

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents
or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. This document is currently in draft form, and the
technology provided or described herein may be subject to updates, revisions, extensions, review, and
enhancement by GlobalPlatform or its Committees or Working Groups. Prior to publication of this
document by GlobalPlatform, neither Members nor third parties have any right to use this document for
anything other than review and study purposes. Use of this information is governed by the GlobalPlatform
license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Technology
Annex C: TLS Specification of
TEE Sockets API Specification v1.0.3
Version 1.0.2.30 (to be released as 1.1)

Public Review
September 2022
Document Reference: GPD_SPE_103

 Sockets Annex C: TLS Spec – Public Review v1.0.2.30 (to be released as v.1.1)

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 3/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction ... 5
1.1 Audience ... 5
1.2 IPR Disclaimer .. 5
1.3 References .. 6
1.4 Terminology and Definitions .. 7
1.5 Abbreviations and Notations ... 8
1.6 Revision History .. 9

Annex C TEE_tlsSocket Instance Specification .. 10
C.1 General Information .. 10

C.1.1 Header File Name .. 10
C.1.1.1 API Version ... 10

C.1.2 Specification Version Number Property ... 11
C.1.3 Protocol Identifier Value ... 11
C.1.4 Panic Numbering .. 11

C.2 Transport Layer Security (TLS) ... 12
C.2.1 Handshake Variants ... 12
C.2.2 Credentials and Authentication .. 13

C.2.2.1 Server (Remote Endpoint) Authentication .. 13
C.2.2.2 Client (Local Endpoint) Authentication ... 14

C.2.3 TLS Extensions and Optional Features ... 15
C.3 Header File .. 18

C.3.1 TEE_iSocket Instance Variable for TLS ... 18
C.3.2 Type Definitions ... 19

C.3.2.1 TEE_tlsSocket_TlsVersion ... 19
C.3.2.2 TEE_tlsSocket_CipherSuites_GroupA ... 20
C.3.2.3 TEE_tlsSocket_CipherSuites_GroupB ... 23
C.3.2.4 TEE_tlsSocket_SignatureScheme ... 24
C.3.2.5 TEE_tlsSocket_Tls13KeyExGroup ... 26
C.3.2.6 TEE_tlsSocket_PSK_Info Structure ... 27
C.3.2.7 TEE_tlsSocket_SessionTicket_Info Structure .. 27
C.3.2.8 TEE_tlsSocket_SRP_Info Structure ... 29
C.3.2.9 TEE_tlsSocket_ClientPDC Structure .. 30
C.3.2.10 TEE_tlsSocket_ServerCredentialType ... 31

C.3.2.10.1 Server Certificate Chain Validation ... 32
C.3.2.11 TEE_tlsSocket_ServerPDC Structure .. 33
C.3.2.12 TEE_tlsSocket_ClientCredentialType .. 35
C.3.2.13 TEE_tlsSocket_Credentials Structure .. 36
C.3.2.14 TEE_tlsSocket_CB_Data Structure .. 37
C.3.2.15 TEE_tlsSocket_SessionInfo Structure .. 38

C.3.3 TEE_tlsSocket_Setup Structure .. 40
C.3.4 Instance Specific Errors ... 44
C.3.5 Instance Specific ioctl commandCode ... 46

C.4 Specification Properties .. 47
C.5 Header File Example ... 48
C.6 Additional Cipher Suite References .. 55

4/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables
Table 1-1: Normative References .. 6

Table 1-2: Terminology and Definitions ... 8

Table 1-3: Abbreviations and Notations .. 8

Table 1-4: Revision History ... 9

Table C-1: gpd.tee.tls.handshake Property Bit-mask Constants ... 12

Table C-2: gpd.tee.tls.auth.remote.credential Property Bit-mask Constants 14

Table C-3: gpd.tee.tls.auth.local.credential Property Bit-mask Constants 15

Table C-4: TLS Extensions and Options Relevant to this Specification .. 15

Table C-5: TEE_tlsSocket_TlsVersion Bit-mask Constants .. 19

Table C-6: TEE_tlsSocket_CipherSuites_GroupA Values .. 20

Table C-7: TEE_tlsSocket_CipherSuites_GroupB Values .. 23

Table C-8: TEE_tlsSocket_SignatureScheme Values .. 24

Table C-9: TEE_tlsSocket_Tls13KeyExGroup Values .. 26

Table C-10: TEE_tlsSocket_PSK_Info Member Variables .. 27

Table C-11: TEE_tlsSocket_SessionTicket_Info Member Variables .. 28

Table C-12: TEE_tlsSocket_SRP_Info Member Variables .. 29

Table C-13: TEE_tlsSocket_ClientPDC Member Variables .. 30

Table C-14: TEE_tlsSocket_ServerCredentialType Values .. 31

Table C-15: gpd.tee.tls.auth.remote.validation_steps Property Bit-mask Constants 33

Table C-16: TEE_tlsSocket_ServerPDC Member Variables .. 34

Table C-17: TEE_tlsSocket_ClientCredentialType Values .. 35

Table C-18: TEE_tlsSocket_Credentials Member Variables .. 36

Table C-19: TEE_tlsSocket_CB_Data Member Variables .. 37

Table C-20: TEE_tlsSocket_SessionInfo Member Variables .. 38

Table C-21: TEE_tlsSocket_Setup Member Variables .. 41

Table C-22: TLS Instance Specific Errors ... 44

Table C-23: TLS Instance Specific ioctl commandCode ... 46

Table C-24: Specification Reserved Properties .. 47

Table C-25: Supported Authentication and Key Exchange Algorithms ... 55

Table C-26: Supported Bulk Encryption Algorithms .. 55

Table C-27: Supported Message Authentication Algorithms... 56

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 5/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction 1

This document includes one annex of TEE Sockets API Specification ([TEE Sockets]). Additional annexes 2
exist. 3

The API defined in this specification enables several TLS protocol capabilities. The API only supports 4
client-side TLS functionality. 5

It is not the role of this specification to guide the reader in determining which TLS protocol capabilities may be 6
safe for their purposes, and this specification recognizes that in some cases the use of weak cryptography by 7
a Trusted Application (TA) may be better than the use of that same cryptography by an application outside of 8
a Trusted Execution Environment (TEE). 9

GlobalPlatform does provide recommendations for best practices and acceptable cryptography usage. These 10
can be found in GlobalPlatform Cryptographic Algorithm Recommendations ([Crypto Rec]), and relevant 11
sections of that document MAY be applied to the interfaces and API offered by this specification. As always, 12
the developer should refer to appropriate security guidelines. 13

This annex addresses the instance specification of the Transport Layer Security (TLS) protocol versions 1.3 14
and 1.2. 15

GlobalPlatform would like to explicitly encourage readers to contribute to its specifications. 16

 17

If you are implementing this specification and you think it is not clear on something:

1. Check with a colleague.

And if that fails:

2. Contact GlobalPlatform at TEE-issues-GPD_SPE_103_v1.1@globalplatform.org

 18

1.1 Audience 19

This document is suitable for software developers implementing Trusted Applications running inside the 20
Trusted Execution Environment (TEE) which need to make socket networking calls. 21

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework, 22
the TEE APIs, and the communications infrastructure required to access Trusted Applications. 23

1.2 IPR Disclaimer 24

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work 25
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For 26
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please 27
visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held responsible for 28
identifying any or all such IPR, and takes no position concerning the possible existence or the evidence, 29
validity, or scope of any such IPR. 30

mailto:TEE-issues-GPD_SPE_103_v1.1@globalplatform.org
https://globalplatform.org/specifications/ip-disclaimers/

6/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.3 References 31

The table below lists references applicable to this specification. The latest version of each reference applies 32
unless a publication date or version is explicitly stated. 33

Table 1-1: Normative References 34

Standard / Specification Description Ref

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification

[TEE Core]

GPD_SPE_100 GlobalPlatform Technology
TEE Sockets API Specification

[TEE Sockets]

GPD_SPE_101 GlobalPlatform Technology
TEE Sockets API Specification Annex A:
TCP/IP Specification of TEE Sockets API Specification

[Sockets TCP/IP]

GPD_SPE_102 GlobalPlatform Technology
TEE Sockets API Specification Annex B:
UDP/IP Specification of TEE Sockets API Specification

[Sockets UDP/IP]

GPD_SPE_104 GlobalPlatform Technology
TEE Sockets API Specification Annex D:
Example of Using TEE Sockets API Specification

[Socket Example]

GP_TEN_053 GlobalPlatform Technology
Cryptographic Algorithm Recommendations

[Crypto Rec]

GP_GUI_001 GlobalPlatform Document Management Guide [Doc Mgmt]

IANA TLS Cipher Suite
Registry

http://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

[IANA]

TLS Cipher Suites TLS Cipher Suites
https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml#tls-parameters-4

[IANA Example]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

RFC 4279 PSK Ciphersuites for TLS [RFC 4279]

RFC 4492 Elliptic Curve Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS)

[RFC 4492]

RFC 5054 Using the Secure Remote Password (SRP) Protocol for
TLS Authentication

[RFC 5054]

RFC 5246 The Transport Layer Security (TLS) Protocol [RFC 5246]

RFC 5280 Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile

[RFC 5280]

RFC 5288 AES Galois Counter Mode (GCM) Cipher Suites for
TLS

[RFC 5288]

RFC 5289 TLS Elliptic Curve Cipher Suites with SHA-256/384 and
AES Galois Counter Mode (GCM)

[RFC 5289]

http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 7/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
RFC 5487 Pre-Shared Key Cipher Suites for TLS with

SHA-256/384 and AES Galois Counter Mode
[RFC 5487]

RFC 5489 ECDHE_PSK Cipher Suites for Transport Layer
Security (TLS)

[RFC 5489]

RFC 5929 Channel Bindings for TLS [RFC 5929]

RFC 6066 Transport Layer Security (TLS) Extensions: Extension
Definition

[RFC 6066]

RFC 6655 AES-CCM Cipher Suites for Transport Layer Security
(TLS)

[RFC 6655]

RFC 7301 Transport Layer Security (TLS) Application-Layer
Protocol Negotiation Extension

[RFC 7301]

RFC 7525 Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)

[RFC 7525]

RFC 7919 Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for Transport Layer Security (TLS)

[RFC 7919]

RFC 8174 Amendment to RFC 2119 [RFC 8174]

RFC 8446 The Transport Layer Security (TLS) Protocol
Version 1.3

[RFC 8446]

RFC 8447 IANA Registry Updates for TLS and DTLS [RFC 8447]

 35

1.4 Terminology and Definitions 36

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and 37
MAY in this document (refer to [RFC 2119] as amended by [RFC 8174]): 38

• SHALL indicates an absolute requirement, as does MUST. 39

• SHALL NOT indicates an absolute prohibition, as does MUST NOT. 40

• SHOULD and SHOULD NOT indicate recommendations. 41

• MAY indicates an option. 42

Note that as clarified in the [RFC 8174] amendment, lower case use of these words is not normative. 43

 44

Selected technical terms used in this document are included in Table 1-2. Additional technical terms are 45
defined in [TEE Sockets] and [TEE Core]. 46

8/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 1-2: Terminology and Definitions 47

Term Definition

child-most In a tree, each node except the root is a child of some other node.
A “child-most” node has no children of its own.
Also known as “leaf” node.

iSocket Interface Socket

iSocket instance Instance of Interface Socket

 48

1.5 Abbreviations and Notations 49

Selected abbreviations and notations used in this document are included in Table 1-3. Additional abbreviations 50
and notations are defined in [TEE Sockets] and [TEE Core]. 51

Table 1-3: Abbreviations and Notations 52

Abbreviation / Notation Meaning

ALPN Application-Layer Protocol Negotiation

ASN.1 Abstract Syntax Notation One

DER Distinguished Encoding Rules

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

GCM Galois Counter Mode

IP Internet Protocol

PDC Pre-Distributed Credentials

PSK Pre-Shared Key

SPKI Subject Public Key Info

SRP Secure Remote Password

TA Trusted Application

TEE Trusted Execution Environment

TLS Transport Layer Security

 53

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 9/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.6 Revision History 54

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are 55
minor releases where changes typically introduce supplementary items that do not impact backward 56
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance 57
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks. 58

Table 1-4: Revision History 59

Date Version Description

June 2015 1.0 Public Release

January 2017 1.0.1 Public Release showing all non-trivial changes since v.1.0.
Changes include:
• Clarified meaning of one error code

February 2021 1.0.2 Clarified limitations on cryptographic recommendations in this
specification.
Note: Only this annex is being issued as v1.0.2. TEE Sockets API
Specification ([TEE Sockets]) and its other annexes remain at v1.0.1.

January 2022 1.0.2.13 Committee Review

February 2022 1.0.2.14 Technical writer review

April 2022 1.0.2.20 Member Review

May 2022 1.0.2.21 Technical writer review

September 2022 1.0.2.30 Public Review

TBD 1.1 Changes include:
• New functionality and extensions to enable TLS 1.3 client mode
• Better operating mode support for TLS key establishment and

authentication beyond the original Pre-Shared Keys (PSKs)
Note: Only this annex and Annex D ([Socket Example]) are being
issued as v1.1.
• TEE Sockets API Specification ([TEE Sockets]) remains at v1.0.3.
• Annex A ([Sockets TCP/IP]) and Annex B ([Sockets UDP/IP])

remain at v1.0.1.

 60

10/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex C TEE_tlsSocket Instance Specification 61

This annex specifies the TEE_iSocket interface for the Transport Layer Security (TLS) protocol. 62
Implementation of TLS protocol support within the TEE is optional. If the TLS protocol is implemented, the 63
implementation SHALL reside wholly within the TEE because it alters the security level of the information 64
passing over the socket. 65

 66

C.1 General Information 67

C.1.1 Header File Name 68

The corresponding header file SHALL be named “tee_tlssocket.h”. 69

 70

C.1.1.1 API Version 71

Since: TEE Socket API v1.1. 72

The header file SHALL contain version specific definitions from which TA compilation options can be selected. 73

#define TEE_SOCKET_TLS_API_MAJOR_VERSION ([Major version number]) 74
#define TEE_SOCKET_TLS_API_MINOR_VERSION ([Minor version number]) 75
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION ([Maintenance version number]) 76
#define TEE_SOCKET_TLS_API_VERSION (TEE_SOCKET_TLS_API_MAJOR_VERSION << 24) + 77
(TEE_SOCKET_TLS_API_MINOR_VERSION << 16) + 78
(TEE_SOCKET_TLS_API_MAINTENANCE_VERSION << 8) 79

The document version-numbering format is X.Y[.z], where: 80

Major Version (X) is a positive integer identifying the major release. 81

Minor Version (Y) is a positive integer identifying the minor release. 82

The optional Maintenance Version (z) is a positive integer identifying the maintenance release. 83

TEE_SOCKET_TLS_API_MAJOR_VERSION indicates the major version number of the TEE Socket API. It 84
SHALL be set to the major version number of this specification. 85

TEE_SOCKET_TLS_API_MINOR_VERSION indicates the minor version number of the TEE Socket API. It 86
SHALL be set to the minor version number of this specification. If the minor version is zero, then one zero shall 87
be present. 88

TEE_SOCKET_TLS_API_MAINTENANCE_VERSION indicates the maintenance version number of the TEE 89
Socket API. It SHALL be set to the maintenance version number of this specification. If the maintenance 90
version is zero, then one zero shall be present. 91

The definitions of “Major Version”, “Minor Version”, and “Maintenance Version” in the version number of this 92
specification are determined as defined in the GlobalPlatform Document Management Guide ([Doc Mgmt]). In 93
particular, the value of TEE_SOCKET_TLS_API_MAINTENANCE_VERSION SHALL be zero if it is not already 94
defined as part of the version number of this document. The “Draft Revision” number SHALL NOT be provided 95
as an API version indication. 96

A compound value SHALL also be defined. If the Maintenance version number is 0, the compound value 97
SHALL be defined as: 98

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 11/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

#define TEE_SOCKET_TLS_API_[Major version number]_[Minor version number] 99

If the Maintenance version number is not zero, the compound value SHALL be defined as: 100

#define TEE_SOCKET_TLS_API_[Major version number]_[Minor version 101
number]_[Maintenance version number] 102

Some examples of version definitions: 103

For GlobalPlatform TEE Socket API Specification v1.3, these would be: 104

#define TEE_SOCKET_TLS_API_MAJOR_VERSION (1) 105
#define TEE_SOCKET_TLS_API_MINOR_VERSION (3) 106
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION (0) 107
#define TEE_SOCKET_TLS_API_1_3 108

And the value of TEE_SOCKET_TLS_API_VERSION would be 0x01030000. 109

For a maintenance release of the specification as v2.14.7, these would be: 110

#define TEE_SOCKET_TLS_API_MAJOR_VERSION (2) 111
#define TEE_SOCKET_TLS_API_MINOR_VERSION (14) 112
#define TEE_SOCKET_TLS_API_MAINTENANCE_VERSION (7) 113
#define TEE_SOCKET_TLS_API_2_14_7 114

And the value of TEE_SOCKET_TLS_API_VERSION would be 0x020E0700. 115

 116

C.1.2 Specification Version Number Property 117

This specification defines a TEE property containing the version number of the specification the implementation 118
conforms to. The property can be retrieved using the normal Property Access Functions defined in [TEE Core]. 119
The property SHALL be named “gpd.tee.sockets.tls.version” and SHALL be of integer type with 120
the interpretation given in [TEE Sockets] section 4.2. 121

The iSocket interface variable TEE_iSocketVersion indicates which version of the iSocket interface 122
[TEE Sockets] this protocol’s iSocket struct conforms to. 123

 124

C.1.3 Protocol Identifier Value 125

The assigned protocol identifier for TEE_ISOCKET_PROTOCOLID_TLS is 103 (decimal) or 0x67 (hex). 126

 127

C.1.4 Panic Numbering 128

The Specification Number for reporting Panics from the TLS instance of the iSocket API SHALL be 103. 129

The Function Numbers for reporting Panics are defined in [TEE Sockets] section 4.4. 130

12/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.2 Transport Layer Security (TLS) 131

TLS is a client-server secure channel protocol that can be layered on top of a connection-oriented, reliable 132
transport protocol, such as TCP. Therefore, a TLS socket MAY be layered on top of a TCP socket (defined in 133
Annex A [Sockets TCP/IP]), but SHALL NOT be layered on top of a UDP socket (defined in Annex B 134
[Sockets UDP/IP]). The API described in this specification SHALL be used to establish client-side TLS 135
endpoints only. 136

TLS consists of two main components: the handshake protocol, which provides authenticated key exchange 137
and the record protocol which provides confidentiality, integrity, and replay protection. 138

 139

C.2.1 Handshake Variants 140

The implementation SHALL support server-authenticated TLS handshake, where the client SHALL 141
authenticate the server using a public key certificate and a proof-of-possession of the corresponding private 142
key. 143

Additionally, the implementation MAY support the following types of TLS handshake: 144

• Mutually authenticated handshake – In this handshake type, the client SHALL authenticate the server 145
as above, and in addition the client SHALL authenticate itself to the server via a public key certificate 146
and proof-of-possession of the corresponding private key. 147

• PSK-authenticated handshake – In this handshake type, the endpoints SHALL be authenticated via 148
proof-of-possession of an externally provisioned Pre-Shared Key (PSK). 149

• Resumed handshake – In this handshake type, the client SHALL present to the server an encrypted 150
session ticket containing the state of a previous TLS session. The previous session is then resumed 151
and expensive public key cryptography (authentication and key exchange) can be skipped. 152

A Trusted Application (TA) SHALL use the gpd.tee.tls.handshake property to identify the available 153
handshake types. The value of gpd.tee.tls.handshake is a uint32_t indicating the TLS handshake 154
types that the underlying TEE supports. Table C-1 defines the bit-mask constants for 155
gpd.tee.tls.handshake. 156

Table C-1: gpd.tee.tls.handshake Property Bit-mask Constants 157

Name Value
TEE_TLS_HANDSHAKE_TYPE_SERVER_AUTHENTICATE_ONLY 0x00000000

TEE_TLS_HANDSHAKE_TYPE_MUTUAL_AUTHENTICATED 0x00000001

TEE_TLS_HANDSHAKE_TYPE_PSK_AUTHENTICATED 0x00000002

TEE_TLS_HANDSHAKE_TYPE_RESUMED 0x00000004

Reserved for GlobalPlatform use 0x007FFFF8

TEE_TLS_HANDSHAKE_TYPE_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 158

TEE_TLS_HANDSHAKE_TYPE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated 159
as an undefined value when the corresponding bit is set in the value retrieved as the 160
gpd.tee.tls.handshake property. 161

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 13/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note: TEE_TLS_HANDSHAKE_TYPE_SERVER_AUTHENTICATE_ONLY indicates that the underlying TLS 162
implementation does not support any of the additional handshake type. In this case, the TA SHALL only use 163
server-authenticated TLS handshake. Regardless of the gpd.tee.tls.handshake property value, the 164
implementation SHALL always support server-authenticated TLS handshake. 165

C.2.2 Credentials and Authentication 166

C.2.2.1 Server (Remote Endpoint) Authentication 167

This specification SHALL support at least one of the following credentials for server (remote endpoint) 168
authentication: 169

• X.509 certificates – In this variant, the TA SHALL provide one or more trusted certificates as 170
Pre-Distributed Credentials (PDCs). The implementation SHALL validate the server’s certificate chain 171
received during the TLS handshake against the PDCs provided by the TA. If the chain contains the 172
trusted certificate (either as the root certificate, intermediate certificate, or child-most certificate), 173
validation SHALL be deemed successful. 174

• Certificate and public key pinning – When using pinning, the TA SHALL provide as PDC at least one 175
trusted SHA-256 hash of server end-entity certificates or the SubjectPublicKeyInfo (SPKI) 176
structures of the certificates. The TA MAY also provide as PDC a list of trusted SHA-256 hashes of 177
server end-entity certificates or the SPKI structures of the certificates. The implementation SHALL 178
consider peer authentication successful if the hash of the received certificate or SPKI matches one of 179
the pinned values and the peer’s CertificateVerify signature can be validated successfully 180
using the corresponding public key. 181

• PSKs – When using PSK authentication, the TA SHALL provide as PDCs a PSK value and a PSK 182
identity used to identify the PSK to be used in the TLS connection. Note that in order to use a PSK in 183
TLS 1.2, the TA SHALL have enabled at least one cipher suite whose name starts with 184
TEE_TLS_PSK. In TLS 1.3, there is no such restriction, as PSKs can be used with all TLS 1.3 cipher 185
suites. If the PSK was derived in an earlier TLS 1.3 handshake, the client MAY later provide the 186
corresponding server-encrypted session ticket to resume the earlier session. If the PSK is used for 187
TLS 1.3 session resumption, PSK identity MAY NOT be provided. 188

• Secure Remote Password (SRP) ([RFC 5054]) – SRP SHALL only be used for TLS 1.2. Note that in 189
order to use SRP, the TA SHALL enable at least one cipher suite whose name starts with 190
TEE_TLS_SRP. 191

• Legacy pre-distributed server public key authentication – In this variant, the TA SHALL provide as 192
PDC the public key of the server and SHALL use it for all encryptions and verifications of server 193
messages. The public key in the certificate sent by the server during the handshake is ignored. This 194
option is provided for interoperability purposes and SHALL only be used for TLS 1.2 implementations. 195

TA SHALL use the gpd.tee.tls.auth.remote.credential property to identify the available credential 196
types for authenticating remote endpoints. The value of gpd.tee.tls.auth.remote.credential is a 197
uint32_t indicating the authentication types that the underlying TEE supports for remote endpoint 198
authentication. Table C-2 defines the bit-mask constants for remote credential types. 199

14/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table C-2: gpd.tee.tls.auth.remote.credential Property Bit-mask Constants 200

Name Value
TEE_TLS_AUTH_REMOTE_CREDENTIAL_NONE 0x00000000

TEE_TLS_AUTH_REMOTE_CREDENTIAL_PDC 0x00000001

TEE_TLS_AUTH_REMOTE_CREDENTIAL_X509_CERT 0x00000002

TEE_TLS_AUTH_REMOTE_CREDENTIAL_CERT_PINNING 0x00000004

TEE_TLS_AUTH_REMOTE_CREDENTIAL_PSK 0x00000008

TEE_TLS_AUTH_REMOTE_CREDENTIAL_SRP 0x00000010

Reserved for GlobalPlatform use 0x007FFFE0

TEE_TLS_AUTH_REMOTE_CREDENTIAL_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 201

TEE_TLS_AUTH_REMOTE_CREDENTIAL_ILLEGAL_VALUE is reserved for testing and validation and SHALL 202
be treated as an undefined value when the corresponding bit is set in the value retrieved as the 203
gpd.tee.tls.auth.remote.credential property. 204

Note: TEE_TLS_AUTH_REMOTE_CREDENTIAL_NONE SHALL be treated as an error. 205

 206

C.2.2.2 Client (Local Endpoint) Authentication 207

Client authentication is optional, but if client authentication is supported, then the implementation SHALL 208
support the following client authentication method: 209

• Private key and X.509 certificate – In this variant, the TA SHALL provide as PDCs a handle to a 210
private key in trusted storage, plus a certificate chain where the child-most certificate contains the 211
public key counterpart. The chain may consist of one or more certificates. The implementation sends 212
the certificate to the server during the handshake for validation. Note that when using TLS 1.2, the TA 213
SHALL enable at least one cipher suite that matches the type of the provided private key. For 214
example, to use an ECDSA keypair for authentication in TLS 1.2, the caller could enable any of the 215
cipher suites whose name starts with TEE_TLS_ECDHE_ECDSA. In TLS 1.3, there are no such 216
restrictions, and all supported key types MAY be used with any TLS 1.3 cipher suite. 217

Additionally, the implementation MAY support the following client authentication methods: 218

• PSKs (See remarks in section C.2.2.1.) 219

• Secure Remote Password (SRP) ([RFC 5054]) – This variant can be used for TLS 1.2 only. 220

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 15/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TA SHALL use the gpd.tee.tls.auth.local.credential property to identify the available credential 221
types for client authentication. The value of gpd.tee.tls.auth.local.credential is a uint32_t 222
indicating the authentication types that the underlying TEE supports for client authentication. Table C-3 defines 223
the bit-mask constants for local credential types. 224

Table C-3: gpd.tee.tls.auth.local.credential Property Bit-mask Constants 225

Name Value
TEE_TLS_AUTH_LOCAL_CREDENTIAL_NONE 0x00000000

TEE_TLS_AUTH_LOCAL_CREDENTIAL_X509 0x00000001

TEE_TLS_AUTH_LOCAL_CREDENTIAL_PSK 0x00000002

TEE_TLS_AUTH_LOCAL_CREDENTIAL_SRP 0x00000004

Reserved for GlobalPlatform use 0x007FFFF8

TEE_TLS_AUTH_LOCAL_CREDENTIAL_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 226

TEE_TLS_AUTH_LOCAL_CREDENTIAL_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 227
treated as an undefined value when the corresponding bit is set in the value retrieved as the 228
gpd.tee.tls.auth.local.credential property. 229

Note: TEE_TLS_AUTH_LOCAL_CREDENTIAL_NONE indicates that the underlying TLS implementation does 230
not support client authentication. 231

For session resumption, the TA SHALL provide a storage area for the encrypted session ticket it receives from 232
the server at the end of a standard handshake. 233

 234

C.2.3 TLS Extensions and Optional Features 235

Section 4.2 in [RFC 8446] and section 7.4.1.4 in [RFC 5246] define a set of TLS protocol extensions and 236
associated extension messages. Some extensions are mandatory in certain TLS protocol versions. For 237
example, supported_versions is mandatory when TLS 1.3 is offered in the handshake. Other extensions 238
are mandatory in certain handshake variants. For example, key_share is mandatory in TLS 1.3 handshakes 239
that use (EC)DH key exchange. Also, optional protocol features exist that are not associated with an extension. 240
One such example is client authentication. This section provides an overview of extensions and optional 241
protocol features supported in this specification. 242

The table below provides an overview of extensions and options relevant to this specification. The 243
implementation SHALL support the extensions and optional features marked as “mandatory” in the table. The 244
implementation MAY support further extensions and features if needed. 245

Table C-4: TLS Extensions and Options Relevant to this Specification 246

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
server_name Mandatory Mandatory TA can influence the

extension contents. (See
section C.3.3.)

16/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
supported_versions Mandatory Optional, but

recommended
TA can influence the
extension contents. (See
section C.3.2.1.)
[RFC 8446] recommends
that the extension is sent
even when only TLS 1.2 and
below is supported.
For a dual-stack TLS client
implementation, a
ClientHello message
would contain the
supported_version
extension and a TLS 1.2-only
server implementation would
lead to a fallback to TLS 1.2
even if the server does not
understand the
supported_version
extension (or any other
TLS 1.3 extensions).

supported_groups Mandatory for
(EC)DH
handshakes

Optional, but can be
used to indicate
ECC curves only

TA can influence the
extension contents. (See
section C.3.2.5.)

signature_algorithms

Mandatory for
certificate-
authenticated
handshakes

Optional, but
recommended

TA can influence the
extension contents. (See
section C.3.2.4.)

signature_algorithms_
cert

Optional Not defined TA can influence the
extension contents. (See
sections C.3.2.4 and C.3.3.)

key_share Mandatory for
(EC)DH
handshakes

Not defined

pre_shared_key Mandatory for
PSK handshakes
and resumed
handshakes

Not defined

max_fragment_length Optional Optional The implementation MAY
send this extension
according to requirements
such as memory constraints.
This specification does not
provide an API that would
allow the TA to influence the
extension.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 17/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Extension/Optional Feature TLS 1.3 TLS 1.2 Notes
application_layer_
protocol_negotiation

Optional Optional TA can influence the
extension contents (see
section C.3.3.

Client authentication Optional Optional See section C.3.2.9.

Post-handshake client
authentication

Optional Not defined The implementation MAY
support post-handshake
client authentication if the TA
has provided a private key
and a certificate in the client
PDC structure. (See section
C.3.2.9.)

Renegotiation Not defined Optional, but not
recommended

If renegotiation is supported
by the implementation, then
the necessary
countermeasures to known
attacks SHALL also be
supported. Such
countermeasures include
those listed in [RFC 7525]
section 3.5. For example, the
renegotiation_info
extension SHALL be sent
when the implementation
supports renegotiation.

Ticket-based session
resumption

Optional Optional See section C.3.2.7.

PSK handshakes with
externally established PSK

Optional Optional

0-RTT early data SHOULD NOT be
used

Not defined 0-RTT data is not forward-
secret or replay-protected by
default.
Replayable 0-RTT data
presents a number of
security threats to TLS-using
applications, unless those
applications are specifically
engineered to be safe under
replay.
This specification provides
no API for the TA to supply
early data to the
implementation.

Record padding Optional Not defined This specification does not
provide an API that would
allow the TA to influence the
use of record padding.

 247

18/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3 Header File 248

The header file SHALL provide the following constants and structures. 249

The implementation SHALL support the subset of TLS 1.3 or TLS 1.2 defined in this document. The 250
implementation MAY support both TLS 1.3 and TLS 1.2. 251

A compliant implementation MAY support further TLS options and algorithms; as this is implementation 252
specific, it will provide an implementation specific methodology to indicate this extension. 253

A particular TLS socket may be configured by the TA to restrict itself by supplying a specific version (e.g. 254
TEE_TLS_VERSION_1v2, TEE_TLS_VERSION_1v3), or a combination (e.g. TEE_TLS_VERSION_1v2 | 255
TEE_TLS_VERSION_1v3). An implementation may also indicate that it supports all TLS versions 256
(TEE_TLS_VERSION_ALL); however, the use of TEE_TLS_VERSION_ALL is not recommended. 257

C.3.1 TEE_iSocket Instance Variable for TLS 258

extern TEE_iSocket * const TEE_tlsSocket; 259
 260

The name of the instance variable for the TLS sockets interface SHALL be TEE_tlsSocket. 261

 262

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 19/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2 Type Definitions 263

C.3.2.1 TEE_tlsSocket_TlsVersion 264

Since: TEE Sockets API Annex C v1.1 – See Backward Compatibility note below. 265

typedef uint32_t TEE_tlsSocket_TlsVersion; 266
 267

The TEE_tlsSocket_TlsVersion type is a bit-mask indicating the TLS versions the endpoint supports. 268
Table C-5 defines the values of TEE_tlsSocket_TlsVersion. 269

If multiple versions are enabled and the highest version is TLS 1.2, then the implementation SHALL advertise 270
the highest enabled version in the client_version field of the ClientHello message. If TLS 1.3 is 271
enabled, the implementation SHALL send the enabled versions, from highest to lowest order, in the 272
supported_versions extension of the ClientHello message. 273

 274

Table C-5: TEE_tlsSocket_TlsVersion Bit-mask Constants 275

Name Value Meaning
TEE_TLS_VERSION_ALL 0x00000000 Accept connections to servers using any TLS

version supported by the implementation

TEE_TLS_VERSION_1v2 0x00000001 Accept connections to servers using TLS 1.2

TEE_TLS_VERSION_PRE1v2 0x00000002 Accept connections to server using a TLS version
prior to TLS 1.2

TEE_TLS_VERSION_1v3 0x00000004 Accept connections to servers using TLS 1.3

Reserved for GlobalPlatform use 0x007FFFF8 Set bits reserved for use by GlobalPlatform

TEE_TLS_VERSION_ILLEGAL_VALUE 0x00800000 Reserved for testing and validation and SHALL be
treated as an undefined value when provided to
the TEE_tlsSocket_Setup structure or the
TEE_tlsSocket_SessionInfo structure.

Implementation defined 0xFF000000 Set bits reserved for implementation defined flags.
Used to assign specific handshakes or methods.

 276

Backward Compatibility 277

Prior to TEE Sockets API Annex C v1.1, TEE_tlsSocket_TlsVersion was defined as an enum. 278

20/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.2 TEE_tlsSocket_CipherSuites_GroupA 279

Since: TEE Sockets API Annex C v1.1 – See Backward Compatibility note below. 280

typedef uint32_t *TEE_tlsSocket_CipherSuites_GroupA; 281
 282

The TEE_tlsSocket_CipherSuites_GroupA type defines the IANA TLS Cipher Suite constants ([IANA]) 283
that are supported for TLS 1.2. Table C-6 defines the values of TEE_tlsSocket_CipherSuites_GroupA. 284

In TLS 1.2, the cipher suite defines the used key exchange, authentication, symmetric encryption, and hash 285
algorithms, using the following cipher suite naming scheme: 286

TEE_TLS_[keyex alg]_[auth alg]_[symmetric alg]_[hash] 287

It is the responsibility of the TA to choose cipher suites that are compatible with the rest of the configuration. 288

Table C-6: TEE_tlsSocket_CipherSuites_GroupA Values 289

Algorithm Value Main Reference
TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 List Termination

TEE_TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x0000000A [RFC 5246]

TEE_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x00000013

TEE_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x00000016

TEE_TLS_RSA_WITH_AES_128_CBC_SHA 0x0000002F

TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA 0x00000032

TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x00000033

TEE_TLS_RSA_WITH_AES_256_CBC_SHA 0x00000035

TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0x00000038

TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x00000039

TEE_TLS_RSA_WITH_AES_128_CBC_SHA256 0x0000003C

TEE_TLS_RSA_WITH_AES_256_CBC_SHA256 0x0000003D

TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 0x00000040

TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x00000067

TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 0x0000006A

TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x0000006B

TEE_TLS_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008B [RFC 4279]

TEE_TLS_PSK_WITH_AES_128_CBC_SHA 0x0000008C

TEE_TLS_PSK_WITH_AES_256_CBC_SHA 0x0000008D

TEE_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008F

TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x00000090

TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x00000091

TEE_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 0x00000093

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 21/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Value Main Reference
TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA 0x00000094

TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA 0x00000095

TEE_TLS_RSA_WITH_AES_128_GCM_SHA256 0x0000009C [RFC 5288]

TEE_TLS_RSA_WITH_AES_256_GCM_SHA384 0x0000009D

TEE_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0000009E

TEE_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x0000009F

TEE_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 0x000000A2

TEE_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 0x000000A3

TEE_TLS_PSK_WITH_AES_128_GCM_SHA256 0x000000A8 [RFC 5487]

TEE_TLS_PSK_WITH_AES_256_GCM_SHA384 0x000000A9

TEE_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 0x000000AA

TEE_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 0x000000AB

TEE_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 0x000000AC

TEE_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 0x000000AD

TEE_TLS_PSK_WITH_AES_128_CBC_SHA256 0x000000AE

TEE_TLS_PSK_WITH_AES_256_CBC_SHA384 0x000000AF

TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 0x000000B2

TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 0x000000B3

TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 0x000000B6

TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 0x000000B7

TEE_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0x0000C008 [RFC 4492]

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0x0000C009

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0x0000C00A

TEE_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C012

TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0x0000C013

TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0x0000C014

TEE_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0000C01A [RFC 5054]

TEE_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C01B

TEE_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0000C01C

TEE_TLS_SRP_SHA_WITH_AES_128_CBC_SHA 0x0000C01D

TEE_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 0x0000C01E

TEE_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 0x0000C01F

TEE_TLS_SRP_SHA_WITH_AES_256_CBC_SHA 0x0000C020

TEE_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0000C021

22/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Value Main Reference
TEE_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0000C022

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0x0000C023 [RFC 5289]

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0x0000C024

TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0x0000C027

TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0x0000C028

TEE_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0000C02B

TEE_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0000C02C

TEE_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0x0000C02F

TEE_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0x0000C030

TEE_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000C034

TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0x0000C035

TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0x0000C036

TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0x0000C037

TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0x0000C038

TEE_TLS_RSA_WITH_AES_128_CCM 0x0000C09C [RFC 6655]

TEE_TLS_RSA_WITH_AES_256_CCM 0x0000C09D

TEE_TLS_DHE_RSA_WITH_AES_128_CCM 0x0000C09E

TEE_TLS_DHE_RSA_WITH_AES_256_CCM 0x0000C09F

TEE_TLS_PSK_WITH_AES_128_CCM 0x0000C0A4

TEE_TLS_PSK_WITH_AES_256_CCM 0x0000C0A5

TEE_TLS_DHE_PSK_WITH_AES_128_CCM 0x0000C0A6

TEE_TLS_DHE_PSK_WITH_AES_256_CCM 0x0000C0A7

Private use 0x0000FF00-
0x0000FFFF

[RFC 8447]

TEE_TLS_CIPHERSUITES_GROUPA_ILLEGAL_VALUE 0x00007FFF

 290

TEE_TLS_CIPHERSUITES_GROUPA_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 291
treated as an undefined value when provided to the TEE_tlsSocket_Setup structure. 292

All values not listed in the table are reserved for future use. 293

Backward Compatibility 294

Prior to TEE Sockets API Annex C v1.1, TEE_tlsSocket_CipherSuites was defined as an enum. 295

 296

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 23/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.3 TEE_tlsSocket_CipherSuites_GroupB 297

Since: TEE Sockets API Annex C v1.1 298

typedef uint32_t * TEE_tlsSocket_CipherSuites_GroupB; 299
 300

The TEE_tlsSocket_CipherSuites_GroupB type defines the IANA TLS Cipher Suite constants ([IANA]) 301
that are supported for TLS 1.3. Table C-7 defines the values of TEE_tlsSocket_CipherSuites_GroupB. 302

In TLS 1.3, the cipher suite defines the used symmetric algorithm and handshake hash algorithm. Key 303
exchange and authentication algorithms must be chosen separately; see sections C.3.2.4 and C.3.2.5. 304

Table C-7: TEE_tlsSocket_CipherSuites_GroupB Values 305

Algorithm Value Main Reference
TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 List Termination

Reserved for GlobalPlatform use 0x00000001 –
0x00001300

TEE_TLS_AES_128_GCM_SHA256 0x00001301 [RFC 8446]

TEE_TLS_AES_256_GCM_SHA384 0x00001302

TEE_TLS_CHACHA20_POLY1305_SHA2561 0x00001303

TEE_TLS_AES_128_CCM_SHA256 0x00001304

TEE_TLS_AES_128_CCM_8_SHA256 0x00001305

TEE_TLS_CIPHERSUITES_GROUPB_ILLEGAL_VALUE 0x00007FFF

Reserved for private use 0x0000FF00 -
0x0000FFFF

[RFC 8447]

 306

TEE_TLS_CIPHERSUITES_GROUPB_ILLEGAL_VALUE is reserved for testing and validation and SHALL be 307
treated as an undefined value when provided to the TEE_tlsSocket_Setup structure. 308

All values not listed in the table are reserved for future use. However, an implementation MAY extend this table 309
according to the values defined by IANA, see e.g. [IANA Example]. 310

1 The current Core API specification does not support Poly1305 or ChaCha20, so supporting this cipher suite is not

mandatory currently.

24/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.4 TEE_tlsSocket_SignatureScheme 311

typedef uint32_t TEE_tlsSocket_SignatureScheme; 312
 313

The TEE_tlsSocket_SignatureScheme type defines the IANA TLS Signature Scheme ([IANA]) constants 314
that are supported. Table C-8 defines the values of TEE_tlsSocket_SignatureScheme. 315

The array shall only include signature algorithms supported by TEE (see Table 6-11 in the Internal Core API 316
document). To determine whether the TEE supports a particular signature algorithm, the TA can use the 317
TEE_IsAlgorithmSupported API (see Section 6.2.9 in the Core API document). If the list contains an 318
algorithm the implementation does not support, the implementation SHALL return the 319
TLS_ISOCKET_TLS_UNSUPPORTED_SIGALG error code. 320

The provided list SHALL be sent by the implementation to the server in the signature_algorithms 321
extension of the ClientHello message. 322

Table C-8: TEE_tlsSocket_SignatureScheme Values 323

Algorithm Group Algorithm Value

RSASSA-PKCS1-
v1_5

TEE_TLS_RSA_PKCS1_SHA256 0x00000401

TEE_TLS_RSA_PKCS1_SHA384 0x00000501

TEE_TLS_RSA_PKCS1_SHA512 0x00000601

ECDSA TEE_TLS_ECDSA_SECP256R1_SHA256 0x00000403

TEE_TLS_ECDSA_SECP384R1_SHA384 0x00000503

TEE_TLS_ECDSA_SECP521R1_SHA512 0x00000603

RSASSA-PSS with
public key OID
rsaEncryption

TEE_TLS_RSA_PSS_RSAE_SHA256 0x00000804

TEE_TLS_RSA_PSS_RSAE_SHA384 0x00000805

TEE_TLS_RSA_PSS_RSAE_SHA512 0x00000806

EdDSA TEE_TLS_ED25519 0x00000807

TEE_TLS_ED448 0x00000808

RSASSA-PSS with
public key OID
RSASSA-PSS

TEE_TLS_RSA_PSS_PSS_SHA256 0x00000809

TEE_TLS_RSA_PSS_PSS_SHA384 0x0000080A

TEE_TLS_RSA_PSS_PSS_SHA512 0x0000080B

Legacy algorithms TEE_TLS_RSA_PKCS_SHA1 0x00000201

TEE_TLS_ECDSA_SHA1 0x00000203

Reserved Code
Points

TEE_TLS_OBSOLETE_RESERVED 0x00000000 -
0x00000200

TEE_TLS_DSA_SHA1_RESERVED 0x00000202

TEE_TLS_OBSOLETE_RESERVED 0x00000204 -
0x00000400

TEE_TLS_DSA_SHA256_RESERVED 0x00000402

 TEE_TLS_OBSOLETE_RESERVED 0x00000404 -
0x00000500

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 25/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Group Algorithm Value
 TEE_TLS_DSA_SHA384_RESERVED 0x00000502

 TEE_TLS_OBSOLETE_RESERVED 0x00000504 -
0x00000600

 TEE_TLS_DSA_SHA512_RESERVED 0x00000602

 TEE_TLS_OBSOLETE_RESERVED 0x00000604 -
0x000006FF

 TEE_TLS_PRIVATE_USE 0x0000FE00 -
0x0000FFFF

 Reserved for future use All values not
listed in the table
are reserved for
future use.

 TEE_TLS_SOCKET_SIGNATURE_SCHEME_ILLEGAL_VALUE 0xFFFFFFFF

 324

TEE_TLS_SOCKET_SIGNATURE_SCHEME_ILLEGAL_VALUE is reserved for testing and validation and SHALL 325
be treated as an undefined value when provided to the TEE_tlsSocket_Setup structure or the 326
TEE_tlsSocket_SessionInfo structure. 327

 328

26/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.5 TEE_tlsSocket_Tls13KeyExGroup 329

typedef uint32_t TEE_tlsSocket_Tls13KeyExGroup; 330
 331

The TEE_tlsSocket_Tls13KeyExGroup type provides values indicating the key exchange groups the TA 332
supports for TLS 1.3 handshakes. Table C-9 defines the values of TEE_tlsSocket_Tls13KeyExGroup. 333

The TA must provide a priority-ordered array of these values. The TA must indicate the number of values in 334
the array in the numTls13KeyExGroups variable. The array must contain at least one value. The array shall 335
only include key exchange groups supported by TEE (Table 6-14 in the Internal Core API document). To 336
determine whether the TEE supports a particular group, the TA can use the TEE_IsAlgorithmSupported 337
API (see Section 6.2.9 in the Core API document). If the list contains an algorithm the implementation does 338
not support, the implementation SHALL return the TLS_ISOCKET_TLS_UNSUPPORTED_KEYEX_GROUP error 339
code. 340

The implementation will send the provided list to the server in the supported_groups extension of the 341
ClientHello message. Note that the TA can use the numTls13KeyShares variable (see Table C-21) to 342
control how many key shares are generated. 343

Table C-9: TEE_tlsSocket_Tls13KeyExGroup Values 344

Algorithm Value Main Reference
TEE_TLS_KEYEX_GROUP_SECP256R1 0x00000017 [RFC 4492]

TEE_TLS_KEYEX_GROUP_SECP384R1 0x00000018

TEE_TLS_KEYEX_GROUP_SECP521R1 0x00000019

TEE_TLS_KEYEX_GROUP_X25519 0x0000001D

TEE_TLS_KEYEX_GROUP_X448 0x0000001E

TEE_TLS_KEYEX_GROUP_FFDHE_2048 0x00000100 [RFC 7919]

TEE_TLS_KEYEX_GROUP_FFDHE_3072 0x00000101

TEE_TLS_KEYEX_GROUP_FFDHE_4096 0x00000102

TEE_TLS_KEYEX_GROUP_FFDHE_6144 0x00000103

TEE_TLS_KEYEX_GROUP_FFDHE_8192 0x00000104

Reserved by [RFC 8446] 0x000001FC – 0x000001FF

Reserved by [RFC 8446] 0x0000FE00 – 0x0000FEFF

Reserved for GlobalPlatform use 0x0000FF00 – 0x0000FF0E

TEE_TLS_KEYEX_GROUP_ILLEGAL_VALUE 0x0000FF0F

Reserved for implementation defined key
exchange group

0x0000FF10 – 0x0000FFFF

 345

TEE_TLS_KEYEX_GROUP_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 346
undefined value when provided to the TEE_tlsSocket_Setup structure or the 347
TEE_tlsSocket_SessionInfo structure. 348

 349

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 27/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.6 TEE_tlsSocket_PSK_Info Structure 350

typedef struct TEE_tlsSocket_PSK_Info_s { 351
 TEE_ObjectHandle pskKey; 352
 char *pskIdentity; 353
} TEE_tlsSocket_PSK_Info; 354

 355

When PSK is used, the TA needs to provide the key and a key identity to the TLS implementation. This 356
structure holds that information. 357

Table C-10: TEE_tlsSocket_PSK_Info Member Variables 358

Name Purpose
TEE_ObjectHandle pskKey An opened Persistent Object or an initialized Transient Object

containing the PSK. The Object Type ([TEE Core] Table 6-13) must be
TEE_TYPE_GENERIC_SECRET and the Object Attribute ([TEE Core]
Table 6-15) must be TEE_ATTR_SECRET_VALUE.

char *pskIdentity Pointer to a string containing the identity of the key. The interpretation
of this string is something that the client and the server have agreed
upon. The pointer MAY be NULL when the PSK is used for resumption
in TLS 1.3 together with the associated ticket.
The format must be a zero-terminated UTF-8 encoded string as defined
in [TEE Core] section 3.2, Data Types.

 359

C.3.2.7 TEE_tlsSocket_SessionTicket_Info Structure 360

typedef struct TEE_tlsSocket_SessionTicket_Info_s { 361
 uint8_t *encrypted_ticket; 362
 uint32_t encrypted_ticket_len; 363
 uint8_t *server_id; 364
 uint32_t server_id_len; 365
 uint8_t *session_params; 366
 uint32_t session_params_len; 367
 uint8_t caller_allocated; 368
 TEE_tlsSocket_PSK_Info psk; 369
} TEE_tlsSocket_SessionTicket_Info; 370

 371

When the implementation supports session ticket based resumption, the implementation SHALL use this 372
structure to store a session ticket received from the server along with associated session information. The 373
ticket may later be used for resumed TLS connections (resumed handshakes). 374

The implementation SHALL ensure that it follows the TLS specification regarding resumption. Especially, the 375
implementation SHALL ensure that a resumed handshake uses the same protocol version, cipher suite, and 376
server_name as the initial handshake. For this purpose, the implementation SHALL store the parameters of 377
the initial session in the memory pointed to by session_params. 378

When the ticket is received in a TLS 1.3 connection, the resumption PSK SHALL be stored in the along with 379
the ticket. When the ticket is received in a TLS 1.2 connection, the implementation SHALL store the master 380
secret in session_params. 381

28/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Memory management: When connecting to a server for the first time the TA may, if supporting resumption, 382
provide an array of zeroed TEE_tlsSocket_SessionTicket_Info structures in the 383
TEE_tlsSocket_Setup structure (section C.3.3). When the implementation receives a ticket from the server, 384
the implementation SHALL locate the next unfilled structure in the provided array, if any. If an unfilled structure 385
was found, the implementation SHALL allocate memory for storing the ticket, server ID and session 386
parameters. The implementation SHALL store the addresses of the allocated memory in the pointer fields of 387
this structure and set the lengths appropriately. The TA may, after any point between a successful call to open 388
and a call to close, take a deep copy of structure contents for its own storage. The implementation SHALL 389
deallocate the memory pointed to by the structure when the connection is closed if the caller_allocated 390
field is set to 0. When the TA provides a filled ticket it wishes to use for resumption, it must set the 391
caller_allocated field to 1. 392

Table C-11: TEE_tlsSocket_SessionTicket_Info Member Variables 393

Name Purpose
uint8_t *encrypted_ticket Pointer to memory where the implementation SHALL store the

encrypted session ticket.

uint32_t encrypted_ticket_len Length of the currently stored encrypted ticket.

uint8_t *server_id Pointer to memory where the implementation SHALL store the
identity of the server that sent the session ticket.
If the TA sent the server_name extension, then the identity
SHALL be the contents of that extension, i.e. the encoded
HostName vector, defined in [RFC 6066], including the length
octets. If the TA did not send the server_name extension, then
the identity SHALL be the subject field of the server’s
certificate (see [RFC 5280]), i.e. the tag, length, and value of the
DER-encoded ASN.1 RDNSequence type.

uint32_t server_id_len Number of bytes pointed to by server_id.

uint8_t *session_params Pointer to memory where the implementation SHALL store the
parameters of the handshake when a ticket is received. The
encoding and contents of the parameters are implementation
defined. The implementation SHALL store enough session
parameters to allow it later to check the prerequisites for session
resumption mandated by the TLS specification, e.g. that the
same cipher suite must be used in both the initial and the
resumed connection.

uint32_t session_params_len Number of bytes pointed to by session_params.

uint8_t caller_allocated Specifies whether the memory pointed to by the ticket,
server_id and session_params fields been allocated by the
caller or the implementation.

• 0: allocated by the implementation
• 1: allocated by the caller
• 255: illegal value

TEE_tlsSocket_PSK_Info psk If a ticket is received in a TLS 1.3 handshake, the implementation
SHALL store the derived resumption PSK here.

 394

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 29/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.8 TEE_tlsSocket_SRP_Info Structure 395

typedef struct TEE_tlsSocket_SRP_Info_s { 396
 char *srpPassword; 397
 char *srpIdentity; 398
} TEE_tlsSocket_SRP_Info; 399

 400

When SRP is used, the TA needs to provide the password and the user identity to the TLS implementation. 401
This structure holds that information. Note that SRP is supported in TLS 1.2 and earlier versions, but not in 402
TLS 1.3. 403

Table C-12: TEE_tlsSocket_SRP_Info Member Variables 404

Name Purpose
char *srpPassword Pointer to the password.

The format must be a zero-terminated UTF-8 encoded string as
defined in [TEE Core] section 3.2, Data Types.

char *srpIdentity Pointer to the user name or identity corresponding to the password.
The format must be a zero-terminated UTF-8 encoded string as
defined in [TEE Core] section 3.2, Data Types.

 405

30/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.9 TEE_tlsSocket_ClientPDC Structure 406

typedef struct TEE_tlsSocket_ClientPDC_s { 407
 TEE_ObjectHandle privateKey; 408
 uint8_t *bulkCertChain; 409
 uint32_t bulkSize; 410
 uint32_t bulkEncoding; 411
} TEE_tlsSocket_ClientPDC; 412

 413

This structure holds a handle to the private key and a certificate chain that the implementation (i.e. the client) 414
SHALL use to authenticate itself during the TLS handshake. 415

Memory management: The memory pointed to by bulkCertChain SHALL be fully managed by the TA. 416

Table C-13: TEE_tlsSocket_ClientPDC Member Variables 417

Name Purpose
TEE_ObjectHandle privateKey An opened Persistent Object or initialized Transient Object

containing the private key corresponding to the public key in the
certificate.

uint8_t *bulkCertChain Pointer to the client’s certificate chain. The certificates must be in
child-to-parent order, i.e. the client’s end-entity certificate must
be first. The end-entity certificate must contain the public key
corresponding to privateKey.

uint32_t bulkSize The size of *bulkCertChain.

uint32_t bulkEncoding A bit mask that indicates the format(s) in which certificates in
*bulkCertChain are encoded:

0x00000001 X.509 DER

0x00000002 X.509 PEM

0x80000000 Illegal bit setting

0x7F000000 Bits reserved for implementation

All other bits are reserved by GlobalPlatform.
When multiple bits are set, the certificates may be in any of the
enabled formats. In this case, the implementation SHALL detect
the format of the certificate, e.g. by trial-and-error parsing.
The implementation SHALL support X.509 DER encoding.

 418

bulkEncoding = 0x80000000 is reserved for testing and validation and SHALL be treated as an undefined 419
value when provided in the TEE_tlsSocket_Credentials structure. 420

Backward Compatibility 421

TEE Socket API Annex C v1.0 used char* as the type for bulkCertChain. 422

The bulkCertChain and bulkEncoding fields were introduced in v1.1. 423

 424

 425

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 31/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.10 TEE_tlsSocket_ServerCredentialType 426

Since: TEE Sockets API Annex C v1.1 – See Backward Compatibility note below. 427

typedef uint32_t TEE_tlsSocket_ServerCredentialType; 428
 429

The TEE_tlsSocket_ServerCredentialType type indicates how the client shall authenticate the server. 430
Table C-14 defines the values of TEE_tlsSocket_ServerCredentialType. 431

Note: TEE_tlsSocket_ServerCredentialType does not have a TEE_TLS_PEER_CRED_NONE member 432
due to security risks associated with not validating remote endpoints. 433

Table C-14: TEE_tlsSocket_ServerCredentialType Values 434

Name Value Meaning
TEE_TLS_SERVER_CRED_PDC 0x00000000 Legacy option, where the client has

the server’s public key and will use it
to decrypt and verify messages
during the handshake. When this
option is used, the certificate chain
received from the server is ignored.
For backward compatibility; not
recommended for new applications.

TEE_TLS_SERVER_CRED_CSC 0x00000001 The client has at least one trusted
certificate that will be used to
validate the server’s certificate chain.

TEE_TLS_SERVER_CRED_CERT_PIN 0x00000002 Server SHALL be authenticated
based on whether the SHA-256 hash
of the server’s certificate matches
one of the pinned values.

TEE_TLS_SERVER_CRED_PUBKEY_PIN 0x00000003 Server SHALL be authenticated
based on whether the SHA-256 hash
of the SubjectPublicKeyInfo
structure in the server’s certificate
matches one of the pinned values.

Reserved for GlobalPlatform use 0x00000004 –
0x7FFFFFFE

Reserved by GlobalPlatform for
future use.

TEE_TLS_SERVER_CRED_ILLEGAL_VALUE 0x7FFFFFFF Reserved for testing and validation
and SHALL be treated as an
undefined value when provided to
the TEE_tlsSocket_Credentials
structure.

Implementation defined 0x80000000 –
0xFFFFFFFF

Reserved for proprietary use.

 435

Backward Compatibility 436

Prior to TEE Sockets API Annex C v1.1, TEE_tlsSocket_ServerCredentialType was defined as an 437
enum. 438

32/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.10.1 Server Certificate Chain Validation 439

When the TA has chosen the TEE_TLS_SERVER_CRED_CSC server credential type, the implementation 440
SHALL perform certification path validation according to [RFC 5280] for the server’s certificate chain it receives 441
during the handshake. Implementing the full validation process specified by [RFC 5280] may require a large 442
amount of code, however, so this document specifies the following validation steps that the implementation 443
SHALL perform, at minimum: 444

• The subject field or the subjectAltName extension in the child-most certificate matches the 445
server_name provided by the TA. 446

• The public key in each certificate, except the child-most certificate, successfully verifies the signature 447
of the preceding certificate. 448

• For each certificate except the child-most, the cA bit in the basicConstraints extension is set. 449

• The path length constraint included in the basicConstraints extension is not exceeded. 450

• The keyUsage extension of each certificate, except the child-most certificate, allows certificate 451
signing (i.e. has the keyCertSign bit set). 452

• The extended keyUsage extension of the child-most certificate allows TLS server authentication (i.e. 453
contains the id-kp-serverAuth object identifier). 454

• For TLS 1.2 and earlier handshakes, the keyUsage extension of the child-most certificate allows the 455
authentication method used in the handshake: digitalSignature or keyEncipherment. 456
Because TLS 1.3 only supports signature-based authentication when certificates are used, in TLS 1.3 457
handshakes the keyUsage extension SHALL have the digitalSignature bit set. 458

• If revocation information is available, e.g. because a CRL distribution point or the URL of an OCSP 459
responder was listed in the issuer certificate, or when the server sent a stapled OCSP response, then 460
the implementation SHALL perform the revocation check and each certificate SHALL have 461
non-revoked status. 462

• For each certificate, the current date is between the notBefore and notAfter dates of the 463
certificate. This check SHALL be performed when either of the following is true: 464

1) The gpd.tee.systemTime.protectionLevel property (defined in [TEE Core]) has the value 465
1000, or 466

2) The TA has set the allowTAPersistentTimeCheck field in the server credentials structure to 467
a non-zero value. 468

Two options are then available: 469

a) In the former case (1), the implementation SHALL retrieve the current time using the 470
TEE_GetSystemTime API 471

b) In the latter case (2), the implementation SHALL retrieve the current time using the 472
TEE_GetTAPersistentTime API. 473

If both methods are available, then option (b) SHALL take priority. 474

The implementation SHOULD implement further validation steps from [RFC 5280]. These may include, for 475
example, nameConstraints or certificate policy checks. 476

The TA can use the gpd.tee.tls.auth.remote.validation_steps property to determine which 477
validation steps are supported by the implementation. The value of the property is a uint32_t. Table C-15 478
defines the bit-mask constants for gpd.tee.tls.auth.remote.validation_steps. 479

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 33/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table C-15: gpd.tee.tls.auth.remote.validation_steps Property Bit-mask Constants 480

Name Value
TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_NAME_CONSTRAINTS 0x00000001

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_POLICY_CONSTRAINTS 0x00000002

Reserved for GlobalPlatform use 0x007FFFE0

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_ILLEGAL_VALUE 0x00800000

Implementation defined 0xFF000000

 481

TEE_TLS_AUTH_REMOTE_VALIDATION_STEP_ILLEGAL_VALUE is reserved for testing and validation and 482
SHALL be treated as an undefined value when the corresponding bit is set in the value retrieved as the 483
gpd.tee.tls.auth.remote.validation_steps property. 484

 485

C.3.2.11 TEE_tlsSocket_ServerPDC Structure 486

typedef struct TEE_tlsSocket_ServerPDC_s { 487
 TEE_ObjectHandle publicKey; 488
 // The following fields were introduced in v1.1 489
 TEE_ObjectHandle *trustedCerts; 490
 uint32_t *trustedCertEncodings; 491
 uint32_t numTrustedCerts; 492
 uint32_t allowTAPersistentTimeCheck; 493
 uint8_t *certPins; 494
 uint32_t numCertPins; 495
 uint8_t *pubkeyPins; 496
 uint32_t numPubkeyPins; 497
} TEE_tlsSocket_ServerPDC; 498

 499

34/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

This structure holds the credentials the client will use to authenticate the server. 500

Table C-16: TEE_tlsSocket_ServerPDC Member Variables 501

Name Purpose
TEE_ObjectHandle publicKey Handle of the server’s public key. See the description of

TEE_TLS_SERVER_CRED_PDC in Table C-14. This option is for
backward compatibility and not recommended for new
applications.

TEE_ObjectHandle
*trustedCerts

Pointer to an array of one or more object handles, where each
object contains one or more trusted certificates. The trusted
certificates are used in the validation of the server’s certificate
chain. See the description of TEE_TLS_SERVER_CRED_CSC in
Table C-14 for more information.

uint32_t
*trustedCertEncodings

Pointer to an array of bit masks that indicate the format in which
the certificates in each object in trustedCerts is encoded.
The possible values are:

0x00000001 X.509 DER

0x00000002 X.509 PEM

0x80000000 Illegal bit setting

0x7F000000 Bits reserved for implementation

All other bits are reserved by GlobalPlatform.
When multiple bits are set, the certificates may be in any of the
enabled formats. In this case, the implementation SHALL detect
the format of the certificate, e.g. by trial-and-error parsing.
The implementation SHALL support X.509 DER encoding.

uint32_t numTrustedCerts The number of object handles in trustedCerts.

uint32_t
allowTAPersistentTimeCheck

An option that indicates whether the implementation is allowed to
retrieve the current time using the TEE_GetTAPersistentTime
when validating the notBefore and notAfter dates in the
server’s certificate chain. Note that the restrictions in
section C.3.2.10.1 apply. The possible values are:

0 Not allowed

1 Allowed

0xFFFFFFFF Illegal value

uint8_t *certPins Pointer to SHA-256 hashes of trusted certificates. See the
description of TEE_TLS_SERVER_CRED_CERT_PIN in
Table C-14.

uint32_t numCertPins Number of hashes in certPins.

uint8_t *pubkeyPins Pointer to SHA-256 hashes of trusted public key
SubjectPublicKeyInfo structures. See the description of
TEE_TLS_SERVER_CRED_PUBKEY_PIN in Table C-14.

uint32_t numPubkeyPins Number of hashes in pubkeyPins.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 35/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 502

trustedCertEncodings = 0x80000000 and allowTAPersistentTimeCheck = 0xFFFFFFFF are 503
reserved for testing and validation and each SHALL be treated as an undefined value when provided to the 504
TEE_tlsSocket_Credentials structure. 505

Backward Compatibility 506

The fields below publicKey were added in TEE Sockets API Annex C v1.1. In v1.1, the publicKey field 507
became a legacy option recommended only for backwards compatibility. 508

 509

C.3.2.12 TEE_tlsSocket_ClientCredentialType 510

Since: TEE Sockets API Annex C v1.1 – See Backward Compatibility note below. 511

typedef uint32_t TEE_tlsSocket_ClientCredentialType; 512
 513

The TEE_tlsSocket_ClientCredentialType type indicates the type of credentials the TA has. 514
Table C-17 defines the values of TEE_tlsSocket_ClientCredentialType. 515

Table C-17: TEE_tlsSocket_ClientCredentialType Values 516

Name Value Meaning
TEE_TLS_CLIENT_CRED_NONE 0x00000000 TA has no credentials.

TEE_TLS_CLIENT_CRED_PDC 0x00000001 TA has pre-distributed
credentials; i.e. a PSK or an
SRP password.

TEE_TLS_CLIENT_CRED_CSC 0x00000002 TA has certificate storage
credentials; i.e. a private key
and a certificate.

Reserved for GlobalPlatform use 0x00000003 -
0x7FFFFFFE

Reserved by GlobalPlatform for
future use.

TEE_TLS_CLIENT_CRED_ILLEGAL_VALUE 0x7FFFFFFF Reserved for testing and
validation and SHALL be treated
as an undefined value when
provided to the
TEE_tlsSocket_Credentials
structure.

Implementation defined 0x80000000 -
0xFFFFFFFF

Reserved for proprietary use.

Backward Compatibility 517

Prior to TEE Sockets API Annex C v1.1, TEE_tlsSocket_ClientCredentialType was defined as an 518
enum. 519

 520

36/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.13 TEE_tlsSocket_Credentials Structure 521

typedef struct TEE_tlsSocket_Credentials_s { 522
 TEE_tlsSocket_ServerCredentialType serverCredType; 523
 TEE_tlsSocket_ServerPDC *serverCred; 524
 TEE_tlsSocket_ClientCredentialType clientCredType; 525
 TEE_tlsSocket_ClientPDC *clientCred; 526
} TEE_tlsSocket_Credentials; 527

 528

This structure contains information on what kind of credentials the TA holds for itself and for the server. 529

Table C-18: TEE_tlsSocket_Credentials Member Variables 530

Name Purpose
TEE_tlsSocket_ServerCredentialType serverCredType The provided server credential type.

See Table C-14 for possible values.

TEE_tlsSocket_ServerPDC *serverCred Pointer to the provided server
credentials used to authenticate the
server

TEE_tlsSocket_ClientCredentialType clientCredType The provided client credential type.
See Table C-17 for possible values.

TEE_tlsSocket_ClientPDC *clientCred Pointer to the provided credentials
the client uses to authenticate itself
to the server.

 531

Note: Implementations may define additional credential types. 532

 533

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 37/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.14 TEE_tlsSocket_CB_Data Structure 534

typedef struct TEE_tlsSocket_CB_Data_s { 535
 uint32_t cb_data_size; 536
 uint8_t cb_data[]; 537
} TEE_tlsSocket_CB_Data; 538

 539

This structure is returned in the output buffer by the ioctl function TEE_TLS_BINDING_INFO. 540

For TLS 1.2 connections, it provides tls-unique channel binding information according to [RFC 5929]. 541

For TLS 1.3 connections, it provides the value TLS-Exporter(label, context_value, key_length) 542
according to [RFC 8446], where label is the caller-provided value contained in the buf argument provided 543
to the ioctl call and used to indicate the use case of the channel binding information, context_value is 544
empty, and key_length is 32. The input secret used in the computation of the exporter value SHALL be the 545
exporter master secret of the connection. 546

Table C-19: TEE_tlsSocket_CB_Data Member Variables 547

Name Purpose
uint32_t cb_data_size The size of the channel binding data in cb_data[].

uint8_t cb_data[] The channel binding data.

 548

Memory management note: The implementation SHALL store the channel binding data in the output buffer 549
provided by the TA in the ioctl call. 550

 551

38/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.2.15 TEE_tlsSocket_SessionInfo Structure 552

typedef struct TEE_tlsSocket_SessionInfo_s 553
{ 554
 uint8_t structVersion; 555
 TEE_tlsSocket_TlsVersion chosenVersion; 556
 uint32_t chosenCiphersuite; 557
 TEE_tlsSocket_SignatureScheme chosenSigAlg; 558
 TEE_tlsSocket_Tls13KeyExGroup chosenKeyExGroup; 559
 unsigned char *matchedServerName; 560
 uint32_t matchedServerNameLen; 561
 const uint8_t *validatedServerCertificate; 562
 uint32_t validatedServerCertificateLen; 563
 uint32_t usedServerAuthenticationMethod; 564
} TEE_tlsSocket_SessionInfo; 565

 566

This structure is returned in the output buffer by the ioctl function TEE_TLS_SESSION_INFO. 567

The contents of the structure can be used by the TA to discover session information for the current TLS 568
session. 569

Table C-20: TEE_tlsSocket_SessionInfo Member Variables 570

Name Purpose
uint8_t structVersion Version number of this structure type. The possible values

include:

0 The current version defined in this specification

255 Illegal value

TEE_tlsSocket_TlsVersion
chosenVersion

The negotiated TLS protocol version used in this session

uint32_t chosenCiphersuite The negotiated cipher suite used in this session

TEE_tlsSocket_SignatureScheme
chosenSigAlg

The negotiated signature algorithm that was used to
authenticate the server during the handshake

TEE_tlsSocket_Tls13KeyExGroup
chosenKeyExGroup

The negotiated key exchange group used in this session

unsigned char*
matchedServerName

Pointer to memory storing the server name provided by the TA
in the session options that matched the server identity.

uint32_t matchedServerNameLen Number of bytes pointed to by matchedServerName. The
length SHALL be set to 0 if the handshake did not use
certificate-based server authentication.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 39/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Purpose
const uint8_t
*validatedServerCertificate

Pointer to memory where the implementation has stored the
successfully validated server certificate chain. The chain
SHALL be stored by concatenating the DER encodings of the
certificates, in child-to-parent order.
The pointed memory SHALL be considered valid only if all of
the following conditions are fulfilled:
• Certificate-based server authentication method was used in

the TLS handshake.
• The TA had enabled the storeServerCertChain option

in the session options.
• The TEE_TLS_RELEASE_CERT_CHAIN ioctl command

has not been invoked for the connection.
This option can be used by the TA to e.g. extend the
implementation’s certificate chain validation with custom
validation steps. In such a use case, the TA is responsible for
examining the certificate chain according to the TA’s policy
and for terminating the TLS connection in case of validation
failure.

uint32_t
validatedServerCertificateLen

Length of the stored server certificate chain. The length
SHALL be set to 0 if no certificate chain is available.

uint32_t
usedServerAuthenticationMethod

Indicates the server authentication method used in the TLS
handshake. Possible values are:

0 Server’s certificate chain was validated
against the provided trust root certificates

1 Server’s certificate chain was validated
against the provided trusted certificate pins

2 Server was authenticated using a PSK

3 Server was authenticated using SRP

0xFFFFFFFF Illegal value

 571

structVersion = 255 and usedServerAuthenticationMethod = 255 are reserved for testing and 572
validation and each SHALL be treated as an undefined value when retrieved as TEE_TLS_SESSION_INFO. 573

Memory management note: the implementation SHALL store the matchedServerName and 574
validatedServerCertificate in the output buffer provided by the TA in the ioctl call. 575

 576

 577

40/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.3 TEE_tlsSocket_Setup Structure 578

The setup structure is used to pass initialization information to the open function. It is possible for the 579
implementation to add proprietary variables to this structure to enable specific features, but for all conformant 580
implementations, the TEE_tlsSocket_Setup structure must include the following: 581

 582

typedef struct TEE_tlsSocket_Setup_s { 583
 TEE_tlsSocket_TlsVersion acceptServerVersion; 584
 TEE_tlsSocket_CipherSuites_GroupA *allowedCipherSuitesGroupA; 585
 TEE_tlsSocket_PSK_Info *PSKInfo; 586
 TEE_tlsSocket_SRP_Info *SRPInfo; 587
 TEE_tlsSocket_Credentials *credentials; 588
 TEE_iSocket *baseSocket; 589
 TEE_iSocketHandle *baseContext; 590
 591
 // The following fields were introduced in v1.1 592
 TEE_tlsSocket_CipherSuites_GroupB *allowedCipherSuitesGroupB; 593
 TEE_tlsSocket_SignatureScheme *sigAlgs; 594
 uint32_t numSigAlgs; 595
 TEE_tlsSocket_SignatureScheme *certSigAlgs; 596
 uint32_t numCertSigAlgs; 597
 TEE_tlsSocket_Tls13KeyExGroup *tls13KeyExGroups; 598
 uint32_t numTls13KeyExGroups; 599
 uint32_t numTls13KeyShares; 600
 TEE_tlsSocket_SessionTicket_Info *sessionTickets; 601
 uint32_t sessionTicketsNumElements; 602
 uint32_t numStoredSessionTickets; 603
 unsigned char *serverName; 604
 uint32_t serverNameLen; 605
 uint8_t *serverCertChainBuf; 606
 uint32_t *serverCertChainBufLen; 607
 uint8_t storeServerCertChain; 608
 unsigned char **alpnProtocolIds; 609
 uint32_t *alpnProtocolIdLens; 610
 uint32_t numAlpnProtocolIds; 611
} TEE_tlsSocket_Setup; 612

 613

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 41/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table C-21: TEE_tlsSocket_Setup Member Variables 614

Name Purpose
TEE_tlsSocket_TlsVersion
acceptServerVersion

Which version of the TLS protocol to accept from
the server.

TEE_tlsSocket_CipherSuites_GroupA
*allowedCipherSuitesGroupA

Pointer to an array of the TLS 1.2 cipher suites that
the client offers to the server. The array is
terminated with the value
TEE_TLS_NULL_WITH_NULL_NULL. Note that the
implementation SHALL NOT support this cipher
suite. It is only used to terminate the list.

TEE_tlsSocket_PSK_Info *PSKInfo Pointer to a structure holding the information for a
PSK session.

TEE_tlsSocket_SRP_Info *SRPInfo Pointer to a structure holding the information for an
SRP session.

TEE_tlsSocket_Credentials *credentials Pointer to a structure holding credential
information.

TEE_iSocket *baseSocket Pointer to the lower layer TEE_iSocket protocol.
The lower layer protocol must be connection-
oriented and reliable. A TCP socket is allowed, but
a UDP socket is not.

TEE_iSocketHandle *baseContext Pointer to the handle of the lower layer instance.

TEE_tlsSocket_CipherSuites_GroupB
*allowedCipherSuitesGroupB

Pointer to an array of the TLS 1.3 cipher suites that
the client offers to the server. The array is
terminated with the value
TEE_TLS_NULL_WITH_NULL_NULL. Note that the
implementation SHALL NOT support this cipher
suite. It is only used to terminate the list.
When cipher suites for both TLS 1.3 and below are
included, the implementation SHALL list the
TLS 1.3 cipher suites first (with higher priority) in
the ClientHello message.

TEE_tlsSocket_SignatureScheme *sigAlgs Pointer to an array of signature algorithms the
client supports for CertificateVerify
handshake message signature verification. The
array SHALL be in priority order (highest to lowest).

uint32_t numSigAlgs The number of signature algorithms in the
sigAlgs array.

TEE_tlsSocket_SignatureScheme
*certSigAlgs

Pointer to an array of signature algorithms the
client supports for certificate signature
authentication in TLS 1.3 connections. The array
SHALL be in priority order (highest to lowest). The
array may be empty when TLS 1.3 has not been
enabled by the TA.

uint32_t numCertSigAlgs The number of signature algorithms in the
certSigAlgs array.

42/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Purpose
TEE_tlsSocket_Tls13KeyExGroup
*tls13KeyExGroups

Pointer to an array of key exchange groups the
client offers to the server for TLS 1.3 connections.
The array SHALL be in priority order (highest to
lowest).

uint32_t numTls13KeyExGroups The number of key groups in the
tls13KeyExGroups array.

uint32_t numTls13KeyShares Number of key shares the client shall offer for
TLS 1.3 connections. The implementation SHALL
generate numTls13KeyShares shares for the
groups listed in tls13KeyExGroups, starting from
the group at index 0. If numTls13KeyShares
is 0, but the TA has enabled TLS 1.3, then the
implementation SHALL offer a single key share for
the highest-priority group in tls13KeyExGroups.

TEE_tlsSocket_SessionTicket_Info
*sessionTickets

Pointer to an array of structures in which the
implementation SHALL store received session
tickets.

uint32_t sessionTicketsNumElements Number of elements in the sessionTickets
array.

uint32_t numStoredSessionTickets Number of session tickets stored in the
sessionTickets array, i.e. the first
numStoredSessionTickets elements of
sessionTickets are currently filled.

unsigned char *serverName Pointer to the name of the server the TA wants to
connect to, encoded according to [RFC 6066]
section 3. The implementation SHALL send the
value in the HostName field of the server_name
extension defined in [RFC 6066] section 3. When
using certificate-based server authentication, the
implementation SHALL compare the name to the
identity in the server’s certificate, as described in
section C.3.2.10.1.

uint32_t serverNameLen Number of bytes pointed to by serverName.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 43/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Purpose
uint8_t *serverCertChainBuf Pointer to memory where the implementation

SHALL store the server’s certificate chain received
during the TLS handshake. The pointed memory
SHALL be considered valid even when the TLS
handshake was unsuccessful, as long as the
implementation received the complete server
Certificate message, making this mechanism
useful for debugging. The TA should examine the
error code to determine whether the Certificate
message was successfully received in a failed TLS
handshake.
The TA may set the value to NULL, in which case
the implementation SHALL NOT store the server
certificate chain for failed TLS handshakes.

uint32_t *serverCertChainBufLen Pointer to length of the serverCertChainBuf
buffer. The implementation SHALL store the length
of the stored certificate chain in the pointed
variable.

uint8_t storeServerCertChain This option specifies whether the implementation
should store the received server certificate chain
when a TLS session is successfully established.
Possible values are:

0 Do not store the server’s certificate chain
(e.g. release the chain immediately after
the implementation has validated it).

1 Store the server’s certificate chain such
that the TEE_TLS_SESSION_INFO
ioctl command can be used to retrieve
a pointer to memory holding the server’s
certificate chain. (See [TEE Sockets]
section 5.2.9 for ioctl details).

255 Illegal Value

As an optimization, when both
storeServerCertChain is set to 1 and
serverCertChainBuf is not set to NULL, the
implementation MAY use the memory pointed to by
serverCertChainBuf to store the server
certificate chain even for successful connections. In
this case, the pointer returned by the
TEE_TLS_SESSION_INFO command will point to
the same memory as serverCertChainBuf.

unsigned char **alpnProtocolIds An array of pointers to IANA-registered ALPN
protocol identification sequences. The
implementation SHALL transmit these in the ALPN
ClientHello extension as specified in
[RFC 7301].

44/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Purpose
uint32_t *alpnProtocolIdLens Length (number of bytes) of each protocol

identification sequence pointed to by
alpnProtocolIds.

uint32_t numAlpnProtocolIds Number of protocol identification sequences
pointed to by alpnProtocolIds.

 615

storeServerCertChain = 255 is reserved for testing and validation and SHALL be treated as an undefined 616
value when provided to the TEE_tlsSocket_Setup structure. 617

Memory management note: As stated in Section 5.2.4 of the main Socket API specification, after open has 618
been successfully called “any changes to the setup parameter SHALL NOT alter the behavior of the protocol 619
in subsequent calls to the instance TEE_iSocket functions”. One way the implementation could fulfill this 620
requirement is to take a deep copy of the TEE_tlsSocket_Setup structure and use the copy instead of the 621
original. 622

 623

An example of how to configure the setup structure is given in Annex D section D.2. 624

 625

C.3.4 Instance Specific Errors 626

Table C-22: TLS Instance Specific Errors 627

Name Value Function Fatal Meaning
TEE_ISOCKET_TLS_ERROR_
REJECTED_SUITE

0xF1030001 open Yes The server rejected all the
offered cipher suites.

TEE_ISOCKET_TLS_ERROR_
VERSION

0xF1030002 open Yes The server does not
support the TLS version(s)
provided by this
implementation.

TEE_ISOCKET_TLS_ERROR_
UNSUPPORTED_SUITE

0xF1030003 open Yes The combination of
algorithms (authentication
and key exchange,
encryption, and message
authentication) is not
supported.

TEE_ISOCKET_TLS_ERROR_
HANDSHAKE

0xF1030004 open Yes An error occurred during
the TLS handshake.

TEE_ISOCKET_TLS_ERROR_
AUTHENTICATION

0xF1030005 open Yes The server could not be
authenticated.

TEE_ISOCKET_TLS_ERROR_
DATA

0xF1030006 close Yes Invalid data was received
(incorrect authentication
value or other protocol
error).

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 45/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Function Fatal Meaning
TLS_ISOCKET_TLS_UNSUPPOR
TED_KEYEX_GROUP

0xF1030007 open Yes The implementation does
not support all the selected
key exchange groups.

TLS_ISOCKET_TLS_UNSUPPOR
TED_SIGALG

0xF1030008 open Yes The implementation does
not support all the selected
signature algorithms.

TLS_ISOCKET_TLS_SHORT_BU
FFER

0xF1030009 ioctl No The provided buffer was too
small for the result. The
length parameter contains
the minimum required
length.

TEE_ISOCKET_TLS_ERROR_
ALERT_RECEIVED

0xF10301XX open,
send,
recv

Yes A fatal TLS alert was
received from the server.
The last byte contains the
alert number defined in
[RFC 8446] section 6 or
[RFC 5246] section 7.2.

Proprietary codes As defined in
[TEE Core]

Any Depends The value and meaning of
other codes will be defined
when an implementation is
supporting TLS modes
outside of the subset
defined in this specification.

 628

Proprietary error codes SHALL follow the numbering scheme described in [TEE Core] section 3.3.1, Return 629
Code Ranges and Format. 630

 631

46/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.3.5 Instance Specific ioctl commandCode 632

Table C-23: TLS Instance Specific ioctl commandCode 633

Name Value Argument
Type

Description

TEE_TLS_BINDING_INFO 0x67000001 [inout]
char *buf

Retrieve channel binding information
for the current connection. The
returned buffer can be interpreted as
an instance of the structure
TEE_tlsSocket_CB_Data. If no
channel binding information is
available, the output length SHALL be
set to zero.
When TLS 1.3 has been negotiated for
the connection, the input buffer can be
used to supply the label argument for
the TLS-Exporter mechanism.
If the provided buffer is too small, the
implementation SHALL return
TLS_ISOCKET_TLS_SHORT_BUFFE
R, see the section above.

TEE_TLS_SESSION_INFO 0x67000002 [inout]
char *buf

Retrieve information about the current
TLS session. The returned buffer can
be interpreted as an instance of the
structure
TEE_tlsSocket_SessionInfo.
The first octet of the input buffer
SHALL be an unsigned integer
indicating the desired version of the
TEE_tlsSocket_SessionInfo
structure to be returned.
If no TLS session has been established
at the time of calling (e.g. the
handshake has not finished), the output
length SHALL be set to zero.
If the provided buffer is too small, the
implementation SHALL return
TLS_ISOCKET_TLS_SHORT_BUFFE
R, see the section above.

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 47/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Argument
Type

Description

TEE_TLS_RELEASE_CERT_CHAIN 0x67000003 Indicate to the implementation that it
may release memory pointing to stored
server certificate chain.
The buf argument is ignored.
Note that after this operation, it will not
be possible to retrieve the server
certificate chain using the
TEE_TLS_SESSION_INFO command.
If the storeServerCertChain
option was not enabled in the session
options, this command has no effect.

 634

C.4 Specification Properties 635

The properties listed in Table C-24 can be retrieved by the generic Property Access Function with the 636
TEE_PROPSET_TEE_IMPLEMENTATION pseudo-handle (see [TEE Core]). 637

Table C-24: Specification Reserved Properties 638

Name Type Comment
gpd.tee.tls.handshake integer Property that indicates supported

additional TLS handshake types.
For values, see Table C-1.

gpd.tee.tls.auth.remote.credential integer Property that indicates supported
credential type for remote endpoint
authentication. For values, see
Table C-2.

gpd.tee.tls.auth.remote.validation_steps integer Property that indicates supported
certification path validation steps for
remote server authentication. For
values, see Table C-15.

gpd.tee.tls.auth.local.credential integer Property that indicates supported
credential type for client
authentication. For values, see
Table C-3.

gpd.tee.sockets.tls.version integer Property that indicates the version
number of this specification that the
implementation conforms to. See
section C.1.2.

 639

The integers should have 32 bits defined and so should be retrieved via the TEE_GetPropertyAsU32 640
interface. 641

48/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.5 Header File Example 642

#ifndef TEE_ISOCKET_PROTOCOLID_TLS 643
#include “tee_isocket.h” 644
 645
/* Protocol identifier */ 646
#define TEE_ISOCKET_PROTOCOLID_TLS 0x67 647
 648
/* Instance specific errors */ 649
#define TEE_ISOCKET_TLS_ERROR_REJECTED_SUITE 0xF1030001 650
#define TEE_ISOCKET_TLS_ERROR_VERSION 0xF1030002 651
#define TEE_ISOCKET_TLS_ERROR_UNSUPPORTED_SUITE 0xF1030003 652
#define TEE_ISOCKET_TLS_ERROR_HANDSHAKE 0xF1030004 653
#define TEE_ISOCKET_TLS_ERROR_AUTHENTICATION 0xF1030005 654
#define TEE_ISOCKET_TLS_ERROR_DATA 0xF1030006 655
#define TEE_ISOCKET_TLS_ERROR_ALERT(code) (0xF1030100 | ((code) & 0xFF)) 656
 657
/* Instance specific ioctl functions */ 658
#define TEE_TLS_BINDING_INFO 0x67000001 659
#define TEE_TLS_SESSION_INFO 0x67000002 660
#define TEE_TLS_RELEASE_CERT_CHAIN 0x67000003 661
 662
/* 663
 * Structs and enums for the setup 664
 */ 665
 666
typedef uint32_t TEE_tlsSocket_TlsVersion; 667
#define TEE_TLS_VERSION_ALL 0x00000000 668
#define TEE_TLS_VERSION_1v2 0x00000001 669
#define TEE_TLS_VERSION_PRE1v2 0x00000002 670
#define TEE_TLS_VERSION_1v3 0x00000004 671
 672
/* Ciphersuite list termination. */ 673
#define TEE_TLS_NULL_WITH_NULL_NULL 0x00000000 674
 675
/* TLS 1.3 ciphersuites. */ 676
typedef uint32_t * TEE_tlsSocket_CipherSuites_GroupB; 677
#define TEE_TLS_AES_128_GCM_SHA256 0x00001301 678
#define TEE_TLS_AES_256_GCM_SHA384 0x00001302 679
#define TEE_TLS_CHACHA20_POLY1305_SHA256 0x00001303 680
#define TEE_TLS_AES_128_CCM_SHA256 0x00001304 681
#define TEE_TLS_AES_128_CCM_8_SHA256 0x00001305 682
 683
/* Ciphersuites for TLS 1.2 and below */ 684
typedef uint32_t *TEE_tlsSocket_CipherSuites_GroupA; 685
#define TEE_TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x0000000A /* [RFC5246] */ 686
#define TEE_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x00000013 /* [RFC5246] */ 687

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 49/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

#define TEE_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x00000016 /* [RFC5246] */ 688
#define TEE_TLS_RSA_WITH_AES_128_CBC_SHA 0x0000002F /* [RFC5246] */ 689
#define TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA 0x00000032 /* [RFC5246] */ 690
#define TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x00000033 /* [RFC5246] */ 691
#define TEE_TLS_RSA_WITH_AES_256_CBC_SHA 0x00000035 /* [RFC5246] */ 692
#define TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0x00000038 /* [RFC5246] */ 693
#define TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x00000039 /* [RFC5246] */ 694
#define TEE_TLS_RSA_WITH_AES_128_CBC_SHA256 0x0000003C /* [RFC5246] */ 695
#define TEE_TLS_RSA_WITH_AES_256_CBC_SHA256 0x0000003D /* [RFC5246] */ 696
#define TEE_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 0x00000040 /* [RFC5246] */ 697
#define TEE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x00000067 /* [RFC5246] */ 698
#define TEE_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 0x0000006A /* [RFC5246] */ 699
#define TEE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x0000006B /* [RFC5246] */ 700
#define TEE_TLS_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008B /* [RFC4279] */ 701
#define TEE_TLS_PSK_WITH_AES_128_CBC_SHA 0x0000008C /* [RFC4279] */ 702
#define TEE_TLS_PSK_WITH_AES_256_CBC_SHA 0x0000008D /* [RFC4279] */ 703
#define TEE_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000008F /* [RFC4279] */ 704
#define TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x00000090 /* [RFC4279] */ 705
#define TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x00000091 /* [RFC4279] */ 706
#define TEE_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 0x00000093 /* [RFC4279] */ 707
#define TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA 0x00000094 /* [RFC4279] */ 708
#define TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA 0x00000095 /* [RFC4279] */ 709
#define TEE_TLS_RSA_WITH_AES_128_GCM_SHA256 0x0000009C /* [RFC5288] */ 710
#define TEE_TLS_RSA_WITH_AES_256_GCM_SHA384 0x0000009D /* [RFC5288] */ 711
#define TEE_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0000009E /* [RFC5288] */ 712
#define TEE_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x0000009F /* [RFC5288] */ 713
#define TEE_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 0x000000A2 /* [RFC5288] */ 714
#define TEE_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 0x000000A3 /* [RFC5288] */ 715
#define TEE_TLS_PSK_WITH_AES_128_GCM_SHA256 0x000000A8 /* [RFC5487] */ 716
#define TEE_TLS_PSK_WITH_AES_256_GCM_SHA384 0x000000A9 /* [RFC5487] */ 717
#define TEE_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 0x000000AA /* [RFC5487] */ 718
#define TEE_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 0x000000AB /* [RFC5487] */ 719
#define TEE_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 0x000000AC /* [RFC5487] */ 720
#define TEE_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 0x000000AD /* [RFC5487] */ 721
#define TEE_TLS_PSK_WITH_AES_128_CBC_SHA256 0x000000AE /* [RFC5487] */ 722
#define TEE_TLS_PSK_WITH_AES_256_CBC_SHA384 0x000000AF /* [RFC5487] */ 723
#define TEE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 0x000000B2 /* [RFC5487] */ 724
#define TEE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 0x000000B3 /* [RFC5487] */ 725
#define TEE_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 0x000000B6 /* [RFC5487] */ 726
#define TEE_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 0x000000B7 /* [RFC5487] */ 727
#define TEE_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0x0000C008 /* [RFC4492] */ 728
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0x0000C009 /* [RFC4492] */ 729
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0x0000C00A /* [RFC4492] */ 730
#define TEE_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C012 /* [RFC4492] */ 731
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0x0000C013 /* [RFC4492] */ 732
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0x0000C014 /* [RFC4492] */ 733
#define TEE_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0000C01A /* [RFC5054] */ 734
#define TEE_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0000C01B /* [RFC5054] */ 735

50/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

#define TEE_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0000C01C /* [RFC5054] */ 736
#define TEE_TLS_SRP_SHA_WITH_AES_128_CBC_SHA 0x0000C01D /* [RFC5054] */ 737
#define TEE_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 0x0000C01E /* [RFC5054] */ 738
#define TEE_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 0x0000C01F /* [RFC5054] */ 739
#define TEE_TLS_SRP_SHA_WITH_AES_256_CBC_SHA 0x0000C020 /* [RFC5054] */ 740
#define TEE_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0000C021 /* [RFC5054] */ 741
#define TEE_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0000C022 /* [RFC5054] */ 742
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0x0000C023 /* [RFC5289] */ 743
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0x0000C024 /* [RFC5289] */ 744
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0x0000C027 /* [RFC5289] */ 745
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0x0000C028 /* [RFC5289] */ 746
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0000C02B /* [RFC5289] */ 747
#define TEE_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0000C02C /* [RFC5289] */ 748
#define TEE_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0x0000C02F /* [RFC5289] */ 749
#define TEE_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0x0000C030 /* [RFC5289] */ 750
#define TEE_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA 0x0000C034 /* [RFC5489] */ 751
#define TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0x0000C035 /* [RFC5489] */ 752
#define TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0x0000C036 /* [RFC5489] */ 753
#define TEE_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0x0000C037 /* [RFC5489] */ 754
#define TEE_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0x0000C038 /* [RFC5489] */ 755
#define TEE_TLS_RSA_WITH_AES_128_CCM 0x0000C09C /* [RFC6655] */ 756
#define TEE_TLS_RSA_WITH_AES_256_CCM 0x0000C09D /* [RFC6655] */ 757
#define TEE_TLS_DHE_RSA_WITH_AES_128_CCM 0x0000C09E /* [RFC6655] */ 758
#define TEE_TLS_DHE_RSA_WITH_AES_256_CCM 0x0000C09F /* [RFC6655] */ 759
#define TEE_TLS_PSK_WITH_AES_128_CCM 0x0000C0A4 /* [RFC6655] */ 760
#define TEE_TLS_PSK_WITH_AES_256_CCM 0x0000C0A5 /* [RFC6655] */ 761
#define TEE_TLS_DHE_PSK_WITH_AES_128_CCM 0x0000C0A6 /* [RFC6655] */ 762
#define TEE_TLS_DHE_PSK_WITH_AES_256_CCM 0x0000C0A7 /* [RFC6655] */ 763
 764
/* Signature algorithms. */ 765
typedef uint32_t TEE_tlsSocket_SignatureScheme; 766
#define TEE_TLS_RSA_PKCS1_SHA256 0x00000401 767
#define TEE_TLS_RSA_PKCS1_SHA384 0x00000501 768
#define TEE_TLS_RSA_PKCS1_SHA512 0x00000601 769
#define TEE_TLS_ECDSA_SECP256R1_SHA256 0x00000403 770
#define TEE_TLS_ECDSA_SECP384R1_SHA384 0x00000503 771
#define TEE_TLS_ECDSA_SECP521R1_SHA512 0x00000603 772
#define TEE_TLS_RSA_PSS_RSAE_SHA256 0x00000804 773
#define TEE_TLS_RSA_PSS_RSAE_SHA384 0x00000805 774
#define TEE_TLS_RSA_PSS_RSAE_SHA512 0x00000806 775
#define TEE_TLS_ED25519 0x00000807 776
#define TEE_TLS_ED448 0x00000808 777
#define TEE_TLS_RSA_PSS_PSS_SHA256 0x00000809 778
#define TEE_TLS_RSA_PSS_PSS_SHA384 0x0000080A 779
#define TEE_TLS_RSA_PSS_PSS_SHA512 0x0000080B 780
#define TEE_TLS_RSA_PKCS_SHA1 0x00000201 781
#define TEE_TLS_ECDSA_SHA1 0x00000203 782
 783

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 51/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

/* Key exchange groups used in TLS 1.3 */ 784
typedef uint32_t TEE_tlsSocket_Tls13KeyExGroup; 785
#define TEE_TLS_KEYEX_GROUP_SECP256R1 0x00000017 786
#define TEE_TLS_KEYEX_GROUP_SECP384R1 0x00000018 787
#define TEE_TLS_KEYEX_GROUP_SECP521R1 0x00000019 788
#define TEE_TLS_KEYEX_GROUP_X25519 0x0000001D 789
#define TEE_TLS_KEYEX_GROUP_X4458 0x0000001E 790
#define TEE_TLS_KEYEX_GROUP_FFDHE_2048 0x00000100 791
#define TEE_TLS_KEYEX_GROUP_FFDHE_3072 0x00000101 792
#define TEE_TLS_KEYEX_GROUP_FFDHE_4096 0x00000102 793
#define TEE_TLS_KEYEX_GROUP_FFDHE_6144 0x00000103 794
#define TEE_TLS_KEYEX_GROUP_FFDHE_8192 0x00000104 795
 796
/* The definition below is just a simple example of what an implementation 797
 could define. */ 798
typedef struct TEE_tlsSocket_Context_s { 799
 /* 800
 * All things needed to maintain the context 801
 */ 802
 uint32_t protocolError; 803
 uint32_t state; 804
} TEE_tlsSocket_Context; 805
 806
typedef struct TEE_tlsSocket_PSK_Info_s { 807
 TEE_ObjectHandle pskKey; 808
 char *pskIdentity; 809
} TEE_tlsSocket_PSK_Info; 810
 811
 812
typedef struct TEE_tlsSocket_SRP_Info_s { 813
 char *srpPassword; 814
 char *srpIdentity; 815
} TEE_tlsSocket_SRP_Info; 816
 817
typedef struct TEE_tlsSocket_ClientPDC_s { 818
 TEE_ObjectHandle privateKey; 819
 uint8_t *bulkCertChain; 820
 uint32_t bulkSize; 821
 uint32_t bulkEncoding; 822
} TEE_tlsSocket_ClientPDC; 823
 824
 825
typedef struct TEE_tlsSocket_ServerPDC_s { 826
 TEE_ObjectHandle publicKey; 827
 // The following fields were introduced in v1.1 828
 TEE_ObjectHandle *trustedCerts; 829
 uint32_t *trustedCertEncodings; 830
 uint32_t numTrustedCerts; 831

52/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 uint32_t allowTAPersistentTimeCheck; 832
 uint8_t *certPins; 833
 uint32_t numCertPins; 834
 uint8_t *pubkeyPins; 835
 uint32_t numPubkeyPins; 836
} TEE_tlsSocket_ServerPDC; 837
 838
typedef uint32_t TEE_tlsSocket_ClientCredentialType; 839
#define TEE_TLS_CLIENT_CRED_NONE 0x00000000 840
#define TEE_TLS_CLIENT_CRED_PDC 0x00000001 841
#define TEE_TLS_CLIENT_CRED_CSC 0x00000002 842
 843
typedef uint32_t TEE_tlsSocket_ServerCredentialType; 844
#define TEE_TLS_SERVER_CRED_PDC 0x00000000 845
#define TEE_TLS_SERVER_CRED_CSC 0x00000001 846
#define TEE_TLS_SERVER_CRED_CERT_PIN 0x00000002 847
#define TEE_TLS_SERVER_CRED_PUBKEY_PIN 0x00000003 848
 849
typedef struct TEE_tlsSocket_Credentials_s { 850
 TEE_tlsSocket_ServerCredentialType serverCredType; 851
 TEE_tlsSocket_ServerPDC *serverCred; 852
 TEE_tlsSocket_ClientCredentialType clientCredType; 853
 TEE_tlsSocket_ClientPDC *clientCred; 854
} TEE_tlsSocket_Credentials; 855
 856
/* 857
 * Struct for retrieving channel binding data 858
 * using the ioctl functionality. 859
 */ 860
typedef struct TEE_tlsSocket_CB_Data_s { 861
 uint32_t cb_data_size; 862
 uint8_t cb_data[]; 863
} TEE_tlsSocket_CB_Data; 864
 865
/* 866
 * Struct for retrieving session information 867
 * using the ioctl functionality. 868
 */ 869
 870
typedef struct TEE_tlsSocket_SessionInfo_s 871
{ 872
 uint8_t structVersion; 873
 TEE_tlsSocket_TlsVersion chosenVersion; 874
 uint32_t chosenCiphersuite; 875
 TEE_tlsSocket_SignatureScheme chosenSigAlg; 876
 TEE_tlsSocket_Tls13KeyExGroup chosenKeyExGroup; 877
 unsigned char *matchedServerName; 878
 uint32_t matchedServerNameLen; 879

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 53/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 const uint8_t *validatedServerCertificate; 880
 uint32_t validatedServerCertificateLen; 881
 uint32_t usedServerAuthenticationMethod; 882
} TEE_tlsSocket_SessionInfo; 883
 884
/* Structure for storing session tickets. */ 885
typedef struct TEE_tlsSocket_SessionTicket_Info_s { 886
 uint8_t *ticket; 887
 uint32_t ticket_len; 888
 uint8_t *server_id; 889
 uint32_t server_id_len; 890
 uint8_t *session_params; 891
 uint32_t session_params_len; 892
 TEE_tlsSocket_PSK_Info psk; 893
} TEE_tlsSocket_SessionTicket_Info; 894
 895
/* The TEE TLS setup struct */ 896
typedef struct TEE_tlsSocket_Setup_s { 897
 TEE_tlsSocket_TlsVersion acceptServerVersion; 898
 TEE_tlsSocket_CipherSuites_GroupA *allowedCipherSuitesGroupA; 899
 TEE_tlsSocket_PSK_Info *PSKInfo; 900
 TEE_tlsSocket_SRP_Info *SRPInfo; 901
 TEE_tlsSocket_Credentials *credentials; 902
 TEE_iSocket *baseSocket; 903
 TEE_iSocketHandle *baseContext; 904
 905
 // The following fields were introduced in v1.1 906
 TEE_tlsSocket_CipherSuites_GroupB *allowedCipherSuitesGroupB; 907
 TEE_tlsSocket_SignatureScheme *sigAlgs; 908
 uint32_t numSigAlgs; 909
 TEE_tlsSocket_SignatureScheme *certSigAlgs; 910
 uint32_t numCertSigAlgs; 911
 TEE_tlsSocket_Tls13KeyExGroup *tls13KeyExGroups; 912
 uint32_t numTls13KeyExGroups; 913
 uint32_t numTls13KeyShares; 914
 TEE_tlsSocket_SessionTicket_Info *sessionTickets; 915
 uint32_t sessionTicketsNumElements; 916
 uint32_t numStoredSessionTickets; 917
 unsigned char *serverName; 918
 uint32_t serverNameLen; 919
 uint8_t *serverCertChainBuf; 920
 uint32_t *serverCertChainBufLen; 921
 uint8_t storeServerCertChain; 922
 unsigned char **alpnProtocolIds; 923
 uint32_t *alpnProtocolIdLens; 924
 uint32_t numAlpnProtocolIds; 925
} TEE_tlsSocket_Setup; 926
 927

54/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 928
/* declare the function pointer handle */ 929
extern TEE_iSocket * const TEE_tlsSocket; 930
#endif 931

Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec 55/56

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C.6 Additional Cipher Suite References 932

A TLS cipher suite constant defines three entities: 933

• The authentication and key exchange algorithm 934

• The bulk encryption algorithm (cipher and mode) 935

• The message authentication algorithm 936

The tables below list the supported algorithms for each entity. 937

See section C.3.2.2 for a detailed description of the constants. 938

Note: This version of the specification only supports ephemeral Diffie-Hellman, as the TEE currently has no 939
way of interpreting certificates. This may change in future versions of specifications. 940

Table C-25: Supported Authentication and Key Exchange Algorithms 941

Algorithm Main Reference

Pre-shared key (PSK) [RFC 4279]

PSK with ephemeral Diffie-Hellman

PSK with server side RSA certificate

Secure remote password (SRP) [RFC 5054]

SRP with server side RSA certificate

SRP with server side DSS certificate

Server side RSA certificate [RFC 5246]

Ephemeral Diffie-Hellman with server side RSA certificate

Ephemeral Diffie-Hellman with server side DSS certificate.

PSK with Ephemeral Elliptic Curve Diffie-Hellman [RFC 5489]

Ephemeral Elliptic Curve Diffie-Hellman with server side RSA certificate [RFC 5289]

Ephemeral Elliptic Curve Diffie-Hellman with server side ECDSA certificate [RFC 4492]

 942

Table C-26: Supported Bulk Encryption Algorithms 943

Algorithm Main Reference

Triple-DES with 112-bit key in CBC mode [RFC 5246]

AES with 128-bit key in CBC mode

AES with 256-bit key in CBC mode

AES with 128-bit key in CCM mode providing both confidentiality and authenticity [RFC 6655]

AES with 256-bit key in CCM mode providing both confidentiality and authenticity

AES with 128-bit key in GCM mode providing both confidentiality and authenticity [RFC 5288]

AES with 256-bit key in GCM mode providing both confidentiality and authenticity

 944

56/56 Public Review – Annex C: TLS Specification v1.0.2.30 for TEE Sockets API Spec

Copyright  2013-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table C-27: Supported Message Authentication Algorithms 945

Algorithm Main Reference

CCM or GCM. This bulk encryption mode provides both encryption and message
authentication.

[RFC 6655],
[RFC 5288]

HMAC with SHA-1 [RFC 5246]

HMAC with SHA-256

HMAC with SHA-384

 946

	Contents
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	Annex C TEE_tlsSocket Instance Specification
	C.1 General Information
	C.1.1 Header File Name
	C.1.1.1 API Version

	C.1.2 Specification Version Number Property
	C.1.3 Protocol Identifier Value
	C.1.4 Panic Numbering

	C.2 Transport Layer Security (TLS)
	C.2.1 Handshake Variants
	C.2.2 Credentials and Authentication
	C.2.2.1 Server (Remote Endpoint) Authentication
	C.2.2.2 Client (Local Endpoint) Authentication

	C.2.3 TLS Extensions and Optional Features

	C.3 Header File
	C.3.1 TEE_iSocket Instance Variable for TLS
	C.3.2 Type Definitions
	C.3.2.1 TEE_tlsSocket_TlsVersion
	C.3.2.2 TEE_tlsSocket_CipherSuites_GroupA
	C.3.2.3 TEE_tlsSocket_CipherSuites_GroupB
	C.3.2.4 TEE_tlsSocket_SignatureScheme
	C.3.2.5 TEE_tlsSocket_Tls13KeyExGroup
	C.3.2.6 TEE_tlsSocket_PSK_Info Structure
	C.3.2.7 TEE_tlsSocket_SessionTicket_Info Structure
	C.3.2.8 TEE_tlsSocket_SRP_Info Structure
	C.3.2.9 TEE_tlsSocket_ClientPDC Structure
	C.3.2.10 TEE_tlsSocket_ServerCredentialType
	C.3.2.10.1 Server Certificate Chain Validation

	C.3.2.11 TEE_tlsSocket_ServerPDC Structure
	C.3.2.12 TEE_tlsSocket_ClientCredentialType
	C.3.2.13 TEE_tlsSocket_Credentials Structure
	C.3.2.14 TEE_tlsSocket_CB_Data Structure
	C.3.2.15 TEE_tlsSocket_SessionInfo Structure

	C.3.3 TEE_tlsSocket_Setup Structure
	C.3.4 Instance Specific Errors
	C.3.5 Instance Specific ioctl commandCode

	C.4 Specification Properties
	C.5 Header File Example
	C.6 Additional Cipher Suite References

