

Post-Quantum cryptography Status & Outlook

Dr. Julian Brough, BSI, Branch KM 21 Global Platform, Cybersecurity Vehicle Forum November 14th, 2023 Mission statement

BSI as the Federal Cyber Security Authority shapes information security in digitalization through prevention, detection and response for government, business and society.

The need for quantum-safe cryptography

Post Quantum Cryptography

Current Public Key Cryptography (RSA, (EC)DH, (EC)DSA)

Quantum-safe Cryptography

Quantum Key Distribution

How long do we have for migration?

Relevant factors:

- How long should the data stay secure? (X Years)
- How long to migrate the existing infrastructure with a large-scale quantum-safe solution? (Y Years)
- How long will it take for a large-scale quantum computer to be built? (Z Years)

Mosca: If X + Y > Z, then we have a problem!

The need for quantum-safe cryptography

Experts' estimates of likelihood of a quantum computer able to break RSA-2048 in 24 hours (experts close to experiment)

Figure 12 Estimates for the likelihood of a quantum computer that is cryptographically relevant—in the specific sense of being able to break RSA-2048 in 24 hours—for various time frames, limited to the 28 experts deemed to be closer to experiments. Such a subset of experts appear to provide estimates that do not differ substantially from those of all respondents (see Figure 9).

Source: Quantum Threat Timeline Report – 2021: Executive Summary, Global Risk Institute, January 24, 2022 Dr. Michele Mosca & Dr. Marco Piani

https://globalriskinstitute.org/publication/2021- quantum-threat-timeline-report-global-risk-institute-global-risk-institute/

BSI Study "Status of quantum computer development"

- Available under <u>www.bsi.bund.de/qcstudie</u>
- On-going BSI project updating the study, with new developments in:
 - > Algorithms in the NISQ-era (noisy intermediate-scale quantum)
 - Error correction and –mitigation
 - > Hardware
- No fundamental breakthrough; however, development can accelerate significantly if heuristic results are confirmed

BSI's working assuption:

With non-negligible probability, **there will be a cryptographically relevant quantum computer by the beginning of the 2030s.**

Political Guidelines

M-23-02

FROM:

Deutscher Bundestag - 20. Wahlperiode

Post-Quantum-Cryptography

in S

Standardisation: NIST-Process ("A long and winding road")

First Standards: 2024

August 2023:

Draft Standards

Further call for additional Signature schemes

Juli 2022: Announcement of the 4 selected protocols

July 2020: 7 finalists and 8 alternatives for round 3

January 2019: 26 selected for the second round

November 2017: Deadline for submissions \rightarrow 82 submissions, 69 accepted

November 2016: Call for Proposals

Standardisation: ISO/IEC, IETF/IRTF

- ISO/IEC 18033-2: Standardisation project for PQ-KEMs
 - FrodoKEM
 - Classic McEliece
 - ML-KEM (CRYSTALS-Kyber)
- Multiple standardisation projects for PQC in IETF/IRTF
 - OpenPGP
 - Cryptographic Message Syntax (CMS)
 - X.509
 - TLS 1.3
 - IKEv2
 - ...

BSI Guide "Quantum-safe cryptography"

In 2021 BSI published the guideline Quantum-safe cryptography – fundamentals, current developments and recommendations:

- Background on quantum computers, PQC, protocols, QKD
- Developments in politics, research and industry
- Recommendations for actions (excerpt):
 - Preparation: cryptographic inventory
 - Hybrid solutions for KEMs and signature schemes
 - Cryptographic agility (the ability to switch between multiple cryptographic primitives)

Reference: www.bsi.bund.de/dok/pqmigration-en

BSI Technical Guideline TR-02102-1

"Cryptographic Recommendations for PQC"

- Key Encapsulation Mechanisms:
 - FrodoKEM
 - Classic McEliece
- Stateful hash-based signatures:
 - LMS/HSS
 - XMSS/XMSS^MT
- PQC only in a *hybrid format*, i.e. PQC + "Classical", except for HBS

Reference: <u>www.bsi.bund.de/TR-02102</u>

For Information Secur	ity
BSI – Technical Designation:	Guideline Cryptographic Mechanisms: Recommendations and Key Lengths
Abbreviation:	BSI TR-02102-1
Version:	2022-01
As of:	January 28, 2022

BSI Technical Guideline TR-02102-1

Outlook (2024/2025) for PQC:

- Key Encapsulation Mechanisms:
 - FrodoKEM
 - Classic McEliece
 - ML-KEM (after standard becomes available)
- Digital Signature Schemes:
 - ML-DSA (after standard becomes available)
 - SLH-DSA (after standard becomes available)
 - LMS/HSS and XMSS/XMSS^MT
- Parameter sets: NIST security categories 3 and 5
- PQC only in a *hybrid format*, i.e. PQC + "Classical", except for HBS

Federal Office for Information Securi	ity
BSI – Technical	Guideline
Designation:	Cryptographic Mechanisms: Recommendations and Key Lengths
Abbreviation:	BSI TR-02102-1
Version:	2022-01
As of:	January 28, 2022

Key Exchange: KEM Combiner

• Goal:

Construction is secure as long as at least one of the inputs is secure.

- Recommendations:
 - CatKDF & CasKDF from ETSI TS 103 744
 - The Keccac (SHA3, KMAC) and HMAC based KDFs from NIST SP 800-56Cr2

BSI-activities and projects on PQC

Cryptographic library Botan	Integration of PQC in Thunderbird and OpenPGP	Migration of German administrative Public Key Infrastructure to PQC
 Botan 3.x Implementation of PQC in Botan:	 PQC+ECC for E-Mail-	 Hybrid solution (PQC+ECC) for
SPHINCS+, FrodoKEM, Classic	encryption and signatures IETF I-D "PQC for	Subscriber-Certificates Root-CA: BSI is examining the
McEliece, Kyber, Dilithium,	OpenPGP" (coming soon) Implementation in	use of hash-based signature
XMSS, LMS/HSS Hybrid Key Agreement in TLS 1.3	GnuPG/libgcrypt	scheme

Migration of German administrative Public Key Infrastructure

Quantum Key Distribution

Quantum Key Distribution (QKD)

Some facts:

- Theoretical security is based on quantum-physical principles
- Only works for key agreement
- Requires specialized (and expensive) hardware
- Implementation security must also be considered (in addition to theoretical security)
- Limitations of QKD make it only applicable for specific use cases

BSI's policy:

- Migration to PQC has highest priority
- QKD could potentially complement or backup PQC in the future

Summary

- Public-key cryptography deployed today **will be broken** by large-scale quantum computers.
- *"Store now, decrypt later"* is a real threat & considerable migration times are to be expected.
 PQC-migration has to be initiated **now**!
- Cryptographic agility should become a design criterion.
- In general, PQC should be used in a hybrid format together with RSA or ECC.
- QKD is not sufficiently mature from a security perspective.

Thank you for your attention!

Contact

Dr. Julian Brough KM 21 – Information Assurance Technology Requirements

Federal Office for Information Security (BSI) Godesberger Allee 185-189 53175 Bonn

julian.brough@bsi.bund.de

