

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.

Recipients of this document are invited to submit, with their comments, notification of any
relevant patents or other intellectual property rights of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in
this document, and to provide supporting documentation. This document (and the information
herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be
disseminated without restriction. Use of the information herein (whether or not obtained directly
from GlobalPlatform) is subject to the terms of the corresponding GlobalPlatform license
agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to
sublicensing) inconsistent with the License is strictly prohibited.

GlobalPlatform Technology

Annex C: TLS Specification
of TEE Sockets API Specification v1.0.3
Version 1.1.0.13 [target v1.2]
Public Review

January 2024

Document Reference: GPD_SPE_103

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 2 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR
INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 3 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Contents
1 Introduction .. 6
1.1 Audience ... 6
1.2 IPR Disclaimer .. 6
1.3 References .. 7
1.4 Terminology and Definitions ... 8
1.5 Abbreviations .. 9
1.6 Revision History .. 10

Annex C TEE_tlsSocket Instance Specification ... 11
C.1 General Information .. 11

C.1.1 Header File Name .. 11
C.1.1.1 API Version .. 11

C.1.2 Specification Version Number Property ... 12
C.1.3 Protocol Identifier Value ... 12
C.1.4 Panic Numbering .. 12

C.2 Transport Layer Security (TLS) ... 13
C.2.1 Handshake Variants ... 13
C.2.2 Credentials and Authentication .. 14

C.2.2.1 Server (Remote Endpoint) Authentication ... 14
C.2.2.2 Client (Local Endpoint) Authentication .. 15

C.2.3 TLS Extensions and Optional Features ... 16
C.2.4 Remote Attestation ... 19

C.2.4.1 Post-handshake Attestation ... 19
C.2.4.2 Intra-handshake Attestation ... 19
C.2.4.3 Scope of the Attestation Feature ... 20
C.2.4.4 Channel Bindings ... 21

C.2.5 TEE_iSocket Instance Variable for TLS ... 21
C.2.6 Type Definitions ... 22

C.2.6.1 TEE_tlsSocket_TlsVersion .. 22
C.2.6.2 TEE_tlsSocket_CipherSuites_GroupA .. 23
C.2.6.3 TEE_tlsSocket_CipherSuites_GroupB .. 26
C.2.6.4 TEE_tlsSocket_SignatureScheme .. 27
C.2.6.5 TEE_tlsSocket_Tls13KeyExGroup .. 29
C.2.6.6 TEE_tlsSocket_PSK_Info Structure .. 30
C.2.6.7 TEE_tlsSocket_SessionTicket_Info Structure ... 31
C.2.6.8 TEE_tlsSocket_SRP_Info Structure .. 33
C.2.6.9 TEE_tlsSocket_ClientPDC Structure ... 34
C.2.6.10 TEE_tlsSocket_ServerCredentialType .. 35

C.2.6.10.1 Server Certificate Chain Validation .. 36
C.2.6.11 TEE_tlsSocket_ServerPDC Structure ... 38
C.2.6.12 TEE_tlsSocket_ClientCredentialType ... 40
C.2.6.13 TEE_tlsSocket_Credentials Structure ... 41
C.2.6.14 TEE_tlsSocket_CB_Data Structure ... 42
C.2.6.15 TEE_tlsSocket_SessionInfo Structure ... 43
C.2.6.16 TEE_tlsSocket_AttFlags .. 45
C.2.6.17 TEE_tlsSocket_AttEvTransMethod ... 47
C.2.6.18 TEE_tlsSocket_AttestationSetup Structure ... 48

C.2.7 TEE_tlsSocket_Setup Structure .. 50
C.2.8 Instance Specific Errors ... 54

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 4 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.9 Instance Specific ioctl commandCode ... 55
C.3 Specification Properties .. 57
C.4 Header File Example ... 58
C.5 Additional Cipher Suite References .. 66

Tables
Table 1-1: Normative References .. 7

Table 1-2: Terminology and Definitions ... 9

Table 1-3: Abbreviations .. 9

Table 1-4: Revision History ... 10

Table C-1: gpd.tee.tls.handshake Property Bit-mask Constants ... 13

Table C-2: gpd.tee.tls.auth.remote.credential Property Bit-mask Constants 15

Table C-3: gpd.tee.tls.auth.local.credential Property Bit-mask Constants 16

Table C-4: TLS Extensions and Options Relevant to this Specification .. 16

Table C-5: Computing Channel Bindings .. 21

Table C-6: TEE_tlsSocket_TlsVersion Bit-mask Constants .. 22

Table C-7: TEE_tlsSocket_CipherSuites_GroupA Values .. 23

Table C-8: TEE_tlsSocket_CipherSuites_GroupB Values .. 26

Table C-9: TEE_tlsSocket_SignatureScheme Values .. 27

Table C-10: TEE_tlsSocket_Tls13KeyExGroup Values .. 29

Table C-11: TEE_tlsSocket_PSK_Info Member Variables .. 30

Table C-12: TEE_tlsSocket_SessionTicket_Info Member Variables .. 32

Table C-13: TEE_tlsSocket_SRP_Info Member Variables .. 33

Table C-14: TEE_tlsSocket_ClientPDC Member Variables .. 34

Table C-15: TEE_tlsSocket_ServerCredentialType Values .. 35

Table C-16: gpd.tee.tls.auth.remote.validation_steps Property Bit-mask Constants 37

Table C-17: TEE_tlsSocket_ServerPDC Member Variables .. 38

Table C-18: TEE_tlsSocket_ClientCredentialType Values .. 40

Table C-19: TEE_tlsSocket_Credentials Member Variables .. 41

Table C-20: TEE_tlsSocket_CB_Data Member Variables .. 42

Table C-21: TEE_tlsSocket_SessionInfo Member Variables .. 43

Table C-22: TEE_tlsSocket_AttFlags Values .. 45

Table C-23: TEE_tlsSocket_AttEvTransMethod Values .. 47

Table C-24: TEE_tlsSocket_AttestationSetup Member Variables .. 48

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 5 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Table C-25: TEE_tlsSocket_Setup Member Variables .. 51

Table C-26: TLS Instance Specific Errors ... 54

Table C-27: TLS Instance Specific ioctl commandCode ... 55

Table C-28: Specification Reserved Properties .. 57

Table C-29: Supported Authentication and Key Exchange Algorithms ... 66

Table C-30: Supported Bulk Encryption Algorithms .. 66

Table C-31: Supported Message Authentication Algorithms .. 67

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 6 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1 INTRODUCTION 1

This document includes one annex of TEE Sockets API Specification v1.0.3 ([TEE Sockets]). Additional 2
annexes exist. 3

The API defined in this specification enables several TLS protocol capabilities. The API supports only 4
client-side TLS functionality. 5

It is not the role of this specification to guide the reader in determining which TLS protocol capabilities may be 6
safe for their purposes, and this specification recognizes that in some cases the use of weak cryptography by 7
a Trusted Application (TA) may be better than the use of that same cryptography by an application outside of 8
a Trusted Execution Environment (TEE). 9

GlobalPlatform does provide recommendations for best practices and acceptable cryptography usage. These 10
can be found in GlobalPlatform Cryptographic Algorithm Recommendations ([Crypto Rec]), and relevant 11
sections of that document MAY be applied to the interfaces and API offered by this specification. As always, 12
the developer should refer to appropriate security guidelines. 13

This annex addresses the instance specification of the Transport Layer Security (TLS) protocol versions 1.3 14
and 1.2. 15

GlobalPlatform would like to explicitly encourage readers to contribute to its specifications. 16

 17

If you are implementing this specification and you think it is not clear on something:

1. Check with a colleague.

And if that fails:

2. Contact GlobalPlatform at TEE-issues-GPD_SPE_103@globalplatform.org

 18

1.1 Audience 19

This document is suitable for software developers implementing Trusted Applications running inside the 20
Trusted Execution Environment (TEE) which need to make socket networking calls. 21

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework, 22
the TEE APIs, and the communications infrastructure required to access Trusted Applications. 23

1.2 IPR Disclaimer 24

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work 25
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For 26
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, 27
please visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held 28
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the 29
evidence, validity, or scope of any such IPR. 30

mailto:TEE-issues-GPD_SPE_103@globalplatform.org
https://globalplatform.org/specifications/ip-disclaimers/

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 7 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1.3 References 31

The table below lists references applicable to this specification. The latest version of each reference applies 32
unless a publication date or version is explicitly stated. 33

Table 1-1: Normative References 34

Standard / Specification Description Ref

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification

[TEE Core]

GPD_SPE_100 GlobalPlatform Technology
TEE Sockets API Specification

[TEE Sockets]

GPD_SPE_101 GlobalPlatform Technology
Annex A: TCP/IP Specification of TEE Sockets API
Specification

[Sockets TCP/IP]

GPD_SPE_102 GlobalPlatform Technology
Annex B: UDP/IP Specification of TEE Sockets API
Specification

[Sockets UDP/IP]

GPD_GUI_104 GlobalPlatform Technology
Annex D: Examples of Using Interfaces Defined in TEE
Sockets API Specification

[Sockets Examples]

GP_TEN_053 GlobalPlatform Technology
Cryptographic Algorithm Recommendations

[Crypto Rec]

GP_GUI_001 GlobalPlatform Document Management Guide [Doc Mgmt]

IANA TLS Cipher Suite
Registry

http://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

[IANA]

TLS Cipher Suites TLS Cipher Suites
https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml#tls-parameters-4

[IANA Example]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

RFC 4279 PSK Ciphersuites for TLS [RFC 4279]

RFC 4492 Elliptic Curve Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS)

[RFC 4492]

RFC 5054 Using the Secure Remote Password (SRP) Protocol for
TLS Authentication

[RFC 5054]

RFC 5246 The Transport Layer Security (TLS) Protocol [RFC 5246]

RFC 5280 Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile

[RFC 5280]

RFC 5288 AES Galois Counter Mode (GCM) Cipher Suites for
TLS

[RFC 5288]

http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 8 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Standard / Specification Description Ref
RFC 5289 TLS Elliptic Curve Cipher Suites with SHA-256/384 and

AES Galois Counter Mode (GCM)
[RFC 5289]

RFC 5487 Pre-Shared Key Cipher Suites for TLS with
SHA-256/384 and AES Galois Counter Mode

[RFC 5487]

RFC 5489 ECDHE_PSK Cipher Suites for Transport Layer
Security (TLS)

[RFC 5489]

RFC 5929 Channel Bindings for TLS [RFC 5929]

RFC 6066 Transport Layer Security (TLS) Extensions: Extension
Definition

[RFC 6066]

RFC 6655 AES-CCM Cipher Suites for Transport Layer Security
(TLS)

[RFC 6655]

RFC 7301 Transport Layer Security (TLS) Application-Layer
Protocol Negotiation Extension

[RFC 7301]

RFC 7525 Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)

[RFC 7525]

RFC 7919 Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for Transport Layer Security (TLS)

[RFC 7919]

RFC 8174 Amendment to RFC 2119 [RFC 8174]

RFC 8446 The Transport Layer Security (TLS) Protocol
Version 1.3

[RFC 8446]

RFC 8447 IANA Registry Updates for TLS and DTLS [RFC 8447]

RFC 9266 Channel Bindings for TLS 1.3 [RFC 9266]

RFC TBD Entity Attestation Token
Pending publication (draft-ietf-rats-eat-19)

[draft EAT]

 35

1.4 Terminology and Definitions 36

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and 37
MAY in this document (refer to [RFC 2119] as amended by [RFC 8174]): 38

• SHALL indicates an absolute requirement, as does MUST. 39

• SHALL NOT indicates an absolute prohibition, as does MUST NOT. 40

• SHOULD and SHOULD NOT indicate recommendations. 41

• MAY indicates an option. 42

Note that as clarified in the [RFC 8174] amendment, lower case use of these words is not normative. 43

 44

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 9 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Selected technical terms used in this document are included in Table 1-2. Additional technical terms are 45
defined in [TEE Sockets] and [TEE Core]. 46

Table 1-2: Terminology and Definitions 47

Term Definition

Annex C TEE Sockets
TLS API

Short form of, and equivalent to:
 Annex C: TLS Specification of TEE Sockets API Specification

attestation evidence See discussion in section C.2.4.

child-most In a tree, each node except the root is a child of some other node.
A “child-most” node has no children of its own.
Also known as “leaf” node.

iSocket Interface Socket

iSocket instance Instance of Interface Socket

 48

1.5 Abbreviations 49

Selected abbreviations and notations used in this document are included in Table 1-3. Additional abbreviations 50
and notations are defined in [TEE Sockets] and [TEE Core]. 51

Table 1-3: Abbreviations 52

Abbreviation / Notation Meaning

ALPN Application-Layer Protocol Negotiation

ASN.1 Abstract Syntax Notation One

DER Distinguished Encoding Rules

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

GCM Galois Counter Mode

IP Internet Protocol

PDC Pre-Distributed Credentials

PSK Pre-Shared Key

SPKI Subject Public Key Info

SRP Secure Remote Password

TA Trusted Application

TEE Trusted Execution Environment

TLS Transport Layer Security

 53

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 10 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

1.6 Revision History 54

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are 55
minor releases where changes typically introduce supplementary items that do not impact backward 56
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance 57
releases that incorporate errata and clarifications; all non-trivial changes are indicated, often with revision 58
marks. 59

Table 1-4: Revision History 60

Date Version Description

June 2015 1.0 Public Release

Jan 2017 1.0.1 Public Release showing all non-trivial changes since v1.0.
• Clarified meaning of one error code

Feb 2021 1.0.2 Public Release showing all non-trivial changes since v1.0.
• Clarified limitations on cryptographic recommendations in this

specification.
Note: Only this annex is being issued as v1.0.2.

Dec 2022 1.1 Changes include:
• New functionality and extensions to enable TLS 1.3 client mode
• Better operating mode support for TLS key establishment and

authentication beyond the original Pre-Shared Keys (PSKs)
• Eliminated TEE_tlsSocket_CertStorageCred structure and

associated unions in TEE_tlsSocket_Credentials structure.
Note: Only this annex and Annex D ([Sockets Examples]) are being issued
as v1.1.

Jun 2023 1.1.0.7 Committee Review

Aug 2023 1.1.0.11 Member Review

Jan 2024 1.1.0.13 Public Review

TBD 1.2 Public Release
Changes include:
• New functionality and extensions to enable Attestation in the TLS

establishment.
Note: Only this annex is being issued as v1.2.
• TEE Sockets API Specification ([TEE Sockets]) remains at v1.0.3.
• Annex A ([Sockets TCP/IP]) and Annex B ([Sockets UDP/IP]) remain at

v1.0.1.
• Annex D ([Sockets Examples]) remains at v1.1.

 61

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 11 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Annex C TEE_tlsSocket INSTANCE SPECIFICATION 62

This annex specifies the TEE_iSocket interface for the Transport Layer Security (TLS) protocol. 63
Implementation of TLS protocol support within the TEE is optional. If the TLS protocol is implemented, the 64
implementation SHALL reside wholly within the TEE because it alters the security level of the information 65
passing over the socket. 66

 67

C.1 General Information 68

C.1.1 Header File Name 69

The corresponding header file SHALL be named “tee_tlssocket.h”. 70

 71

C.1.1.1 API Version 72

Since: Annex C TEE Sockets TLS API v1.1 73

The header file SHALL contain version specific definitions from which TA compilation options can be selected. 74

#define TEE_SOCKET_TLS_API_MAJOR_VERSION ([Major version number]) 75
#define TEE_SOCKET_TLS_API_MINOR_VERSION ([Minor version number]) 76
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION ([Maintenance version number]) 77
#define TEE_SOCKET_TLS_API_VERSION (TEE_SOCKET_TLS_API_MAJOR_VERSION << 24) + 78
(TEE_SOCKET_TLS_API_MINOR_VERSION << 16) + 79
(TEE_SOCKET_TLS_API_MAINTENANCE_VERSION << 8) 80

The document version-numbering format is X.Y[.z], where: 81

Major Version (X) is a positive integer identifying the major release. 82

Minor Version (Y) is a positive integer identifying the minor release. 83

The optional Maintenance Version (z) is a positive integer identifying the maintenance release. 84

TEE_SOCKET_TLS_API_MAJOR_VERSION indicates the major version number of the TEE Sockets TLS API. 85
It SHALL be set to the major version number of this specification. 86

TEE_SOCKET_TLS_API_MINOR_VERSION indicates the minor version number of the TEE Sockets TLS API. 87
It SHALL be set to the minor version number of this specification. If the minor version is zero, then one zero 88
SHALL be present. 89

TEE_SOCKET_TLS_API_MAINTENANCE_VERSION indicates the maintenance version number of the TEE 90
Sockets TLS API. It SHALL be set to the maintenance version number of this specification. If the maintenance 91
version is zero, then one zero SHALL be present. 92

The definitions of “Major Version”, “Minor Version”, and “Maintenance Version” in the version number of this 93
specification are determined as defined in the GlobalPlatform Document Management Guide ([Doc Mgmt]). In 94
particular, the value of TEE_SOCKET_TLS_API_MAINTENANCE_VERSION SHALL be zero if it is not already 95
defined as part of the version number of this document. The “Draft Revision” number SHALL NOT be provided 96
as an API version indication. 97

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 12 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

A compound value SHALL also be defined. If the Maintenance version number is 0, the compound value 98
SHALL be defined as: 99

#define TEE_SOCKET_TLS_API_[Major version number]_[Minor version number] 100

If the Maintenance version number is not zero, the compound value SHALL be defined as: 101

#define TEE_SOCKET_TLS_API_[Major version number]_[Minor version 102
number]_[Maintenance version number] 103

Some examples of version definitions: 104

For GlobalPlatform TEE Sockets TLS API Specification v1.3, these would be: 105

#define TEE_SOCKET_TLS_API_MAJOR_VERSION (1) 106
#define TEE_SOCKET_TLS_API_MINOR_VERSION (3) 107
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION (0) 108
#define TEE_SOCKET_TLS_API_1_3 109

And the value of TEE_SOCKET_TLS_API_VERSION would be 0x01030000. 110

For a maintenance release of the specification as v2.14.7, these would be: 111

#define TEE_SOCKET_TLS_API_MAJOR_VERSION (2) 112
#define TEE_SOCKET_TLS_API_MINOR_VERSION (14) 113
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION (7) 114
#define TEE_SOCKET_TLS_API_2_14_7 115

And the value of TEE_SOCKET_TLS_API_VERSION would be 0x020E0700. 116

 117

C.1.2 Specification Version Number Property 118

This specification defines a TEE property containing the version number of the specification the 119
implementation conforms to. The property can be retrieved using the normal Property Access Functions 120
defined in TEE Internal Core API Specification ([TEE Core]). The property SHALL be named 121
“gpd.tee.sockets.tls.version” and SHALL be of integer type with the interpretation given in TEE 122
Sockets API Specification ([TEE Sockets]) section 4.2. 123

The iSocket interface variable TEE_iSocketVersion indicates which version of the iSocket interface 124
(defined in [TEE Sockets] section 5) this protocol’s iSocket struct conforms to. 125

 126

C.1.3 Protocol Identifier Value 127

The assigned protocol identifier for TEE_ISOCKET_PROTOCOLID_TLS is 103 (decimal) or 0x67 (hex). 128

 129

C.1.4 Panic Numbering 130

The Specification Number for reporting Panics from the TLS instance of the iSocket API SHALL be 103. 131

The Function Numbers for reporting Panics are defined in [TEE Sockets] section 4.4. 132

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 13 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2 Transport Layer Security (TLS) 133

TLS is a client-server secure channel protocol that can be layered on top of a connection-oriented, reliable 134
transport protocol, such as TCP. Therefore, a TLS socket MAY be layered on top of a TCP socket (defined in 135
Annex A [Sockets TCP/IP]), but SHALL NOT be layered on top of a UDP socket (defined in Annex B 136
[Sockets UDP/IP]). The API defined in this specification SHALL be used to establish client-side TLS endpoints 137
only. 138

TLS consists of two main components: the handshake protocol, which provides authenticated key exchange 139
and the record protocol which provides confidentiality, integrity, and replay protection. 140

 141

C.2.1 Handshake Variants 142

The implementation SHALL support server-authenticated TLS handshake, where the client SHALL 143
authenticate the server using a public key certificate and a proof-of-possession of the corresponding private 144
key. 145

Additionally, the implementation MAY support the following types of TLS handshake: 146

• Mutually authenticated handshake – In this handshake type, the client SHALL authenticate the server 147
as above, and in addition the client SHALL authenticate itself to the server via a public key certificate 148
and proof-of-possession of the corresponding private key. 149

• PSK-authenticated handshake – In this handshake type, the endpoints SHALL be authenticated via 150
proof-of-possession of an externally provisioned Pre-Shared Key (PSK). 151

• Resumed handshake – In this handshake type, the client SHALL present to the server an encrypted 152
session ticket containing the state of a previous TLS session. The previous session is then resumed 153
and expensive public key cryptography (authentication and key exchange) can be skipped. 154

A Trusted Application (TA) SHALL use the gpd.tee.tls.handshake property to identify the available 155
handshake types. The value of gpd.tee.tls.handshake is a uint32_t indicating the TLS handshake 156
types that the underlying TEE supports. Table C-1 defines the bit-mask constants for 157
gpd.tee.tls.handshake. 158

Table C-1: gpd.tee.tls.handshake Property Bit-mask Constants 159

Name Value
TEE_TLS_HANDSHAKE_TYPE_SERVER_AUTHENTICATE_ONLY 0x00000000

TEE_TLS_HANDSHAKE_TYPE_MUTUAL_AUTHENTICATED 0x00000001

TEE_TLS_HANDSHAKE_TYPE_PSK_AUTHENTICATED 0x00000002

TEE_TLS_HANDSHAKE_TYPE_RESUMED 0x00000004

Reserved for GlobalPlatform use 0x007FFFF8

TEE_TLS_HANDSHAKE_TYPE_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 160

TEE_TLS_HANDSHAKE_TYPE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated 161
as an undefined value when the corresponding bit is set in the value retrieved as the 162
gpd.tee.tls.handshake property. 163

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 14 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Note: TEE_TLS_HANDSHAKE_TYPE_SERVER_AUTHENTICATE_ONLY indicates that the underlying TLS 164
implementation does not support any of the additional handshake type. In this case, the TA SHALL only use 165
server-authenticated TLS handshake. Regardless of the gpd.tee.tls.handshake property value, the 166
implementation SHALL always support server-authenticated TLS handshake. 167

 168

C.2.2 Credentials and Authentication 169

C.2.2.1 Server (Remote Endpoint) Authentication 170

This specification SHALL support at least one of the following credentials for server (remote endpoint) 171
authentication: 172

• X.509 certificates – In this variant, the TA SHALL provide one or more trusted certificates as 173
Pre-Distributed Credentials (PDCs). The implementation SHALL validate the server’s certificate chain 174
received during the TLS handshake against the PDCs provided by the TA. If the chain contains the 175
trusted certificate (either as the root certificate, intermediate certificate, or child-most certificate), 176
validation SHALL be deemed successful. 177

• Certificate and public key pinning – When using pinning, the TA SHALL provide as PDC at least one 178
trusted SHA-256 hash of server end-entity certificates or the SubjectPublicKeyInfo (SPKI) 179
structures of the certificates. The TA MAY also provide as PDC a list of trusted SHA-256 hashes of 180
server end-entity certificates or the SPKI structures of the certificates. The implementation SHALL 181
consider peer authentication successful if the hash of the received certificate or SPKI matches one of 182
the pinned values and the peer’s CertificateVerify signature can be validated successfully 183
using the corresponding public key. 184

• PSKs – When using PSK authentication, the TA SHALL provide as PDCs a PSK value and a PSK 185
identity used to identify the PSK to be used in the TLS connection. Note that in order to use a PSK in 186
TLS 1.2, the TA SHALL have enabled at least one cipher suite whose name starts with 187
TEE_TLS_PSK. In TLS 1.3, there is no such restriction, as PSKs can be used with all TLS 1.3 cipher 188
suites. If the PSK was derived in an earlier TLS 1.3 handshake, the client MAY later provide the 189
corresponding server-encrypted session ticket to resume the earlier session. If the PSK is used for 190
TLS 1.3 session resumption, PSK identity MAY NOT be provided. 191

• Secure Remote Password (SRP) ([RFC 5054]) – SRP SHALL only be used for TLS 1.2. Note that in 192
order to use SRP, the TA SHALL enable at least one cipher suite whose name starts with 193
TEE_TLS_SRP. 194

• Legacy pre-distributed server public key authentication – In this variant, the TA SHALL provide as 195
PDC the public key of the server and SHALL use it for all encryptions and verifications of server 196
messages. The public key in the certificate sent by the server during the handshake is ignored. This 197
option is provided for interoperability purposes and SHALL only be used for TLS 1.2 implementations. 198

TA SHALL use the gpd.tee.tls.auth.remote.credential property to identify the available credential 199
types for authenticating remote endpoints. The value of gpd.tee.tls.auth.remote.credential is a 200
uint32_t indicating the authentication types that the underlying TEE supports for remote endpoint 201
authentication. Table C-2 defines the bit-mask constants for remote credential types. 202

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 15 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Table C-2: gpd.tee.tls.auth.remote.credential Property Bit-mask Constants 203

Name Value
TEE_TLS_AUTH_REMOTE_CREDENTIAL_NONE 0x00000000

TEE_TLS_AUTH_REMOTE_CREDENTIAL_PDC 0x00000001

TEE_TLS_AUTH_REMOTE_CREDENTIAL_X509_CERT 0x00000002

TEE_TLS_AUTH_REMOTE_CREDENTIAL_CERT_PINNING 0x00000004

TEE_TLS_AUTH_REMOTE_CREDENTIAL_PSK 0x00000008

TEE_TLS_AUTH_REMOTE_CREDENTIAL_SRP 0x00000010

Reserved for GlobalPlatform use 0x007FFFE0

TEE_TLS_AUTH_REMOTE_CREDENTIAL_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 204

TEE_TLS_AUTH_REMOTE_CREDENTIAL_ILLEGAL_VALUE is reserved for testing and validation and SHALL 205
be treated as an undefined value when the corresponding bit is set in the value retrieved as the 206
gpd.tee.tls.auth.remote.credential property. 207

Note: TEE_TLS_AUTH_REMOTE_CREDENTIAL_NONE SHALL be treated as an error. 208

 209

C.2.2.2 Client (Local Endpoint) Authentication 210

Client authentication is optional, but if client authentication is supported, then the implementation SHALL 211
support the following client authentication method: 212

• Private key and X.509 certificate – In this variant, the TA SHALL provide as PDCs a handle to a 213
private key in trusted storage, plus a certificate chain where the child-most certificate contains the 214
public key counterpart. The chain may consist of one or more certificates. The implementation sends 215
the certificate to the server during the handshake for validation. Note that when using TLS 1.2, the TA 216
SHALL enable at least one cipher suite that matches the type of the provided private key. For 217
example, to use an ECDSA keypair for authentication in TLS 1.2, the caller could enable any of the 218
cipher suites whose name starts with TEE_TLS_ECDHE_ECDSA. In TLS 1.3, there are no such 219
restrictions, and all supported key types MAY be used with any TLS 1.3 cipher suite. 220

Additionally, the implementation MAY support the following client authentication methods: 221

• PSKs (See remarks in section C.2.2.1.) 222

• Secure Remote Password (SRP) ([RFC 5054]) – This variant can be used for TLS 1.2 only. 223

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 16 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

TA SHALL use the gpd.tee.tls.auth.local.credential property to identify the available credential 224
types for client authentication. The value of gpd.tee.tls.auth.local.credential is a uint32_t 225
indicating the authentication types that the underlying TEE supports for client authentication. Table C-3 defines 226
the bit-mask constants for local credential types. 227

Table C-3: gpd.tee.tls.auth.local.credential Property Bit-mask Constants 228

Name Value
TEE_TLS_AUTH_LOCAL_CREDENTIAL_NONE 0x00000000

TEE_TLS_AUTH_LOCAL_CREDENTIAL_X509 0x00000001

TEE_TLS_AUTH_LOCAL_CREDENTIAL_PSK 0x00000002

TEE_TLS_AUTH_LOCAL_CREDENTIAL_SRP 0x00000004

Reserved for GlobalPlatform use 0x007FFFF8

TEE_TLS_AUTH_LOCAL_CREDENTIAL_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 229

TEE_TLS_AUTH_LOCAL_CREDENTIAL_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 230
treated as an undefined value when the corresponding bit is set in the value retrieved as the 231
gpd.tee.tls.auth.local.credential property. 232

Note: TEE_TLS_AUTH_LOCAL_CREDENTIAL_NONE indicates that the underlying TLS implementation does 233
not support client authentication. 234

For session resumption, the TA SHALL provide a storage area for the encrypted session ticket it receives from 235
the server at the end of a standard handshake. 236

 237

C.2.3 TLS Extensions and Optional Features 238

Section 4.2 in [RFC 8446] and section 7.4.1.4 in [RFC 5246] define a set of TLS protocol extensions and 239
associated extension messages. Some extensions are mandatory in certain TLS protocol versions. For 240
example, supported_versions is mandatory when TLS 1.3 is offered in the handshake. Other extensions 241
are mandatory in certain handshake variants. For example, key_share is mandatory in TLS 1.3 handshakes 242
that use (EC)DH key exchange. Also, optional protocol features exist that are not associated with an extension. 243
One such example is client authentication. This section provides an overview of extensions and optional 244
protocol features supported in this specification. 245

The table below provides an overview of extensions and options relevant to this specification. The 246
implementation SHALL support the extensions and optional features marked as “mandatory” in the table. The 247
implementation MAY support further extensions and features if needed. 248

Table C-4: TLS Extensions and Options Relevant to this Specification 249

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
server_name Mandatory Mandatory TA can influence the extension

contents. (See section C.2.7.)

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 17 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
supported_versions Mandatory Optional, but

recommended
TA can influence the extension
contents. (See section C.2.6.1.)
[RFC 8446] recommends that
the extension is sent even when
only TLS 1.2 and below is
supported.
For a dual-stack TLS client
implementation, a
ClientHello message would
contain the
supported_version
extension and a TLS 1.2-only
server implementation would
lead to a fallback to TLS 1.2
even if the server does not
understand the
supported_version
extension (or any other TLS 1.3
extensions).

supported_groups Mandatory for
(EC)DH
handshakes

Optional, but can
be used to
indicate ECC
curves only

TA can influence the extension
contents. (See section C.2.6.5.)

signature_algorithms Mandatory for
certificate-
authenticated
handshakes

Optional, but
recommended

TA can influence the extension
contents. (See section C.2.6.4.)

signature_algorithms_
cert

Optional Not defined TA can influence the extension
contents. (See sections C.2.6.4
and C.2.7.)

key_share Mandatory for
(EC)DH
handshakes

Not defined

pre_shared_key Mandatory for
PSK handshakes
and resumed
handshakes

Not defined

max_fragment_length Optional Optional The implementation MAY send
this extension according to
requirements such as memory
constraints.
This specification does not
provide an API that would allow
the TA to influence the
extension.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 18 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
application_layer_
protocol_negotiation

Optional Optional TA can influence the extension
contents (see section C.2.7).

Client authentication Optional Optional See section C.2.6.9.

Post-handshake client
authentication

Optional Not defined The implementation MAY
support post-handshake client
authentication if the TA has
provided a private key and a
certificate in the client PDC
structure. (See section C.2.6.9.)

Renegotiation Not defined Optional, but
not recommended

If renegotiation is supported by
the implementation, then the
necessary countermeasures to
known attacks SHALL also be
supported. Such
countermeasures include those
listed in [RFC 7525] section 3.5.
For example, the
renegotiation_info
extension SHALL be sent when
the implementation supports
renegotiation.

Ticket-based session
resumption

Optional Optional See section C.2.6.7.

PSK handshakes with
externally established PSK

Optional Optional

0-RTT early data SHOULD NOT
be used

Not defined 0-RTT data is not forward-
secret or replay-protected by
default.
Replayable 0-RTT data
presents a number of security
threats to TLS-using
applications, unless those
applications are specifically
engineered to be safe under
replay.
This specification provides no
API for the TA to supply early
data to the implementation.

Record padding Optional Not defined This specification does not
provide an API that would allow
the TA to influence the use of
record padding.

Remote attestation Optional Optional See section C.2.4.

 250

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 19 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.4 Remote Attestation 251

Remote attestation allows endpoints to prove their security properties to relying parties by generating and 252
transmitting attestation evidence. The evidence contains claims that are approved and signed by an attesting 253
environment, which the relying party assumes to be more trustworthy than the target of the attestation. 254
Examples of attesting environments include the TEE or a special TA providing attestation services. The 255
attestation claims could contain, for example, an identity of the TA and the TEE, and information about the 256
security features and security level provided by the TEE. 257

This specification supports both intra-handshake and post-handshake attestation. In the intra-handshake 258
variant, attestation occurs within the TLS handshake, and the TLS session is established only if attestation is 259
successful. In the post-handshake variant, attestation is performed over an already established TLS session 260
using a separate protocol. 261

In all variants, attestation evidence is required to contain channel bindings that are unique to the TLS 262
handshake, providing strong protection against relay attacks.1 263

Note on terminology: In some specifications, such as the Entity Attestation Token ([draft EAT]), attestation 264
evidence (a signed message containing attestation claims) is called simply “an attestation”. The current 265
document follows the terminology used in the specifications of the IETF’s Remote Attestation Architectures 266
(RATS) Working Group, such as RFC 9334. 267

 268

C.2.4.1 Post-handshake Attestation 269

This specification defines an API (see section C.2.9) that can be used to retrieve a value that is unique to an 270
established TLS session. This value can then be used as the channel bindings in a subsequent remote 271
attestation protocol. When generating evidence, the value can be included as one of the signed claims. When 272
verifying evidence, the value can be used as a reference against which the channel bindings extracted from 273
the received evidence can be compared. 274

 275

C.2.4.2 Intra-handshake Attestation 276

The drawbacks of post-handshake attestation include the requirement for a custom remote attestation protocol 277
and an additional round-trip to request and transmit attestation evidence. No standard remote attestation 278
protocol exists that TAs could readily use. For these reasons, it is often preferable to transmit attestation 279
evidence within the TLS handshake. 280

This specification provides an API (see sections C.2.6.16 through C.2.6.18) that allows binding remote 281
attestation to TLS session establishment. Currently, three methods for transmitting attestation evidence in a 282
TLS handshake are supported: 283

• X.509 extension: Evidence is transmitted in an X.509 extension in the TLS endpoint authentication 284
certificate. 285

1 In a relay attack, an attacker has access to a compromised device A and an uncompromised device B. When A

receives an attestation request over communication channel X, the attacker opens a second channel (Y) to B and
forwards the request to B. The device B then sends a valid attestation evidence over channel Y to the attacker, who
relays the evidence to channel X, thus successfully attesting the compromised device A. To prevent such attacks,
evidence should contain a unique communication channel identifier (channel bindings) so that the receiver can verify
that the evidence was meant to be transmitted over the current channel.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 20 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

• Extra certificate: Evidence is transmitted in an extra certificate appended to the TLS endpoint 286
authentication certificate chain. 287

• Certificate message extension: Evidence is transmitted in a TLS extension in the attester’s Certificate 288
handshake message. 289

All of these approaches use standard TLS extension mechanisms and are fully compatible with the TLS 290
specification. 291

The API defined in this specification allows both sending and verifying attestation evidence. The API allows 292
specifying a trust anchor that the implementation shall use to verify the evidence signature. The implementation 293
is also required to validate the channel bindings in the evidence. If the verification of the evidence signature or 294
the channel bindings fails, the implementation is required to terminate the TLS handshake. 295

Since it is conceivable that the implementation cannot appraise all attestation claims in the received evidence, 296
this specification provides an API (see section C.2.9) that the TA can use to retrieve the evidence for further 297
self-appraisal. 298

 299

C.2.4.3 Scope of the Attestation Feature 300

This specification focuses on providing an API that TAs can use to send, receive, and verify attestation 301
evidence such that the evidence is cryptographically bound to a TLS session. Since there is currently no 302
standard for the use of attestation in TLS, a major goal of this specification is to allow writing TAs that can 303
make use of implementation-defined attestation extensions and formats, such that the TAs need not be 304
rewritten when the implementation later switches to a standard variant of attested TLS. 305

This specification does not specify the format or contents of the attestation evidence, except that the evidence 306
is required to contain channel bindings. Possibilities include using the Entity Attestation Token ([draft EAT]) as 307
the evidence format, or using an ASN.1 type such as the TCBInfo defined by the Trusted Computing Group. 308
The implementation does, however, allow the TA to extract the received attestation evidence so that any format 309
or use case specific validation steps can be performed. 310

This specification does not define the format of the attestation request that the implementation may send. 311
Standardization activities are ongoing in this field, for example in the IETF (draft-fossati-tls-attestation2). 312
However, no stable and widely supported specification is available at this time. 313

The implementation is free to use any evidence format and attestation request extension. For interoperability, 314
it is assumed that the TA will only attempt remote attestation with a remote endpoint that it knows to support 315
an evidence format the implementation is able to provide and to verify. The implementation SHOULD provide 316
an implementation defined way such as a TEE property that the TA can use to find out which evidence formats 317
and TLS extensions for attestation the implementation supports. 318

 319

2 https://datatracker.ietf.org/doc/html/draft-fossati-tls-attestation-03

https://datatracker.ietf.org/doc/html/draft-fossati-tls-attestation-03

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 21 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.4.4 Channel Bindings 320

This specification requires the use of channel bindings in both transmitted and received attestation evidence. 321
This subsection specifies how the channel bindings should be computed. 322

The TLS 1.3 specification ([RFC 8446] section 7.5) defines TLS-Exporter mechanism, which can be used to 323
derive handshake-dependent secret values. These values can be used as channel bindings for TLS 1.3 and 324
1.2, as specified in [RFC 9266]. 325

In TLS 1.3 the value can be based on either the exporter master secret or the early exporter master secret. 326
[RFC 8446] requires that the early exporter master secret be used only when 0-RTT data is transmitted. Since 327
this specification does not support 0-RTT data, the early exporter master secret SHALL NOT be used to derive 328
channel bindings. Instead, if the exporter master secret has not yet been computed3 at the time when 329
attestation evidence is to be generated, a transcript hash shall be used instead. The hash SHALL cover the 330
handshake through the message where attestation evidence is transmitted. The hash algorithm shall be the 331
same as the hash algorithm defined by the negotiated cipher suite. 332

In summary, channel bindings for attestation evidence SHALL be computed as follows: 333

Table C-5: Computing Channel Bindings 334

Protocol
Version

Endpoint that
Generates Evidence

Channel Bindings

TLS 1.3 Client “tls-exporter” ([RFC 9266])

TLS 1.3 Server Transcript hash over ClientHello through the later of
EncryptedExtensions or CertificateRequest

TLS 1.2 Client “tls-exporter” ([RFC 9266]). Note that the extended master
secret extension SHALL be used in the handshake.

TLS 1.2 Server Transcript hash over ClientHello through ServerHello

 335

C.2.5 TEE_iSocket Instance Variable for TLS 336

extern TEE_iSocket * const TEE_tlsSocket; 337
 338

The name of the instance variable for the TLS sockets interface SHALL be TEE_tlsSocket. 339

3 In all evidence transmission methods supported by this specification, evidence is transmitted inside the Certificate

handshake messages and the server’s Certificate message is sent before the exporter master secret is available.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 22 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6 Type Definitions 340

The header file SHALL provide the following constants and structures. 341

The implementation SHALL support the subset of TLS 1.3 or TLS 1.2 defined in this document. The 342
implementation MAY support both TLS 1.3 and TLS 1.2. 343

A compliant implementation MAY support further TLS options and algorithms; as this is implementation 344
specific, it will provide an implementation specific methodology to indicate this extension. 345

A particular TLS socket may be configured by the TA to restrict itself by supplying a specific version (e.g. 346
TEE_TLS_VERSION_1v2, TEE_TLS_VERSION_1v3), or a combination (e.g. TEE_TLS_VERSION_1v2 | 347
TEE_TLS_VERSION_1v3). An implementation may also indicate that it supports all TLS versions 348
(TEE_TLS_VERSION_ALL); however, the use of TEE_TLS_VERSION_ALL is not recommended. 349

 350

C.2.6.1 TEE_tlsSocket_TlsVersion 351

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 352

typedef uint32_t TEE_tlsSocket_TlsVersion; 353
 354

The TEE_tlsSocket_TlsVersion type is a bit-mask indicating the TLS versions the endpoint supports. 355
Table C-6 defines the values of TEE_tlsSocket_TlsVersion. 356

If multiple versions are enabled and the highest version is TLS 1.2, then the implementation SHALL advertise 357
the highest enabled version in the client_version field of the ClientHello message. If TLS 1.3 is 358
enabled, the implementation SHALL send the enabled versions, from highest to lowest order, in the 359
supported_versions extension of the ClientHello message. 360

Table C-6: TEE_tlsSocket_TlsVersion Bit-mask Constants 361

Name Value Meaning
TEE_TLS_VERSION_ALL 0x00000000 Accept connections to servers using any TLS

version supported by the implementation

TEE_TLS_VERSION_1v2 0x00000001 Accept connections to servers using TLS 1.2

TEE_TLS_VERSION_PRE1v2 0x00000002 Accept connections to server using a TLS version
prior to TLS 1.2

TEE_TLS_VERSION_1v3 0x00000004 Accept connections to servers using TLS 1.3

Reserved for GlobalPlatform use 0x007FFFF8 Set bits reserved for use by GlobalPlatform

TEE_TLS_VERSION_ILLEGAL_VALUE 0x00800000 Reserved for testing and validation and SHALL be
treated as an undefined value when provided to
the TEE_tlsSocket_Setup structure or the
TEE_tlsSocket_SessionInfo structure.

Implementation defined 0xFF000000 Set bits reserved for implementation defined flags.
Used to assign specific handshakes or methods.

 362

Backward Compatibility 363

Prior to Annex C TEE Sockets TLS API v1.1, TEE_tlsSocket_TlsVersion was defined as an enum. 364

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 23 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.2 TEE_tlsSocket_CipherSuites_GroupA 365

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 366

typedef uint32_t *TEE_tlsSocket_CipherSuites_GroupA; 367
 368

The TEE_tlsSocket_CipherSuites_GroupA type defines the IANA TLS Cipher Suite constants ([IANA]) 369
that are supported for TLS 1.2. Table C-7 defines the values of TEE_tlsSocket_CipherSuites_GroupA. 370

In TLS 1.2, the cipher suite defines the used key exchange, authentication, symmetric encryption, and hash 371
algorithms, using the following cipher suite naming scheme: 372

TEE_TLS_[keyex alg]_[auth alg]_[symmetric alg]_[hash] 373

It is the responsibility of the TA to choose cipher suites that are compatible with the rest of the configuration. 374

Table C-7: TEE_tlsSocket_CipherSuites_GroupA Values 375

Algorithm Value Main Reference
TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 List Termination

TEE_TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x0000000A [RFC 5246]

TEE_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x00000013

TEE_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x00000016

TEE_TLS_RSA_WITH_AES_128_CBC_SHA 0x0000002F

TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA 0x00000032

TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x00000033

TEE_TLS_RSA_WITH_AES_256_CBC_SHA 0x00000035

TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0x00000038

TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x00000039

TEE_TLS_RSA_WITH_AES_128_CBC_SHA256 0x0000003C

TEE_TLS_RSA_WITH_AES_256_CBC_SHA256 0x0000003D

TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 0x00000040

TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x00000067

TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 0x0000006A

TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x0000006B

TEE_TLS_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008B [RFC 4279]

TEE_TLS_PSK_WITH_AES_128_CBC_SHA 0x0000008C

TEE_TLS_PSK_WITH_AES_256_CBC_SHA 0x0000008D

TEE_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008F

TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x00000090

TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x00000091

TEE_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 0x00000093

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 24 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Algorithm Value Main Reference
TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA 0x00000094

TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA 0x00000095

TEE_TLS_RSA_WITH_AES_128_GCM_SHA256 0x0000009C [RFC 5288]

TEE_TLS_RSA_WITH_AES_256_GCM_SHA384 0x0000009D

TEE_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0000009E

TEE_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x0000009F

TEE_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 0x000000A2

TEE_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 0x000000A3

TEE_TLS_PSK_WITH_AES_128_GCM_SHA256 0x000000A8 [RFC 5487]

TEE_TLS_PSK_WITH_AES_256_GCM_SHA384 0x000000A9

TEE_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 0x000000AA

TEE_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 0x000000AB

TEE_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 0x000000AC

TEE_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 0x000000AD

TEE_TLS_PSK_WITH_AES_128_CBC_SHA256 0x000000AE

TEE_TLS_PSK_WITH_AES_256_CBC_SHA384 0x000000AF

TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 0x000000B2

TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 0x000000B3

TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 0x000000B6

TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 0x000000B7

TEE_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0x0000C008 [RFC 4492]

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0x0000C009

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0x0000C00A

TEE_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C012

TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0x0000C013

TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0x0000C014

TEE_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0000C01A [RFC 5054]

TEE_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C01B

TEE_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0000C01C

TEE_TLS_SRP_SHA_WITH_AES_128_CBC_SHA 0x0000C01D

TEE_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 0x0000C01E

TEE_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 0x0000C01F

TEE_TLS_SRP_SHA_WITH_AES_256_CBC_SHA 0x0000C020

TEE_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0000C021

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 25 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Algorithm Value Main Reference
TEE_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0000C022

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0x0000C023 [RFC 5289]

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0x0000C024

TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0x0000C027

TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0x0000C028

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0000C02B

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0000C02C

TEE_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0x0000C02F

TEE_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0x0000C030

TEE_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000C034

TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0x0000C035

TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0x0000C036

TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0x0000C037

TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0x0000C038

TEE_TLS_RSA_WITH_AES_128_CCM 0x0000C09C [RFC 6655]

TEE_TLS_RSA_WITH_AES_256_CCM 0x0000C09D

TEE_TLS_DHE_RSA_WITH_AES_128_CCM 0x0000C09E

TEE_TLS_DHE_RSA_WITH_AES_256_CCM 0x0000C09F

TEE_TLS_PSK_WITH_AES_128_CCM 0x0000C0A4

TEE_TLS_PSK_WITH_AES_256_CCM 0x0000C0A5

TEE_TLS_DHE_PSK_WITH_AES_128_CCM 0x0000C0A6

TEE_TLS_DHE_PSK_WITH_AES_256_CCM 0x0000C0A7

Private use 0x0000FF00-
0x0000FFFF

[RFC 8447]

TEE_TLS_CIPHERSUITES_GROUPA_ILLEGAL_VALUE 0x00007FFF

 376

TEE_TLS_CIPHERSUITES_GROUPA_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 377
treated as an undefined value when provided to the TEE_tlsSocket_Setup structure. 378

All values not listed in the table are reserved for future use. 379

Backward Compatibility 380

Prior to Annex C TEE Sockets TLS API v1.1, TEE_tlsSocket_CipherSuites was defined as an enum. 381

 382

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 26 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.3 TEE_tlsSocket_CipherSuites_GroupB 383

Since: Annex C TEE Sockets TLS API v1.1 384

typedef uint32_t * TEE_tlsSocket_CipherSuites_GroupB; 385
 386

The TEE_tlsSocket_CipherSuites_GroupB type defines the IANA TLS Cipher Suite constants ([IANA]) 387
that are supported for TLS 1.3. Table C-8 defines the values of TEE_tlsSocket_CipherSuites_GroupB. 388

In TLS 1.3, the cipher suite defines the used symmetric algorithm and handshake hash algorithm. Key 389
exchange and authentication algorithms must be chosen separately; see sections C.2.6.4 and C.2.6.5. 390

Table C-8: TEE_tlsSocket_CipherSuites_GroupB Values 391

Algorithm Value Main Reference
TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 List Termination

Reserved for GlobalPlatform use 0x00000001 –
0x00001300

TEE_TLS_AES_128_GCM_SHA256 0x00001301 [RFC 8446]

TEE_TLS_AES_256_GCM_SHA384 0x00001302

TEE_TLS_CHACHA20_POLY1305_SHA256 (see below) 0x00001303

TEE_TLS_AES_128_CCM_SHA256 0x00001304

TEE_TLS_AES_128_CCM_8_SHA256 0x00001305

TEE_TLS_CIPHERSUITES_GROUPB_ILLEGAL_VALUE 0x00007FFF

Reserved for private use 0x0000FF00 -
0x0000FFFF

[RFC 8447]

 392

TEE_TLS_CIPHERSUITES_GROUPB_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 393
treated as an undefined value when provided to the TEE_tlsSocket_Setup structure. 394

All values not listed in the table are reserved for future use. However, an implementation MAY extend this 395
table according to the values defined by IANA; see e.g. [IANA Example]. 396

TEE_TLS_CHACHA20_POLY1305_SHA256 is optional unless Poly1305 and ChaCha20 are mandated in 397
[TEE Core]. 398

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 27 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.4 TEE_tlsSocket_SignatureScheme 399

Since: Annex C TEE Sockets TLS API v1.1 400

typedef uint32_t TEE_tlsSocket_SignatureScheme; 401
 402

The TEE_tlsSocket_SignatureScheme type defines the IANA TLS Signature Scheme ([IANA]) constants 403
that are supported. Table C-9 defines the values of TEE_tlsSocket_SignatureScheme. 404

The array SHALL include only signature algorithms supported by the TEE (see [TEE Core] Table 6-11). To 405
determine whether the TEE supports a particular signature algorithm, the TA can use the 406
TEE_IsAlgorithmSupported function (see [TEE Core] section 6.2.9). If the list contains an algorithm the 407
implementation does not support, the implementation SHALL return the 408
TLS_ISOCKET_TLS_ERROR_UNSUPPORTED_SIGALG error code. 409

The provided list SHALL be sent by the implementation to the server in the signature_algorithms 410
extension of the ClientHello message. 411

Table C-9: TEE_tlsSocket_SignatureScheme Values 412

Algorithm Group Algorithm Value

RSASSA-PKCS1-
v1_5

TEE_TLS_RSA_PKCS1_SHA256 0x00000401

TEE_TLS_RSA_PKCS1_SHA384 0x00000501

TEE_TLS_RSA_PKCS1_SHA512 0x00000601

ECDSA TEE_TLS_ECDSA_SECP256R1_SHA256 0x00000403

TEE_TLS_ECDSA_SECP384R1_SHA384 0x00000503

TEE_TLS_ECDSA_SECP521R1_SHA512 0x00000603

RSASSA-PSS with
public key OID
rsaEncryption

TEE_TLS_RSA_PSS_RSAE_SHA256 0x00000804

TEE_TLS_RSA_PSS_RSAE_SHA384 0x00000805

TEE_TLS_RSA_PSS_RSAE_SHA512 0x00000806

EdDSA TEE_TLS_ED25519 0x00000807

TEE_TLS_ED448 0x00000808

RSASSA-PSS with
public key OID
RSASSA-PSS

TEE_TLS_RSA_PSS_PSS_SHA256 0x00000809

TEE_TLS_RSA_PSS_PSS_SHA384 0x0000080A

TEE_TLS_RSA_PSS_PSS_SHA512 0x0000080B

Legacy algorithms TEE_TLS_RSA_PKCS_SHA1 0x00000201

TEE_TLS_ECDSA_SHA1 0x00000203

Reserved Code
Points

TEE_TLS_OBSOLETE_RESERVED 0x00000000 -
0x00000200

TEE_TLS_DSA_SHA1_RESERVED 0x00000202

TEE_TLS_OBSOLETE_RESERVED 0x00000204 -
0x00000400

TEE_TLS_DSA_SHA256_RESERVED 0x00000402

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 28 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Algorithm Group Algorithm Value
 TEE_TLS_OBSOLETE_RESERVED 0x00000404 -

0x00000500

 TEE_TLS_DSA_SHA384_RESERVED 0x00000502

 TEE_TLS_OBSOLETE_RESERVED 0x00000504 -
0x00000600

 TEE_TLS_DSA_SHA512_RESERVED 0x00000602

 TEE_TLS_OBSOLETE_RESERVED 0x00000604 -
0x000006FF

 TEE_TLS_PRIVATE_USE 0x0000FE00 -
0x0000FFFF

 Reserved for future use All values not
listed in the table
are reserved for
future use.

 TEE_TLS_SOCKET_SIGNATURE_SCHEME_ILLEGAL_VALUE 0xFFFFFFFF

 413

TEE_TLS_SOCKET_SIGNATURE_SCHEME_ILLEGAL_VALUE is reserved for testing and validation and SHALL 414
be treated as an undefined value when provided to the TEE_tlsSocket_Setup structure or the 415
TEE_tlsSocket_SessionInfo structure. 416

 417

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 29 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.5 TEE_tlsSocket_Tls13KeyExGroup 418

Since: Annex C TEE Sockets TLS API v1.1 419

typedef uint32_t TEE_tlsSocket_Tls13KeyExGroup; 420
 421

The TEE_tlsSocket_Tls13KeyExGroup type provides values indicating the key exchange groups the TA 422
supports for TLS 1.3 handshakes. Table C-10 defines the values of TEE_tlsSocket_Tls13KeyExGroup. 423

The TA must provide a priority-ordered array of these values. The TA must indicate the number of values in 424
the array in the numTls13KeyExGroups variable. The array must contain at least one value. The array 425
SHALL include only key exchange groups supported by the TEE ([TEE Core] Table 6-14). To determine 426
whether the TEE supports a particular group, the TA can use the TEE_IsAlgorithmSupported function 427
(see [TEE Core] section 6.2.9). If the list contains an algorithm the implementation does not support, the 428
implementation SHALL return the TLS_ISOCKET_TLS_ERROR_UNSUPPORTED_KEYEX_GROUP error code. 429

The implementation will send the provided list to the server in the supported_groups extension of the 430
ClientHello message. Note that the TA can use the numTls13KeyShares variable (see Table C-25) to 431
control how many key shares are generated. 432

Table C-10: TEE_tlsSocket_Tls13KeyExGroup Values 433

Algorithm Value Main Reference
TEE_TLS_KEYEX_GROUP_SECP256R1 0x00000017 [RFC 4492]

TEE_TLS_KEYEX_GROUP_SECP384R1 0x00000018

TEE_TLS_KEYEX_GROUP_SECP521R1 0x00000019

TEE_TLS_KEYEX_GROUP_X25519 0x0000001D

TEE_TLS_KEYEX_GROUP_X448 0x0000001E

TEE_TLS_KEYEX_GROUP_FFDHE_2048 0x00000100 [RFC 7919]

TEE_TLS_KEYEX_GROUP_FFDHE_3072 0x00000101

TEE_TLS_KEYEX_GROUP_FFDHE_4096 0x00000102

TEE_TLS_KEYEX_GROUP_FFDHE_6144 0x00000103

TEE_TLS_KEYEX_GROUP_FFDHE_8192 0x00000104

Reserved by [RFC 8446] 0x000001FC – 0x000001FF

Reserved by [RFC 8446] 0x0000FE00 – 0x0000FEFF

Reserved for GlobalPlatform use 0x0000FF00 – 0x0000FF0E

TEE_TLS_KEYEX_GROUP_ILLEGAL_VALUE 0x0000FF0F

Reserved for implementation defined key
exchange group

0x0000FF10 – 0x0000FFFF

 434

TEE_TLS_KEYEX_GROUP_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 435
undefined value when provided to the TEE_tlsSocket_Setup structure or the 436
TEE_tlsSocket_SessionInfo structure. 437

 438

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 30 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.6 TEE_tlsSocket_PSK_Info Structure 439

typedef struct TEE_tlsSocket_PSK_Info_s { 440
 TEE_ObjectHandle pskKey; 441
 char *pskIdentity; 442
} TEE_tlsSocket_PSK_Info; 443

 444

When PSK is used, the TA needs to provide the key and a key identity to the TLS implementation. This 445
structure holds that information. 446

Table C-11: TEE_tlsSocket_PSK_Info Member Variables 447

Name Purpose
TEE_ObjectHandle pskKey An opened Persistent Object or an initialized Transient Object

containing the PSK. The Object Type ([TEE Core] Table 6-13) must be
TEE_TYPE_GENERIC_SECRET and the Object Attribute ([TEE Core]
Table 6-15) must be TEE_ATTR_SECRET_VALUE.

char *pskIdentity Pointer to a string containing the identity of the key. The interpretation
of this string is something that the client and the server have agreed
upon. The pointer MAY be NULL when the PSK is used for resumption
in TLS 1.3 together with the associated ticket.
The format must be a zero-terminated UTF-8 encoded string as defined
in [TEE Core] section 3.2, Data Types.

 448

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 31 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.7 TEE_tlsSocket_SessionTicket_Info Structure 449

Since: Annex C TEE Sockets TLS API v1.1 450

typedef struct TEE_tlsSocket_SessionTicket_Info_s { 451
 uint8_t *encrypted_ticket; 452
 uint32_t encrypted_ticket_len; 453
 uint8_t *server_id; 454
 uint32_t server_id_len; 455
 uint8_t *session_params; 456
 uint32_t session_params_len; 457
 uint8_t caller_allocated; 458
 TEE_tlsSocket_PSK_Info psk; 459
} TEE_tlsSocket_SessionTicket_Info; 460

 461

When the implementation supports session ticket based resumption, the implementation SHALL use this 462
structure to store a session ticket received from the server along with associated session information. The 463
ticket may later be used for resumed TLS connections (resumed handshakes). 464

The implementation SHALL ensure that it follows the TLS specification regarding resumption. Especially, the 465
implementation SHALL ensure that a resumed handshake uses the same protocol version, cipher suite, and 466
server_name as the initial handshake. For this purpose, the implementation SHALL store the parameters of 467
the initial session in the memory pointed to by session_params. 468

When the ticket is received in a TLS 1.3 connection, the resumption PSK associated with the ticket SHALL be 469
stored in the psk field of TEE_tlsSocket_SessionTicket_Info. 470

When the ticket is received in a TLS 1.2 connection, the implementation SHALL store the master secret in 471
session_params. 472

Memory management: When connecting to a server for the first time the TA MAY, if supporting resumption, 473
provide an array of zeroed TEE_tlsSocket_SessionTicket_Info structures in the 474
TEE_tlsSocket_Setup structure (section C.2.7). When the implementation receives a ticket from the server, 475
the implementation SHALL locate the next unfilled structure in the provided array, if any. If an unfilled structure 476
is found, the implementation SHALL allocate memory for storing the ticket, server ID, and session parameters. 477
The implementation SHALL store the addresses of the allocated memory in the pointer fields of this structure 478
and set the lengths appropriately. The TA may, after any point between a successful call to open and a call 479
to close, take a deep copy of structure contents for its own storage. The implementation SHALL deallocate 480
the memory pointed to by the structure when the connection is closed if the caller_allocated field is set 481
to 0. When the TA provides a filled ticket it wishes to use for resumption, it must set the caller_allocated 482
field to 1. 483

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 32 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Table C-12: TEE_tlsSocket_SessionTicket_Info Member Variables 484

Name Purpose
uint8_t *encrypted_ticket Pointer to memory where the implementation SHALL store the

encrypted session ticket.

uint32_t encrypted_ticket_len Length of the currently stored encrypted ticket.

uint8_t *server_id Pointer to memory where the implementation SHALL store the
identity of the server that sent the session ticket.
If the TA sent the server_name extension, then the identity
SHALL be the contents of that extension, i.e. the encoded
HostName vector, defined in [RFC 6066], including the length
octets. If the TA did not send the server_name extension, then
the identity SHALL be the subject field of the server’s
certificate (see [RFC 5280]), i.e. the tag, length, and value of the
DER-encoded ASN.1 RDNSequence type.

uint32_t server_id_len Number of bytes pointed to by server_id.

uint8_t *session_params Pointer to memory where the implementation SHALL store the
parameters of the handshake when a ticket is received. The
encoding and contents of the parameters are implementation
defined. The implementation SHALL store enough session
parameters to allow it later to check the prerequisites for session
resumption mandated by the TLS specification, e.g. that the
same cipher suite must be used in both the initial and the
resumed connection.

uint32_t session_params_len Number of bytes pointed to by session_params.

uint8_t caller_allocated Specifies whether the memory pointed to by the
encrypted_ticket, server_id, and session_params
fields been allocated by the caller or the implementation.

 0: Allocated by the implementation
 1: Allocated by the caller
 255: Illegal value

TEE_tlsSocket_PSK_Info psk If a ticket is received in a TLS 1.3 handshake, the implementation
SHALL store the derived resumption PSK here.

 485

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 33 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.8 TEE_tlsSocket_SRP_Info Structure 486

typedef struct TEE_tlsSocket_SRP_Info_s { 487
 char *srpPassword; 488
 char *srpIdentity; 489
} TEE_tlsSocket_SRP_Info; 490

 491

When SRP is used, the TA needs to provide the password and the user identity to the TLS implementation. 492
This structure holds that information. Note that SRP is supported in TLS 1.2 and earlier versions, but not in 493
TLS 1.3. 494

Table C-13: TEE_tlsSocket_SRP_Info Member Variables 495

Name Purpose
char *srpPassword Pointer to the password.

The format must be a zero-terminated UTF-8 encoded string as
defined in [TEE Core] section 3.2, Data Types.

char *srpIdentity Pointer to the user name or identity corresponding to the password.
The format must be a zero-terminated UTF-8 encoded string as
defined in [TEE Core] section 3.2, Data Types.

 496

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 34 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.9 TEE_tlsSocket_ClientPDC Structure 497

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 498

typedef struct TEE_tlsSocket_ClientPDC_s { 499
 TEE_ObjectHandle privateKey; 500
 uint8_t *bulkCertChain; 501
 uint32_t bulkSize; 502
 // The following field was introduced in v1.1 503
 uint32_t bulkEncoding; 504
} TEE_tlsSocket_ClientPDC; 505

 506

This structure holds a handle to the private key and a certificate chain that the implementation (i.e. the client) 507
SHALL use to authenticate or attest itself during the TLS handshake. 508

Memory management: The memory pointed to by bulkCertChain SHALL be fully managed by the TA. 509

Table C-14: TEE_tlsSocket_ClientPDC Member Variables 510

Name Purpose
TEE_ObjectHandle privateKey An opened Persistent Object or initialized Transient Object

containing the private key corresponding to the public key in the
certificate.

uint8_t *bulkCertChain Pointer to the client’s certificate chain. The certificates must be in
child-to-parent order, i.e. the client’s end-entity certificate must be
first. The end-entity certificate must contain the public key
corresponding to privateKey.

uint32_t bulkSize The size of *bulkCertChain.

uint32_t bulkEncoding A bit mask that indicates the format(s) in which certificates in
*bulkCertChain are encoded:

0x00000001 X.509 DER

0x00000002 X.509 PEM

0x80000000 Illegal bit setting

0x7F000000 Bits reserved for implementation

All other bits are reserved by GlobalPlatform.
When multiple bits are set, the certificates may be in any of the
enabled formats. In this case, the implementation SHALL detect the
format of the certificate, e.g. by trial-and-error parsing.
The implementation SHALL support X.509 DER encoding.

 511

bulkEncoding = 0x80000000 is reserved for testing and validation and SHALL be treated as an undefined 512
value when provided in the TEE_tlsSocket_Credentials structure. 513

Backward Compatibility 514

Prior to Annex C TEE Sockets TLS API v1.1, char* was used as the type for bulkCertChain. 515

The bulkEncoding field was introduced in Annex C TEE Sockets TLS API v1.1. 516

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 35 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 517

C.2.6.10 TEE_tlsSocket_ServerCredentialType 518

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 519

typedef uint32_t TEE_tlsSocket_ServerCredentialType; 520
 521

The TEE_tlsSocket_ServerCredentialType type indicates how the client shall authenticate the server. 522
Table C-15 defines the values of TEE_tlsSocket_ServerCredentialType. 523

Note: TEE_tlsSocket_ServerCredentialType does not have a TEE_TLS_PEER_CRED_NONE member 524
due to security risks associated with not validating remote endpoints. 525

Table C-15: TEE_tlsSocket_ServerCredentialType Values 526

Name Value Meaning
TEE_TLS_SERVER_CRED_PDC 0x00000000 Legacy option, where the client has the

server’s public key and will use it to
decrypt and verify messages during the
handshake. When this option is used,
the certificate chain received from the
server is ignored. For backward
compatibility; not recommended for new
applications.

TEE_TLS_SERVER_CRED_CSC 0x00000001 The client has at least one trusted
certificate that will be used to validate
the server’s certificate chain.

TEE_TLS_SERVER_CRED_CERT_PIN 0x00000002 Server SHALL be authenticated based
on whether the SHA-256 hash of the
server’s certificate matches one of the
pinned values.

TEE_TLS_SERVER_CRED_PUBKEY_PIN 0x00000003 Server SHALL be authenticated based
on whether the SHA-256 hash of the
SubjectPublicKeyInfo structure in
the server’s certificate matches one of
the pinned values.

Reserved for GlobalPlatform use 0x00000004 –
0x7FFFFFFE

Reserved by GlobalPlatform for future
use.

TEE_TLS_SERVER_CRED_ILLEGAL_VALUE 0x7FFFFFFF Reserved for testing and validation and
SHALL be treated as an undefined
value when provided to the
TEE_tlsSocket_Credentials
structure.

Implementation defined 0x80000000 –
0xFFFFFFFF

Reserved for proprietary use.

 527

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 36 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Backward Compatibility 528

Prior to Annex C TEE Sockets TLS API v1.1, TEE_tlsSocket_ServerCredentialType was defined as 529
an enum. 530

In Annex C TEE Sockets TLS API v1.1, the TEE_TLS_SERVER_CRED_PDC value became a legacy option 531
recommended only for backward compatibility. 532

 533

C.2.6.10.1 Server Certificate Chain Validation 534

When the TA has chosen the TEE_TLS_SERVER_CRED_CSC server credential type, the implementation 535
SHALL perform certification path validation according to [RFC 5280] for the server’s certificate chain it receives 536
during the handshake. Implementing the full validation process specified by [RFC 5280] may require a large 537
amount of code, however, so this document specifies the following validation steps that the implementation 538
SHALL perform, at minimum: 539

• The subject field or the subjectAltName extension in the child-most certificate matches the 540
server_name provided by the TA. 541

• The public key in each certificate, except the child-most certificate, successfully verifies the signature 542
of the preceding certificate. 543

• For each certificate except the child-most, the cA bit in the basicConstraints extension is set. 544

• The path length constraint included in the basicConstraints extension is not exceeded. 545

• The keyUsage extension of each certificate, except the child-most certificate, allows certificate 546
signing (i.e. has the keyCertSign bit set). 547

• The extended keyUsage extension of the child-most certificate allows TLS server authentication (i.e. 548
contains the id-kp-serverAuth object identifier). 549

• For TLS 1.2 and earlier handshakes, the keyUsage extension of the child-most certificate allows the 550
authentication method used in the handshake: digitalSignature or keyEncipherment. 551
Because TLS 1.3 only supports signature-based authentication when certificates are used, in TLS 1.3 552
handshakes the keyUsage extension SHALL have the digitalSignature bit set. 553

• If revocation information is available, e.g. because a CRL distribution point or the URL of an OCSP 554
responder was listed in the issuer certificate, or when the server sent a stapled OCSP response, then 555
the implementation SHALL perform the revocation check and each certificate SHALL have 556
non-revoked status. 557

• For each certificate, the current date is between the notBefore and notAfter dates of the 558
certificate. This check SHALL be performed when either of the following is true: 559

1) The gpd.tee.systemTime.protectionLevel property (defined in [TEE Core]) has the value 560
1000, or 561

2) The TA has set the allowTAPersistentTimeCheck field in the server credentials structure to 562
a non-zero value. 563

Two options are then available: 564

a) In the former case (1), the implementation SHALL retrieve the current time using the 565
TEE_GetSystemTime function. 566

b) In the latter case (2), the implementation SHALL retrieve the current time using the 567
TEE_GetTAPersistentTime function. 568

If both methods are available, then option (b) SHALL take priority. 569

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 37 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

The implementation SHOULD implement further validation steps from [RFC 5280]. These may include, for 570
example, nameConstraints or certificate policy checks. 571

The TA can use the gpd.tee.tls.auth.remote.validation_steps property to determine which 572
validation steps are supported by the implementation. The value of the property is a uint32_t. Table C-16 573
defines the bit-mask constants for gpd.tee.tls.auth.remote.validation_steps. 574

Table C-16: gpd.tee.tls.auth.remote.validation_steps Property Bit-mask Constants 575

Name Value
TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_NAME_CONSTRAINTS 0x00000001

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_POLICY_CONSTRAINTS 0x00000002

Reserved for GlobalPlatform use 0x007FFFE0

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 576

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_ILLEGAL_VALUE is reserved for testing and validation and 577
SHALL be treated as an undefined value when the corresponding bit is set in the value retrieved as the 578
gpd.tee.tls.auth.remote.validation_steps property. 579

 580

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 38 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.11 TEE_tlsSocket_ServerPDC Structure 581

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 582

typedef struct TEE_tlsSocket_ServerPDC_s { 583
 TEE_ObjectHandle publicKey; 584
 // The following fields were introduced in v1.1 585
 TEE_ObjectHandle *trustedCerts; 586
 uint32_t *trustedCertEncodings; 587
 uint32_t numTrustedCerts; 588
 uint32_t allowTAPersistentTimeCheck; 589
 uint8_t *certPins; 590
 uint32_t numCertPins; 591
 uint8_t *pubkeyPins; 592
 uint32_t numPubkeyPins; 593
} TEE_tlsSocket_ServerPDC; 594

 595

This structure holds the credentials the client will use to authenticate the server or verify the server’s attestation 596
evidence. 597

Table C-17: TEE_tlsSocket_ServerPDC Member Variables 598

Name Purpose
TEE_ObjectHandle publicKey Handle of the server’s public key. See the description of

TEE_TLS_SERVER_CRED_PDC in Table C-15. This option is for
backward compatibility and not recommended for new
applications.

TEE_ObjectHandle
*trustedCerts

Pointer to an array of one or more object handles, where each
object contains one or more trusted certificates. The trusted
certificates are used in the validation of the server’s certificate
chain. See the description of TEE_TLS_SERVER_CRED_CSC in
Table C-15 for more information.

uint32_t
*trustedCertEncodings

Pointer to an array of bit masks that indicate the format in which
the certificates in each object in trustedCerts are encoded.
The possible values are:

0x00000001 X.509 DER

0x00000002 X.509 PEM

0x80000000 Illegal bit setting (See note following table.)

0x7F000000 Bits reserved for implementation

All other bits are reserved by GlobalPlatform.
When multiple bits are set, the certificates may be in any of the
enabled formats. In this case, the implementation SHALL detect
the format of the certificate, e.g. by trial-and-error parsing.
The implementation SHALL support X.509 DER encoding.

uint32_t numTrustedCerts The number of object handles in trustedCerts.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 39 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Purpose
uint32_t
allowTAPersistentTimeCheck

An option that indicates whether the implementation is allowed to
retrieve the current time using the TEE_GetTAPersistentTime
when validating the notBefore and notAfter dates in the
server’s certificate chain. Note that the restrictions in
section C.2.6.10.1 apply. The possible values are:

0 Not allowed

1 Allowed

0xFFFFFFFF Illegal value (See note following table.)

uint8_t *certPins Pointer to SHA-256 hashes of trusted certificates. See the
description of TEE_TLS_SERVER_CRED_CERT_PIN in
Table C-15.

uint32_t numCertPins Number of hashes in certPins.

uint8_t *pubkeyPins Pointer to SHA-256 hashes of trusted public key
SubjectPublicKeyInfo structures. See the description of
TEE_TLS_SERVER_CRED_PUBKEY_PIN in Table C-15.

uint32_t numPubkeyPins Number of hashes in pubkeyPins.

 599

trustedCertEncodings = 0x80000000 and allowTAPersistentTimeCheck = 0xFFFFFFFF are 600
reserved for testing and validation and each SHALL be treated as an undefined value when provided to the 601
TEE_tlsSocket_Credentials structure. 602

Backward Compatibility 603

The fields below publicKey were added in Annex C TEE Sockets TLS API v1.1. 604

In Annex C TEE Sockets TLS API v1.1, the publicKey field became a legacy option recommended only for 605
backward compatibility. 606

 607

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 40 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.12 TEE_tlsSocket_ClientCredentialType 608

Since: Annex C TEE Sockets TLS API v1.1 – See Backward Compatibility note below. 609

typedef uint32_t TEE_tlsSocket_ClientCredentialType; 610
 611

The TEE_tlsSocket_ClientCredentialType type indicates the type of credentials the TA has. 612
Table C-18 defines the values of TEE_tlsSocket_ClientCredentialType. 613

Table C-18: TEE_tlsSocket_ClientCredentialType Values 614

Name Value Meaning
TEE_TLS_CLIENT_CRED_NONE 0x00000000 TA has no credentials.

TEE_TLS_CLIENT_CRED_PDC 0x00000001 TA has pre-distributed credentials;
i.e. a PSK or an SRP password.

TEE_TLS_CLIENT_CRED_CSC 0x00000002 TA has certificate storage
credentials; i.e. a private key and a
certificate.

Reserved for GlobalPlatform use 0x00000003 -
0x7FFFFFFE

Reserved by GlobalPlatform for
future use.

TEE_TLS_CLIENT_CRED_ILLEGAL_VALUE 0x7FFFFFFF Reserved for testing and validation
and SHALL be treated as an
undefined value when provided to
the TEE_tlsSocket_Credentials
structure.

Implementation defined 0x80000000 -
0xFFFFFFFF

Reserved for proprietary use.

Backward Compatibility 615

Prior to Annex C TEE Sockets TLS API v1.1, TEE_tlsSocket_ClientCredentialType was defined as 616
an enum. 617

 618

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 41 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.13 TEE_tlsSocket_Credentials Structure 619

Since: Annex C TEE Sockets TLS API v1.1 620

typedef struct TEE_tlsSocket_Credentials_s { 621
 TEE_tlsSocket_ServerCredentialType serverCredType; 622
 TEE_tlsSocket_ServerPDC *serverCred; 623
 TEE_tlsSocket_ClientCredentialType clientCredType; 624
 TEE_tlsSocket_ClientPDC *clientCred; 625
} TEE_tlsSocket_Credentials; 626

 627

This structure contains information on what kind of credentials the TA holds for itself and for the server. 628

This structure is used to specify credentials for both endpoint authentication and remote attestation. 629

Table C-19: TEE_tlsSocket_Credentials Member Variables 630

Name Purpose
TEE_tlsSocket_ServerCredentialType serverCredType The provided server credential type.

See Table C-15 for possible values.

TEE_tlsSocket_ServerPDC *serverCred Pointer to the provided server
credentials used to authenticate the
server or verify the server’s
attestation evidence.

TEE_tlsSocket_ClientCredentialType clientCredType The provided client credential type.
See Table C-18 for possible values.

TEE_tlsSocket_ClientPDC *clientCred Pointer to the provided credentials
the client uses to authenticate or
attest itself to the server.

 631

Note: Implementations may define additional credential types. 632

 633

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 42 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.14 TEE_tlsSocket_CB_Data Structure 634

typedef struct TEE_tlsSocket_CB_Data_s { 635
 uint32_t cb_data_size; 636
 uint8_t cb_data[]; 637
} TEE_tlsSocket_CB_Data; 638

 639

This structure is returned in the output buffer by the ioctl function TEE_TLS_BINDING_INFO. 640

For TLS 1.2 connections, it provides tls-unique channel bindings according to [RFC 5929]. 641

For TLS 1.3 connections, it provides the value TLS-Exporter(label, context_value, key_length) 642
according to [RFC 8446], where label is the caller-provided value contained in the buf argument provided 643
to the ioctl call and used to indicate the use case of the channel binding information, context_value is 644
empty, and key_length is 32. The input secret used in the computation of the exporter value SHALL be the 645
exporter master secret of the connection. 646

Table C-20: TEE_tlsSocket_CB_Data Member Variables 647

Name Purpose
uint32_t cb_data_size The size of the channel binding data in cb_data[].

uint8_t cb_data[] The channel binding data.

 648

Memory management note: The implementation SHALL store the channel binding data in the output buffer 649
provided by the TA in the ioctl call. 650

 651

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 43 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.15 TEE_tlsSocket_SessionInfo Structure 652

Since: Annex C TEE Sockets TLS API v1.1 653

typedef struct TEE_tlsSocket_SessionInfo_s 654
{ 655
 uint8_t structVersion; 656
 TEE_tlsSocket_TlsVersion chosenVersion; 657
 uint32_t chosenCiphersuite; 658
 TEE_tlsSocket_SignatureScheme chosenSigAlg; 659
 TEE_tlsSocket_Tls13KeyExGroup chosenKeyExGroup; 660
 unsigned char *matchedServerName; 661
 uint32_t matchedServerNameLen; 662
 const uint8_t *validatedServerCertificate; 663
 uint32_t validatedServerCertificateLen; 664
 uint32_t usedServerAuthenticationMethod; 665
 /* The following was added in v1.2: */ 666
 TEE_tlsSocket_AttEvTransMethod usedServerAttestationMethod; 667
} TEE_tlsSocket_SessionInfo; 668

 669

This structure is returned in the output buffer by the ioctl function TEE_TLS_SESSION_INFO. 670

The contents of the structure can be used by the TA to discover session information for the current TLS 671
session. 672

Table C-21: TEE_tlsSocket_SessionInfo Member Variables 673

Name Purpose
uint8_t structVersion Version number of this structure type. The possible values

include:

0 The previous version defined in TEE Sockets API
Annex C TLS v1.1.

1 The current version defined in this specification

255 Illegal value (See note following table.)

TEE_tlsSocket_TlsVersion
chosenVersion

The negotiated TLS protocol version used in this session

uint32_t chosenCiphersuite The negotiated cipher suite used in this session

TEE_tlsSocket_SignatureScheme
chosenSigAlg

The negotiated signature algorithm that was used to
authenticate the server during the handshake

TEE_tlsSocket_Tls13KeyExGroup
chosenKeyExGroup

The negotiated key exchange group used in this session

unsigned char*
matchedServerName

Pointer to memory storing the server name provided by the TA
in the session options that matched the server identity.

uint32_t matchedServerNameLen Number of bytes pointed to by matchedServerName. The
length SHALL be set to 0 if the handshake did not use
certificate-based server authentication.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 44 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Purpose
const uint8_t
*validatedServerCertificate

Pointer to memory where the implementation has stored the
successfully validated server certificate chain. The chain
SHALL be stored by concatenating the DER encodings of the
certificates, in child-to-parent order.
The pointed memory SHALL be considered valid only if all of
the following conditions are fulfilled:
• Certificate-based server authentication method was used in

the TLS handshake.
• The TA had enabled the storeServerCertChain option

in the session options.
• The TEE_TLS_RELEASE_CERT_CHAIN ioctl command

has not been invoked for the connection.
This option can be used by the TA to e.g. extend the
implementation’s certificate chain validation with custom
validation steps. In such a use case, the TA is responsible for
examining the certificate chain according to the TA’s policy
and for terminating the TLS connection in case of validation
failure.

uint32_t
validatedServerCertificateLen

Length of the stored server certificate chain. The length
SHALL be set to 0 if no certificate chain is available.

uint32_t
usedServerAuthenticationMethod

Indicates the server authentication method used in the TLS
handshake. Possible values are:

0 Server’s certificate chain was validated
against the provided trust root certificates

1 Server’s certificate chain was validated
against the provided trusted certificate pins

2 Server was authenticated using a PSK

3 Server was authenticated using SRP

0xFFFFFFFF Illegal value (See note following table.)

TEE_tlsSocket_AttEvTransMethod
usedServerAttestationMethod

Indicates the attestation evidence transmission method the
server used to send attestation evidence during the
handshake. If no attestation evidence was received from the
server, the value is set to
TEE_TLS_ATT_EV_TRANS_METHOD_NONE.

 674

structVersion = 255 and usedServerAuthenticationMethod = 255 are reserved for testing and 675
validation and each SHALL be treated as an undefined value when retrieved as TEE_TLS_SESSION_INFO. 676

Memory management note: The implementation SHALL store the matchedServerName and 677
validatedServerCertificate in the output buffer provided by the TA in the ioctl call. 678

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 45 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.16 TEE_tlsSocket_AttFlags 679

Since: Annex C TEE Sockets TLS API v1.2 680

This bit mask variable configures the use of remote attestation in the TLS handshake. The following bit flags 681
are supported: 682

Table C-22: TEE_tlsSocket_AttFlags Values 683

Name Value Meaning
TEE_TLS_ATT_FLAG_SEND_EVIDENCE 0x00000001 The implementation SHALL send

evidence when requested by the remote
endpoint.

TEE_TLS_ATT_FLAG_SEND_UNSOLICITED_
EVIDENCE

0x00000002 The implementation SHALL send
evidence even when no evidence is
requested by the remote endpoint.
• This option may cause the remote

endpoint to abort the handshake if
the TEE_TLS_ATT_EV_TRANS_
METHOD_CERT_MSG_EXT evidence
transmission method is used, since
the TLS specification requires
aborting the handshake when
unsolicited TLS extensions are
received.

• The TEE_TLS_ATT_EV_TRANS_
METHOD_X509_EXTENSION and
TEE_TLS_ATT_EV_TRANS_METHOD_
EXTRA_CERT transmission methods
will not violate the TLS specification
when used together with this option.

TEE_TLS_ATT_FLAG_REQUEST_EVIDENCE 0x00000004 The implementation SHALL request
evidence from the remote endpoint.

TEE_TLS_ATT_FLAG_REQUIRE_EVIDENCE 0x00000008 The implementation SHALL terminate
the handshake if any of the following
occur:
• No evidence is received from the

remote endpoint.
• The implementation cannot verify

the evidence signature using the
provided verification trust anchor.

• The channel bindings in the
evidence do not match the channel
bindings value the implementation
independently computed based on
the current handshake.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 46 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Value Meaning
TEE_TLS_ATT_FLAG_PRIVACY 0x00000010 The implementation SHALL NOT

include privacy-sensitive claims in the
attestation evidence. It is up to the
implementation to define (and
document) which claims are deemed
privacy-sensitive.

TEE_TLS_ATT_FLAG_USE_ATTESTATION_
SERVICE

0x00000020 The implementation SHALL use an
attestation service identified by the
AttEnvUUID field in the
TEE_tlsSocket_AttestationSetup
structure. (Note that if AttEnvUUID is
NULL, then the implementation SHALL
use the default attestation service.)

Reserved for GlobalPlatform use 0x00000040 –
0x7FFFFFFE

Reserved by GlobalPlatform for future
use.

TEE_TLS_ATT_FLAG_ILLEGAL_VALUE 0x7FFFFFFF Reserved for testing and validation and
SHALL be treated as an undefined
value when provided to the
TEE_tlsSocket_AttestationSetup
structure.

Implementation defined 0x80000000 –
0xFFFFFFFF

Reserved for proprietary use.

 684

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 47 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.17 TEE_tlsSocket_AttEvTransMethod 685

Since: Annex C TEE Sockets TLS API v1.2 686

Variables of this type indicate attestation evidence transmission methods. The type is used in the 687
TEE_tlsSocket_AttestationSetup structure to indicate the evidence transmission method the TA shall 688
use, as well as the accepted evidence transmission methods the server is allowed to use. 689

Table C-23: TEE_tlsSocket_AttEvTransMethod Values 690

Name Value Meaning
TEE_TLS_ATT_EV_TRANS_METHOD_NONE 0x00000000 No attestation evidence transmission

methods are to be used or supported.
TEE_TLS_ATT_EV_TRANS_METHOD_X509_EXTENSION 0x00000001 Attestation evidence is transmitted in an

X.509 v3 extension in the leaf certificate
of the endpoint authentication certificate
chain.

TEE_TLS_ATT_EV_TRANS_METHOD_EXTRA_CERT 0x00000002 Attestation evidence is transmitted in an
extra certificate appended to the
endpoint authentication certificate chain.

TEE_TLS_ATT_EV_TRANS_METHOD_CERT_MSG_EXT 0x00000004 Attestation evidence is transmitted in a
TLS extension in the Certificate
handshake message.
This method SHALL be used only in
TLS 1.3 handshakes.

Reserved for GlobalPlatform use 0x00000005 –
0x7FFFFFFE

Reserved by GlobalPlatform for future
use.

TEE_TLS_ATT_EV_TRANS_METHOD_
ILLEGAL_VALUE

0x7FFFFFFF Reserved for testing and validation and
SHALL be treated as an undefined value
when provided to the
TEE_tlsSocket_AttestationSetup
structure.

Implementation defined 0x80000000 –
0xFFFFFFFF

Reserved for proprietary use.

 691

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 48 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.6.18 TEE_tlsSocket_AttestationSetup Structure 692

Since: Annex C TEE Sockets TLS API v1.2 693

This structure configures whether and how remote attestation shall be performed in the TLS handshake. 694

Note that if the flags variable is all zero, the attestation feature is disabled and evidence shall be neither 695
transmitted nor requested. 696

 697

typedef struct TEE_tlsSocket_AttestationSetup_s { 698
 TEE_tlsSocket_AttFlags flags; 699
 TEE_tlsSocket_AttEvTransMethod sendEvTransMethod; 700
 TEE_tlsSocket_AttEvTransMethod recvEvTransMethod; 701
 TEE_tlsSocket_Credentials *evidenceCred; 702
 TEE_UUID *attEnvUUID; 703
} TEE_tlsSocket_AttestationSetup; 704

 705

Table C-24: TEE_tlsSocket_AttestationSetup Member Variables 706

Name Purpose
TEE_tlsSocket_AttFlags flags Bit flags that indicate whether and how remote attestation

should be performed during the TLS handshake.
If all flags are 0:
• Attestation will not be used (attestation evidence will be

neither transmitted nor requested from the remote
endpoint).

• The rest of the fields in the attestation setup structure
SHALL be ignored by the implementation.

TEE_tlsSocket_AttEvTransMethod
sendEvTransMethod

Attestation evidence transmission method. Note that multiple
bits may be set in the bit flag variable, indicating multiple
supported methods.
The implementation SHALL transmit evidence according to the
method specification. If multiple methods are enabled, then the
implementation shall pick one that the server has indicated
support for.

TEE_tlsSocket_AttEvTransMethod
recvEvTransMethod

Supported evidence reception methods. Note that multiple bits
may be set in the bit flag variable, indicating multiple
supported methods.
If the evidence is received using a method that is not specified
in this variable, the implementation SHALL abort the
handshake.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 49 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Purpose
TEE_tlsSocket_Credentials
*evidenceCred

Evidence protection and verification credentials.
The implementation SHALL use the client credentials (if not
NULL) to protect the evidence it transmits during the
handshake.
The implementation SHALL use the server credentials (if not
NULL) to verify the evidence it receives during the handshake.
If verification of the evidence using the provided credentials
fails, the implementation SHALL abort the handshake and
return an error.
If no client credentials are provided, the implementation
SHALL either return an error, or use any suitable evidence
protection credentials to protect evidence.
If no server credentials are provided, the implementation
SHALL either return an error or use any suitable evidence
verification credentials to verify evidence.

TEE_UUID *attEnvUUID UUID of the entity that the TA wants to use as the attesting
environment (i.e. as the entity that generates and signs
attestation evidence). This could be, for example, the UUID of
a TA that provides an attestation service.
If the implementation is unable to connect to the service with
the given UUID, or if the service cannot generate evidence,
the implementation SHALL return an error.
If the pointer is NULL, then the implementation SHALL use the
default attestation service.

 707

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 50 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.2.7 TEE_tlsSocket_Setup Structure 708

Since: Annex C TEE Sockets TLS API v1.1 709

The setup structure is used to pass initialization information to the open function. An implementation MAY 710
add proprietary variables to this structure to enable specific features, but for all conformant implementations, 711
the TEE_tlsSocket_Setup structure SHALL include the following: 712

 713

typedef struct TEE_tlsSocket_Setup_s { 714
 TEE_tlsSocket_TlsVersion acceptServerVersion; 715
 TEE_tlsSocket_CipherSuites_GroupA *allowedCipherSuitesGroupA; 716
 TEE_tlsSocket_PSK_Info *PSKInfo; 717
 TEE_tlsSocket_SRP_Info *SRPInfo; 718
 TEE_tlsSocket_Credentials *credentials; 719
 TEE_iSocket *baseSocket; 720
 TEE_iSocketHandle *baseContext; 721
 722
 // The following fields were introduced in v1.1 723
 TEE_tlsSocket_CipherSuites_GroupB *allowedCipherSuitesGroupB; 724
 TEE_tlsSocket_SignatureScheme *sigAlgs; 725
 uint32_t numSigAlgs; 726
 TEE_tlsSocket_SignatureScheme *certSigAlgs; 727
 uint32_t numCertSigAlgs; 728
 TEE_tlsSocket_Tls13KeyExGroup *tls13KeyExGroups; 729
 uint32_t numTls13KeyExGroups; 730
 uint32_t numTls13KeyShares; 731
 TEE_tlsSocket_SessionTicket_Info *sessionTickets; 732
 uint32_t sessionTicketsNumElements; 733
 uint32_t numStoredSessionTickets; 734
 unsigned char *serverName; 735
 uint32_t serverNameLen; 736
 uint8_t *serverCertChainBuf; 737
 uint32_t *serverCertChainBufLen; 738
 uint8_t storeServerCertChain; 739
 unsigned char **alpnProtocolIds; 740
 uint32_t *alpnProtocolIdLens; 741
 uint32_t numAlpnProtocolIds; 742
 743
 // The following fields were introduced in v1.2 744
 TEE_tlsSocket_AttestationSetup *attestationSetup; 745
} TEE_tlsSocket_Setup; 746

 747

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 51 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Table C-25: TEE_tlsSocket_Setup Member Variables 748

Name Purpose
TEE_tlsSocket_TlsVersion
acceptServerVersion

Which version of the TLS protocol to accept from the
server.

TEE_tlsSocket_CipherSuites_GroupA
*allowedCipherSuitesGroupA

Pointer to an array of the TLS 1.2 cipher suites that
the client offers to the server. The array is terminated
with the value TEE_TLS_NULL_WITH_NULL_NULL.
Note that the implementation SHALL NOT support
this cipher suite. It is only used to terminate the list.

TEE_tlsSocket_PSK_Info *PSKInfo Pointer to a structure holding the information for a
PSK session.

TEE_tlsSocket_SRP_Info *SRPInfo Pointer to a structure holding the information for an
SRP session.

TEE_tlsSocket_Credentials *credentials Pointer to a structure holding credential information.

TEE_iSocket *baseSocket Pointer to the lower layer TEE_iSocket protocol.
The lower layer protocol must be connection-oriented
and reliable. A TCP socket is allowed, but a UDP
socket is not.

TEE_iSocketHandle *baseContext Pointer to the handle of the lower layer instance.

TEE_tlsSocket_CipherSuites_GroupB
*allowedCipherSuitesGroupB

Pointer to an array of the TLS 1.3 cipher suites that
the client offers to the server. The array is terminated
with the value TEE_TLS_NULL_WITH_NULL_NULL.
Note that the implementation SHALL NOT support
this cipher suite. It is only used to terminate the list.
When cipher suites for both TLS 1.3 and below are
included, the implementation SHALL list the TLS 1.3
cipher suites first (with higher priority) in the
ClientHello message.

TEE_tlsSocket_SignatureScheme *sigAlgs Pointer to an array of signature algorithms the client
supports for CertificateVerify handshake
message signature verification. The array SHALL be
in priority order (highest to lowest).

uint32_t numSigAlgs The number of signature algorithms in the sigAlgs
array.

TEE_tlsSocket_SignatureScheme
*certSigAlgs

Pointer to an array of signature algorithms the client
supports for certificate signature authentication in
TLS 1.3 connections. The array SHALL be in priority
order (highest to lowest). The array may be empty
when TLS 1.3 has not been enabled by the TA.

uint32_t numCertSigAlgs The number of signature algorithms in the
certSigAlgs array.

TEE_tlsSocket_Tls13KeyExGroup
*tls13KeyExGroups

Pointer to an array of key exchange groups the client
offers to the server for TLS 1.3 connections. The
array SHALL be in priority order (highest to lowest).

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 52 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Purpose
uint32_t numTls13KeyExGroups The number of key groups in the

tls13KeyExGroups array.

uint32_t numTls13KeyShares Number of key shares the client shall offer for
TLS 1.3 connections. The implementation SHALL
generate numTls13KeyShares shares for the
groups listed in tls13KeyExGroups, starting from
the group at index 0. If numTls13KeyShares is 0,
but the TA has enabled TLS 1.3, then the
implementation SHALL offer a single key share for
the highest-priority group in tls13KeyExGroups.

TEE_tlsSocket_SessionTicket_Info
*sessionTickets

Pointer to an array of structures in which the
implementation SHALL store received session
tickets.

uint32_t sessionTicketsNumElements Number of elements in the sessionTickets array.

uint32_t numStoredSessionTickets Number of session tickets stored in the
sessionTickets array, i.e. the first
numStoredSessionTickets elements of
sessionTickets are currently filled.

unsigned char *serverName Pointer to the name of the server the TA wants to
connect to, encoded according to [RFC 6066]
section 3. The implementation SHALL send the value
in the HostName field of the server_name
extension defined in [RFC 6066] section 3. When
using certificate-based server authentication, the
implementation SHALL compare the name to the
identity in the server’s certificate, as described in
section C.2.6.10.1.

uint32_t serverNameLen Number of bytes pointed to by serverName.

uint8_t *serverCertChainBuf Pointer to memory where the implementation SHALL
store the server’s certificate chain received during the
TLS handshake. The pointed memory SHALL be
considered valid even when the TLS handshake was
unsuccessful, as long as the implementation received
the complete server Certificate message,
making this mechanism useful for debugging. The TA
should examine the error code to determine whether
the Certificate message was successfully
received in a failed TLS handshake.
The TA may set the value to NULL, in which case the
implementation SHALL NOT store the server
certificate chain for failed TLS handshakes.

uint32_t *serverCertChainBufLen Pointer to length of the serverCertChainBuf
buffer. The implementation SHALL store the length of
the stored certificate chain in the pointed variable.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 53 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Purpose
uint8_t storeServerCertChain This option specifies whether the implementation

should store the received server certificate chain
when a TLS session is successfully established.
Possible values are:

0 Do not store the server’s certificate chain
(e.g. release the chain immediately after
the implementation has validated it).

1 Store the server’s certificate chain such
that the TEE_TLS_SESSION_INFO
ioctl command can be used to retrieve
a pointer to memory holding the server’s
certificate chain. (See [TEE Sockets]
section 5.2.9 for ioctl details).

255 Illegal Value (See note following table.)

As an optimization, when both
storeServerCertChain is set to 1 and
serverCertChainBuf is not set to NULL, the
implementation MAY use the memory pointed to by
serverCertChainBuf to store the server certificate
chain even for successful connections. In this case,
the pointer returned by the
TEE_TLS_SESSION_INFO command will point to the
same memory as serverCertChainBuf.

unsigned char **alpnProtocolIds An array of pointers to IANA-registered ALPN
protocol identification sequences. The
implementation SHALL transmit these in the ALPN
ClientHello extension as specified in [RFC 7301].

uint32_t *alpnProtocolIdLens Length (number of bytes) of each protocol
identification sequence pointed to by
alpnProtocolIds.

uint32_t numAlpnProtocolIds Number of protocol identification sequences pointed
to by alpnProtocolIds.

TEE_tlsSocket_AttestationSetup
*attestationSetup

Remote attestation configuration. If NULL, remote
attestation SHALL NOT be used in the handshake.

 749

storeServerCertChain = 255 is reserved for testing and validation and SHALL be treated as an undefined 750
value when provided to the TEE_tlsSocket_Setup structure. 751

Memory management note: As stated in [TEE Sockets] section 5.2.4, after open has been successfully 752
called, “any changes to the setup parameter SHALL NOT alter the behavior of the protocol in subsequent 753
calls to the instance TEE_iSocket functions”. One way the implementation could fulfill this requirement is to 754
take a deep copy of the TEE_tlsSocket_Setup structure and use the copy instead of the original. 755

 756

Examples of how to configure the setup structure are given in Annex D ([Sockets Examples]) sections D.2 and 757
D.3. 758

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 54 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 759

C.2.8 Instance Specific Errors 760

Table C-26: TLS Instance Specific Errors 761

Name Value Function Fatal Meaning
TEE_ISOCKET_TLS_ERROR_
REJECTED_SUITE

0xF1030001 open Yes The server rejected all the
offered cipher suites.

TEE_ISOCKET_TLS_ERROR_
VERSION

0xF1030002 open Yes The server does not
support the TLS version(s)
provided by this
implementation.

TEE_ISOCKET_TLS_ERROR_
UNSUPPORTED_SUITE

0xF1030003 open Yes The combination of
algorithms (authentication
and key exchange,
encryption, and message
authentication) is not
supported.

TEE_ISOCKET_TLS_ERROR_
HANDSHAKE

0xF1030004 open Yes An error occurred during
the TLS handshake.

TEE_ISOCKET_TLS_ERROR_
AUTHENTICATION

0xF1030005 open Yes The server could not be
authenticated.

TEE_ISOCKET_TLS_ERROR_
DATA

0xF1030006 close Yes Invalid data was received
(incorrect authentication
value or other protocol
error).

TEE_ISOCKET_TLS_ERROR_
UNSUPPORTED_KEYEX_GROUP

0xF1030007 open Yes The implementation does
not support all the selected
key exchange groups.

TEE_ISOCKET_TLS_ERROR_
UNSUPPORTED_SIGALG

0xF1030008 open Yes The implementation does
not support all the selected
signature algorithms.

TEE_ISOCKET_TLS_ERROR_
EV_SIG_VERIFY_FAILED

0xF1030009 open Yes Signature verification of
received attestation
evidence failed.

TEE_ISOCKET_TLS_ERROR_
EV_BINDING_CHECK_FAILED

0xF103000A open Yes Verification of channel
bindings in received
attestation evidence failed.

TEE_ISOCKET_TLS_ERROR_
ALERT

0xF10301XX open,
send,
recv

Yes A fatal TLS alert was
received from the server.
The last byte contains the
alert number defined in
[RFC 8446] section 6 or
[RFC 5246] section 7.2.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 55 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Value Function Fatal Meaning
Proprietary codes As defined in

[TEE Core]
Any Depends The value and meaning of

other codes will be defined
when an implementation is
supporting TLS modes
outside of the subset
defined in this specification.

 762

Proprietary error codes SHALL follow the numbering scheme described in [TEE Core] section 3.3.1, Return 763
Code Ranges and Format. 764

C.2.9 Instance Specific ioctl commandCode 765

Table C-27: TLS Instance Specific ioctl commandCode 766

Name Value Argument
Type

Description

TEE_TLS_BINDING_INFO 0x67000001 [inout]
char *buf

Retrieve channel binding information
for the current connection. The
returned buffer can be interpreted as
an instance of the structure
TEE_tlsSocket_CB_Data. If no
channel binding information is
available, the output length SHALL be
set to zero.
When TLS 1.3 has been negotiated for
the connection, the input buffer can be
used to supply the label argument for
the TLS-Exporter mechanism.
• If no label is provided, the value

returned SHALL be the
tls-exporter channel bindings
defined in [RFC 9266].

• If the TA intends to use the channel
bindings for post-handshake
attestation, the TA SHALL NOT
provide a label.

If the provided buffer is too small, the
implementation SHALL return
TEE_ERROR_SHORT_BUFFER.

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 56 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Name Value Argument
Type

Description

TEE_TLS_SESSION_INFO 0x67000002 [inout]
char *buf

Retrieve information about the current
TLS session. The returned buffer can
be interpreted as an instance of the
structure
TEE_tlsSocket_SessionInfo.
The first octet of the input buffer
SHALL be an unsigned integer
indicating the desired version of the
TEE_tlsSocket_SessionInfo
structure to be returned.
If no TLS session has been established
at the time of calling (e.g. the
handshake has not finished), the output
length SHALL be set to zero.
If the provided buffer is too small, the
implementation SHALL return
TEE_ERROR_SHORT_BUFFER.

TEE_TLS_RELEASE_CERT_CHAIN 0x67000003 Indicate to the implementation that it
may release memory pointing to stored
server certificate chain.
The buf argument is ignored.
Note that after this operation, it will not
be possible to retrieve the server
certificate chain using the
TEE_TLS_SESSION_INFO command.
If the storeServerCertChain
option was not enabled in the session
options, this command has no effect.

TEE_TLS_PEER_EVIDENCE 0x67000004 [out]
char *buf

Return attestation evidence received
from the remote endpoint.
If no evidence was received in the
handshake, the output length SHALL
be set to zero.
If the provided buffer is too small, the
implementation SHALL return
TEE_ERROR_SHORT_BUFFER.

 767

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 57 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.3 Specification Properties 768

The properties listed in Table C-28 can be retrieved by the generic Property Access Function with the 769
TEE_PROPSET_TEE_IMPLEMENTATION pseudo-handle (see [TEE Core]). 770

Table C-28: Specification Reserved Properties 771

Name Type Comment
gpd.tee.tls.handshake integer Property that indicates supported

additional TLS handshake types.
For values, see Table C-1.

gpd.tee.tls.auth.remote.credential integer Property that indicates supported
credential type for remote endpoint
authentication. For values, see
Table C-2.

gpd.tee.tls.auth.remote.validation_steps integer Property that indicates supported
certification path validation steps for
remote server authentication. For
values, see Table C-16.

gpd.tee.tls.auth.local.credential integer Property that indicates supported
credential type for client
authentication. For values, see
Table C-3.

gpd.tee.sockets.tls.version integer Property that indicates the version
number of this specification that the
implementation conforms to. See
section C.1.2.

 772

The integers should have 32 bits defined and so should be retrieved via the TEE_GetPropertyAsU32 773
interface. 774

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 58 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.4 Header File Example 775

#ifndef TEE_ISOCKET_PROTOCOLID_TLS 776
#include “tee_isocket.h” 777
 778
// This is the current draft header file for Annex C v1.2 development. 779
// To see changes compared to v1.1, search for "ADDED" 780
 781
/* Protocol identifier */ 782
#define TEE_ISOCKET_PROTOCOLID_TLS 0x67 783
 784
/* Instance specific errors */ 785
#define TEE_ISOCKET_TLS_ERROR_REJECTED_SUITE 0xF1030001 786
#define TEE_ISOCKET_TLS_ERROR_VERSION 0xF1030002 787
#define TEE_ISOCKET_TLS_ERROR_UNSUPPORTED_SUITE 0xF1030003 788
#define TEE_ISOCKET_TLS_ERROR_HANDSHAKE 0xF1030004 789
#define TEE_ISOCKET_TLS_ERROR_AUTHENTICATION 0xF1030005 790
#define TEE_ISOCKET_TLS_ERROR_DATA 0xF1030006 791
#define TEE_ISOCKET_TLS_ERROR_UNSUPPORTED_KEYEX_GROUP 0xF1030007 792
#define TEE_ISOCKET_TLS_ERROR_UNSUPPORTED_SIGALG 0xF1030008 793
/* ADDED in v1.2: */ 794
#define TEE_ISOCKET_TLS_ERROR_EV_SIG_VERIFY_FAILED 0xF1030009 795
#define TEE_ISOCKET_TLS_ERROR_EV_BINDING_CHECK_FAILED 0xF103000A 796
 797
#define TEE_ISOCKET_TLS_ERROR_ALERT(code) (0xF1030100 | ((code) & 0xFF)) 798
 799
/* Instance specific ioctl functions */ 800
#define TEE_TLS_BINDING_INFO 0x67000001 801
#define TEE_TLS_SESSION_INFO 0x67000002 802
#define TEE_TLS_RELEASE_CERT_CHAIN 0x67000003 803
#define TEE_TLS_PEER_EVIDENCE 0x67000004 /* ADDED in v1.2 */ 804
 805
/* 806
 * Structs and enums for the setup 807
 */ 808
 809
typedef uint32_t TEE_tlsSocket_TlsVersion; 810
#define TEE_TLS_VERSION_ALL 0x00000000 811
#define TEE_TLS_VERSION_1v2 0x00000001 812
#define TEE_TLS_VERSION_PRE1v2 0x00000002 813
#define TEE_TLS_VERSION_1v3 0x00000004 814
 815
/* Ciphersuite list termination. */ 816
#define TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 817
 818
/* TLS 1.3 ciphersuites. */ 819
typedef uint32_t * TEE_tlsSocket_CipherSuites_GroupB; 820

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 59 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

#define TEE_TLS_AES_128_GCM_SHA256 0x00001301 821
#define TEE_TLS_AES_256_GCM_SHA384 0x00001302 822
#define TEE_TLS_CHACHA20_POLY1305_SHA256 0x00001303 823
#define TEE_TLS_AES_128_CCM_SHA256 0x00001304 824
#define TEE_TLS_AES_128_CCM_8_SHA256 0x00001305 825
 826
/* Ciphersuites for TLS 1.2 and below */ 827
typedef uint32_t *TEE_tlsSocket_CipherSuites_GroupA; 828
#define TEE_TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x0000000A /* [RFC5246] */ 829
#define TEE_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x00000013 /* [RFC5246] */ 830
#define TEE_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x00000016 /* [RFC5246] */ 831
#define TEE_TLS_RSA_WITH_AES_128_CBC_SHA 0x0000002F /* [RFC5246] */ 832
#define TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA 0x00000032 /* [RFC5246] */ 833
#define TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x00000033 /* [RFC5246] */ 834
#define TEE_TLS_RSA_WITH_AES_256_CBC_SHA 0x00000035 /* [RFC5246] */ 835
#define TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0x00000038 /* [RFC5246] */ 836
#define TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x00000039 /* [RFC5246] */ 837
#define TEE_TLS_RSA_WITH_AES_128_CBC_SHA256 0x0000003C /* [RFC5246] */ 838
#define TEE_TLS_RSA_WITH_AES_256_CBC_SHA256 0x0000003D /* [RFC5246] */ 839
#define TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 0x00000040 /* [RFC5246] */ 840
#define TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x00000067 /* [RFC5246] */ 841
#define TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 0x0000006A /* [RFC5246] */ 842
#define TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x0000006B /* [RFC5246] */ 843
#define TEE_TLS_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008B /* [RFC4279] */ 844
#define TEE_TLS_PSK_WITH_AES_128_CBC_SHA 0x0000008C /* [RFC4279] */ 845
#define TEE_TLS_PSK_WITH_AES_256_CBC_SHA 0x0000008D /* [RFC4279] */ 846
#define TEE_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008F /* [RFC4279] */ 847
#define TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x00000090 /* [RFC4279] */ 848
#define TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x00000091 /* [RFC4279] */ 849
#define TEE_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 0x00000093 /* [RFC4279] */ 850
#define TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA 0x00000094 /* [RFC4279] */ 851
#define TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA 0x00000095 /* [RFC4279] */ 852
#define TEE_TLS_RSA_WITH_AES_128_GCM_SHA256 0x0000009C /* [RFC5288] */ 853
#define TEE_TLS_RSA_WITH_AES_256_GCM_SHA384 0x0000009D /* [RFC5288] */ 854
#define TEE_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0000009E /* [RFC5288] */ 855
#define TEE_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x0000009F /* [RFC5288] */ 856
#define TEE_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 0x000000A2 /* [RFC5288] */ 857
#define TEE_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 0x000000A3 /* [RFC5288] */ 858
#define TEE_TLS_PSK_WITH_AES_128_GCM_SHA256 0x000000A8 /* [RFC5487] */ 859
#define TEE_TLS_PSK_WITH_AES_256_GCM_SHA384 0x000000A9 /* [RFC5487] */ 860
#define TEE_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 0x000000AA /* [RFC5487] */ 861
#define TEE_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 0x000000AB /* [RFC5487] */ 862
#define TEE_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 0x000000AC /* [RFC5487] */ 863
#define TEE_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 0x000000AD /* [RFC5487] */ 864
#define TEE_TLS_PSK_WITH_AES_128_CBC_SHA256 0x000000AE /* [RFC5487] */ 865
#define TEE_TLS_PSK_WITH_AES_256_CBC_SHA384 0x000000AF /* [RFC5487] */ 866
#define TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 0x000000B2 /* [RFC5487] */ 867

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 60 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

#define TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 0x000000B3 /* [RFC5487] */ 868
#define TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 0x000000B6 /* [RFC5487] */ 869
#define TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 0x000000B7 /* [RFC5487] */ 870
#define TEE_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0x0000C008 /* [RFC4492] */ 871
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0x0000C009 /* [RFC4492] */ 872
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0x0000C00A /* [RFC4492] */ 873
#define TEE_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C012 /* [RFC4492] */ 874
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0x0000C013 /* [RFC4492] */ 875
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0x0000C014 /* [RFC4492] */ 876
#define TEE_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0000C01A /* [RFC5054] */ 877
#define TEE_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C01B /* [RFC5054] */ 878
#define TEE_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0000C01C /* [RFC5054] */ 879
#define TEE_TLS_SRP_SHA_WITH_AES_128_CBC_SHA 0x0000C01D /* [RFC5054] */ 880
#define TEE_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 0x0000C01E /* [RFC5054] */ 881
#define TEE_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 0x0000C01F /* [RFC5054] */ 882
#define TEE_TLS_SRP_SHA_WITH_AES_256_CBC_SHA 0x0000C020 /* [RFC5054] */ 883
#define TEE_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0000C021 /* [RFC5054] */ 884
#define TEE_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0000C022 /* [RFC5054] */ 885
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0x0000C023 /* [RFC5289] */ 886
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0x0000C024 /* [RFC5289] */ 887
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0x0000C027 /* [RFC5289] */ 888
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0x0000C028 /* [RFC5289] */ 889
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0000C02B /* [RFC5289] */ 890
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0000C02C /* [RFC5289] */ 891
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0x0000C02F /* [RFC5289] */ 892
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0x0000C030 /* [RFC5289] */ 893
#define TEE_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000C034 /* [RFC5489] */ 894
#define TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0x0000C035 /* [RFC5489] */ 895
#define TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0x0000C036 /* [RFC5489] */ 896
#define TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0x0000C037 /* [RFC5489] */ 897
#define TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0x0000C038 /* [RFC5489] */ 898
#define TEE_TLS_RSA_WITH_AES_128_CCM 0x0000C09C /* [RFC6655] */ 899
#define TEE_TLS_RSA_WITH_AES_256_CCM 0x0000C09D /* [RFC6655] */ 900
#define TEE_TLS_DHE_RSA_WITH_AES_128_CCM 0x0000C09E /* [RFC6655] */ 901
#define TEE_TLS_DHE_RSA_WITH_AES_256_CCM 0x0000C09F /* [RFC6655] */ 902
#define TEE_TLS_PSK_WITH_AES_128_CCM 0x0000C0A4 /* [RFC6655] */ 903
#define TEE_TLS_PSK_WITH_AES_256_CCM 0x0000C0A5 /* [RFC6655] */ 904
#define TEE_TLS_DHE_PSK_WITH_AES_128_CCM 0x0000C0A6 /* [RFC6655] */ 905
#define TEE_TLS_DHE_PSK_WITH_AES_256_CCM 0x0000C0A7 /* [RFC6655] */ 906
 907
/* Signature algorithms. */ 908
typedef uint32_t TEE_tlsSocket_SignatureScheme; 909
#define TEE_TLS_RSA_PKCS1_SHA256 0x00000401 910
#define TEE_TLS_RSA_PKCS1_SHA384 0x00000501 911
#define TEE_TLS_RSA_PKCS1_SHA512 0x00000601 912
#define TEE_TLS_ECDSA_SECP256R1_SHA256 0x00000403 913
#define TEE_TLS_ECDSA_SECP384R1_SHA384 0x00000503 914

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 61 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

#define TEE_TLS_ECDSA_SECP521R1_SHA512 0x00000603 915
#define TEE_TLS_RSA_PSS_RSAE_SHA256 0x00000804 916
#define TEE_TLS_RSA_PSS_RSAE_SHA384 0x00000805 917
#define TEE_TLS_RSA_PSS_RSAE_SHA512 0x00000806 918
#define TEE_TLS_ED25519 0x00000807 919
#define TEE_TLS_ED448 0x00000808 920
#define TEE_TLS_RSA_PSS_PSS_SHA256 0x00000809 921
#define TEE_TLS_RSA_PSS_PSS_SHA384 0x0000080A 922
#define TEE_TLS_RSA_PSS_PSS_SHA512 0x0000080B 923
#define TEE_TLS_RSA_PKCS_SHA1 0x00000201 924
#define TEE_TLS_ECDSA_SHA1 0x00000203 925
 926
/* Key exchange groups used in TLS 1.3 */ 927
typedef uint32_t TEE_tlsSocket_Tls13KeyExGroup; 928
#define TEE_TLS_KEYEX_GROUP_SECP256R1 0x00000017 929
#define TEE_TLS_KEYEX_GROUP_SECP384R1 0x00000018 930
#define TEE_TLS_KEYEX_GROUP_SECP521R1 0x00000019 931
#define TEE_TLS_KEYEX_GROUP_X25519 0x0000001D 932
#define TEE_TLS_KEYEX_GROUP_X4458 0x0000001E 933
#define TEE_TLS_KEYEX_GROUP_FFDHE_2048 0x00000100 934
#define TEE_TLS_KEYEX_GROUP_FFDHE_3072 0x00000101 935
#define TEE_TLS_KEYEX_GROUP_FFDHE_4096 0x00000102 936
#define TEE_TLS_KEYEX_GROUP_FFDHE_6144 0x00000103 937
#define TEE_TLS_KEYEX_GROUP_FFDHE_8192 0x00000104 938
 939
/* The definition below is just a simple example of what an implementation 940
 could define. */ 941
typedef struct TEE_tlsSocket_Context_s { 942
 /* 943
 * All things needed to maintain the context 944
 */ 945
 uint32_t protocolError; 946
 uint32_t state; 947
} TEE_tlsSocket_Context; 948
 949
typedef struct TEE_tlsSocket_PSK_Info_s { 950
 TEE_ObjectHandle pskKey; 951
 char *pskIdentity; 952
} TEE_tlsSocket_PSK_Info; 953
 954
 955
typedef struct TEE_tlsSocket_SRP_Info_s { 956
 char *srpPassword; 957
 char *srpIdentity; 958
} TEE_tlsSocket_SRP_Info; 959
 960
typedef struct TEE_tlsSocket_ClientPDC_s { 961

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 62 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 TEE_ObjectHandle privateKey; 962
 uint8_t *bulkCertChain; 963
 uint32_t bulkSize; 964
 uint32_t bulkEncoding; 965
} TEE_tlsSocket_ClientPDC; 966
 967
 968
typedef struct TEE_tlsSocket_ServerPDC_s { 969
 TEE_ObjectHandle publicKey; 970
 // The following fields were introduced in v1.1 971
 TEE_ObjectHandle *trustedCerts; 972
 uint32_t *trustedCertEncodings; 973
 uint32_t numTrustedCerts; 974
 uint32_t allowTAPersistentTimeCheck; 975
 uint8_t *certPins; 976
 uint32_t numCertPins; 977
 uint8_t *pubkeyPins; 978
 uint32_t numPubkeyPins; 979
} TEE_tlsSocket_ServerPDC; 980
 981
typedef uint32_t TEE_tlsSocket_ClientCredentialType; 982
#define TEE_TLS_CLIENT_CRED_NONE 0x00000000 983
#define TEE_TLS_CLIENT_CRED_PDC 0x00000001 984
#define TEE_TLS_CLIENT_CRED_CSC 0x00000002 985
 986
typedef uint32_t TEE_tlsSocket_ServerCredentialType; 987
#define TEE_TLS_SERVER_CRED_PDC 0x00000000 988
#define TEE_TLS_SERVER_CRED_CSC 0x00000001 989
#define TEE_TLS_SERVER_CRED_CERT_PIN 0x00000002 990
#define TEE_TLS_SERVER_CRED_PUBKEY_PIN 0x00000003 991
 992
typedef struct TEE_tlsSocket_Credentials_s { 993
 TEE_tlsSocket_ServerCredentialType serverCredType; 994
 TEE_tlsSocket_ServerPDC *serverCred; 995
 TEE_tlsSocket_ClientCredentialType clientCredType; 996
 TEE_tlsSocket_ClientPDC *clientCred; 997
} TEE_tlsSocket_Credentials; 998
 999
/* ADDED in v1.2: */ 1000
typedef uint32_t TEE_tlsSocket_AttEvTransMethod; 1001
define TEE_TLS_ATT_EV_TRANS_METHOD_NONE 0x00000000 1002
define TEE_TLS_ATT_EV_TRANS_METHOD_X509_EXTENSION 0x00000001 1003
define TEE_TLS_ATT_EV_TRANS_METHOD_EXTRA_CERT 0x00000002 1004
define TEE_TLS_ATT_EV_TRANS_METHOD_CERT_MSG_EXT 0x00000004 1005
 1006
/* ADDED in v1.2: */ 1007
typedef uint32_t TEE_tlsSocket_AttFlags; 1008

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 63 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

define TEE_TLS_ATT_FLAG_SEND_EVIDENCE 0x00000001 1009
define TEE_TLS_ATT_FLAG_SEND_UNSOLICITED_EVIDENCE 0x00000002 1010
define TEE_TLS_ATT_FLAG_REQUEST_EVIDENCE 0x00000004 1011
define TEE_TLS_ATT_FLAG_REQUIRE_EVIDENCE 0x00000008 1012
define TEE_TLS_ATT_FLAG_PRIVACY 0x00000010 1013
define TEE_TLS_ATT_FLAG_USE_ATTESTATION_SERVICE 0x00000020 1014
 1015
/* ADDED in v1.2: */ 1016
typedef struct TEE_tlsSocket_AttestationSetup_s { 1017
 TEE_tlsSocket_AttFlags flags; 1018
 TEE_tlsSocket_AttEvTransMethod sendEvTransMethod; 1019
 TEE_tlsSocket_AttEvTransMethod recvEvTransMethod; 1020
 TEE_tlsSocket_Credentials *evidenceCred; 1021
 TEE_UUID *attEnvUUID; 1022
} TEE_tlsSocket_AttestationSetup; 1023
 1024
/* 1025
 * Struct for retrieving channel binding data 1026
 * using the ioctl functionality. 1027
 */ 1028
typedef struct TEE_tlsSocket_CB_Data_s { 1029
 uint32_t cb_data_size; 1030
 uint8_t cb_data[]; 1031
} TEE_tlsSocket_CB_Data; 1032
 1033
/* 1034
 * Struct for retrieving session information 1035
 * using the ioctl functionality. 1036
 */ 1037
 1038
typedef struct TEE_tlsSocket_SessionInfo_s 1039
{ 1040
 uint8_t structVersion; 1041
 TEE_tlsSocket_TlsVersion chosenVersion; 1042
 uint32_t chosenCiphersuite; 1043
 TEE_tlsSocket_SignatureScheme chosenSigAlg; 1044
 TEE_tlsSocket_Tls13KeyExGroup chosenKeyExGroup; 1045
 unsigned char *matchedServerName; 1046
 uint32_t matchedServerNameLen; 1047
 const uint8_t *validatedServerCertificate; 1048
 uint32_t validatedServerCertificateLen; 1049
 uint32_t usedServerAuthenticationMethod; 1050
 // The following fields were introduced in v1.2: 1051
 TEE_tlsSocket_AttEvTransMethod recvAttestationType; 1052
} TEE_tlsSocket_SessionInfo; 1053
 1054
/* Structure for storing session tickets. */ 1055

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 64 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

typedef struct TEE_tlsSocket_SessionTicket_Info_s { 1056
 uint8_t *encrypted_ticket; 1057
 uint32_t encrypted_ticket_len; 1058
 uint8_t *server_id; 1059
 uint32_t server_id_len; 1060
 uint8_t *session_params; 1061
 uint32_t session_params_len; 1062
 uint8_t caller_allocated; 1063
 TEE_tlsSocket_PSK_Info psk; 1064
} TEE_tlsSocket_SessionTicket_Info; 1065
 1066
/* The TEE TLS setup struct */ 1067
typedef struct TEE_tlsSocket_Setup_s { 1068
 TEE_tlsSocket_TlsVersion acceptServerVersion; 1069
 TEE_tlsSocket_CipherSuites_GroupA *allowedCipherSuitesGroupA; 1070
 TEE_tlsSocket_PSK_Info *PSKInfo; 1071
 TEE_tlsSocket_SRP_Info *SRPInfo; 1072
 TEE_tlsSocket_Credentials *credentials; 1073
 TEE_iSocket *baseSocket; 1074
 TEE_iSocketHandle *baseContext; 1075
 1076
 // The following fields were introduced in v1.1 1077
 TEE_tlsSocket_CipherSuites_GroupB *allowedCipherSuitesGroupB; 1078
 TEE_tlsSocket_SignatureScheme *sigAlgs; 1079
 uint32_t numSigAlgs; 1080
 TEE_tlsSocket_SignatureScheme *certSigAlgs; 1081
 uint32_t numCertSigAlgs; 1082
 TEE_tlsSocket_Tls13KeyExGroup *tls13KeyExGroups; 1083
 uint32_t numTls13KeyExGroups; 1084
 uint32_t numTls13KeyShares; 1085
 TEE_tlsSocket_SessionTicket_Info *sessionTickets; 1086
 uint32_t sessionTicketsNumElements; 1087
 uint32_t numStoredSessionTickets; 1088
 unsigned char *serverName; 1089
 uint32_t serverNameLen; 1090
 uint8_t *serverCertChainBuf; 1091
 uint32_t *serverCertChainBufLen; 1092
 uint8_t storeServerCertChain; 1093
 unsigned char **alpnProtocolIds; 1094
 uint32_t *alpnProtocolIdLens; 1095
 uint32_t numAlpnProtocolIds; 1096
 1097
 // The following fields were introduced in v1.2 1098
 TEE_tlsSocket_AttestationSetup *attestationSetup; /* ADDED in v1.2 */ 1099
 1100
} TEE_tlsSocket_Setup; 1101
 1102

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 65 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

 1103
/* declare the function pointer handle */ 1104
extern TEE_iSocket * const TEE_tlsSocket; 1105
#endif 1106
 1107

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 66 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

C.5 Additional Cipher Suite References 1108

A TLS cipher suite constant defines three entities: 1109

• The authentication and key exchange algorithm 1110

• The bulk encryption algorithm (cipher and mode) 1111

• The message authentication algorithm 1112

The tables below list the supported algorithms for each entity. 1113

See section C.2.6.2 for a detailed description of the constants. 1114

Note: This version of the specification only supports ephemeral Diffie-Hellman, as the TEE currently has no 1115
way of interpreting certificates. This may change in future versions of specifications. 1116

Table C-29: Supported Authentication and Key Exchange Algorithms 1117

Algorithm Main Reference

Pre-shared key (PSK) [RFC 4279]

PSK with ephemeral Diffie-Hellman

PSK with server side RSA certificate

Secure remote password (SRP) [RFC 5054]

SRP with server side RSA certificate

SRP with server side DSS certificate

Server side RSA certificate [RFC 5246]

Ephemeral Diffie-Hellman with server side RSA certificate

Ephemeral Diffie-Hellman with server side DSS certificate.

PSK with Ephemeral Elliptic Curve Diffie-Hellman [RFC 5489]

Ephemeral Elliptic Curve Diffie-Hellman with server side RSA certificate [RFC 5289]

Ephemeral Elliptic Curve Diffie-Hellman with server side ECDSA certificate [RFC 4492]

 1118

Table C-30: Supported Bulk Encryption Algorithms 1119

Algorithm Main Reference

Triple-DES with 112-bit key in CBC mode [RFC 5246]

AES with 128-bit key in CBC mode

AES with 256-bit key in CBC mode

AES with 128-bit key in CCM mode providing both confidentiality and authenticity [RFC 6655]

AES with 256-bit key in CCM mode providing both confidentiality and authenticity

AES with 128-bit key in GCM mode providing both confidentiality and authenticity [RFC 5288]

AES with 256-bit key in GCM mode providing both confidentiality and authenticity

 1120

 Annex C TEE Sockets TLS API

Public Review v1.1.0.13 [target v1.2] Page 67 / 67

Copyright 2013-2024 GlobalPlatform, Inc. All Rights Reserved.
This document (and the information herein) is subject to updates, revisions, and extensions by GlobalPlatform, and may be disseminated without
restriction. Use of the information herein (whether or not obtained directly from GlobalPlatform) is subject to the terms of the corresponding
GlobalPlatform license agreement on the GlobalPlatform website (the “License”). Any use (including but not limited to sublicensing) inconsistent
with the License is strictly prohibited.

Table C-31: Supported Message Authentication Algorithms 1121

Algorithm Main Reference

CCM or GCM. This bulk encryption mode provides both encryption and message
authentication.

[RFC 6655],
[RFC 5288]

HMAC with SHA-1 [RFC 5246]

HMAC with SHA-256

HMAC with SHA-384

 1122

	Contents
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations
	1.6 Revision History

	Annex C TEE_tlsSocket Instance Specification
	C.1 General Information
	C.1.1 Header File Name
	C.1.1.1 API Version

	C.1.2 Specification Version Number Property
	C.1.3 Protocol Identifier Value
	C.1.4 Panic Numbering

	C.2 Transport Layer Security (TLS)
	C.2.1 Handshake Variants
	C.2.2 Credentials and Authentication
	C.2.2.1 Server (Remote Endpoint) Authentication
	C.2.2.2 Client (Local Endpoint) Authentication

	C.2.3 TLS Extensions and Optional Features
	C.2.4 Remote Attestation
	C.2.4.1 Post-handshake Attestation
	C.2.4.2 Intra-handshake Attestation
	C.2.4.3 Scope of the Attestation Feature
	C.2.4.4 Channel Bindings

	C.2.5 TEE_iSocket Instance Variable for TLS
	C.2.6 Type Definitions
	C.2.6.1 TEE_tlsSocket_TlsVersion
	C.2.6.2 TEE_tlsSocket_CipherSuites_GroupA
	C.2.6.3 TEE_tlsSocket_CipherSuites_GroupB
	C.2.6.4 TEE_tlsSocket_SignatureScheme
	C.2.6.5 TEE_tlsSocket_Tls13KeyExGroup
	C.2.6.6 TEE_tlsSocket_PSK_Info Structure
	C.2.6.7 TEE_tlsSocket_SessionTicket_Info Structure
	C.2.6.8 TEE_tlsSocket_SRP_Info Structure
	C.2.6.9 TEE_tlsSocket_ClientPDC Structure
	C.2.6.10 TEE_tlsSocket_ServerCredentialType
	C.2.6.10.1 Server Certificate Chain Validation

	C.2.6.11 TEE_tlsSocket_ServerPDC Structure
	C.2.6.12 TEE_tlsSocket_ClientCredentialType
	C.2.6.13 TEE_tlsSocket_Credentials Structure
	C.2.6.14 TEE_tlsSocket_CB_Data Structure
	C.2.6.15 TEE_tlsSocket_SessionInfo Structure
	C.2.6.16 TEE_tlsSocket_AttFlags
	C.2.6.17 TEE_tlsSocket_AttEvTransMethod
	C.2.6.18 TEE_tlsSocket_AttestationSetup Structure

	C.2.7 TEE_tlsSocket_Setup Structure
	C.2.8 Instance Specific Errors
	C.2.9 Instance Specific ioctl commandCode

	C.3 Specification Properties
	C.4 Header File Example
	C.5 Additional Cipher Suite References

