contents of transaction->message are cleared as part of this function 1087
call. 1088

 1089

 TPS Client API Specification

Public Review v0.0.0.26 Page 53 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.7 TPSC_InitializeTransaction 1090

Since: TPS Client API v1.0 1091

TPSC_Result TPSC_InitializeTransaction(1092
 TPSC_MessageBuffer* const transaction, 1093
 uint8_t* const buffer 1094
 const size_t buf_size); 1095

Description 1096

The function initializes a transaction structure for use in the TPSC_ExecuteTransaction function. The 1097
transaction structure may be used multiple times with the TPSC_ExecuteTransaction function. 1098

The Implementation MUST assume that on entry, all fields of this transaction structure are in an undefined 1099
state. When this function returns TPSC_SUCCESS, the Implementation MUST have populated the 1100
transaction structure with any information necessary for subsequent operations within the transaction 1101
structure. 1102

Parameters 1103

• transaction: If the function returns TPSC_SUCCESS, the parameters of transaction are 1104
updated as follows: 1105

o message is set to buffer. This implies that ownership of the buffer has passed to the 1106
TPSC_ExecuteTransaction instance and this ownership is released only through a call to 1107
TPSC_FinalizeTransaction. 1108

o size is set to zero. 1109

o maxsize indicates the maximum size of message that can be stored in the 1110
TPSC_MessageBuffer. 1111

• buffer: A pointer to a buffer containing buf_size bytes which will be used to contain the 1112
TPSC_MessageBuffer structure after its initialization. The caller MUST ensure that the start address 1113
of buffer is appropriately aligned to hold any structure type. 1114

• buf_size: The size, in bytes, of the buffer that will be used to construct the TPSC_MessageBuffer 1115
instance. 1116

Return 1117

• TPSC_SUCCESS: transaction was successfully initialized. 1118

• TPSC_ERROR_BAD_STATE: transaction was already initialized before the function was called. 1119

• TPSC_ERROR_NULL_POINTER: transaction was NULL. 1120

• TPSC_ERROR_GENERIC: Any other error. 1121

Programmer Error 1122

The following usage of the API is a programmer error: 1123

• Attempting to initialize the same transaction structure concurrently from multiple threads. 1124

• Attempting to initialize the same transaction structure more than once. 1125

• Attempting to directly free buffer before a call to TPSC_FinalizeTransaction. 1126

 TPS Client API Specification

Public Review v0.0.0.26 Page 54 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Implementer Notes 1127

None 1128

 TPS Client API Specification

Public Review v0.0.0.26 Page 55 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

4.5.8 TPSC_OpenSession 1129

Since: TPS Client API v1.0 1130

TPSC_Result TPSC_OpenSession(1131
 const TPSC_UUID* const service, 1132
 const uint32_t connection_method, 1133
 const TPSC_ConnectionData* const connection_data, 1134
 TPSC_Session* const session 1135
); 1136

Description 1137

The function opens a new session between the TPS Client and the TPS Service identified by the service 1138
structure. 1139

The Implementation MUST assume that on entry, all fields of the session structure are in an undefined 1140
state. When this function returns TPSC_SUCCESS, the Implementation MUST have populated this structure 1141
with any information necessary for subsequent operations within the session. 1142

The target TPS Service is identified by the TPS_UUID instance passed in the parameter service. 1143

The session MAY be opened using a specific connection method that can carry additional connection data, 1144
such as data about the user or user-group running the TPS Client, or about the TPS Client itself. This allows 1145
the TPS Service to implement access control methods that separate functionality or data accesses for different 1146
actors. 1147

Standard connection methods are defined in section 4.4.2 but there MAY be implementation-defined login 1148
methods in addition to these core types. 1149

Note: The API intentionally omits any form of support for static login credentials, such as PIN or password 1150
entry. The login methods supported in the API are only those that have been identified as requiring support 1151
by the Platform. 1152

Parameters 1153

• service: A pointer to a TPS_UUID structure that uniquely identifies the TPS Service to connect to – 1154
a value that was returned as a TPSC_ServiceIdentifier.service_instance. This parameter 1155
cannot be set to NULL. 1156

• connection_method: The method of connection to use. Refer to section 4.4.2 for more details. 1157

• connection_data: Any necessary data required to support the connection method chosen. 1158

• session: A pointer to a TPSC_Session structure that identifies the session. Session structure must 1159
be uninitialized. 1160

Return 1161

• TPSC_SUCCESS: Session was successfully opened. 1162

• TPSC_ERROR_BAD_IDENTIFIER: The value provided for service does not identify a tps-service-1163
instance on this platform (see section 3.2.3.7). 1164

• TPSC_ERROR_BUSY: The requested operation failed because the system was busy. This can occur 1165
when the limit of supported sessions is reached. 1166

• Another error code from Table 4-2: Opening the session was not successful. 1167

 TPS Client API Specification

Public Review v0.0.0.26 Page 56 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Programmer Error 1168

The following usage of the API is a programmer error: 1169

• Calling with connection_data set to NULL if connection data is required by the specified 1170
connection method. 1171

• Calling with service or session set to NULL or pointing to an unallocated memory area. 1172

• Attempting to open a session using the same TPSC_Session structure concurrently from multiple 1173
threads. Multi-threaded TPS Clients must use platform-provided locking mechanisms to ensure that 1174
this case does not occur. 1175

• Using the same TPSC_MessageBuffer structure for multiple concurrent operations. 1176

Implementer Notes 1177

TPS Services MUST use TPSC_SUCCESS to indicate success in their protocol, as this is the only way for the 1178
Implementation to determine success or failure without knowing the protocol of the TPS Service. 1179

 1180

 TPS Client API Specification

Public Review v0.0.0.26 Page 57 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5 CONNECTOR INTERFACE TO COMMUNICATION STACK 1181

An implementation of the TPS Client API supports connection of backends implementing TPS Services on 1182
different types of Secure Component. To simplify the implementation of such backends, a Connector API is 1183
defined. 1184

The Connector interface needs to support the following use cases: 1185

• A TPS Client API Service shall be able to connect to multiple Secure Components. This implies a 1186
need to interface with multiple Communication stacks. 1187

• Enumerate the TPS Services provided by each Secure Component. 1188

• Perform clean-up of structures in the communications interface in the event of an unrecoverable error. 1189

The interface has been designed assuming no more than the functionality provided by a linker of a standard 1190
C compiler. 1191

5.1 Conceptual Architecture 1192

Figure 5-1 outlines the conceptual architecture of TPS Client Connectors. A Connector provides an interface 1193
to a Communication stack for a particular type of Secure Component. The Communication stack may be 1194
standardized, defined by other standards bodies, or proprietary; for example: 1195

• GlobalPlatform TEE implementations use the TEE Client API ([TEE Client]). 1196

• GlobalPlatform Secure Element implementations use the Open Mobile API ([OMAPI]). 1197

• Trusted Platform Modules (TPMs) use the TCG Feature API ([FAPI]). 1198

• A TEE that is not compliant with GlobalPlatform specifications may provide an alternate 1199
Communication stack. 1200

Depending on the target device, the Communication stack may reside in the same process as the TPS Client 1201
API (e.g. is provided as a library) or it may exist within a separate process. 1202

The Connector provides a mechanism to abstract, as far as possible, these target dependencies from both the 1203
TPS Client API itself and from the Communication stack. 1204

The Connector is responsible for abstracting the communication mechanism between a Secure Component 1205
and the TPS Client API and for enumerating the set of services provided by a given Secure Component. 1206

 TPS Client API Specification

Public Review v0.0.0.26 Page 58 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Figure 5-1: Conceptual Architecture of TPS Client Connector Interface 1207

 1208
 1209

What is required? 1210

• Service Name 1211

• Session Management 1212

• Transaction Management 1213

• A Service must be able to enumerate any optional features that it supports. This is how we can make 1214
“configurations” work. An array of supported configurations can be returned in the 1215
TPS_GetFeatures_Rsp message, with each configuration fully identifying the features that the 1216
service instance can provide. 1217

5.2 Connector Messaging 1218

All TPS Service implementations SHALL support the following messages to assist with service discovery by 1219
client applications. The messaging defined in this section MAY be implemented in the Connector itself, in the 1220
TPS Service residing within the Secure Component, or some combination of the two. 1221

5.2.1 TPS_GetFeatures_Req 1222

Since: TPS Client API v1.0 1223

A CBOR message from a client to request information about supported features. 1224

TPS_GetFeatures_Req = #6.1 1225

 TPS Client API Specification

Public Review v0.0.0.26 Page 59 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.2.2 TPS_GetFeatures_Rsp 1226

Since: TPS Client API v1.0 1227

A CBOR message from a TPS Service implementation returning information about supported features. 1228

This has to include information about the login methods supported for session opening. 1229

TPS_GetFeatures_Rsp = #6.1 ({ 1230
 1 => svc_name, 1231
 2 => [+ login_method], 1232
 ? 3 => [+ profile_name], 1233
 $$svc_features 1234
}) 1235
 1236
svc_name : tstr .size 16 1237
login_method : uint 1238
profile_name : tstr 1239
 1240
$$svc_features //= (svc_feature_label => svc_feature_type) 1241

• The svc_name parameter is a CBOR tstr containing the tps-service-name described in 1242
section 3.2.3. 1243

• The login_method parameter is a CBOR uint which is a value from the set of API Session Login 1244
methods listed in Table 4-3. The parameter is enclosed in an array of all of the supported session 1245
login methods for a given service. 1246

o There SHALL be at least one login_method provided for any service. 1247

o The uint encoding SHOULD be canonical. 1248

• The profile_name parameter is a CBOR tstr naming a configuration supported by a service 1249
instance. If the service instance supports at least one configuration, the enclosing array SHALL be 1250
present and SHALL contain all supported configurations. 1251

• The $$svc_features parameter is defined by each service instance. 1252

Note (Normative): The keys 0..10 and 32..127 in the TPS_GetFeatures_Rsp message are reserved 1253
for this specification. The keys 11..31 and 128.. can be used in the $$svc_features definition for each 1254
service, using the CDDL group sockets extension mechanism. 1255

5.3 Connector API 1256

Each Connector implementation exports a TPSC_Connector structure which exposes pointers to the 1257
functions provided by the Connector. 1258

Note: The mechanism by which an implementation of the TPS Client API enumerates Connector instances 1259
from the underlying platform is out of scope of this specification. 1260

 TPS Client API Specification

Public Review v0.0.0.26 Page 60 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4 Connector Structures 1261

5.4.1 TPSCC_Connector 1262

Since: TPS Client API v1.0 1263

typedef struct { 1264
 uint32_t (*connect)(uint32_t connection_method, 1265
 const TPSC_ConnectionData *connection_data, 1266
 uint32_t *connection_id); 1267
 uint32_t (*disconnect)(uint32_t connection_id); 1268
 uint32_t (*discover_services)(uint32_t connection_id, 1269
 TPSC_ServiceIdentifier *result_buf, 1270
 size_t *len); 1271
 uint32_t (*open_session)(uint32_t connection_id, 1272
 const TPSC_UUID *service_instance, 1273
 uint32_t *session_id); 1274
 uint32_t (*close_session)(uint32_t session_id); 1275
 uint32_t (*execute_transaction)(uint32_t session_id, 1276
 uint8_t *buf, 1277
 size_t buf_max_len, 1278
 size_t *data_len, 1279
 uint32_t *transaction_id); 1280
 uint32_t (*cancel_transaction)(uint32_t transaction_id); 1281
} TPSCC_Connector; 1282

Description 1283

TPSCC_Connector is a structure containing pointers to the functions exposed by a Connector instance. 1284

Each Connector provides a mechanism to expose a TPSCC_Connector instance that provides the functions 1285
that are called by the TPS Client API when it accesses the Secure Component exposed. 1286

 TPS Client API Specification

Public Review v0.0.0.26 Page 61 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.1 cancel_transaction 1287

Since: TPS Client API v1.0 1288

TPSC_Result cancel_transaction(uint32_t transaction_id); 1289

Description 1290

The function requests the cancellation of a pending open session operation or Transaction invocation 1291
operation. As this is a synchronous API, this function must be called from a thread other than the one executing 1292
the TPSC_OpenSession or TPSC_ExecuteTransaction function. 1293

See section 4.5.2 for additional information on cancellation semantics. 1294

Parameters 1295

• transaction_id: Identifier for the transaction that the caller wishes to cancel. 1296

Return 1297

• TPSC_SUCCESS: transaction_id was valid in the system and the implementation received the 1298
cancellation request. 1299

• TPSC_ERROR_CANCEL: transaction_id was unknown but the TPS Client API implementation 1300
supports cancellation. 1301

• TPSC_ERROR_NOT_SUPPORTED: The Connector implementation does not support cancellation. 1302

Programmer Error 1303

None 1304

5.4.1.2 close_session 1305

Since: TPS Client API v1.0 1306

TPSC_Result close_session(uint32_t session_id); 1307

Description 1308

The function closes a session that was opened with a TPS Service. 1309

All transactions within the session MUST have completed before calling this function. 1310

The Implementation MUST do nothing if the session_id parameter is not known to the service. 1311

The implementation of this function MUST NOT fail: After this function returns, the TPS Client must be able 1312
to consider that the session has been closed as discussed in section 3.3.3. 1313

Parameters 1314

• session_id: Identifies the session with the TPS Service. 1315

Return 1316

• TPSC_SUCCESS: Always returned in this version of the specification. 1317

Programmer Error 1318

None 1319

 TPS Client API Specification

Public Review v0.0.0.26 Page 62 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.3 connect 1320

Since: TPS Client API v1.0 1321

TPSC_Result connect(1322
 const uint32_t connection_method, 1323
 const ConnectionData* const connection_data, 1324
 uint32_t* connection_id 1325
); 1326

Description 1327

The function opens a connection to a Secure Component through its Connector, providing login credentials if 1328
required. 1329

Some Secure Components may not support all the available connection methods, and the Connector 1330
implementation MUST return a failure value if an unsupported mechanism is requested. 1331

If the Connector implementation requires an open connection in order to perform Service Discovery, the 1332
Secure Component MUST allow information about supported services to be provided when a caller uses 1333
TPSC_LOGIN_PUBLIC. 1334

Parameters 1335

• connection_method: Holds one of the login methods described in section 4.4.2. 1336

• connection_data: Provides additional data for those connection methods that require it. See 1337
section 4.3.2. 1338

• connection_id: Points to a uint32_t that is updated with a value that is unique to the Connector 1339
instance and can be used to identify the connection instance if required. This value is undefined in 1340
case of error and is undefined on entry. 1341

Return 1342

• TPSC_SUCCESS: Connection completed successfully. The value pointed to by connection_id is 1343
valid. 1344

• TPSC_ERROR_NOT_SUPPORTED: The value provided for connection_method is not supported by 1345
this Connector. 1346

• TPSC_ERROR_BAD_FORMAT: The connection_method is supported, but the Connector could not 1347
understand connection_data. 1348

• TPSC_ERROR_ACCESS_DENIED: The combination of connection_method and connection_data 1349
is supported, but the provided credentials do not allow access to the Secure Component. 1350

Programmer Error 1351

• connection_id is NULL. 1352

 TPS Client API Specification

Public Review v0.0.0.26 Page 63 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.4 disconnect 1353

Since: TPS Client API v1.0 1354

TPSC_Result disconnect(uint32_t connection_id); 1355

Description 1356

The function closes an open connection to a Secure Component. 1357

Parameters 1358

• connection_id: A unique identifier for a connection to the Secure Component supported by this 1359
Connector, previously returned by a call to connect. 1360

Return 1361

• TPSC_SUCCESS: Connection closed successfully. 1362

Programmer Error 1363

• The value provided for connection_id does not represent an open connection. 1364

 1365

 TPS Client API Specification

Public Review v0.0.0.26 Page 64 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.5 discover_services 1366

Since: TPS Client API v1.0 1367

TPSC_Result discover_services (1368
 const uint32 connection_id, 1369
 TPSC_ServiceIdentifier* result_buf, 1370
 size_t* num_services 1371
); 1372

Description 1373

This function returns the address of an array containing TPSC_ServiceIdentifier instances which 1374
represent the TPS Service names provided by this Connector. 1375

Short buffer handling (see section 3.3.4) MUST be supported to cover the case where result_buf is not 1376
large enough to hold the returned data. 1377

Parameters 1378

• connection_id: A unique connection identifier which was obtained by a successful call to 1379
connect. 1380

• result_buf: A pointer to a contiguous buffer of TPSC_ServiceIdentifier instances containing 1381
the TPS Service names provided by this Connector. This pointer MUST be valid on entry and MUST 1382
point to an allocated memory area at least sizeof(TPSC_ServiceIdentifier) * 1383
(*num_services). 1384

• num_services: On entry, a pointer to an integer that indicates the number of instances of 1385
TPSC_ServiceIdentifier that result_buf can hold. On successful return, points to the number 1386
of entries in the result_buf array. 1387

Return 1388

• TPSC_SUCCESS: The names field contains an array of TPSC_ServiceIdentifier instances 1389
describing valid services for this Connector and num_services indicates the number of services. 1390

• TPSC_ERROR_SHORT_BUFFER: Provided result_buf was not large enough to hold the 1391
TPSC_ServiceIdentifier array. 1392

• TPSC_ERROR_SECURITY: The caller is not authorized to access the requested service. 1393

• TPSC_ERROR_OUT_OF_MEMORY: An out of memory error prevented the call from succeeding. 1394

• TPSC_ERROR_GENERIC: Any other error. 1395

Programmer Error 1396

None 1397

 1398

 TPS Client API Specification

Public Review v0.0.0.26 Page 65 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.6 execute_transaction 1399

Since: TPS Client API v1.0 1400

TPSC_Result execute_transaction(1401
 const uint32_t session_id, 1402
 const uint8_t* send_buf, 1403
 const size_t send_len, 1404
 uint8_t* recv_buf, 1405
 size_t* recv_len, 1406
 uint32_t* transaction_id, 1407
); 1408

Description 1409

C callable API to request a Service to perform a transaction with the provided parameters. 1410

Parameters 1411

• session_id: Identifies the session requesting the service. Since a session is bound to a service 1412
identifier, this identifies the target service for the operation. 1413

• send_buf: Must point to a readable memory area of at least length send_len bytes. It contains the 1414
message being sent to the service. 1415

• recv_buf: Must point to a writable memory area of at least length recv_len bytes. It will contain 1416
the response from the service on return. recv_len is updated with the length of the returned data. 1417
Short buffer handling (see section 3.3.4) MUST be supported to cover the case where recv_buf is 1418
not large enough to hold the returned data. 1419

• transaction_id: Must be writable. The value on entry and in the case of failure is undefined. On 1420
successful return it contains a transaction identifier which can be used to cancel the transaction. 1421

Return 1422

• TPSC_SUCCESS: Session was successfully opened. 1423

• TPSC_ERROR_NO_DATA: send_buf, recv_buf, or session is NULL, send_len is zero. 1424

• TPSC_ERROR_BAD_FORMAT: send_buf or recv_buf was not initialized before the function was 1425
called. 1426

• TPSC_ERROR_SHORT_BUFFER: The buffer allocated in recv_buf is not large enough to contain the 1427
response. In this case, the handling in section 3.3.4 applies and recv_buf->size contains the size 1428
of the buffer required to hold the TPS Service response message. 1429

Programmer Error 1430

The following usage of the API is a programmer error: 1431

• Calling with a session_id that is not an open session. 1432

• Using the same session_id concurrently for multiple operations. 1433

• Calling with invalid content in the message field of the send_buf structure. 1434

• Using the same send_buf or recv_buf structure concurrently for multiple operations. 1435

 1436

 TPS Client API Specification

Public Review v0.0.0.26 Page 66 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

5.4.1.7 open_session 1437

Since: TPS Client API v1.0 1438

TPSC_Result open_session(1439
 const uint32_t connection_id, 1440
 const UUID* service_instance, 1441
 uint32_t* session_id 1442
); 1443

Description 1444

The function creates a new session with a specific TPS Service instance. This session is identified using the 1445
value returned in the session_id parameter, which is guaranteed to be unique for the Secure Component 1446
which hosts the service. 1447

Parameters 1448

• connection_id: A unique connection identifier which was obtained by a previous successful call to 1449
connect. 1450

• service_instance: A UUID which identifies a unique TPS Service on the Secure Component that 1451
is accessed via the Connector instance. It is a value that was previously returned in the 1452
service_identifier field of a TPSC_ServiceIdentifier. 1453

• session_id: Holds a session identifier that uniquely identifies the session creates with the TPS 1454
service. On entry or on failed return, the value is undefined. On successful return, it holds a session 1455
identifier that is used in transactions between the client and the service. 1456

Return 1457

• TPSC_SUCCESS: Session was successfully opened. 1458

• TPSC_ERROR_BAD_IDENTIFIER: The value provided for service_instance does not identify a 1459
tps-service-instance on the secure component associated with this Connector. 1460

• TPSC_ERROR_NULL_POINTER: service_instance or session_id was NULL. 1461

Programmer Error 1462

None 1463

 TPS Client API Specification

Public Review v0.0.0.26 Page 67 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6 [INFORMATIVE] RUST LANGUAGE API 1464

This appendix defines an optional Rust language version of the TPS Client API. It may be useful where the 1465
client application is implemented in Rust, from both a performance and correctness perspective. 1466

Rust APIs are organized as Crates, which can contain Modules. For each API element, we specify the Crate 1467
and module in which it is defined. 1468

Note: A future version of this specification is expected to define a normative Rust language API 1469
specification. 1470

6.1 Behavior 1471

Exported Rust functions and data types have identical externally visible behavior to their C counterparts, with 1472
the exception that Rust functions use an idiomatic error handling mechanism that is functionally equivalent to 1473
that provided by the C API. 1474

6.2 Mapping C API Names to Rust Names 1475

Rust places strong requirements on the naming conventions for program elements such as functions and 1476
structures, and provides a namespace mechanism that eliminates namespace clashes. As such, names in the 1477
Rust APIs differ from those in the C language API described previously. C names can be mapped to Rust 1478
names as follows: 1479

• Function names are all lowercase with underscores between words, with no TPSC prefix. 1480

o e.g. TPSC_ExecuteTransaction becomes execute_transaction in the Rust API. 1481

• Structure and constant names are prefixed with TPSC prefix in C. No such prefix is used in Rust. 1482

o e.g. TPSC_ServiceIdentifier becomes ServiceIdentifier in Rust. 1483

 TPS Client API Specification

Public Review v0.0.0.26 Page 68 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.3 Rust Data Types 1484

The exported Rust data types are found in the c_structs module of the enclosing Crate as they are shared 1485
between the C and Rust APIs. 1486

6.3.1 mod c_structs 1487

Since: TPS Client API v1.0 1488

pub mod c_structs { 1489
 #[repr(C)] 1490
 pub enum ConnectionData { 1491
 None, 1492
 GID(u32), 1493
 Proprietary(*const c_void) 1494
 } 1495
 1496
 #[repr(C)] 1497
 pub enum ServiceBound { 1498
 Inclusive(ServiceVersion), 1499
 Exclusive(ServiceVersion), 1500
 NoBound 1501
 } 1502
 1503
 #[repr(C)] 1504
 pub struct ServiceIdentifier { 1505
 pub service_instance: UUID, 1506
 pub service_id: UUID, 1507
 pub secure_component_type: UUID, 1508
 pub secure_component_instance: UUID, 1509
 pub service_version: ServiceVersion, 1510
 } 1511
 1512
 #[repr(C)] 1513
 pub struct ServiceRange { 1514
 pub lowest_acceptable_version: ServiceBound, 1515
 pub first_excluded_version: ServiceBound, 1516
 pub last_excluded_version: ServiceBound, 1517
 pub highest_acceptable_version: ServiceBound, 1518
 } 1519
 1520
 #[repr(C)] 1521
 pub struct ServiceSelector { 1522
 pub service_id: UUID, 1523
 pub secure_component_type: UUID, 1524
 pub secure_component_instance: UUID, 1525
 pub service_version_range: ServiceRange, 1526
 } 1527
 1528
 #[repr(C)] 1529
 pub struct ServiceVersion { 1530
 pub major_version: u32, 1531
 pub minor_version: u32, 1532

 TPS Client API Specification

Public Review v0.0.0.26 Page 69 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 pub patch_version: u32, 1533
 } 1534
 1535
 #[repr(C)] 1536
 pub struct Session { 1537
 pub service_id: *const UUID, 1538
 pub session_id: u32, 1539
 pub imp: SessionPriv, 1540
 } 1541
 1542
 #[repr(C)] 1543
 pub struct MessageBuffer { 1544
 pub message: *mut u8, 1545
 pub size: usize, 1546
 pub maxsize: usize, 1547
 1548
 pub imp: MessageBufferPriv, 1549
 } 1550
 1551
 #[repr(C)] 1552
 pub struct UUID { 1553
 pub bytes: [u8; 16] 1554
 } 1555
} 1556

 TPS Client API Specification

Public Review v0.0.0.26 Page 70 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.3.2 Additional Structures 1557

6.3.2.1 mod r_structs 1558

Since: TPS Client API v1.0 1559

The r_structs module defines a structure, UnsafeMessageBuf, which can be straightforwardly 1560
constructed from a MessageBuffer, but which has more straightforward Rust ergonomics. 1561
UnsafeMessageBuffer is not C language FFI compatible. 1562

Note: In the code below, lifetime annotations have been removed for simplicity. Real code will require 1563
annotation for the buffer lifetime and may require additional lifetime annotation. 1564

 1565

pub mod r_structs { 1566
 pub struct UnsafeMessageBuf { 1567
 msg_len: usize, 1568
 buffer: &[u8], 1569
 imp: MessageBufferPriv 1570
 } 1571
 1572
 impl From for UnsafeMessageBuf { 1573
 fn from(mb: MessageBuffer) -> Self { 1574
 UnsafeMessageBuf { 1575
 buffer = unsafe {from_raw_parts_mut(mb.message, mb.maxsize)}, 1576
 msg_len: mb.size, 1577
 imp: mb.imp 1578
 } 1579
 } 1580
 } 1581
} 1582

As the name implies, UnsafeMessageBuf is not safe for use in multi-threaded Rust code, and it is typically 1583
wrapped using mechanisms to ensure thread-safety and safe inner mutability (RefCell, Arc, Mutex, or 1584
similar, depending on the use-case). 1585

The safe, wrapped variant of UnsafeMessageBuf is the MessageBuf type which is used in the Rust 1586
language API definitions in section 6.6. In this version of the specification, MessageBuf is implementation-1587
defined, but it is expected to behave as though it implements the following trait: 1588

pub trait SafeMessageBuf { 1589
 type OwnerGuard; 1590
 1591
 fn new(buf: &mut [u8]) -> Self; 1592
 fn new_from_unsafe_message_buf(u_buf: UnsafeMessageBuf) -> Self; 1593
 unsafe fn new_from_mut_ptr(buf: *mut u8, len: usize) -> Self; 1594
 fn lock(&self) -> Self::OwnerGuard; 1595
 fn set_len(&self, l: usize) -> Result<(), TPSError>; 1596
} 1597

In addition, it is expected to support mutable and immutable Iterator traits. 1598

 TPS Client API Specification

Public Review v0.0.0.26 Page 71 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.4 Constants 1599

The exported Rust constants are split across three modules of the tps_client_common Crate as they are 1600
shared between the C and Rust APIs. 1601

6.4.1 mod c_errors 1602

Since: TPS Client API v1.0 1603

pub mod c_errors { 1604
 pub const SUCCESS: u32 = 0x00000000; 1605
 pub const ERROR_GENERIC: u32 = 0xF0090000; 1606
 pub const ERROR_ACCESS_DENIED: u32 = 0xF0090001; 1607
 pub const ERROR_CANCEL: u32 = 0xF0090002; 1608
 pub const ERROR_BAD_FORMAT: u32 = 0xF0090003; 1609
 pub const ERROR_NOT_IMPLEMENTED: u32 = 0xF0000004; 1610
 pub const ERROR_NOT_SUPPORTED: u32 = 0xF0090005; 1611
 pub const ERROR_NO_DATA: u32 = 0xF0090006; 1612
 pub const ERROR_OUT_OF_MEMORY: u32 = 0xF0090007; 1613
 pub const ERROR_BUSY: u32 = 0xF0090008; 1614
 pub const ERROR_COMMUNICATION: u32 = 0xF0090009; 1615
 pub const ERROR_SECURITY: u32 = 0xF009000A; 1616
 pub const ERROR_SHORT_BUFFER: u32 = 0xF009000B; 1617
 pub const ERROR_DEPRECATED: u32 = 0xF009000C; 1618
 pub const ERROR_BAD_IDENTIFIER: u32 = 0xF009000D; 1619
 pub const ERROR_NULL_POINTER: u32 = 0xF009000E; 1620
 pub const ERROR_BAD_STATE: u32 = 0xF009000F; 1621
 pub const ERROR_TIMEOUT: u32 = 0xF0090010; 1622
 pub const ERROR_PLATFORM: u32 = 0xF0090011; 1623
 pub const ERROR_RUNTIME_ERROR: u32 = 0xF0090012; 1624
} 1625

6.4.2 mod c_login 1626

Since: TPS Client API v1.0 1627

pub mod c_login { 1628
 pub const LOGIN_PUBLIC: u32 = 0x00000000; 1629
 pub const LOGIN_USER: u32 = 0x00000001; 1630
 pub const LOGIN_GROUP: u32 = 0x00000002; 1631
 pub const LOGIN_APPLICATION: u32 = 0x00000004; 1632
 pub const LOGIN_USER_APPLICATION: u32 = 0x00000005; 1633
 pub const LOGIN_GROUP_APPLICATION: u32 = 0x00000006; 1634
 pub const CONNECTIONDATA_NONE: u32 = 0x00000000; 1635
 pub const CONNECTIONDATA_GID: u32 = 0x00000001; 1636
 pub const CONNECTIONDATA_LAST_ITEM: u32 = 0x7fffffff; 1637
} 1638

 1639

 TPS Client API Specification

Public Review v0.0.0.26 Page 72 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.4.3 mod c_uuid 1640

Since: TPS Client API v1.0 1641

pub mod c_uuid { 1642
 pub const UUID_NIL: UUID = UUID { 1643
 bytes: [0; 16] 1644
 }; 1645
 pub const UUID_NAMESPACE: UUID = UUID { 1646
 bytes: [0x99, 0x13, 0x67, 0x3c, 0x23, 0x32, 0x42, 0x2c, 1647
 0x82, 0x13, 0x1e, 0xc1, 0xf7, 0x49, 0x36, 0xe8] 1648
 }; 1649
 pub const UUID_SC_TYPE_GPD_TEE: UUID = UUID { 1650
 bytes: [0x59, 0x84, 0x68, 0x75, 0x1e, 0x02, 0x53, 0xc8, 1651
 0x92, 0x2f, 0x5d, 0x60, 0xdd, 0x10, 0x3a, 0x58] 1652
 }; 1653
 pub const UUID_SC_TYPE_GPC_SE: UUID = UUID { 1654
 bytes: [0xbd, 0xd6, 0x58, 0xfa, 0x44, 0xc1, 0x5e, 0x59, 1655
 0xb3, 0xa1, 0x1a, 0x8f, 0x03, 0x8c, 0xeb, 0x50] 1656
 }; 1657
 pub const UUID_SC_TYPE_GPP_REE: UUID = UUID { 1658
 bytes: [0xd2, 0xdc, 0x12, 0x0c, 0x3e, 0x4a, 0x5b, 0x1f, 1659
 0xbe, 0xce, 0xdf, 0x38, 0x25, 0xc9, 0x33, 0xae] 1660
 }; 1661
} 1662

 1663

 TPS Client API Specification

Public Review v0.0.0.26 Page 73 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.5 Errors 1664

Since: TPS Client API v1.0 1665

As discussed previously, Rust functions are provided with an idiomatic mechanism for handling errors, along 1666
with a mechanism to transform Rust errors into the values expected by the C API. 1667

The error handling mechanism is implemented in the error module of the tps_client_api Crate. 1668

pub enum TPSError { 1669
 GenericError, 1670
 AccessDenied, 1671
 Cancel, 1672
 BadFormat, 1673
 NotImplemented, 1674
 NotSupported, 1675
 NoData, 1676
 OutOfMemory, 1677
 Busy, 1678
 CommunicationError, 1679
 SecurityError, 1680
 ShortBuffer(usize), 1681
 Deprecated, 1682
 BadIdentifier, 1683
 NullPointer, 1684
 BadState, 1685
 Timeout, 1686
 Platform, 1687
 RuntimeError 1688
} 1689

The Into Trait has the following instance for TPSError: 1690

• impl Into<u32> for TPSError. 1691

 TPS Client API Specification

Public Review v0.0.0.26 Page 74 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

6.6 Functions 1692

Since: TPS Client API v1.0 1693

The TPS Client API functions are implemented in the connector module of the tps_client_api Crate. 1694

pub fn cancel_transaction(_transaction: &MessageBuf) 1695
-> Result<(), TPSError> 1696
 1697
pub fn close_session(_session: &Session) 1698
-> Result<(), TPSError> 1699
 1700
pub fn discover_services(1701
 _service_selector: &ServiceSelector, 1702
 _service_array: &mut [ServiceIdentifier], 1703
) -> Result<usize, TPSError> 1704
 1705
pub fn execute_transaction(1706
 _session: &Session, 1707
 _send_buffer: &MessageBuf, 1708
 _recv_buffer: &MessageBuf, 1709
) -> Result<(), TPSError> 1710
 1711
pub fn open_session(1712
 _service_uuid: &UUID, 1713
 _connection_data: Option<&ConnectionData>, 1714
) -> Result<Session, TPSError> 1715
 1716

 1717

 TPS Client API Specification

Public Review v0.0.0.26 Page 75 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

7 [INFORMATIVE] SAMPLE CODE FOR CALLING THE TPS API 1718

FROM A CLIENT APPLICATION 1719

#include <stdio.h> 1720
#include <stdint.h> 1721
#include "tpsc_client_api.h" 1722
 1723
// Defines a ROT13 service called "GPP ROT13" using the normative namespace 1724
// 87bae713-b08f-5e28-b9ee-4aa6e202440e 1725
#define SERVICE_ID_GPP_ROT13 { .bytes = { 0x87, 0xba, 0xe7, 0x13, 0xb0, 0x8f, 0x5e, 0x28, \ 1726
 0xb9, 0xee, 0x4a, 0xa6, 0xe2, 0x02, 0x44, 0x0e } } 1727
 1728
#define TRANSACTION_BUFFER_SIZE (256) 1729
#define ARRAY_SIZE(val, type) (sizeof(val)/sizeof(type)) 1730
 1731
/* A real program would use a CBOR encoder and decoder. For simplicity the CBOR for input to the 1732
 * Service and the expected output is hard-coded. 1733
 * 1734
 * The input (in CBOR Diagnostic format) is: 10({1:"Thisgoestoeleven"}). 1735
 * Expected output (in CBOR diagnostic format): 10({1:"Guvftbrfgbryrira"}) 1736
 */ 1737
#define INPUT_MSG {0xCA, /* tag(10) */\ 1738
 0xA1, /* map(1) */\ 1739
 0x01, /* unsigned 1 */\ 1740
 0x70, /* tstr(16) */\ 1741
 0x54, 0x68, 0x69, 0x73, 0x67, 0x6F, 0x65, 0x73, 0x74, \ 1742
 0x6F, 0x65, 0x6C, 0x65, 0x76, 0x65, 0x6E /* "Thisgoestoeleven" */ \ 1743
 } 1744
#define EXPECT_MSG {0xCA, /* tag(10) */\ 1745
 0xA1, /* map(1) */\ 1746
 0x01, /* unsigned 1 */\ 1747
 0x70, /* tstr(16) */\ 1748
 0x47, 0x75, 0x76, 0x66, 0x74, 0x62, 0x72, 0x66, 0x67, \ 1749
 0x62, 0x72, 0x79, 0x72, 0x69, 0x72, 0x61 /* "Guvftbrfgbryrira" */ \ 1750
 } 1751
 1752
 1753
uint32_t DoServiceDiscovery(TPSC_ServiceIdentifier* service_container) { 1754
 1755
 TPSC_ServiceSelector selector = { 1756
 .service_id = SERVICE_ID_GPP_ROT13, 1757
 .secure_component_instance = TPSC_UUID_NIL, 1758
 .secure_component_type = TPSC_UUID_NIL, 1759
 .service_version_range = { 1760
 .lowest_acceptable_version = { .tag = Inclusive, 1761
 .inclusive = { 1762
 .major_version = 0, 1763
 .minor_version = 0, 1764
 .patch_version = 1 1765
 }}, 1766
 .first_excluded_version = { .tag = Inclusive, 1767
 .inclusive = { 1768
 .major_version = 1, 1769
 .minor_version = 1, 1770
 .patch_version = 1 1771
 }}, 1772
 .last_excluded_version = { .tag = Exclusive, 1773
 .exclusive = { 1774
 .major_version = 1, 1775
 .minor_version = 2, 1776
 .patch_version = 0 1777
 }}, 1778
 .highest_acceptable_version = { .tag = Exclusive, 1779

 TPS Client API Specification

Public Review v0.0.0.26 Page 76 / 76

Copyright  2019-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 .exclusive = { 1780
 .major_version = 2, 1781
 .minor_version = 0, 1782
 .patch_version = 0 1783
 }} 1784
 } 1785
 }; 1786
 size_t num_services; 1787
 static TPSC_ServiceIdentifier array[3]; 1788
 size_t num_services = sizeof(services_available) / sizeof(TPSC_ServiceIdentifier); 1789
 1790
 uint32_t retval = TPSC_DiscoverServices(&selector, &num_services, &service_array); 1791
 service_container = &array[0]; 1792
 return retval; 1793
} 1794
 1795
int main(int argc, char** argv) { 1796
 TPSC_ServiceIdentifier svc_id; 1797
 1798
 if (DoServiceDiscovery(&svc_id) == TPSC_SUCCESS) { 1799
 1800
 TPSC_Session session; 1801
 if (TPSC_OpenSession(&(svc_id.service_instance), TPSC_LOGIN_PUBLIC, NULL, &session) == 1802
TPSC_SUCCESS) { 1803
 void *send_buffer = malloc(TRANSACTION_BUFFER_SIZE); 1804
 void *recv_buffer = malloc(TRANSACTION_BUFFER_SIZE); 1805
 TPSC_MessageBuffer send_buf; 1806
 TPSC_MessageBuffer recv_buf; 1807
 if ((TPSC_InitializeTransaction(&send_buf, send_buffer, 1808
 TRANSACTION_BUFFER_SIZE) == TPSC_SUCCESS) && 1809
 (TPSC_InitializeTransaction(&recv_buf, recv_buffer, 1810
 TRANSACTION_BUFFER_SIZE) == TPSC_SUCCESS)){ 1811
 PrepareMessage(send_msg, 20 /*ARRAY_SIZE(send_msg, uint8_t)*/, send_buffer, 1812
 TRANSACTION_BUFFER_SIZE); 1813
 send_buf.size = 20; //sizeof(ARRAY_SIZE(send_msg, uint8_t)); 1814
 if (TPSC_ExecuteTransaction(&session, &send_buf, &recv_buf) == TPSC_SUCCESS) { 1815
 PrintMessage("Received Message", recv_buf.message, recv_buf.size); 1816
 } else { 1817
 printf("Transaction failed!"); 1818
 } 1819
 } 1820
 } 1821
 } else { 1822
 printf("Service discovery failed"); 1823
 } 1824
} 1825

 1826

	Contents
	Tables
	Figures
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations
	1.6 Revision History

	2 Overview
	2.1 Standardization Scope
	2.2 TPS Client API Architecture

	3 Principles and Concepts
	3.1 Design Principles
	3.2 Fundamental Concepts
	3.2.1 TPS Client
	3.2.2 TPS Service
	3.2.3 TPS Service Identifiers
	3.2.3.1 Elements of the TPS Service Identifier
	3.2.3.2 UUIDs
	3.2.3.2.1 UUID Namespace
	3.2.3.2.2 Defining the tps-service-name in a UUID

	3.2.3.3 tps-service-id
	3.2.3.3.1 Informative Examples

	3.2.3.4 tps-service-version
	3.2.3.4.1 Major Version
	3.2.3.4.2 Minor Version
	3.2.3.4.3 Patch Version
	3.2.3.4.4 Service Version Constraints

	3.2.3.5 tps-secure-component-type
	3.2.3.6 tps-secure-component-instance
	3.2.3.6.1 TEE instances
	3.2.3.6.2 Secure Element instances

	3.2.3.7 tps-service-instance
	3.2.3.7.1 TEE-hosted Services
	3.2.3.7.2 Secure Element Hosted Services

	3.2.4 TPS Session
	3.2.4.1 Connection Methods

	3.2.5 TPS Operation
	3.2.6 TPS Transaction
	3.2.7 Communication Stack
	3.2.8 Language Specific API and Binding

	3.3 Usage Concepts
	3.3.1 TPSC_MessageBuffer Semantics
	3.3.2 Multi-threading
	3.3.3 Memory Layout and Management
	3.3.3.1 General Principles
	3.3.3.2 Memory Management
	3.3.3.3 Structure Field Alignment
	3.3.3.4 Buffer Size
	3.3.3.5 Finalization

	3.3.4 Short Buffer Handling

	3.4 Security
	3.4.1 Security of the TPS Client API
	3.4.2 Security of the Regular Operating System
	3.4.3 Security of the Communication Channel

	4 TPS Client API
	4.1 Implementation-Defined Behavior and Programmer Errors
	4.2 Header File
	4.3 Data Types
	4.3.1 Basic Types
	4.3.2 TPSC_ConnectionData
	4.3.3 TPSC_MessageBuffer
	4.3.4 TPSC_Result
	4.3.5 TPSC_ServiceBound
	4.3.6 TPSC_ServiceIdentifier
	4.3.7 TPSC_ServiceRange
	4.3.8 TPSC_ServiceSelector
	4.3.9 TPSC_ServiceVersion
	4.3.10 TPSC_Session
	4.3.11 TPSC_UUID

	4.4 Constants
	4.4.1 Return Codes
	4.4.2 Session Login Methods
	4.4.3 TPSC_UUID_NIL

	4.5 Functions
	4.5.1 Documentation Format
	4.5.2 TPSC_CancelTransaction
	4.5.3 TPSC_CloseSession
	4.5.4 TPSC_DiscoverServices
	4.5.5 TPSC_ExecuteTransaction
	4.5.6 TPSC_FinalizeTransaction
	4.5.7 TPSC_InitializeTransaction
	4.5.8 TPSC_OpenSession

	5 Connector Interface to Communication Stack
	5.1 Conceptual Architecture
	5.2 Connector Messaging
	5.2.1 TPS_GetFeatures_Req
	5.2.2 TPS_GetFeatures_Rsp

	5.3 Connector API
	5.4 Connector Structures
	5.4.1 TPSCC_Connector
	5.4.1.1 cancel_transaction
	5.4.1.2 close_session
	5.4.1.3 connect
	5.4.1.4 disconnect
	5.4.1.5 discover_services
	5.4.1.6 execute_transaction
	5.4.1.7 open_session

	6 [Informative] Rust Language API
	6.1 Behavior
	6.2 Mapping C API Names to Rust Names
	6.3 Rust Data Types
	6.3.1 mod c_structs
	6.3.2 Additional Structures
	6.3.2.1 mod r_structs

	6.4 Constants
	6.4.1 mod c_errors
	6.4.2 mod c_login
	6.4.3 mod c_uuid

	6.5 Errors
	6.6 Functions

	7 [Informative] Sample Code for Calling the TPS API from a Client Application

