Intrusion Detection Use Case and Secure Components

Protect your on-board ECUs from threats with a frictionless intrusion detection and prevention system (IDS/IPS)

Kalli Schlauch - CEH, GCIH *VicOne*

1. About VicOne

- 2. Emerging Security Risks in Software-**Defined Vehicles**
- 3. Expanding Threat Landscape
- 4. Intrusion Detection and Prevention

About VicOne From Trend to VicOne: Always Anticipating, Adapting

1. Forrester Wave, Extended Detection and Response (XDR), Q4, 2021

- 2. Gartner, Enterprise Network Equipment by Market Segment, Worldwide, 2021.
- 3. Quantifying the Public Vulnerability Market, Omdia, May 2022

- IDS/IPS = Intrusion Detection and Prevention System
- XDR = Extended detection and response
- VMS = Vulnerability management system

- EVSE = Electric Vehicle Supply Equipment
- SDV = Software-defined vehicle

Comprehensive Cybersecurity Solutions for CASE Vehicles/SDVs

For Head of SW Development For Head of Cybersecurity Operations For Head of Digital Service For Head of Vehicle Cybersecurity For Head of EVSE Cybersecurity

Emerging Security Risks in Software-Defined Vehicles

Expanding Threat Landscape

Virtual ECU Advancements fuel SDV

Automotive Ecosystem Evolved

Threat landscape – Wider and more open

Risks in SDV

 Open-source software vulnerabilities in the entire automotive ecosystem

Development Lifecycle

Speed Up Innovation with

Open and Standardize

Cloud Services

Updatable User Experience with Cloud-Car Connected

- Connected ecosystem vulnerability from V2X
- Cloud to edge/edge to cloud
- Frequent OTA updates
- Higher usage of API

Physical Car

Simplified Development with Centralized HPC

 Widespread adoption of virtualization technologies

- In-vehicle network security risks
- Privacy concerns surrounding user profiles

Expanding Attack Landscape

- 2023 H1 incident cases show a **broader spectrum** of attacks targeting vehicles, expanding from the cloud to encompass components and infrastructure.
- Showing integrated protection becomes vital over individual measures

Source: VicOne and public news

30% CVEs YoY Increased

- 2023 H1 automotive-related CVEs show a **30% YoY increase** from last year.
- Since 2019, there has been an average of **300** automotive-related CVEs per year.
- The continuous rise in CVEs highlight the importance of effective vulnerability management.

Source: VicOne and NVD database

Effects of Exposed Vulnerabilities in Automotive Systems, for example: Data theft/harvest, Device hijack, Device malfunction, Loss of system/service availability, Network host services disabled....

Intrusion Detection and Prevention

Vulnerability in detail OpenSSL Heart Bleed

Ironically OpenSSL is Security Library (Secure Sockets Layer Protocol)

How do we get our hands on those?

https://xkcd.com/1354/ https://stackoverflow.com ± Frame 128: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) ± Ethernet II, Src: Netgear_44:86:3b (c0:3f:0e:44:86:3b), Dst: AsustekC_6d:47:70 ± Internet Protocol Version 4, Src: 192.168.1.79 (192.168.1.79), Dst: 192.168.1.20 ± Transmission Control Protocol, Src Port: 44404 (44404), Dst Port: https (443), S

Secure Sockets Layer

 TLSv1.1 Record Layer: Heartbeat Request Content Type: Heartbeat (24) Version: TLS 1.1 (0x0302) Length: 3
Heartbeat Message Type: Request (1) Payload Length: 16384

[Malformed Packet: SSL]

Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]

The Real Case of Tesla Cars

Experimental security assessment in 2019

Hackers conquer Tesla's in-car web browser

Source: ZDI (2019)

UN R155 requires competent detection capabilities

JNECE

Though not mentioned directly in the regulation, IDS becomes an inherent component of vehicle security.

Development

Production

Post-production

7.2.2.4.(b) "...Include the capability to analyze and detect cyber threats, vulnerabilities and **cyber-attacks from vehicle data and vehicle logs**...."

- **7.3.7.** The vehicle manufacturer shall implement measures for the vehicle type to:
- (a) Detect and prevent cyber-attacks against vehicles of the vehicle type;

(b) Support the monitoring capability of the vehicle manufacturer with regards to **detecting threats**, vulnerabilities and cyber-attacks relevant to the vehicle type;

Annex 5

- **M7** Access control techniques and designs shall be applied to protect system data/code.
- **M8** Through system design and access control it should not be possible for unauthorized personnel to access personal or system critical data.
- **M9** Measures to prevent and detect unauthorized access shall be employed
- M13 Measures to detect and recover from a denial of service attack shall be employed
- **M15** Measures to detect malicious internal messages or activity should be considered
- **M21** Software shall be security assessed, authenticated and integrity protected.
- **M22** Security controls shall be applied to external interfaces

Detection

Expected Capabilities

Detection mechanism

capabilities

ш

С

Т

Protect your on-board ECUs from threats with our frictionless IDS/IPS

Protect your on-board ECUs from threats with our frictionless IDS/IPS

xCarbon intrusion detection and prevention system (IDS/IPS)

Detection & Prevention

-

