

www.globalplatform.org | © 2011-2022 GlobalPlatform, Inc.

GlobalPlatform Technology

TEE System Architecture v1.3

White Paper
May 2022 – GPD_SPE_009

2 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 6
1.1 Audience ... 7
1.2 IPR Disclaimer .. 7
1.3 References .. 7
1.4 Terminology and Definitions ... 9
1.5 Abbreviations and Notations ... 15
1.6 Revision History .. 17

2 TEE Device Architecture Overview ... 18
2.1 Typical Chipset Architecture ... 19
2.2 Hardware Architecture .. 20

2.2.1 TEE High Level Security Requirements ... 21
2.2.2 Roots of Trust and TEE.. 22
2.2.3 TEE Resources .. 23
2.2.4 REE and TEE Resource Sharing ... 24

2.2.4.1 Isolation of Trusted Resources .. 26

3 TEE Software Interfaces .. 27
3.1 The TEE Software Architecture .. 28
3.2 Components of a GPD TEE .. 30

3.2.1 REE Interfaces to the TEE ... 30
3.2.2 Trusted OS Components ... 30
3.2.3 Trusted Applications (TAs) ... 31
3.2.4 Shared Memory .. 32
3.2.5 TA to TA Communication ... 32

3.3 Relationship between TEE APIs ... 33
3.4 The TEE Client API Architecture ... 34
3.5 The TEE Internal API Architecture .. 35

3.5.1 The TEE Internal Core API .. 36
3.5.1.1 Trusted Storage API .. 37
3.5.1.2 Peripheral and Event APIs .. 38

3.5.2 The TEE Sockets API .. 39
3.5.3 The TEE TA Debug API ... 40
3.5.4 The TEE Secure Element API ... 41
3.5.5 The TEE Trusted User Interface API ... 42
3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API ... 43
3.5.7 Cryptography and the TEE .. 45

3.6 Variations of TEE Architecture Found on Real Devices ... 46
3.6.1 A GPD TEE Can Have Proprietary Extensions ... 46
3.6.2 A Device Can Have Many TEEs .. 47
3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant .. 49
3.6.4 TEEs and TEE-enabling Hypervisors .. 50

3.6.4.1 Hypervisor Isolation from the Hardware Point of View .. 51
3.6.4.2 Isolated TEEs from the Software Point of View ... 53

3.6.4.2.1 A Single TEE System with a Hypervisor ... 53
3.6.4.2.2 Minimizing Code with High Privilege ... 54
3.6.4.2.3 Various Examples of Multiple TEE Systems ... 56
3.6.4.2.4 Isolation Boundaries in a Hypervisor-based System ... 58

3.6.5 Executing alongside Other Environments: Trust vs. Respect ... 59
3.6.6 Communicating with Other Environments: Trust vs. Respect ... 59

TEE System Architecture – Public Release v1.3 3 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 TEE Management ... 62
4.1 Overview of TEE and TA Management .. 62
4.2 Overview of TA Management Hierarchies .. 64
4.3 Overview of ASN.1 Profile, X.509 Profile, and Cross-profile Mapping ... 65
4.4 Roots of Trust and the Trusted Management Framework .. 66
4.5 Configurations of the TMF ASN.1 Profile .. 66

4.5.1 Model A Is the Constrained IoT Device Design ... 66
4.5.2 Model B Is for More Complex Devices ... 67

4.6 TMF OTrP Profile .. 68
4.6.1 TMF OTrP Configurations .. 69

4.7 OMIL and OTrP to ASN.1 Profile Mapping ... 70

5 TEE Implementation Considerations .. 71
5.1 Device States .. 71
5.2 Boot Time Environment... 72

5.2.1 Typical Boot Sequence .. 72
5.3 Run-time Environment .. 76

5.3.1 TEE Functionality Availability ... 76
5.4 Transfer of Hardware Components to and from the TEE ... 77

5.4.1 Accidental Exposure of TEE Assets by Transfer ... 77
5.4.2 Moving a Shared Trusted Peripheral into TEE Use ... 78
5.4.3 Respect of REE Security and Transfer of Assets to the REE.. 78

4 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures
Figure 2-1: Chipset Architecture .. 19

Figure 2-2: Hardware Resource Ownership .. 24

Figure 2-3: Example Hardware Realizations of TEE ... 25

Figure 3-1: TEE Software Architecture .. 28

Figure 3-2: TEE APIs ... 33

Figure 3-3: Example of Multiple Access to Bus-oriented Peripheral ... 38

Figure 3-4: Example TEE Sockets API Architecture ... 39

Figure 3-5: Typical Device with Multiple SE Readers ... 41

Figure 3-6: TEE with TUI Architecture ... 42

Figure 3-7: Architecture Overview – Multiple Biometrics .. 43

Figure 3-8: Architecture Overview – Biometrics .. 44

Figure 3-9: Compliant GPD TEE with Proprietary Extensions .. 46

Figure 3-10: Example of System Hardware with Multiple TEEs .. 47

Figure 3-11: Multiple GPD TEEs in One Device ... 48

Figure 3-12: GPD TEE alongside Unknown TEE .. 49

Figure 3-13: Many TEEs including Using Hypervisor Separation ... 50

Figure 3-14: Example of Two Hypervisor-separated TEEs ... 51

Figure 3-15: Isolator Control Software Type #B .. 53

Figure 3-16: Isolator Control Software Type #B and Minimal Privilege Code ... 54

Figure 3-17: TEE #1 Integral in the IC Package and Providing TEE Services to the Device 56

Figure 3-18: TEE #2 Integral in the IC Package and Providing TEE Services to the Device 56

Figure 3-19: Trusted OS #5a and #5b Co-operating to Provide the Functionality of TEE #5 57

Figure 3-20: More than One Isolator Control Software Type #B in Device ... 57

Figure 3-21: Isolation Boundaries.. 58

Figure 3-22: Communication between Applications in Various Execution Environments 59

Figure 4-1: TEE Management Framework Structure .. 63

Figure 4-2: Security Domain Management Relationships ... 64

Figure 4-3: TMF ASN.1 Configuration Model A – Only One Root SD ... 66

Figure 4-4: TMF ASN.1 Configuration Model B – One Root SD and One Level of SD 67

Figure 4-5: TMF OTrP Architecture ... 68

Figure 4-6: TEE with Joint ASN.1 and OTrP Managements Enabled via OMIL ... 70

Figure 5-1: Example Boot Sequence: Trusted OS Early Boot ... 73

Figure 5-2: Example Boot Sequence: ROM-based Trusted OS .. 74

Figure 5-3: Example Boot Sequence: Trusted OS On-demand Boot .. 75

TEE System Architecture – Public Release v1.3 5 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-4: Shared Trusted Peripherals .. 77

Tables
Table 1-1: References ... 7

Table 1-2: Terminology and Definitions ... 9

Table 1-3: Abbreviations and Notations .. 15

Table 1-4: Revision History ... 17

Table 3-1: APIs within TEE Internal Core API ... 36

Table 3-2: Storage Areas .. 37

Table 3-3: Trust of Communication ... 60

6 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction
Devices, from smartphones to servers, offer a Regular Execution Environment (REE), providing a hugely
extensible and versatile operating environment. This brings flexibility and capability, but leaves the device
vulnerable to a wide range of security threats. The Trusted Execution Environment (TEE) is designed to reside
alongside the REE and other Execution Environments and to provide a safe area of the device to protect
assets and execute trusted code.

This document explains the hardware and software architectures behind the TEE. It introduces TEE
management and explains concepts relevant to TEE functional availability in a device.

At the highest level, a TEE that meets the GlobalPlatform TEE Protection Profile ([TEE PP]) is an environment
where the following are true:

• Authenticity: All code executing inside the TEE has been authenticated.

• Integrity: Unless explicitly shared with entities outside the TEE, the ongoing integrity of all TEE assets
is assured through isolation, cryptography, or other mechanisms.

• Data Confidentiality: Unless explicitly shared with entities outside the TEE, the ongoing confidentiality
of the contents of all TEE data assets – including keys – is assured through isolation or other
mechanisms such as cryptography.

• TA Code Confidentiality: TEE capabilities, such as isolation or cryptography, can be used to provide
confidentiality of the TA code asset.

• Security: The TEE resists known remote and software attacks, and a set of external hardware attacks.

• Debug and Trace: Both code and other assets are protected from unauthorized debug tracing and
control operations being performed through the device’s debug and test features.

Note: The architectural concepts and principles in this document do not and should not dictate any particular
hardware or software implementation and are broad enough to cover many possible implementations as long
as the security principles are adhered to. Hence, any hardware or software architectural diagram in this
document is provided as an example and for reference only.

Since release of the first version of this document, many of the requirements to fulfil the goal of being a
GPD TEE have become available in specific specification documents. It is not the role of this high-level
architecture document to duplicate those detailed requirements, and so many of the statements of this
document are intentionally reduced from normative language to informative language.

If you are implementing technology related to this architecture, and you think this document is
not clear on something:

1. Check with a colleague.

And if that fails:

2. Contact GlobalPlatform at TEE-issues-GPD_SPE_009_v1.3@globalplatform.org

mailto:TEE-issues-GPD_SPE_009_v1.3@globalplatform.org

TEE System Architecture – Public Release v1.3 7 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.1 Audience

This document is intended primarily for the use of developers of:

• Trusted Execution Environments

• Trusted Hardware

• Trusted OSes

• Trusted boot loaders

• Trusted Applications that make use of Trusted Execution Environments

• Client Applications that use the services of Trusted Applications by means of the TEE Client API
(described in [TEE Client API])

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please
visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held responsible for
identifying any or all such IPR, and takes no position concerning the possible existence or the evidence,
validity, or scope of any such IPR.

1.3 References

The table below lists references applicable to this specification. The latest version of each reference applies
unless a publication date or version is explicitly stated.

Table 1-1: References

Standard / Specification Description Ref

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification

[TEE Core API]

GPD_SPE_007 GlobalPlatform Technology
TEE Client API Specification

[TEE Client API]

GPD_SPE_021 GlobalPlatform Technology
TEE Protection Profile

[TEE PP]

GPD_SPE_025 GlobalPlatform Technology
TEE TA Debug Specification

[TEE TA Debug]

GPD_SPE_024 GlobalPlatform Technology
TEE Secure Element API

[TEE SE API]

GPD_SPE_020 GlobalPlatform Technology
Trusted User Interface API

[TEE TUI API]

GPD_SPE_055 GlobalPlatform Technology
TEE Trusted User Interface Low-level API

[TEE TUI Low]

https://globalplatform.org/specifications/ip-disclaimers/

8 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
GPD_SPE_042 GlobalPlatform Technology

TEE TUI Extension: Biometrics API v1.0
[TEE TUI Bio]

GPD_SPE_120 GlobalPlatform Technology
TEE Management Framework including ASN.1
Profile
[Initially published as TEE Management Framework]

[TMF]

GPD_SPE_123 GlobalPlatform Technology
TEE Management Framework: Open Trust Protocol
(OTrP) Profile

[TMF OTrP]

GPD_SPE_124 GlobalPlatform Technology
TMF: Open Trust Protocol (OTrP) Mapping

[TMF OTrP Mapping]

GPD_SPE_100 GlobalPlatform Technology
TEE Sockets API Specification

[TEE Sockets]

GPD_GUI_069 GlobalPlatform Technology
TEE Initial Configuration

[TEE Init Config]

GPD_GUI_089 GlobalPlatform Technology
TMF Initial Configuration

[TMF ASN.1 Config]

GPD_GUI_125 GlobalPlatform Technology
TMF: OTrP Profile Initial Configuration

[TMF OTrP Config]

GPD_SPE_075 GlobalPlatform Technology
Open Mobile API Specification

[Open Mobile]

GP_REQ_025 GlobalPlatform Technology
Root of Trust Definitions and Requirements

[RoT Req]

GP_TEN_053 GlobalPlatform Technology
Cryptographic Algorithm Recommendations

[Crypto Rec]

GP_PRO_023 GlobalPlatform Technology
TEE Certification Process

[TEE Cert Proc]

ISO/IEC 15408 Information technology – Security techniques –
Evaluation criteria for IT security

[ISO 15408]

OMTP ATE TR1 Open Mobile Terminal Platform (OMTP) Advanced
Trusted Environment TR1 v1.1
https://www.gsma.com/newsroom/resources/omtp-
documents-1-1-omtp-advanced-trusted-environment-
omtp-tr1-v1-1/

[OMTP ATE TR1]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

RFC 8174 Amendment to RFC 2119 [RFC 8174]

TCG Glossary Trusted Computing Group Glossary,
https://trustedcomputinggroup.org/wp-
content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf

[TCG_G]

https://www.gsma.com/newsroom/resources/omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/
https://www.gsma.com/newsroom/resources/omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/
https://www.gsma.com/newsroom/resources/omtp-documents-1-1-omtp-advanced-trusted-environment-omtp-tr1-v1-1/
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf

TEE System Architecture – Public Release v1.3 9 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
BSI-CC-PP-0084 Common Criteria Protection Profile

Security IC Platform Protection Profile with
Augmentation Packages

[PP-0084]

embedded MultiMedia
Card Product Standard

EMBEDDED MULTIMEDIACARD(e•MMC)
e•MMC/CARD PRODUCT STANDARD, HIGH
CAPACITY, including Reliable Write, Boot, Sleep
Modes, Dual Data Rate, Multiple Partitions Supports,
Security Enhancement, Background Operation and
High Priority Interrupt
https://www.jedec.org/document_search?search_api
_views_fulltext=MMC

[eMMC]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and
MAY in this document (refer to [RFC 2119] as amended by [RFC 8174]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD and SHOULD NOT indicate recommendations.

• MAY indicates an option.

Note that as clarified in the [RFC 8174] amendment, lower case use of these words is not normative.

Table 1-2: Terminology and Definitions

Term Definition

Access Control Rules
(ACR)

A set of rules defining which components or software can access what
assets when an isolation boundary is in place.

Application Programming
Interface (API)

A set of rules that software programs can follow to communicate with each
other.

Biometrics API An extension of the TEE Trusted User Interface Low-level API that supports
the discovery and identification of all biometric capabilities and the use of
biometric functionality supported by hardware, entirely protected inside the
TEE.

Bus Manager The component that instigates an action on a bus connection.
Typically, the actions will either be to send data to another component or to
request data from another component.
Some components act as both Bus Manager and Bus Subordinate. For
example, a cache will receive requests for data on its Bus Subordinate port
and if it doesn’t hold that data will then use its Bus Manager port to request
that data from other Bus Subordinates to which it is connected.
Also known as Bus Master or Bus Requestor.

https://www.jedec.org/document_search?search_api_views_fulltext=MMC
https://www.jedec.org/document_search?search_api_views_fulltext=MMC

10 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Bus Subordinate The component that reacts to an action on a bus connection.

Typically, the response to actions will be either to act on data provided by the
requesting component or to return data back to the requesting component.
Some components act as both Bus Manager and Bus Subordinate. For
example, a cache will receive requests for data on its Bus Subordinate port
and if it doesn’t hold that data will then use its Bus Manager port to request
that data from other Bus Subordinates to which it is connected.
Also known as Bus Slave or Bus Completer.

Client Application (CA) An application running outside of the Trusted Execution Environment making
use of the TEE Client API to access facilities provided by Trusted
Applications inside the Trusted Execution Environment.
Contrast Trusted Application.

Computing Engine In the context of this document, any system of hardware that will consistently
change in a deterministic manner from one state to another. That
deterministic manner is governed by the Computing Engine’s current state,
instruction code, and/or data. A platform has one Computing Engine. This
definition does not limit Computing Engines to CPUs, although a Computing
Engine must have a minimum of circuitry to perform specific tasks. Note:
Hardware entropy sources are acted upon as an aspect of data, and so while
they themselves are non-deterministic, the resultant value at a given point in
time is acted upon by the Computing Engine in a deterministic manner.

Core Migration The transfer of the task of execution of code from one CPU core to another.

Execution Environment
(EE)

An Execution Environment, as defined in [OMTP ATE TR1], is a set of
hardware and software components providing facilities necessary to support
running of applications. An EE typically consists of the following elements:
• A hardware processing unit
• A set of connections between the processing unit and other hardware

resources
• Physical volatile memory
• Physical non-volatile memory
• Peripheral interfaces

Extended Root of Trust
Component (eRoTc)

A Computing Engine, executable code, and/or data (including cryptographic
data) whose integrity is verified by either an Initial Root of Trust Component
or another Extended Root of Trust Component at any point during the life
cycle of the platform, but whose verification measurement is not
discoverable.

GPD TEE A TEE that is compliant with a GlobalPlatform TEE functionality configuration
and certified according to the GlobalPlatform TEE Protection Profile
([TEE PP]).

Hardware isolation In this document, unless stated otherwise for particular assets, hardware
isolation of security related assets is considered to include isolation by
electronic access control through the TEE system hardware, that can be
configured by TEE resident boot or run-time software.

IC package See TEE Hosting IC Package.

TEE System Architecture – Public Release v1.3 11 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Initial Root of Trust
Component (iRoTc)

A Computing Engine, code, and related data (including cryptographic data)
that a platform manufacturer provisions and initializes during the
manufacturing process and that is a part of the first code executed on the
platform.

In-package There exist a number of physical boundaries relating to the presence of
resources used by the TEE. One of those boundaries is defined by the
Integrated Circuit package that contains one or more components of the
TEE. While one hardware boundary is often described as on-SoC, in reality it
is the SoC packaging material that often forms the boundary. It is important
to make this distinction between SoC and Package because it enables the
use of more than one chip die inside a package, and thus more facilities
inside that hardware boundary. These extra facilities would not be
considered “on-SoC” but are considered “in-package”.
Examples of an IC package can be found on
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types.

Isolator Control Software In the context of this document, refers to software, such as hypervisors or
similar technology, that is used to create isolation between different
Execution Environments.

Live Image Image data captured in real time by the Biometric Sensor as the end user’s
biometric trait is presented to it. Live Image is equivalent to biometric sample
(ISO Definition 3.3.21).

One Time Programmable
(OTP)

A form of memory that can be read many times, but only written once.
On a typical IC package implementing a TEE, this can be a very limited
resource on the order of a few thousand bits at most. An example of this
form of memory is eFuse.

Package See TEE Hosting IC Package.

Platform An Execution Environment inside a device. SE, TEE, and REE are examples
of platforms.

Protection Profile (PP) A document according to the Common Criteria, as described in [ISO 15408],
used as part of the security certification process; defines the specific set of
security features required of a technology to claim compliance.

REE Communication
Agent

A Regular OS driver that enables communication between REE and TEE.
Contrast TEE Communication Agent.

Regular Execution
Environment (REE)

An Execution Environment comprising at least one Regular OS and all other
components of the device (IC packages, other discrete components,
firmware, and software) that execute, host, and support the Regular OSes
(excluding any Secure Components included in the device).
From the viewpoint of a Secure Component, everything in the REE is
considered untrusted, though from the Regular OS point of view there may
be internal trust structures.
(Formerly referred to as a Rich Execution Environment (REE).)
Contrast Trusted Execution Environment.

https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types

12 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Regular OS An OS executing in a Regular Execution Environment. May be anything from

a large OS such as Linux down to a minimal set of statically linked libraries
providing services such as a TCP/IP stack.
(Formerly referred to as a Rich OS or Device OS.)
Contrast Trusted OS.

Replay Protected Memory
Block (RPMB)

A separate partition inside a non-volatile memory component for which
access is authenticated and protected against replay attack.
See [eMMC] 4.4 and later.

Root of Trust (RoT) A Computing Engine, code, and possibly data, all co-located on the same
platform; provides security services.
No ancestor entity is able to provide a trustable attestation (in digest or other
form) for the initial code and data state of the Root of Trust.

Secure Element (SE) A tamper-resistant secure hardware component which is used in a device to
provide the security, confidentiality, and multiple application environment
required to support various business models. May exist in any form factor,
such as embedded or integrated SE, SIM/UICC, smart card, smart microSD,
etc.

Security Domain (SD) An on-device representative of an Authority in the TEE Management
Framework security model. Security Domains are responsible for the control
of administration operations. Security Domains are used to perform the
provisioning of the TEE properties and manage the life cycle of TAs and SDs
associated with them.

Service Provider (SP) The owner or vendor of a combination of CA and/or TA software.

Shared Trusted Peripheral A peripheral that is shared with other EE and may be Trusted when made
available by the Trusted OS for TA use.

System-on-Chip (SoC) An electronic system all of whose components are included in a single
integrated circuit.
Contrast In-package.

Tamper-resistant secure
hardware

Hardware designed to isolate and protect embedded software and data by
implementing appropriate security measures. The hardware and embedded
software meet the requirements of the latest Security IC Platform Protection
Profile ([PP-0084]) including resistance to physical tampering scenarios
described in that Protection Profile.

TEE Client API The API defined in GlobalPlatform TEE Client API Specification
([TEE Client API]); a communications API for connecting Client Applications
running in a REE or other Execution Environment with Trusted Applications
running inside a TEE.

TEE Communication
Agent

Trusted OS driver that enables communication between REE or other
Execution Environment, and the TEE.
Contrast REE Communication Agent.

TEE System Architecture – Public Release v1.3 13 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
TEE Hosting IC Package An IC package containing one or more integrated circuit chips.

This IC package will host the TEE’s Roots of Trust. While this is the primary
location for TEE computation activities, a TEE may make use of other IC
packages in the device. It will be of a material that will resist direct access to
the chip (typically epoxy).
See also In-package.

TEE Internal APIs A general series of APIs that provide a common implementation for
functionality often required by Trusted Applications.
Figure 3-2 illustrates currently included APIs.

TEE Internal Core API A specific set of APIs providing functionality to the Trusted Application,
defined in GlobalPlatform TEE Internal Core API Specification
([TEE Core API]).
Figure 3-2 illustrates currently included APIs.

TEE Management
Framework (TMF)

A security model for administration of Trusted Execution Environments
(TEEs) and for administration and life cycle management of Trusted
Applications (TAs) and corresponding Security Domains (SDs).

TEE Secure Element API The API defined in GlobalPlatform TEE Secure Element API specification
([TEE SE API]); specifies an enabling thin layer to support communication to
Secure Elements connected to the device within which the TEE is
implemented.

TEE Sockets API The API defined in GlobalPlatform TEE Sockets API Specification
([TEE Sockets]), including annexes published separately; specifies a
generic C interface used by a TA to establish and utilize network
communications using a socket style approach.

TEE TA Debug API The API defined in GlobalPlatform TEE TA Debug Specification
([TEE TA Debug]); specifies a set of APIs to support TA development and/or
compliance testing of the TEE Internal APIs.

TEE Trusted User
Interface API

The API defined in GlobalPlatform TEE Trusted User Interface API
specification ([TEE TUI API]).

TEE Trusted User
Interface Low-level API

The API defined in GlobalPlatform TEE Trusted User Interface Low-level API
([TEE TUI Low]).

Trusted Application (TA) An application running inside the Trusted Execution Environment (TEE) that
provides security related functionality to Client Applications outside of the
TEE or to other Trusted Applications inside the TEE.
Contrast Client Application.

Trusted Device Driver A software package, resident in the TEE, that allows communication (directly
or indirectly) between a TA and TEE resident hardware.

14 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Trusted Execution
Environment (TEE)

An Execution Environment that runs alongside but isolated from Execution
Environments outside of the TEE. A TEE has security capabilities and meets
certain security-related requirements: It protects TEE assets against a set of
defined threats which include general software attacks as well as some
hardware attacks, and defines rigid safeguards as to data and functions that
a program can access. There are multiple technologies that can be used to
implement a TEE, and the level of security achieved varies accordingly.
(For more information on security requirements, see the GlobalPlatform TEE
Protection Profile ([TEE PP]) and [OMTP ATE TR1].)
Contrast Regular Execution Environment (REE).

Trusted OS An OS executing in a Secure Component. In the context of TEE, this OS has
been designed primarily to enable the TEE using security based design
techniques. It provides the TEE Internal APIs to Trusted Applications and a
proprietary method to enable the TEE Client API software interface from
other EE.
Contrast Regular OS.

Trusted storage In GlobalPlatform TEE documents, trusted storage indicates storage that is
protected to at least the robustness level defined for OMTP Secure storage
(in [OMTP ATE TR1] section 5) or relevant parts of the GlobalPlatform TEE
Protection Profile ([TEE PP]). It is protected either by the hardware of the
TEE, or cryptographically by keys held in the TEE. If keys are used, they are
at least of the strength used to instantiate the TEE. A GlobalPlatform TEE
trusted storage is not considered hardware tamper resistant to the levels
achieved by Secure Elements, but it is bound to the host device.

TEE System Architecture – Public Release v1.3 15 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.5 Abbreviations and Notations
Table 1-3: Abbreviations and Notations

Abbreviation / Notation Meaning

ACR Access Control Rules

API Application Programming Interface

BIOS Basic Input/Output System

CA Client Application

DLM Debug Log Message

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DRM Digital Rights Management

EE Execution Environment

eRoTc Enhanced Root of Trust Component

eSE embedded Secure Element

FPGA Field-programmable Gate Array

GPD TEE See definition in Table 1-2.

HSM Hardware Security Module

I/O Input/Output

IC Integrated Circuit

IoT Internet of Things

IP Internet Protocol

IPR Intellectual Property Rights

iRoTc Initial Root of Trust Component

LCD Liquid Crystal Display

MMU Memory Management Unit

NFC Near Field Communications

NVM Non-volatile Memory

OEM Original Equipment Manufacturer

OMIL OTrP Mapping Implementation Layer

OMTP Open Mobile Terminal Platform

OS Operating System

OTP One Time Programmable

OTrP Open Trust Protocol

PCB Printed Circuit Board

16 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation / Notation Meaning
PLA Programmable Logic Array

PMR Post Mortem Reporting

PP Protection Profile

RAM Random Access Memory

REE Regular Execution Environment

ROM Read Only Memory

RoT Root of Trust

RPMB Replay Protected Memory Block

rSD root Security Domain

SD Security Domain

SE Secure Element

SoC System-on-Chip

SP Service Provider

TA Trusted Application

TCG Trusted Computing Group

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLS Transport Security Layer

TMF TEE Management Framework

TPM Trusted Platform Module

TUI Trusted User Interface

UDP User Datagram Protocol

UEFI Unified Extensible Firmware Interface

TEE System Architecture – Public Release v1.3 17 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.6 Revision History

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are
minor releases where changes typically introduce supplementary items that do not impact backward
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks.

Table 1-4: Revision History

Date Version Description

December 2011 1.0 Initial Public Release

January 2017 1.1 This version of the TEE System Architecture has been extended to
include the second phase of TEE standardization, which introduced new
APIs for supporting tasks such as Trusted User interface, SE and Sockets
communications, and remote management for Trusted Applications.

November 2018 1.2 Introduces new TEE APIs:
• TEE Trusted User Interface Low-level API
• Biometrics API (an extension of TEE TUI Low-level API)
• Peripheral API and Event API (initially published in TEE TUI Low-level

API; subsequently published in TEE Internal Core API)
Introduces GlobalPlatform Root of Trust Definitions and Requirements in
the context of TEE processing.
Expands high-level security requirements discussion to include the
required security assurance level and the activities of the GlobalPlatform
TEE Security Evaluation Secretariat.
Clarifies minimum memory requirements of GlobalPlatform compliant
TEEs.

May 2022 1.3 Introduces the various Trusted Storage types offered by a TEE.
Points developers at the GlobalPlatform Cryptographic Algorithm
Recommendations ([Crypto Rec]).
Introduces the remote management TMF OTrP profile extensions and the
mapping between those and the ASN.1 profile.
Enhances the discussion of multiple TEEs, including the trust
environment built through use of secure hypervisors and supporting
hardware.
Clarifies some of the isolation activities and control restrictions that occur
around the TEE isolation boundary and acknowledges other Execution
Environments in a device may have additional security requirements that
the TEE will respect.
Provides guidance based on the GlobalPlatform TEE Protection Profile
([TEE PP]) with regard to transfer of peripherals to and from a TEE.

18 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 TEE Device Architecture Overview
A TEE is an Execution Environment providing security features such as isolated execution, integrity of Trusted
Applications (TAs), and integrity and confidentiality of TA assets.

A GPD TEE is defined as one that meets both the following criteria:

• GlobalPlatform functional qualification

o The TEE SHALL support at least the initial TEE configuration ([TEE Init Config]), which currently
consists of being compliant with:

GlobalPlatform TEE Client API Specification ([TEE Client API])

GlobalPlatform TEE Internal Core API Specification ([TEE Core API])

o If the TEE is claimed to fully support other GlobalPlatform TEE specifications, it SHALL do so in a
functionally compliant manner.

• GlobalPlatform security certification

o The TEE SHALL meet the security standard defined by the GlobalPlatform TEE Protection Profile
([TEE PP]).

o If the TEE is claimed to fully support other GlobalPlatform TEE specifications, it SHALL do so in a
security certified manner.

o Note that the TEE SHALL provide isolation from other environments in the device (including other
TEEs). Anything that is not so isolated SHALL be considered part of the TEE.

For a particular device, proof of meeting the above criteria is obtained from relevant and approved certification
and compliance laboratories. More information on this can be found on the GlobalPlatform website.

Note:

• The presence of a GPD TEE on a device does not restrict the presence of other Trusted Execution
Environments that are not GlobalPlatform compliant.

• A GPD TEE can have better security and/or more capabilities than those required by GlobalPlatform.

The remainder of this chapter describes the general device architecture associated with the TEE and provides
a high-level overview of the security requirements of a TEE.

There is no mandated implementation architecture for the described components, and they are used here only
as logical constructs within this document.

Best effort has been made to make this document align with the required functionality compliance and security
certification specifications from GlobalPlatform,

Compliance and certification are performed against the normative configurations and protection profiles.

TEE System Architecture – Public Release v1.3 19 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1 Typical Chipset Architecture

Figure 2-1 depicts the board level chipset architecture of a typical mobile device. The chipset hardware
consists of a Printed Circuit Board (PCB) that connects a number of components such as SoC processing
units, RAM, flash, etc.

Figure 2-1: Chipset Architecture

PCB

Non-Volatile
Memory
(Flash)

Video Keyboard Other

Main SoC
in IC Package

Power Control IC Volatile
Memory
(RAM)

Off-SoC
Security

Processor

Internal
Resources

Embedded
Secure
Element

Internal
Resources

Other
Security
Assets

RTC

Removable
Secure Element

Internal
Resources

Key

Potential TEE hosting component

Other system components

Optional components

Internal Resources

Hardware components
internal to Package such as
RAM, ROM, and eFuse.

Internal resources:

I/O Interfaces Access
restricted

(e.g. RPMB)

20 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2 Hardware Architecture

The REE and the TEEs utilize a number of resources such as processing core(s), RAM, ROM, cryptographic
accelerators, etc. Figure 2-1 above provides a simplified example of the resources that can exist at a device
level. Figure 2-2 on page 24 provides an example of the resources that can be associated with a TEE Hosting
IC Package such as the package containing the device’s main SoC in Figure 2-1.

At any given time, each resource is controlled by the REE or a TEE. Control of part or all of some resources
can be transferable between the two environment types. When resources are controlled by a specific TEE,
they are isolated from other Execution Environments unless access is explicitly authorized by that controlling
TEE. A controlling TEE considers any of its own TEE resources that it does not share to be a trusted resource.
These trusted resources are accessible only by other trusted resources and thereby make up a closed system
that is protected from other Execution Environments.

Depending on its policies, another Execution Environment may permit some of its resources to be accessible
by the TEE without specific permission, whereas the opposite SHALL NOT hold. The other Execution
Environment SHALL access TEE resources only with specific permission.

The TEE SHOULD respect the security and access control policies of other Execution Environments and
minimize the capability of a TEE unintentionally impacting those other Execution Environments.

GlobalPlatform does not mandate the security requirements of the other parts of the overall device, because
those requirements are device specific.

In general terms, the TEE offers an execution space that provides a higher level of security than a Regular
OS; although the TEE is not as secure as an SE, the security it offers is sufficient for most applications.

TEE System Architecture – Public Release v1.3 21 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.1 TEE High Level Security Requirements

The high-level security requirements of a TEE can be stated as follows:

• The primary purpose of a TEE is to protect its assets from attacks via the REE and other Execution
Environments.

o This is achieved through hardware mechanisms that those other environments cannot control.

• The TEE is protected against some physical attacks (see [TEE PP]).

o Typically, this protection will be at a lower level than that provided to dedicated tamper resistant
technology.

o Intrusive attacks that physically break the IC package boundary are normally out of scope of TEE
protection.

o With regard to particular modes of attack such as side channel resistance, etc., see [TEE PP]
Annex A.

• System components (such as debug interfaces) capable of accessing assets in a TEE are disabled or
are controlled by an element that is itself a protected asset of that TEE.

o This requirement places no restrictions on system components that cannot access unshared
assets of the TEE (e.g. those enabling debug of the REE).

• The Trusted OS run-time environment is instantiated from a Root of Trust (RoT) inside the TEE
through a secure boot process using assets either:

 cryptographically bound to the TEE,

 or housed in the TEE and isolated from the REE and other TEEs.

o The integrity and authenticity gained through secure boot:

Extends throughout the lifetime of the TEE.

Is retained through any state transitions in the system such as power transitions or core migration.

• The TEE provides Trusted Storage of data and keys.

o A TEE’s Trusted Storage is always bound to that particular TEE on a particular device, such that no
unauthorized internal or external attacker can access, copy, or modify the data contained.

The strength of this binding protection is at least equal to that of the TEE.

o The Trusted Storage provides a minimum level of protection against rollback attacks.

The protection levels required against rollback attacks are defined in [TEE Core API] section 5.2.

The actual physical storage may be in the REE or other Execution Environments. Such storage
is vulnerable to bulk rollback and deletion from outside of the TEE. Bulk rollback or deletion is
rollback or deletion of the entire TEE trusted store as a block. It SHALL NOT be possible for an
unauthorized entity to roll back or delete part of the Trusted Storage.

A separate class of Trusted Storage is available on some devices where a limited amount of
memory is available with improved protections (e.g. RPMB partition or TEE directly managed
flash). Such storage has the basic properties of Trusted Storage mentioned above but in addition
SHALL NOT be vulnerable to bulk rollback, deletion, or other modification by actors in other
Execution Environments.

22 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o On devices supporting the TMF remote management methods (described in [TMF] & [TMF OTrP]),
a class of trusted storage is provided that enables remote entities to securely provision the Trusted
Application with keys and/or data. This method uses a separate Trusted Storage partition, enables
the TA to choose how to interact with this remotely provisioned data, and prevents that remotely
provisioned data from interfering with the TA’s other storage classes.

• Software outside the TEE is not able to call directly to functionality exposed by the TEE Internal APIs
or the Trusted Core Framework.

o The non-TEE software goes through protocols such that the Trusted OS or Trusted Application
verifies the acceptability of the TEE operation that non-TEE software has requested.

The GlobalPlatform TEE Protection Profile ([TEE PP]) specifies the typical threats that the hardware and
software of the TEE needs to withstand. It also details the security objectives that are to be met in order to
counter these threats and the security functional requirements that a TEE SHOULD comply with. A security
assurance level of EAL2+ has been selected; the focus is on vulnerabilities that are subject to widespread,
software-based exploitation.

The GlobalPlatform TEE Security Evaluation Secretariat manages the GlobalPlatform TEE Certification
Scheme (ref [TEE Cert Proc]). Under this scheme, providers of TEE products are able to submit their products
to this GlobalPlatform Secretariat for independent evaluation of their conformance to the organization’s TEE
Protection Profile.

2.2.2 Roots of Trust and TEE

The TEE MAY offer at least four different types of RoT services on a device:

• RoT Security Services used during initialization of a Trusted OS

• RoT Security Services offered to Trusted Application on the TEE platform

o E.g. secure storage offered to TAs by the TEE

• RoT Security Services offered to remote entities (off device) by the TEE platform

o E.g. GlobalPlatform Trusted Management Framework

• RoT Security Services that are built on Trusted Applications alongside initial boot REE software

o E.g. a firmware Trusted Platform Module (TPM), as defined in the Trusted Computing Group
Glossary ([TCG_G]), running in the TEE providing services to the REE boot

Section 5.2 clarifies RoT services used by a TEE during different potential initialization sequences.

For more detail about Roots of Trust and their use in the TEE context, see GlobalPlatform Root of Trust
Definitions and Requirements ([RoT Req]).

TEE System Architecture – Public Release v1.3 23 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.3 TEE Resources

A TEE may be implemented using some or all of three classes of resources. Here we describe their relationship
to the IC package that holds the TEE core functionality and to which other parts are bound.

In-package resource
These resources are implemented in the same package as the TEE roots of trust, and so are protected by
the IC packaging from a range of physical attacks. In-package communication channels between these
resources do not need to be encrypted as they are considered physically secure.

Off-package, cryptographically protected resource
These off-package resources potentially include:

non-volatile memory areas (often used for TEE_STORAGE_PRIVATE and
TEE_STORAGE_PERSO)

access controlled, non-volatile memory areas (required by TEE_STORAGE_PROTECTED)

volatile memory areas (used for fast data caches by software in the TEE)

For these memory areas, the security is fulfilled by using proven cryptographic methods (see [TEE PP]).
Only the TEE SHALL be able to decrypt the plaintext from the encrypted content stored in these locations.
These resources are not protected by being in the same package as the TEE Hosting IC Package, and so
the ciphertext can be intercepted while transiting the device PCB.

Exposed or partially exposed resources
TEE-controlled trusted areas of device components external to the TEE Hosting IC Package can contain
data not guarded by a proven cryptographic method (see [TEE PP]). This is needed to:

• Enable trusted DRAM-based buffers where the code and data is in the clear but is protected from
attack by unauthorized software while being manipulated (e.g. to protect TLS or DRM stream buffers).

• Provide space for a trusted screen frame store.

Neither of the above use cases necessarily requires encrypted RAM storage, just isolation from the
REE and other environments.

• Use keyboards and other I/O that are not accessible to the REE but are not guarded from physical
attack.

24 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.4 REE and TEE Resource Sharing

The following discussion is simplified to consider the presence of only one TEE and the REE. A TEE is similarly
isolated in component ownership and resource sharing from other environments such as SEs and other TEEs.

The REE has access to the untrusted resources, which can be implemented either inside the TEE Hosting IC
Package or in other components on the PCB. The REE cannot access the trusted resources. This access
control is enforced through physical isolation, hardware isolation, or cryptographic isolation methods. The only
way for the REE to get access to trusted resources is via API entry points or services exposed by the TEE and
accessed through, for example, the TEE Client API. This does not preclude the capability of the REE passing
buffers to the TEE (and vice versa) in a controlled and protected manner.

Figure 2-2: Hardware Resource Ownership

REE
Processing

Core(s)

REE
RAM

Protected
Area

External
Volatile
Memory

Replay Protected
AreaExternal

Non-Volatile
Memory

Trusted
Processing

Core(s)

Trusted
RAM

Trusted
Crypto

Accelerators

Trusted ROM Trusted
Peripherals

Trusted OTP
Cryptographic AssetsREE OTP Fields

REE
Crypto

Accelerators

REE
PeripheralsREE ROM

REE TEE

TE
E

 C
lient A

P
I

Access
Controlled Area

Trusted resources :

Package Boundary :

Device Boundary :

TEE Hosting IC Package

RAM hosting IC package

NVM hosting IC package

TEE System Architecture – Public Release v1.3 25 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that the architectural view of TEE and REE illustrated in Figure 2-2 does not dictate any specific physical
implementation. Possible implementations include and are not limited to those illustrated in Figure 2-3. Some
capabilities MAY not be supportable by all implementations. For example, PCB A in Figure 2-3 cannot support
the Trusted User Interface.

Figure 2-3: Example Hardware Realizations of TEE

PCB C eSE

IC Package

In-Package
Security

Subsystem

µProcessing
Core(s)

Peripherals

OTP Fields

RAM Crypto
Accelerators

ROM

Key

SE Component

REE Component

Shared Component

PCB B
PCB A

IC Package

Crypto
Accelerators

ROM

IC Package

External
Memories

External
Security SoC

µProcessing
Core(s)

Peripherals

OTP Fields

RAM Crypto
Accelerators

ROM

µProcessing
Core(s)

RAM

External
Memories

OTP Fields

Peripherals

External
Memories

eSE

eSE

TEE Component

26 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

PCB A Shows a TEE housed in a separate security SoC with its own internal RAM, ROM, cores, and other
peripheral components.

PCB B Shows a TEE that uses some form of internal IC Package filter to isolate sections of RAM, ROM,
core(s), etc., for its own use.

PCB C Shows a TEE that uses some form of internal IC Package separation to isolate a sub-system with its
own internal RAM, ROM, cores, and other peripheral components. As an additional optional factor,
it is also making use of an eSE and external memory to hold some materials.

2.2.4.1 Isolation of Trusted Resources

In some systems, a TEE trusted resource cannot be physically isolated from the other Execution Environments
and is accessed via a memory bus that is shared with the other Execution Environments. For example, PCB B
in Figure 2-3 uses a common memory bus for all REE and TEE components. Depending on the security
requirements for the trusted resource, the TEE must implement either hardware isolation or cryptographic
isolation of these trusted resources.

Cryptographic isolation is typically used for off-package trusted resources; see TEE Resources (section 2.2.3).

Hardware isolation is typically used for separating resources within the TEE Hosting IC Package. This isolation
is implemented by filtering address accesses on the bus, to ensure that only access requests originating from
the TEE are permitted to reach the trusted resource.

Where this is done, it is necessary to control access from all Bus Managers that are controlled by other
Execution Environments, not just processing cores. See Isolator type #B in section 3.6.4.1 for more detail.
Note that the hardware components that manage or implement the isolation of a TEE must also be trusted
resources of that TEE.

If a TEE’s hardware isolation is configurable, only that TEE may configure it:

• An isolator that protects a resource that is private to a particular TEE should be configured when that
TEE boots, prior to enabling other Execution Environments to boot. See also section 5.2.1, Typical
Boot Sequence.

• An isolator that protects a configurable resource that is shared with other Execution Environments (for
example, a display that is used by the TEE for a Trusted UI) must be reconfigured each time the
resource is transferred between the TEE and another Execution Environment. This type of Shared
Trusted Peripheral is depicted in Figure 3-1. See also section 5.4, Transfer of Hardware Components
to and from the TEE.

• In some cases, a commonly trusted component of the relevant group of TEEs in the device will
provide this isolation before a particular TEE takes over ownership of the resource.

TEE System Architecture – Public Release v1.3 27 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 TEE Software Interfaces
The TEE is a separate Execution Environment that runs alongside the REE and other environments and
provides security services to those other environments and to applications running inside those environments.
The TEE exposes sets of APIs to enable communication from the REE and other APIs to enable Trusted
Application software functionality within the TEE.

This chapter describes the general software architecture associated with the TEE, the interfaces defined by
GlobalPlatform, and the relationship between the critical components found in the software system.

There is no mandated implementation architecture for these components, and they are used here only as
logical constructs within this document.

The components and logical constructs can also reside in different architectural locations than those shown
as long as they meet the restrictions specified by the GlobalPlatform TEE Protection Profile ([TEE PP]) and
GlobalPlatform API specifications for a GlobalPlatform TEE.

28 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1 The TEE Software Architecture

Figure 3-1 outlines the relationship between the major software systems components.

Figure 3-1: TEE Software Architecture

Client
Application(s)

Regular OS Components

GPD TEE Client API

REE GPD TEE

Normal REE
Application(s)

REE
Communication

Agent

Public Device
Drivers

Device Hardware

Shared
Memory

GPD TEE
Protocol
Specs

Trusted PeripheralsPublic Peripherals

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

Trusted OS Components

Trusted
Core

Framework

Trusted Kernel

TEE
Communication

Agent
Trusted
Device
Drivers

GPD TEE Internal Core API and
other GPD TEE Internal API specs

Shared Trusted Peripherals

Key

Fixed Isolation boundary

Transferable Isolation – Some peripherals
may be shared. Such sharing must be under
the control of other hardware under
permanent control of the TEE.

TEE Isolation Boundary (Defined by TEE PP)

Application interfaces

Low level message routing

Shared, or synchronized copies, of
memory contents

Messages

Trusted
Application

Trusted
Application

Shared
Memory

View

The goal of the TEE Software Architecture is to enable Trusted Applications (TAs) to provide isolated and
trustworthy capabilities, which can then be used through Client Applications (CAs).

TEE System Architecture – Public Release v1.3 29 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Please note:

• Just as there are many hardware solutions to implementing a TEE (see Figure 2-3), there can also be
many software configurations of a TEE (or even TEEs) in a device. The following sections discuss
some possible configurations.

• For simplicity, subsequent graphics show only the fixed isolation boundary discussed in Figure 3-1.
However, Shared Trusted Peripherals (as illustrated and described in Figure 3-1) are possible in all
configurations.

30 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2 Components of a GPD TEE

3.2.1 REE Interfaces to the TEE

Within the REE, the architecture identifies an optional protocol specification layer, an API, and a supporting
communication agent.

• The REE Communication Agent provides REE support for messaging between the Client Application
and the Trusted Application.

• The TEE Client API is a low-level communication interface designed to enable a Client Application
running in the Regular OS to access and exchange data with a Trusted Application running inside a
Trusted Execution Environment.

• The TEE Protocol Specifications layer exposed in the REE offers Client Applications a set of higher-
level APIs to access some TEE services. TEE TA Debug API ([TEE TA Debug]), the TMF ASN.1
Profile (described in [TMF]), and TMF OTrP Profile ([TMF OTrP]) currently use this stack layer. TA
developers can develop additional proprietary TEE APIs at the TEE Protocol Specifications layer.

3.2.2 Trusted OS Components

Within the TEE, the architecture identifies two distinct classes of software: the hosting code provided by
Trusted OS Components, and Trusted Applications, which run on top of that code.

Trusted OS Components
• The Trusted Core Framework provides OS functionality to Trusted Applications.

o The Trusted Core Framework is part of the TEE Internal Core API, discussed in section 3.5.1.

• The Trusted Kernel provides scheduling and other OS management functions for both Trusted
Applications and the Trusted Core Framework.

• Trusted Device Drivers provide a communications interface to trusted peripherals that are dedicated to
the TEE.

o Trusted Device Drivers can be an integral part of the Trusted Kernel or can be modular
components, depending on the architecture of the Trusted Kernel.

• The TEE Communication Agent is a special case of a Trusted OS component. It works with its peer,
the REE Communication Agent, to safely transfer messages between CA and TA.

As stated at the start of this chapter, the descriptions and diagrams are examples of potential architectural
arrangement. It should be noted that potentially some of the functionality shown here and elsewhere as coming
from the Trusted OS Components may actually be provided by libraries statically linked to the TA itself, or from
dynamically loaded components that effectively reside in what might be thought of as the TA space.

TEE System Architecture – Public Release v1.3 31 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.3 Trusted Applications (TAs)

Trusted Applications communicate with the rest of the system via APIs exposed by Trusted OS components.

• The TEE Internal APIs define the fundamental software capabilities of a TEE.

• Other non-GlobalPlatform internal APIs can be defined to support interfaces to further proprietary
functionality.

When a Client Application creates a session with a Trusted Application, it connects to an instance of that
Trusted Application. A Trusted Application instance has physical memory address space which is separated
from the physical memory address space of all other Trusted Application instances.

A session is used to logically connect multiple commands invoked in a Trusted Application. Each session has
its own state, which typically contains the session context and the context(s) of the task(s) executing the
session.

It is up to the Trusted Application to define the combinations of commands and their parameters that are valid
to execute.

TAs can start execution only in response to an external command, session start, or instance creation. They
make their own choice as to when to return from that command. Typical TAs follow a short command response
life cycle, but complex TAs can iterate for long periods while processing input and output events such as TUI.

GlobalPlatform compliant TEEs validated against one GlobalPlatform configuration (such as [TEE Init Config])
require a minimum amount of memory to enable testing of that TEE. As such, a TEE that has passed
GlobalPlatform compliance has at least this minimum memory capability. As each TEE implementation can
use different build systems, and TAs are defined in terms of source code, that amount of memory is target
dependent but as general guidance it is possible to state the following:

• A compliant TEE SHALL be able to host TAs that use up to:

o Heap per TA: 5 Kbytes

o Stack per TA: 336 Bytes

o Binary TA code: 65 Kbytes ELF format file for one TA

• A compliant TEE SHALL be able to host two TAs at the same time to pass some tests:

o Binary TA code: 57 Kbytes ELF format file for TA 1

o Binary TA code: 44 Kbytes ELF format file for TA 2

As a reference, a stub TA with no calls to TEE functionality, using the same build method as applied above:

o Binary TA code: 22 Kbytes ELF format file

This information is provided to give the reader an indication of memory resources a minimal TEE system
SHALL provide. In reality, these are minimums and GlobalPlatform compliant TEEs are usually capable of
hosting far larger TAs and providing far larger stack and heap space. Contact your TEE implementers for
details.

32 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.4 Shared Memory

One feature of a TEE is its ability to enable the CA and TA to communicate large amounts of data quickly and
efficiently via memory area accessible to both the TEE and the REE (or other Execution Environment). The
API design allows this feature to be implemented by the Communication Agents (Figure 3-1) either as memory
copies or as directly shared memory. The protocols for how to make use of this ability are defined by the TA
designer, and enabled by the TEE Client API and TEE Internal Core API.

Care has to be taken with the security aspects of using shared memory, as there is potential for a Client
Application or Trusted Application to modify the memory contents asynchronously with the other parties acting
on that memory.

3.2.5 TA to TA Communication

A TA can communicate to another TA inside the same TEE. This uses the same process used by the CA to
communicate to the TA, but a trustworthy flag allows the receiving TA to be assured that communication has
not been exposed outside the TEE. This simplifies determining whether to trust the communication content
and also the metadata associated with the content, such as the identity of the calling TA.

A communication session from a TA in another TEE will be indicated by the trustworthy flag as having
originated outside of the TEE.

• If one TA has mitigating factors, then the other TA may choose to trust the first TA more than it would
a REE CA.

• If there are no mitigating factors, then a TA in another TEE in the same device should be treated as
though it is a REE CA, because the receiving TA’s TEE has no reason to trust the calling TA’s TEE.

Mitigating factors might be knowledge by the TA that the message routing is isolated and that the other TEE
was provided by a trustworthy source.

Future releases will address mitigating factors. Until the GlobalPlatform specifications are updated to provide
further information, it will be up to the TA (and hence the TA designer) as to how it considers mitigating factors
that it may be aware of.

TEE System Architecture – Public Release v1.3 33 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3 Relationship between TEE APIs

Figure 3-2 outlines the relationships between the various APIs and released specification documents.

Figure 3-2: TEE APIs

TEE Client APIs

TEE Client API

TEE Trusted User Interface API

TEE Internal Core API

TEE Sockets API

TEE TA Debug API

TEE Secure Element API

TA Post Mortem Reporting
Protocol

Trusted Core Framework API

Trusted Storage API for Data and Keys

TEE Internal APIs

Debug Log Message
Protocol

 Transport Layer API

Debug Log Message API

TEE_iSocket API

TEE_tcpSocket API (Annex A)

TEE_udpSocket API (Annex B)

TEE_tlsSocket API (Annex C)

Cryptographic Operations API

Time API

TEE Arithmetical API

TEE Debug General Extensions

Discovery API

Secure Channel API

Peripheral API

Event API

TEE Trusted User Interface Low-level API

extension: Biometrics API

34 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4 The TEE Client API Architecture

GlobalPlatform specifies the TEE Client API in the GlobalPlatform TEE Client API Specification
([TEE Client API]). The TEE Client API concentrates on the interface to enable efficient communications
between a Client Application and a Trusted Application.

Higher level standards and protocol layers (known as TEE Protocol Specifications and functional APIs) can be
built on top of the foundation provided by the TEE Client API – for example, to support common tasks such as
trusted storage, cryptography, and run-time installation of new Trusted Applications.

Within the REE, this architecture identifies three distinct classes of component:

• The Client Applications, which make use of the TEE Client API

• The TEE Client API library implementation

• The REE Communication Agent, which is shared amongst all Client Applications, and which handles
communications between the REE and the TEE

The REE implementer can choose to expose the TEE Client API to the user layer, the privileged layer, or both.
If exposed in the privileged layer, then drivers or any other privileged components can be considered to take
the place of Client Applications. The API is typically blocking on a per thread basis, but can be called
asynchronously from multiple threads.

A typical application will use the TEE Client API to:

• Establish communications with its chosen TEE

• Establish a session with a Trusted Application

• Set up shared memory, if it wants to expose that memory to the TA

• Send TA specific commands to invoke a trusted service provided by that TA

• Then cleanly shut down communications

More information on the TEE Client API can be found in [TEE Client API].

TEE System Architecture – Public Release v1.3 35 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5 The TEE Internal API Architecture

GlobalPlatform specifies a series of APIs to provide a common implementation for functionality typically
required by many Trusted Applications. The TEE Internal Core API is specified in the GlobalPlatform TEE
Internal Core API Specification ([TEE Core API]). The TEE Internal Core API concentrates on the various
interfaces to enable a Trusted Application to make best use of the standard TEE capabilities. Additional
low-level functionality is provided by optional TEE Internal APIs such as the TEE Secure Element API, TEE
Sockets API, and TEE TA Debug API.

An introduction to each of these APIs is provided in this document. For clarity, the latest versions of each of
these documents should be read in place of these introductions.

Higher level standards and protocol layers can be built on top of the foundation provided by the TEE Internal
APIs – for example, to support common tasks such as creating a trusted password entry screen for the user,
confidential data management, financial services, and Digital Rights Management.

Within the TEE, this architecture currently identifies three distinct classes of component:

• Trusted Applications, which make use of TEE Internal APIs

• The TEE Internal API library implementations

• Trusted OS Components, which are shared amongst all Trusted Applications, and which provide the
system level functionality required by the Trusted Applications

36 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.1 The TEE Internal Core API

The TEE Internal Core API provides several subsets of functionality to the Trusted Application.

Table 3-1: APIs within TEE Internal Core API

API Name Description

Trusted Core Framework API This API provides integration, scheduling, communication,
memory management, and system information retrieval
interfaces.

Trusted Storage API for Data and Keys This API provides Trusted Storage for keys and general data.

Cryptographic Operations API This API provides cryptographic capabilities.

Time API This API provides support for various time-based functionality
to support tasks such as token expiry and authentication
attempt throttling.

TEE Arithmetical API This API provides arithmetical primitives to create
cryptographic functions not found in the Cryptographic
Operations API.

Peripheral API This API enables a Trusted Application to interact with
peripherals via the Trusted OS.
Initially defined in GlobalPlatform TEE Trusted User Interface
Low-level API ([TEE TUI Low]), then defined in [TEE Core API]
beginning with v1.2.

Event API This API supports the event loop, which enables a TA to
enquire for and then process messages from types of
peripherals including pseudo-peripherals.
Initially defined in [TEE TUI Low], then defined in
[TEE Core API] beginning with v1.2.

More information on the TEE Internal Core API can be found in [TEE Core API].

TEE System Architecture – Public Release v1.3 37 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.1.1 Trusted Storage API

This API provides Trusted Storage for keys and general data.

There are now potentially three separate areas of storage a TA can access through this API:

Table 3-2: Storage Areas

Storage Areas Description

TEE_STORAGE_PRIVATE Only accessible by the TA.
This resource may be implemented with different levels of rollback
protection.
Required by all GlobalPlatform compliant implementations.

TEE_STORAGE_PROTECTED Only accessible by the TA.
This resource may only be implemented with the highest level of
rollback protection available in the TEE.
However, it may be a smaller resource and not available at all to
some TAs and on some devices.
Optional feature added in [TEE Core API] v1.3.

TEE_STORAGE_PERSO This resource may be implemented with different levels of rollback
protection.
This resource is only written to by the managing remote entities
through the TEE Management Framework ([TMF]). It enables remote
personalization of a TA.
Only readable by the TA.
If the TA requires written data to be stable, then it should copy that
data into TEE_STORAGE_PRIVATE or TEE
STORAGE_PROTECTED, which no other entities can write into.
Required by all TEE Management Framework specification compliant
implementations.

38 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.1.2 Peripheral and Event APIs

The optional Peripheral and Event APIs support asynchronous interfacing for a TA to TEE internal and external
events, alongside a generic interface to peripherals.

Some peripherals offer multiple channels, addressing capability, or other mechanisms which have the potential
to allow access to multiple endpoints. It can be convenient in some scenarios to assign different logical
endpoints to different TAs, while supporting a model of exclusive access to the peripheral per TA.

One approach, shown in Figure 3-3, is to implement a separate driver interface for each of the multiple
endpoints. For example, a driver for an I2C interface can support separate endpoints for each I2C address,
while itself being the exclusive owner of the I2C peripheral. As with any other information asset, the Protection
Profile ([TEE PP]) implies that such drivers SHALL ensure that information leakage between the TA clients of
the different endpoints is prevented.

Figure 3-3: Example of Multiple Access to Bus-oriented Peripheral

TEE System Architecture – Public Release v1.3 39 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.2 The TEE Sockets API

The GlobalPlatform TEE Sockets API Specification ([TEE Sockets]) provides a common modular interface for
the TA to communicate to other network nodes, acting as a network client.

The TEE Sockets API is the general API for accessing and handling client sockets of various kinds.

TEE Sockets API Annex A specifies the TEE_iSocket interface for Transmission Control Protocol (TCP).

TEE Sockets API Annex B specifies the TEE_iSocket interface for User Datagram Protocol (UDP).

TEE Sockets API Annex C specifies the TEE_iSocket interface for Transport Layer Security (TLS).

Figure 3-4: Example TEE Sockets API Architecture

Trusted OS Components

Trusted Kernel

Regular OS
Components

REE TEE

Bridge
Component
(may or may
not be OS

component)

REE
Communication

Agent

GPD TEE Internal Core API

Trusted Application

TEE
Communication

Agent

Sockets API
Providing Sockets

Transport
(e.g. UDP/IP, TCP/IP)

Trusted
Core

Framework

Device Hardware

IP-related HardwareIP-related Hardware

Trusted
Device
Drivers

GPD TEE Sockets API

Client Application

GPD TEE
Client API

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

Sockets Security
(e.g. TLS)

A B Sockets Transport
(e.g. UDP/IP, TCP/IP)

Drivers

The above diagram shows two routing options (A) and (B) inside the TEE. These are options because only the
security layer has to reside inside the TEE. It is expected that a real implementation would need only one of
these options (A) or (B). Typically functionality such as UDP/IP and TCP/IP can be placed in the REE without
security risks, so placing Sockets Transport in the TEE is optional as well.

More information on the TEE Sockets API can be found in the GlobalPlatform TEE Sockets API Specification
([TEE Sockets]).

40 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.3 The TEE TA Debug API

The TEE TA Debug API provides services that are designed to support TA development and/or compliance
testing of the TEE Internal APIs.

The Post Mortem Reporting (PMR) service supports compliance testing and TA debug. This service provides
a method for a TEE to report to clients the termination status of TAs that enter the Panic state. Without this
capability it is not possible to certify correct functionality of the TEE Internal APIs, as the Panic state is used
to report various error conditions that need to be tested.

The Debug Log Message (DLM) service is useful in a TA debug scenario. This service provides a method for
a TA to report simple debug information on authorized systems. It can report to client applications, off-device
hardware, or both.

More information about the TEE TA Debug API Architecture can be found in the GlobalPlatform TEE TA Debug
Specification ([TEE TA Debug]).

TEE System Architecture – Public Release v1.3 41 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.4 The TEE Secure Element API

The TEE Secure Element API is an enabling thin layer that supports communication to Secure Elements (SEs)
connected to the device within which the TEE is implemented. This API defines a transport interface based on
the GlobalPlatform Open Mobile API Specification ([Open Mobile]).

SEs can be connected in a shared way via the REE or exclusively to the TEE.

• An SE connected exclusively to the TEE is accessible by a TA without using any resources from the
REE. Thus the communication is considered trusted.

• An SE connected to the REE is accessible by a TA using resources within the REE. It is
recommended that the Secure Channel API be used to protect the communication between the TA
and the SE against attacks in the REE.

Figure 3-5: Typical Device with Multiple SE Readers

Device
Hardware

Trusted OS Components
Regular OS
Components

REE TEE

GPD TEE Internal Core API

Trusted
Core

Framework

Client Application

TEE Client API

Trusted Kernel

eSE

TEE
Communication

Agent

REE
Communication

Agent

Bridge
component

Trusted ApplicationGeneral REE
Application

Trusted
Device
Drivers

SE driver(s)

Open Mobile API

GPD TEE SE API

Trusted SE Readers

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

eSE

Untrusted SE Readers

More information about the TEE Secure Element API can be found in the GlobalPlatform TEE Secure Element
API specification ([TEE SE API]).

42 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.5 The TEE Trusted User Interface API

The Trusted User Interface API permits the display of screens to the user while achieving three objectives:

• Secure display – Information displayed to the user cannot be accessed, modified, or obscured by any
software within the REE or by an unauthorized application in the TEE.

• Secure input – Information entered by the user cannot be derived or modified by any software within
the REE or by an unauthorized application in the TEE.

• Security indicator – The user can be confident that the screen displayed is actually a screen displayed
by a TA.

Figure 3-6: TEE with TUI Architecture

Device Hardware

Touchscreen/
keyboard

peripherals

Display
peripheral

Other
trusted

peripherals

REE peripherals

REE

OS Components

GPD TEE Client API

OS
Application

OS Kernel

Trusted OS Components

TEE

GPD TEE
Internal Core API

Trusted Application

Trusted Kernel

GPD TEE
TUI API(s)

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

Remote parties SHOULD NOT treat the user’s identification as a trustworthy identification by itself, but only in
combination with a factor known only to the TA in the TEE (such as a key).

Use of the TEE TUI also provides a third party the guarantee of non-interference. The remote party can have
confidence that what the user signs is what they actually saw, and not some information spoofed into the UI,
replacing the desired display information.

More information about the TEE Trusted User Interface can be found in the GlobalPlatform TEE Trusted User
Interface API specification ([TEE TUI API]) and in the GlobalPlatform TEE Trusted User Interface Low-level
API ([TEE TUI Low]).

TEE System Architecture – Public Release v1.3 43 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API

Biometric capabilities and their functionality as present in the hardware of the TEE are made available to TAs
via the Biometrics API ([TEE TUI Bio]). The biometric capabilities are contained in the Biometric Sub-system,
consisting of Biometric Peripherals which use Biometric Sensors.

• A Biometric Sub-system is a component of the TEE, composed of all TEE Biometric Peripherals in the
device plus any supporting TEE or REE software and hardware.

• A Biometric Peripheral is a component of the Biometric Sub-system.

• A Biometric Sensor provides the Live Image and possibly other related services.

In general, it is an implementation choice as to whether particular functionality is implemented in the generic
Biometric Sub-system, the Biometric Peripheral, or the Biometric Sensor. Such decisions SHALL be
transparent to the calling TA.

When interacting with the Biometric Sub-system of the TEE, the first step is the discovery of the available
biometric capabilities present in the platform. This is performed using the standard discovery mechanisms in
the Peripheral API (discussed in section 3.5.1.2).

The relying TA interacts with the Biometric Peripheral; it SHALL NOT be possible to interact directly with the
Biometric Sensor.

Once the biometric capabilities are known, the TA can select a Biometric Peripheral and use its service, as
shown for the specific case of fingerprint biometrics in Figure 3-7.

Figure 3-7: Architecture Overview – Multiple Biometrics

Trusted OS Components

Other Biometric Peripherals

Biometric Sub-System

Peripheral Discovery

Specific Fingerprint Biometric
Peripheral(s)

GlobalPlatform Internal APIs

Relying TAs (RTAs)

Fingerprint
Sensor

Generic communications

Implementation defined
communications

Peripheral API Other GP APIEvent APIBiometrics API Extensions

Communications defined by this
GlobalPlatform specification

Other Biometric Peripherals
Other Biometric Peripherals

Enroll VerifyAssociate

Event
Management

44 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The Biometric Sub-system is integrated into the TEE and provides a service through the established interfaces.
It MAY utilize TEE secure storage, along with REE and SE capabilities as appropriate and available on any
specific platform. Figure 3-8 shows the general positioning of the Biometric Sub-system, the Biometric
Peripheral, and the Biometric Sensor in a conceptual TEE architecture.

Part or all of the Biometric Peripheral MAY optionally be implemented as TAs executing on the TEE, or in one
of the available SEs executing as “Match on Card”. In addition, some functionality that is not security-critical
MAY be handled by Biometric Sub-system components in the REE. Each variation provides different
advantages and limitations; the choice of architecture in this respect is left to the device manufacturer.

Regardless of where the Biometric Sub-system is placed, its execution and all data, whether long term stored
or run-time, SHALL be protected using the security criteria of the TEE for Trusted Storage.

Figure 3-8: Architecture Overview – Biometrics

GPD TEE Client API

REE GPD TEE

Normal REE
Application(s)

REE
Communication

Agent

Regular OS
Components

GPD TEE Internal API and
other GPD TEE APIcs

TEE
Communication

Agent

Trusted OS Components

Relying CAs
(RCAs)

Relying TAs
(RTAs)

Biometric
Sub-System

Biometric
Sensor(s)

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

Device Hardware

GPD TUI Extension:
TEE Biometrics API

Generic communications

RCA / RTA specific protocol

Communications defined by
this specification

REE based Enrollment
Support App (Optional)

Biometric
Peripheral(s)

Implementation defined
communications

Messages

TEE System Architecture – Public Release v1.3 45 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.7 Cryptography and the TEE

The GlobalPlatform TEE Internal Core API Specification ([TEE Core API]) provides a comprehensive set of
cryptographic functionality requirements.

The majority of these must be implemented on any TEE, though there are some exceptions to enable regional
variations that may not be acceptable in some parts of the world.

Other GlobalPlatform TEE specifications will generally make use of cryptographic capabilities based on those
defined in [TEE Core API], and thereby provide consistency, align with additions to the base set, and minimize
the overall footprint.

It is not the role of the GlobalPlatform TEE specifications to guide the reader in determining which cryptographic
capabilities may be safe for their purposes, and the GlobalPlatform TEE specifications recognize that in some
cases the use of weak cryptography by a TA may be better than the use of that same cryptography by an
application outside of a TEE.

GlobalPlatform does provide recommendations for best practices and acceptable cryptography usage. These
can be found in GlobalPlatform Cryptographic Algorithm Recommendations ([Crypto Rec]), and relevant
sections of that document MAY be applied to the protocols and APIs offered by the GlobalPlatform TEE
specifications. As always, the developer should refer to appropriate security guidelines.

Future GlobalPlatform TEE configurations may limit the full set of cryptographic options, to enable smaller
TEEs to be built for goals such as constrained IoT devices.

46 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6 Variations of TEE Architecture Found on Real Devices

Real devices contain extensions to the basic TEE architecture and can potentially house multiple TEEs. The
GlobalPlatform TEE Protection Profile ([TEE PP]) requires that a TEE, including its proprietary extensions, is
isolated from other environments including other TEEs.

3.6.1 A GPD TEE Can Have Proprietary Extensions

A compliant GPD TEE can offer additional APIs to Trusted Applications and can offer other access methods
to REE applications. This allows flexibility in implementation in special markets, and provides a route for growth
of the GlobalPlatform TEE specifications as new APIs are found to be useful and hence adopted by
GlobalPlatform as new TEE specifications.

Figure 3-9: Compliant GPD TEE with Proprietary Extensions

Trusted OS Components

Trusted Kernel

Regular OS Components

GPD TEE

GPD TEE
Internal API(s)

Extension
only

Trusted
Application

TEE
Communication

Agent

Trusted
Core

Framework

GlobalPlatform
only

Trusted
Application

Device Hardware Trusted Peripherals

Trusted
Device
Drivers

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

GPD TEE
Client API

REE

Client
Application(s)

REE
Communication

Agent

GPD TEE
Protocol

Specifications

Other non-GP
Client API

Client
Application(s)

Shared
Memory

Other non-GP
TEE Protocol
Specifications

Proprietary
Extension API

Extension
aware

Trusted
Application

Please note:

• This is one example configuration of a proprietary extension of a compliant GPD TEE, and other
configurations can exist.

• There is no specified limitation on the number of OSes in a REE or the number of TEEs in one device.

• Shared Trusted Peripherals (as illustrated and described in Figure 3-1) are possible in the
configuration shown in Figure 3-9.

TEE System Architecture – Public Release v1.3 47 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.2 A Device Can Have Many TEEs

There is no specified limitation on the number of TEEs in a device. The TEE Client API provides a methodology
for a REE application to communicate to a specified GPD TEE.

For example, a device can have hardware such as that shown in Figure 3-10. The illustrated device has three
TEEs, each created using a different example method. Each will have an independent set of innately trusted
components and will be isolated from the other TEEs and the REE, at least to the level of the GlobalPlatform
TEE Protection Profile ([TEE PP]).

Figure 3-10: Example of System Hardware with Multiple TEEs

PCB

IC Package

In-package
Security

Subsystem

External
Security IC
Package

Key

Component of TEE 1

Component of TEE 2

Component of TEE 3

REE Component

Shared Component

RAM Crypto
Accelerators

µProcessing
Core(s)

ROM Peripherals

OTP Fields

External
Memories

Note that inside one GlobalPlatform TEE Protection Profile boundary there can only be one Trusted OS and
hence one set of TEE resources.

This does not prevent the GPD TEE from sharing resources with other TEEs in much the same way that it can
share with the REE. For example, a Trusted User Interface is typically owned in an untrusted mode by the
REE and only taken over by the TEE and put in a trusted state when needed. With multiple TEEs, such a
Trusted UI would potentially be shared between all TEEs and the REE, with only one having active ownership
at one time.

Communications between TEEs SHOULD be treated by a Trusted Application on the initial supposition that
the endpoint is untrusted (in the same way that a TA SHOULD be designed to treat anything outside its local
TEE). A TA may improve that level of trust if it knows more about the trustworthiness of the link and the
other TEE.

48 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-11 shows an example with two GPD TEEs (i.e. two TEEs that are compliant with a GPD TEE
functionality configuration and certified according to [TEE PP]). Each GPD TEE exists within its own isolation
boundary and does not trust components outside of the boundary. Therefore, from the viewpoint of
GPD TEE (a), GPD TEE (b) is assumed to be untrustworthy as it is not part of GPD TEE (a). Likewise,
GPD TEE (b) trusts neither the REE nor GPD TEE (a).

If any OS in the device wishes to use a GPD TEE based set of innately trusted components to secure its boot,
then it is up to the boot structure of that OS (i.e. its BIOS, UEFI, etc.) to choose which GPD TEE it uses.
Different TEEs may be involved in the boot of each Regular OS or other EE in the system.

Figure 3-11: Multiple GPD TEEs in One Device

Trusted OS
Components

Regular OS
Components

GPD TEE (b)

GP only
Trusted

Application

GPD TEE APIs

Device Hardware

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

GPD TEE Client API

REE

Client
Application(s)

using
GPD TEE (a)

REE
Communication

Agent

Client
Application(s)

using
GPD TEE (b)

TEE
Communication

Agent

Trusted OS
Components

GPD TEE (a)

GP only
Trusted

Application

GPD TEE APIs

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

TEE
Communication

Agent

Please note:

• This is one example configuration of a system with two GPD TEEs, and other configurations can exist.

• There is no specified limitation on the number of TEEs and OSes in the REE in one device.

• Shared Trusted Peripherals (as illustrated and described in Figure 3-1) are possible in the
configuration shown in Figure 3-11.

TEE System Architecture – Public Release v1.3 49 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant

A device can even have environments that claim to be TEEs but are not GlobalPlatform compliant TEEs.

Clearly if such an environment does not meet GlobalPlatform specifications then GlobalPlatform cannot make
any assertions about that environment; however, the environment does not raise an issue because a compliant
GPD TEE SHALL be isolated from it as specified in the GlobalPlatform TEE Protection Profile ([TEE PP]).

Figure 3-12: GPD TEE alongside Unknown TEE

OS
Components

Regular OS
Components

Non-GPD TEE

 Application

APIs

Device Hardware

Is
ol

at
io

n
de

fin
ed

 b
y

un
kn

ow
n

ru
le

s

GPD TEE
Client API

REE

Client
Application(s)

using
GPD TEE

REE
Communication

Agent

Client
Application(s)

using
non-GP TEE

TEE
Communication

Agent

Trusted OS
Components

GPD TEE

GP
Trusted

Application

GPD TEE APIs

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

TEE
Communication

Agent

Non-GP TEE
Client API

Please note:

• This is one example configuration of an unknown TEE alongside a GPD TEE, and other configurations
can exist.

• There is no specified limitation on the number of GPD TEEs, non-GlobalPlatform TEEs, and OSes in
the REE in one device.

• Shared Trusted Peripherals (as illustrated and described in Figure 3-1) are possible in the
configuration shown in Figure 3-12.

50 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.4 TEEs and TEE-enabling Hypervisors

A device can have multiple TEEs, some of which may be isolated by a suitable combination of hypervisor and
hardware.

This section specifically discusses the hypervisor enabled forms of TEE. Section 3.6.4 (including its
sub-sections) ignores TEEs in the device that may use other methodologies. For example, it does not describe
TEEs that use structures exemplified by TEE 3 and TEE 4 in Figure 3-13. TEE 3 and TEE 4 correspond to
PCB A and PCB C, described following Figure 2-3.

Section 3.6.4 (including its sub-sections) does not preclude the use of solutions using any combination of zero,
one, or more instances of any of the TEEs shown in Figure 3-13.

Figure 3-13: Many TEEs including Using Hypervisor Separation

PCB

IC Package

In-package
Security

Subsystem

External
Security IC
Package

Key

Component of TEE 1

Component of TEE 3

Component of TEE 4

REE Component

Shared Component

RAM Crypto
Accelerators

µProcessing
Core(s)

ROM Peripherals

OTP Fields

External
Memories

Component of TEE 2

The components in Figure 3-13 represent an extension of those in Figure 2-3, introducing the hosting of
multiple TEEs in one shared set of processor cores.

Please note: Hypervisor based isolation is, by definition, based on some sharing of resources. The content of
section 2.2.4 (REE and TEE Resource Sharing) and section 5.4 (Transfer of Hardware Components to and
from the TEE) is relevant when considering this type of system.

TEE System Architecture – Public Release v1.3 51 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.4.1 Hypervisor Isolation from the Hardware Point of View

Some hardware components may be assigned to specific TEEs or other Execution Environments. Some use
cases require the ownership of components to be switched between Execution Environments (see sections
2.2.4.1 and 5.4).

One method of assigning such hardware assets in a modern system is using a hypervisor.

Traditional hypervisor hardware support does not meet TEE isolation requirements. To meet the requirements
of the GlobalPlatform TEE Protection Profile ([TEE PP]), care must be taken that the hypervisor regulates not
only access control to assets managed by the processing cores themselves, but also such access via other
Bus Managers in the system.

Hardware debug is also part of the access control regime and must be similarly limited by the isolation
technology. We use the term Isolator Control Software to refer to hypervisor or similar software technology
used to control isolation between different Execution Environments, and “isolator” to refer to the hardware that
may be used by such Isolator Control Software or by the OSes.

The example system illustrated in Figure 3-14 shows potential hardware actors and assets in a two TEE
system based on a hypervisor separation. Assets of a given TEE must be isolated from actions of any Bus
Manager that is not currently controlled by that specific TEE.

Figure 3-14: Example of Two Hypervisor-separated TEEs

In device

In package

TEE #2:

Bus Managers:
Cores and other
controllers issue
actions to peripherals
and memories

Peripherals and Memory:
The Bus Subordinates
retain assets including
keys and secrets

Another
Bus

Manager

LCD
Controller

Audio
Processor

Isolator type #A

DRAM Flash NVM
Storage

Touch screen

Audio output

N
FC

Real Tim
e Clock

Isolator type #B

TEE
Asset

Cache
TEE

Asset

TEE #1:

ACR

Debug

TEE
Asset

TEE
Asset

ACR

ACRACR

REE:
Isolator:

ACR

ACR

Isolator
type #A

ACR

Isolator
type #A

ACR

Isolator
type #A

ACR

REE Asset

REE Asset

Cluster 𝑎𝑙𝑝ℎ𝑎 Cluster 𝑏𝑒𝑡𝑎

Core #1
Core #2

Core #3
Core #4

(Assigned to
TEE #1)

Core #1
Core #2

Core #3
Core #4

Figure 3-14 depicts an example of a package in a device with multiple clusters of Cores, and multiple other
Bus Managers. The presence of these features is typical in modern SoC but as this is an example it does not
preclude other arrangements with different numbers of clusters, of cores per clusters, Bus Managers, and
assignments of TEE activity to particular cores or Bus Managers.

The above example shows two TEEs.

• TEE #1 that might currently have a TA doing some form of Audio DRM based on an NFC token.

• TEE #2 has a TA using the touchscreen for some tasks.

52 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Clearly one TEE could perform both these tasks but there can be security and control reasons to have
multiple TEEs; for example, if one is a locked down device OEM TEE and one is enabling third party
TAs.

What is critical here, and should be reflected in real systems, is:

• TEE #1 must not be able to use ANY of its Bus Managers to access TEE #2’s assets:

E.g. TEE #1’s audio processor must not be able to access the TEE #2 Asset in DRAM.

• TEE #2 must not be able to use ANY of its Bus Managers to access TEE #1’s assets:

E.g. TEE #2’s LCD controller must not be able to access TEE #1’s NFC peripheral device.

• And the REE must not be able to use ANY of its Bus Managers to access any asset of TEE #1 or
TEE #2.

Isolator type #A
These logical components provide the means of stopping one application interfering with an OS, driver, or
another application. They are typically implemented via a Memory Management Unit (MMU) or Memory
Protection Unit (MPU). Each is separately associated with a Bus Manager. Where an Isolator type #A must
associate with multiple Bus Managers, they form a cluster of Bus Managers, and all are typically of the
same type. Each Isolator type #A stops only its associated Bus Manager, or cluster of Bus Managers, from
unauthorized access.

If a single physical component can provide different rules to each Bus Manager, then it is providing multiple
logical Isolator type #A components.

Isolator type #B
These logical components provide system wide isolation between all Execution Environments, by
controlling access from all Bus Managers to all Bus Subordinates. While shown as a layer directly above
the memory and IO assets of the system, they may have aspects throughout the system, providing isolation
in the pipelines and caches of the system.

Hardware Isolation and Access Control Rules
Each hardware isolator has Access Control Rules (ACR) that it can use with or without software
intervention. An example of such rules is MMU Page Tables. Each Execution Environment manages its
own ACR which is configured via the appropriate Isolator Control Software (see section 2.2.4.1, Isolation
of Trusted Resources). In a suitable system, Isolator type #A and Isolator type #B may be implemented in
one physical component, if that one component enables the different management needs of the different
Execution Environments.

The resulting implementation SHALL provide sufficient separation of the ACRs to allow the Execution
Environments to maintain their required independence.

Debug Support
Debug systems shall not be allowed to bypass a TEE’s asset access control. The GlobalPlatform TEE
Protection Profile implies that debug in a TEE shall only be enabled by suitable mechanisms of that TEE
(and not by enabling debug in other TEEs or the REE). This is reflected in the GlobalPlatform TEE TA
Debug Specification [TEE TA Debug].

TEE System Architecture – Public Release v1.3 53 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.4.2 Isolated TEEs from the Software Point of View

From the software point of view, each TEE is composed of:

• The code, data, and keys that are used to boot the run-time TEE

• The code, data, and keys that control the part of the system on which the TEE depends to meet its
Protection Profile. These are:

o Software that may be common to multiple TEEs

o The Trusted OS

o Libraries that may be loaded into the TEE and provide functionality to other parts of the TEE or to
TAs

o Drivers that may be loaded into the TEE and provide functionality to other parts of the TEE or to
TAs

In a complex system, with multiple TEEs, there may be a number of different software stacks (some with
common components) involved in enabling a particular TEE. It is worth repeating that the ultimate binding
factor in what is inside a TEE, versus what is outside a TEE, is what can interact with the assets of a TEE as
defined in the GlobalPlatform TEE Protection Profile ([TEE PP]). If something can act directly on TEE assets
then that something is part of the TEE.

3.6.4.2.1 A Single TEE System with a Hypervisor

Figure 3-15 shows a simple system with a GPD TEE alongside some additional software (in this case some
OEM Firmware) outside of the GPD TEE’s security boundary but sharing the same Isolator Control Software
type #B.

Figure 3-15: Isolator Control Software Type #B

Isolator Control S/W type #B

TEE #1

Trusted OS
#1

TA TA
GP
API

GP
API

OEM
Firmware

Less
privilege

More
privilege

Isolator Control Software type #B

Isolator Control Software type #B must enable system level isolation between the software stacks that
it hosts (at lower privilege levels) and provide communication between those stacks. In some systems
the Isolator Control Software type #B may also perform additional tasks (such as allocating resources,
managing resource sharing, providing para-virtualized services, etc.).

54 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

To not limit solutions by terminology, we have used “Isolator Control Software type #B” in the following
example software architectures, rather than something more specific such as “Hypervisor” or “Monitor
Mode”. “Isolator Control Software type #B” refers to whatever software controls Isolator type #B (e.g. a
system level MMU or equivalent isolator) shown in Figure 3-14, along with any other required asset
isolation mechanisms.

3.6.4.2.2 Minimizing Code with High Privilege

To reduce security risk it is desirable that any introduced code has the least possible impact on other code in
the system if an issue occurs. The example system in Figure 3-16 illustrates various locations in which software
may be executed when a hypervisor is added. The goal here is to discuss the locations that various typical
support software packages may reside in an Isolator Control Software type #B enabled system.

Figure 3-16: Isolator Control Software Type #B and Minimal Privilege Code

Isolator Control S/W
type #B

Isolator
support
s/w ~2

Needed for
TEE

TEE #1

Trusted OS
#1

TA TA
GP
API

GP
API

(#3) OEM
Firmware

(#1) OEM
Firmware

Isolator support s/w ~1

Needed for TEE

(#4) OEM
Firmware

GP
API

(#2) OEM
Firmware

Less
privilege

More
privilege

Isolator support software
It is desirable for best security to minimize the amount of software running at higher privilege levels. As
such, any software that necessarily is part of the Isolator Control Software should be moved from (~1)
to (~2) where possible.

An example of such support software might be virtualized device services, cryptographic services, or
storage service enablers.

OEM firmware
This firmware is a good example of software often associated with the TEE that must meet the balance
of security risk vs. functional needs. Parts of this firmware may be found in many different locations
depending upon the execution needs of that specific part:

o Integrated into Isolator Control Software type #B

 This can be seen as an increased risk, as it increases the size of the most privileged code
(Isolator Control Software type #B).

 That risk then also impacts anything running on top of that Isolator Control Software type #B.

o Running in its own software stack alongside the Trusted OS software stack

TEE System Architecture – Public Release v1.3 55 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Potentially complex because it has to provide all its own services which it might otherwise get
from an OS.

o Running as part of an OS’s provided software (e.g. privileged driver)

 A compromise where it impacts the privileged code size of the OS but has enabling OS
services.

 That risk then also impacts anything running on top of that OS.

o Running as a user space application (or user space driver) on the Trusted OS

 This provides the best protections for the rest of the system, and the potential of full portability.

In all cases, as we move further from the Isolator Control Software type #B there may be a disadvantage due
to loss of flexibility (due to restrictions imposed by the underlying layers) and reaction speed (due to the
additional layer transitions required to communicate to other parts of the system).

The following examples are provided to show a range of software configurations that may enable multiple
TEEs separated by Isolator Control Software type #B and are not intended to be restrictive. Other variants
may be applicable as long as they meet the GlobalPlatform TEE Protection Profile ([TEE PP]).

56 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.4.2.3 Various Examples of Multiple TEE Systems

Here we show a number of different TEE structures in a multi-TEE system. These are component diagrams,
showing which parts of a system are considered part of the various EEs in the system. They are examples and
a real system may have more TEEs and other software stacks alongside those shown. Figure 3-17 shows the
software components enabling TEE #1 (inside the blue area). It is worth noting that the Isolator Control
Software type #B may provide TEE-like protection to other vertical stacks that are not considered GPD TEEs
due to their lack of compliant functionality support, but which may serve useful purposes in the system.

Figure 3-17: TEE #1 Integral in the IC Package and Providing TEE Services to the Device

Trusted
OS
#2

TA TA

REE
OSs

App
GP Client API

GP Client
In OS

TEE Boot
REE OSs boot

GP
API

GP
API

TEE #1

Ru
n

tim
e

Bo
ot

 ti
m

e

Less
privilege

More
privilege

TA TA

Isolator
Trusted OS

TA
REE or App

TEE #1

Trusted
OS
#1

GP
API

GP
API

Isolator Control S/W type #B

TEE #1

Figure 3-18 shows the software components enabling TEE #2. It can be seen that the boot and Isolator type #B
components are shared with TEE #1. It should also be remembered that these are simplified diagrams and
that other components such as the isolator support software may also be part of the TEE.

Figure 3-18: TEE #2 Integral in the IC Package and Providing TEE Services to the Device

Trusted
OS
#1

TA TA

REE
OSs

App
GP Client API

GP Client
In OS

TEE Boot
REE OSs boot

GP
API

GP
API

TEE #2

Ru
n

tim
e

Bo
ot

 ti
m

e

Less
privilege

More
privilege

TA TA

Isolator
Trusted OS

TA
REE or App

TEE #2

Trusted
OS
#2

GP
API

GP
API

Isolator Control S/W type #B

TEE #2

TEE System Architecture – Public Release v1.3 57 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Multiple Trusted OSes may gain security via a level of isolation between them, but due to interdependencies
may form one TEE from the security analysis point of view. An example of this is where one Trusted OS is
quite closed and providing hardware specific services, and the other Trusted OS is more generic but takes
advantage of some of those services. This results in the following system:

Figure 3-19: Trusted OS #5a and #5b Co-operating to Provide the Functionality of TEE #5

Isolator Control S/W type #B

REE
OSs

App
GP Client API

GP Client
In OS

TEE Boot
REE OSs boot TEE #5

Ru
n

tim
e

Bo
ot

 ti
m

e

Less
privilege

More
privilege

Trusted
OS
#5a

TA TA
GP
API

GP
API

Trusted
OS
#5b

TA TA
GP
API

GP
API

The TEE and OS numbering in the example does not indicate the number of TEEs in such a system but is just
a reference to distinguish these from other TEE descriptions in this document. In addition, there is no actual
requirement that both Trusted OSes be able to execute a GlobalPlatform compatible TA.

It is worth noting that to reduce the trusted computing base it may be worth splitting the Isolator Control
Software type #B so that a more minimal one can serve the TEEs and other critical code stacks, while a richer
one is available to the REEs. This is shown in Figure 3-20.

Figure 3-20: More than One Isolator Control Software Type #B in Device

TEE Isolator Control S/W type #B

Trusted
OS
#2

TA TA

REE
OS

App
GP Client API

GP Client
In OS

GP
API

GP
API

Less
privilege

More
privilege

Trusted
OS
#1

TA TA
GP
API

GP
API

Non GP
s/w

stack
GP Client

API

More
REE OSs

Non-TEE Isolator Control S/W type #B

GP Client
In OS

58 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.4.2.4 Isolation Boundaries in a Hypervisor-based System

The use of hypervisor technologies requires an additional isolation boundary, providing access control, to be
considered in the TEE design.

Figure 3-21: Isolation Boundaries

TEE Isolator Control S/W type #B

Trusted
OS
#2

TA TA

REE
OS

App
GP Client API

GP Client
In OS

GP
API

GP
API

TEE #1

Ru
n

tim
e

Bo
ot

 ti
m

e

Less
privilege

More
privilege

Trusted
OS
#1

TA TA
GP
API

GP
API

Non
GP
Env

2

1 13

More
REE OSs

Non-TEE Isolator Control S/W
type #B

4

TEE Boot

TEE #1

Isolator
Control

S/W
Support

1

In traditional [TEE PP]-compliant systems, we have the following isolation boundaries.

(1) The TEE must guarantee an access control boundary between the TEE and everything outside of the
TEE.

This stops external actors from interfering with assets inside the TEE.

(2) The TEE must guarantee an access control boundary between the TA and the rest of the TEE.

This stops rogue TAs from interfering with the rest of the TEE.

(3) The TEE must guarantee an access control boundary between the TAs.

This stops rogue TAs from interfering with other TAs.

In a system where multiple TEEs rely on the trustworthiness of some common Isolator Control Software
type #B, then the unshared parts of those also need to be isolated such that they cannot make unauthorized
changes to the shared part. This means:

(4) The TEE must guarantee an access control boundary between the components unique to this TEE and
components shared with other TEEs. This access control is typically implemented by the Isolator Control
Software type #B.

This stops rogue TEEs from interfering with other TEEs.

Other isolation boundaries may also exist in a particular implementation.

TEE System Architecture – Public Release v1.3 59 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.5 Executing alongside Other Environments: Trust vs. Respect

It is a given that a Trusted OS can trust other components that make up the TEE it is running in – namely boot
code and isolators.

The Trusted OS respects claimed security requirements made by entities outside of the TEE; however, this
respect does not imply trust in those entities to respect the TEE’s security requirements.

For example:

• Respect – If an area of address space is configured in the overall device to be private and not for the
use of a particular TEE, then the TEE should respect this configuration even if no other system
enforces this.

o An exception may be made if the configuration would impact the secure functioning of that TEE.

• Trust – Respecting such security configurations should not be taken to imply that the TEE trusts either
who made the configuration or what the configuration represents; however, it enables others to reason
about the behavior of the TEE with respect to ‘their’ resources.

3.6.6 Communicating with Other Environments: Trust vs. Respect

Generally, a TA or Trusted OS acts in response to requests from other entities on the device, though
sometimes those entities are just a channel for off-device communications.

The Trusted OS should generally respect claimed identities made by entities outside of the TEE but should
not implicitly trust them.

Figure 3-22: Communication between Applications in Various Execution Environments

Separate
sub-systemIsolator Control S/W #P Isolator Control S/W #Q

Trusted OS #1

Dest.
TA

TA #1

Trusted OS #3

TA #3

Trusted OS #2

TA #2

Regular OS #2

CA #2

Regular OS #1

CA #1

[a][b] [c] [d]

When considering communication, a session from a trusted/client process X (which in this example may be
any of CA #1/2 or TA #1/2/3) to a Trusted Application (Dest. TA) may pass through several Execution
Environments and isolators that are not implicitly trusted; however, each may provide contextual information
related to the call. Whilst information from outside the target TEE cannot be trusted in an absolute sense, the
recipient of the message may have external reasons to trust and/or respect this information within a given
context.

60 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

For example:

• A Trusted Application having a session from another Trusted Application in the same Trusted OS can
trust the client identity to be accurate, as they are both part of the same TEE (case [a] in Figure 3-22)
but it has to make its own determination of the trustworthiness of the source TA functionality.

• A Trusted Application having a session from a REE identified as originating from CA #2 (case [b]) can
respect a related security policy.

o E.g. a policy may indicate that information contained in the message from CA #2 is not to be
shared by the TA on any communication session with CA #1. It is accepted that the Trusted
Application is constrained on its ability to apply this policy by outside factors; for example, a REE
compromise could lead to the message content being rerouted before entering the TEE, or the CA
identity being falsified, both of which are beyond the TA’s control.

• A Trusted Application having a session from a TA in a different Trusted OS may be able to trust the
origin Trusted OS identity if both share the same isolator (case [c]), but this does not imply that the
origin TA identity can be trusted.

• A Trusted Application having a session from a TA in a different Trusted OS that is not using a shared
isolator cannot trust the origin (case [d]).

• A session from a TA in another Trusted OS may, in future, identify the calling TA, Trusted OS, and/or
Isolator(s) using an extension or update to the mechanism used to identify a client.

• External means, such as cryptographic signatures or secure channels, may be used to establish
additional trust at either a TA-to-endpoint level or a Trusted-OS-to-other-environment level.

Contextual information, such as the routing of session messages, can be trusted when it is provided by a
component within the TEE that hosts the session endpoint TA, but should only be respected if the provider of
the information is outside of the TEE. Table 3-3 shows the trusted and untrusted parts of the routing and
identity information for the scenarios from Figure 3-22.

Table 3-3: Trust of Communication

Case From To Untrusted Path
(outside destination TEE)

Trusted Path
(within destination TEE)

[a] TA #1 Destination
TA

 TA #1  Trusted OS #1  Dest. TA

[b] CA #2 CA #2  Regular OS #2
 Isolator #P  Bus

Bus  Isolator #Q
 Trusted OS #1  Dest. TA

[c] TA #2 TA #2  Trusted OS #2 Trusted OS #2  Isolator #Q
 Trusted OS #1  Dest. TA

[d] TA #3 TA #3  Trusted OS #3
 Bus

Bus  Isolator #Q
 Trusted OS #1 Dest. TA

Notes

• The TEE Client API, in combination with the TEE Internal Core API identity methodology (ref
[TEE Core API] section 4.1.1 and section 4.2.2), identifies properties of the source CA or TA but does
not provide properties relating to the source OS/Isolator.

TEE System Architecture – Public Release v1.3 61 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• The TEE Internal Core API provides TA-TA communication within a single TEE, and implementations
may enable the TEE Client API to be used from within a TEE to enable communication with TAs in
other TEEs. A future revision of [TEE Core API] may add integrated TA-TA communication across
TEEs.

62 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 TEE Management
Management of the TEE and Trusted Applications running in the TEE is described in the GlobalPlatform TEE
Management Framework specification ([TMF]). The remote management life cycles of Trusted Applications,
GlobalPlatform style management Security Domains, and the TEE itself are also detailed in that specification.

An introduction to TEE Management is provided below. For clarity, the latest versions of each of the reference
documents should be read in place of these introductions.

4.1 Overview of TEE and TA Management

Each GlobalPlatform style Security Domain (SD) has a nominal off-device “owner” with rights to control SDs
and TAs directly and indirectly below the given SD. The exception to this is when the child SD is a root SD
(rSD), because root SDs form a management isolation boundary which limits parental interference.

The TEE Management Framework provides means to securely manage Trusted Applications in a TEE. The
following three layers are described.

Administration operations
• Defines the set of supported operations to manage Trusted Applications and Security Domains, the

conditions of use and the detailed behavior of each operation.

Security model
• Defines who the actors are and how the different business relationships and responsibilities can be

mapped on the concept of Security Domains with privileges and associations.

• Defines the security mechanisms used to authenticate the entities establishing a communication
channel, to secure the communication, and to authorize the administration operations to be performed
by Security Domains.

• Defines schemes for key and data provisioning and describes the associated key management.

Protocols
• Defines the command set (over the TEE Client API) to be used to perform administration operations.

• Defines the command set to be used to establish a secure session with a Security Domain.

TEE System Architecture – Public Release v1.3 63 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 4-1: TEE Management Framework Structure

pr
ot

oc
ol

(s
)

op
er

at
io

ns
se

cu
rit

y

SD

Envelope

Administered Device

Emits
authorizations

Performs
operations

TEEREE

Operates
service(s)

3
remote protocol

2

1

Administration
Server(s)

cmds

Verifies
authorizations

TEE
Communication

Agent

TEE Client
API

Authentication or Authorization Rights

Operation

Envelope

64 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Overview of TA Management Hierarchies

The following diagram shows an example of possible management relationships between Security Domains
and between Security Domains and Trusted Applications enabled by the GlobalPlatform TEE Management
Framework specification ([TMF]).

Figure 4-2: Security Domain Management Relationships

TA-211 TA-212

TA-111

TA-112

Factory
Installed
and TMF
Managed

TMF
Installed

and
Managed

TA-x

Root Security Domain – a GP
compliant domain over which
other domains have strictly
limited management abilities

Security Domain – a GP
compliant domain which may
have a set of management
abilities

Trusted Application – a GP
compliant TEE Application

General management control

Strictly limited management

Factory installed

In-Field installed

SD-x

rSD-x

rSD-2

SD-21 SD-22

SD-11TA-01

rSD-0 Audit
Pseudo-rSD

TA-11

rSD-1

The above diagram is just an example of how a management structure can be developed on a platform.

In Figure 4-2:

• rSD-1 is the direct parent of TA-11.

• rSD-1 is the indirect parent of TA-111.

• The owner of rSD-1 can potentially control any SD-1* or TA-1* but cannot control any of the other
current SDs on the example platform, due to rSD-2.

• The owner of rSD-1 can install rSD-2 but cannot interact with any of rSD-2’s direct or indirect children
and is strictly limited in the operations it can perform on rSD-2.

• From a remote entity point of view, all the rSDs can be considered Roots of Trust because there is no
entity which can vouch for their “boot” state but they can vouch for the existence of all their child SDs
and TAs.

There are some exceptions to the above rules, such as with regard to factory reset. For more detail, see
[TMF].

TEE System Architecture – Public Release v1.3 65 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

[TMF] places no restriction on the number of SDs (including rSDs) or TAs that can be installed in the factory
or in the field. Particular platform implementations and GlobalPlatform TMF configurations have limits on
available storage resources and these limits affect the numbers of TAs and SDs that might be deployed on
that platform.

[TMF] defines various SD and TA management operations such as installation, removal, updating, blocking,
and personalization. Particular platforms and GlobalPlatform TMF configurations can choose to restrict the
availability of certain TEE Management Framework management operations on that platform and similarly
particular Security Domains can choose to limit the operations available to their child Security Domains.

4.3 Overview of ASN.1 Profile, X.509 Profile, and Cross-profile
Mapping

The TEE Management Framework (TMF) defines a security model for the administration of GlobalPlatform
compliant Trusted Execution Environments (TEE), and the administration and life cycle management of
Trusted Applications (TA) and their corresponding Security Domains (SD).

• TEE Management Framework (TMF) including ASN.1 Profile ([TMF]) defines extensive commands for
administration and life cycle management based on ASN.1 message format.

• TMF: Open Trust Protocol (OTrP) Profile ([TMF OTrP]) defines essential TEE management messages
and essential TA and SD life cycle management messages based on JSON message format.

A TEE MAY support the ASN.1 Profile (as described in [TMF]), the OTrP Profile (as described in [TMF OTrP]),
or both.

• Trusted Service Managers (TSMs) or Outside World Entities (OWEs) that support the ASN.1 Profile
use ASN.1 Profile commands to administer the TEEs on authorized devices.

• OWEs that support the OTrP Profile use OTrP messages to administer TAs and SDs on authorized
devices.

• A Service Provider (SP) may choose between a TSM or an OWE for the life cycle management of its
TAs in TEEs.

The execution of a TMF OTrP request message SHALL provide the same result that the equivalent TMF ASN.1
Profile command would have achieved.

A TEE that already supports the ASN.1 Profile may integrate OTrP Profile support using one of the following
methods:

• Implementing OTrP Profile functionality directly into the TEE Trusted OS.

• Implementing an OTrP Mapping Implementation Layer (OMIL) that reuses the existing ASN.1 Profile
support. OMIL needs to store secrets and state. It must therefore be implemented within the same
Security Domain as the TEE. It may be implemented as a combination of Client Application and
Trusted Application, but the Client Application must not have access to any data that may be used to
compromise the system.

The TMF: Open Trust Protocol (OTrP) Mapping specification ([TMF OTrP Mapping]) focuses on the latter
method and recommends the implementation details for OMIL, its responsibilities, as well as details on how to
map OTrP request messages to ASN.1 Profile commands and ASN.1 Profile response output back to OTrP
response messages. It is assumed that OMIL has no special access to the TEE – that is, it can only issue TEE
Core API and TMF commands using the TEE Client API.

66 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 Roots of Trust and the Trusted Management Framework

The GlobalPlatform definition of whether a module is a Root of Trust depends upon whether other entities can
report a measurement of the module under consideration. Since every SD is capable of acting as an Audit SD,
they are all optionally capable of reporting the TEE properties gpd.tee.trustedos.implementation.binaryversion
and gpd.tee.firmware.implementation.binaryversion. These values MAY contain measurements of the Trusted
OS and other underlying firmware in the TEE.

• If the TEE does not report a measurement of its boot state through this interface, then the rSDs are
Roots of Trust for the [TMF] services because they impose integrity requirements on other security
domains and the contents of those domains.

• If the TEE does report this measurement, then the measuring boot code is the Root of Trust and the
[TMF] services are considered provided by security modules vouched for by the RoT boot stage that
made that measurement.

• More information about TEE management can be found in [TMF].

4.5 Configurations of the TMF ASN.1 Profile

TEE Management Framework (TMF) Initial Configuration ([TMF ASN.1 Config]) defines two TMF ASN.1 profile
configurations for particular sorts of devices. One configuration is focused on enabling the most constrained
IoT devices, and the other specifies a minimum set of abilities for everything else. This enables those interested
in developing and managing TAs to understand the minimum expectations on the sort of TA and SD
management structures that might be created on those devices.

4.5.1 Model A Is the Constrained IoT Device Design

Model A provides the minimum functionality to remotely manage a device that has one set of TAs (App1 below)
in the TEE.

It has a very simple relationship model that needs to be tested for it to pass compliance.

Figure 4-3: TMF ASN.1 Configuration Model A – Only One Root SD

Root SD

App 1

TEE System Architecture – Public Release v1.3 67 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.2 Model B Is for More Complex Devices

The following shows the minimum functionality of a Model B configuration and defines the testing limits that
need to be validated for such a configuration to be validated.

Figure 4-4: TMF ASN.1 Configuration Model B – One Root SD and One Level of SD

Model B configurations SHALL find the following pre-existing in the device presented for evaluation:

• A root SD (rSD, as described in [TMF] section 4.1.3.3)

Model B configurations SHALL, subsequently:

• Permit the installation of two child SDs directly associated with the root SD.

• Permit that the child SDs are installed and managed with SD Management and TA Management
privilege.

• Permit the installation and management of two TAs (App in Figure 4-4) in each of the two child SDs.

Vendors SHALL provide credentials or other materials to enable the creation of TMF commands required to
support this model.

68 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6 TMF OTrP Profile

The GlobalPlatform TEE Management Framework (TMF), as described in TEE Management Framework
including ASN.1 Profile ([TMF]), defines standardized methods to administer a Trusted Execution Environment
(TEE) from outside of the TEE. These methods use ASN.1 message formatting to describe the message
properties and associated authorizations.

The TMF Open Trust Protocol Profile (OTrP Profile, as described in [TMF OTrP]) provides an alternative
framework for the administration of selected TEE management operations and of Trusted Applications (TAs)
and their corresponding Security Domains (SDs). These methods are based on JSON message formatting to
describe the message properties and X.509 certificates describing the authorizations.

Figure 4-5: TMF OTrP Architecture

Figure 4-5 shows an architectural overview of OTrP Profile where one or more Outside World Entities (OWEs)
interact with an end user’s device using OTrP messages. An OWE is similar to a Trusted Service Manager
(TSM), which is responsible for the life cycle management of Trusted Applications (TAs) running on TEEs of
devices. Service Providers (SPs) rely on OWEs for distribution and life cycle management of their TAs in their
users’ devices.

TEE System Architecture – Public Release v1.3 69 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

An OTrP Profile compliant TEE SHALL have at least one root Security Domain (rSD), to which OTrP messages
are sent through the device REE. If more than one rSD exists, the device SHALL have one rSD as the default
rSD to which OTrP messages SHALL be sent unless a target rSD is indicated in the messages. OTrP
messages follow a request-response pattern, where an OWE requests an operation and the TEE SHALL
respond to the request. An OWE SHALL always initialize an OTrP session with a TEE by requesting the Device
State Information (DSI) of the TEE. A TA is always installed in the context of a Security Domain (SD). In
essence, an SD and a TA have a parent-child relation; i.e. the TA is a child node of the SD. Furthermore, in
OTrP Profile, SDs SHALL be directly associated with the rSD; i.e. the rSD is the immediate parent of its child
SDs. An OTrP Agent running on the REE SHALL be responsible for channeling to the OTrP messages between
OWEs and relevant rSDs using GlobalPlatform TEE Client API interfaces.

4.6.1 TMF OTrP Configurations

GlobalPlatform TMF: OTrP Profile Initial Configuration ([TMF OTrP Config]) describes the following set of
configurations:

Config1: Essential – minimum implementation requirements for TMF OTrP functionality
• This requires the device to provide functionality equivalent to the TMF ASN.1 Model B (see

section 4.5.2) excluding those parts enabled by Config2 (below).

Config2: Extension – implementation requirements for additional, selected TEE management
functionality
• This adds the OTrP interface to provide a discovery mechanism like the Audit mode in TMF

ASN.1 profile functionality.
• This enables a TEE to perform a factory reset function, restoring TEE TAs to their factory

state or removing them if they were not part of the current factory image.

Vendors SHALL implement Config1 alone to claim TMF OTrP Profile compliance.

Vendors MAY implement Config2 in addition to Config1 but SHALL NOT implement Config2 alone.

70 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.7 OMIL and OTrP to ASN.1 Profile Mapping

The TMF: Open Trust Protocol (OTrP) Mapping document ([TMF OTrP Mapping]) specifies a protocol mapping
between TMF OTrP Profile messages and TMF ASN.1 Profile commands, which enables a device already
supporting the ASN.1 Profile to potentially install a TA or additional Trusted OS capability that would enable it
to use OTrP profile messages.

The document specifies how TMF OTrP request messages received by a TEE are mapped to TMF ASN.1
Profile commands and how TMF ASN.1 response output is mapped to TMF OTrP response messages. Direct
mapping is not mandatory – that is, incoming request messages from the OTrP Profile are not required to be
converted to the ASN.1 Profile – but this is a possible realization where appropriate.

To enable description of this interworking we have introduced a component called an OMIL (OTrP Mapping
Interface Layer). This is presented purely to enhance description of the interfaces; implementations may use
a separate component, a component integrated with a current implementation such as a TMF ASN.1 Profile
handler, or any other method that meets the security and functional requirements of the overall system.

While [TMF OTrP Mapping] is written from the point of view of adding the functionality of the newer TMF OTrP
specification to a system using the older TMF ASN.1 Profile specification, it can equally be used as a guide to
the reverse mapping, though some limitations in the TMF OTrP specification may not enable 100% coverage.

The effect relationship created by this mapping is shown in Figure 4-6, which depicts an overview of a TEE
that supports both the ASN.1 Profile and the OTrP Profile.

Figure 4-6: TEE with Joint ASN.1 and OTrP Managements Enabled via OMIL

TEE System Architecture – Public Release v1.3 71 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 TEE Implementation Considerations
The TEE and its capabilities may be closely coupled to the capabilities of the REE and the state of the device
it resides in. It is therefore important for the developer of REE Client Applications, and even the Regular OS
itself, to understand the availability of the TEE capabilities, along with the general security states (and hence
vulnerabilities) that can be found in typical devices. Toward that end, this chapter lists some of the possible
device states and discusses the notions of boot time environment and run-time environment. Some
clarifications are given regarding dependencies and the availability of TEE functionalities with respect to the
Regular OS.

5.1 Device States

Devices implementing a TEE can be found in a number of states that are not defined in GlobalPlatform
specifications, but that are still useful for the developer to understand.

Devices implementing the TEE provide trusted mechanisms to control the corresponding security
environments and transitions.

The specific implementations and characteristics of these and other similar states are up to the device
manufacturers and the OEMs.

Examples of some such states:

• Devices in manufacturing, which can offer neither security nor functional compliance at various stages
of their creation

• Development devices, which might have reduced security but provide TEE compliant functionality

• Production devices, which provide TEE compliant functionality and security

• And finally, devices that have somehow failed, and which will still block access to TEE held user data,
while enabling various levels of debug access through secure mechanisms

72 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2 Boot Time Environment

The term “boot time” refers to the time frame from the reset/power-up of the underlying hardware to the time
an operating system has completed its initialization and loading. Based on this definition, boot time software
also includes any firmware/ROM code that takes over the control of execution after the device is reset.

The integrity of the initial trusted boot code is intrinsically guaranteed. Furthermore, flexible trusted boot
requirements and OEM-dependent boot operations require that, during boot time, some services or operations
need to be performed in a Trusted Execution Environment. Therefore, a minimal set of the TEE capabilities
exists during the device boot time. To enable some of these services, a Trusted OS (or some simplified version
thereof) can also exist.

A typical TEE secure boot is based on three key components:

• A fixed set of innately trusted components; typically the smallest distinguishable set of hardware
and/or software that is inherently trusted and tied to the logic/environment where trusted actions are
performed

• Immutable boot software stored, for example, in in-chip TEE ROM

• The isolated TEE where this security critical boot software is executed

It is not the current intention of GlobalPlatform to define the boot time capabilities of a TEE; however, if a TEE
Trusted OS is required to function during boot, then it is recommended for compatibility and ease of
development that it implements as much of a subset of the TEE Internal APIs as it is capable of providing.

5.2.1 Typical Boot Sequence

The figures that follow depict three simplified examples of secure boot of a TEE. Common to all solution
examples, the device boots from the TEE boot ROM code inside the IC package containing the TEE (which
might not be the IC package containing the REE). The TEE boot ROM can then load further firmware
components and verify them before execution. To verify them, code in the boot ROM uses the information
found in the fixed set of innately trusted hardware components (for example, information stored in the TEE
boot ROM or one time programmable (OTP) fuses). The firmware components are typically stored in
rewriteable non-volatile memories such as flash storage but can also be part of the TEE ROM code.

Before exiting the secure boot process, the firmware or the TEE platform code loads and can verify REE boot
loader(s) before their execution. Typically, if any loaded software component verification fails up to this point,
the boot process halts and the device reboots with a possible error report/indication. In a successful case, the
REE boot loader starts the process of loading the Regular OS or further boot loader components.

OEMs can differentiate by implementing trusted firmware to be run early in the boot sequence. This gives the
OEM the flexibility to bring in its own keys, certificate format, signature schemes, etc. Figure 5-1 through
Figure 5-3 illustrate example boot sequences, and others can exist.

TEE System Architecture – Public Release v1.3 73 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-1: Example Boot Sequence: Trusted OS Early Boot

Immutable
ROM Code

Factory Only
Programmable

Storage

Device Reset
Event

TEE Boot Stages
“Firmware”
(Optional)

TEE Runtime Platform Code /
Trusted OS

TEE primary boot stage

TEE secondary boot stage(s)

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code /
Regular OS

(optionally Certified/Verified)

Loads & Verifies

Loads & Verifies

Order of first execution

REE TEE

n

1

2

3

4

6

Key

TEE
iR

oTc

R
EE iR

oTc

TEE eR
oTc(s)

*

R
EE eR

oTc *

5

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

Loads & Verifies

Loads & Verifies

74 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-2: Example Boot Sequence: ROM-based Trusted OS

Factory Only
Programmable

Storage

Device Reset
Event

Immutable ROM Code /
TEE Platform Code / Trusted OS

1

2

REE TEE
TEE iR

oTc

TEE primary boot stage

Order of first executionn

Key

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code /
Regular OS

(optionally Certified/Verified)

4

R
EE iR

oTc
R

EE eR
oTc *

3 Loads & Measures

Loads & Measures

TEE System Architecture – Public Release v1.3 75 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-3: Example Boot Sequence: Trusted OS On-demand Boot

Immutable
ROM Code

Factory Only
Programmable

Storage

Device Reset
Event

TEE Runtime
Platform Code / Trusted OS

Loads & Verifies

TEE boot stage fetches
signed code from file
system

TEE boot stage
verifies

next stage before
execution

1

2

3

6

7

REE TEE
TEE iR

oTc

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code /
Regular OS

(optionally Certified/
Verified)

5

R
EE iR

oTc
R

EE eR
oTc *

4 TEE eR
oTc *

TEE Boot Stages
“Firmware”
(Optional)

TEE primary boot stage

TEE secondary boot stage(s)

Order of first executionn

Key

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

Loads & Verifies

Loads & Verifies

76 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3 Run-time Environment

The term “run-time” refers to a property of the overall Execution Environment where an operating system has
fully completed its initialization/boot operations and is fully operational, as opposed to the interval before the
operating system is fully operational, as discussed in section 5.2.

The dependencies between the Trusted OS and the Regular OS are implementation dependent. Current
GlobalPlatform specifications standardize the behavior of the system once the Regular OS is operational. This
does not mean that there are no capabilities when the Regular OS is not operational (see section 5.2).

5.3.1 TEE Functionality Availability

The claimed TEE functionality and availability can have dependencies on the REE, which may limit the TEE’s
abilities.

However, in a device that claims to have a TEE available to CAs, a CA in a fully booted Regular OS SHALL
be able to access a TEE’s full claimed functionality via an appropriate TA. This includes the scenario where
the full functionality of the TEE is only initialized in reaction to that CA’s request to access the TA.

A TEE is permitted to provide a subset (or all) of its service during earlier stages in the boot processes.

The above guarantee of availability to Client Applications means that effects such as power state changes,
where the Client Applications are not aware of such a change, are not noticeable via their connection to Trusted
Applications unless a Trusted Application chooses to expose such information.

TEE System Architecture – Public Release v1.3 77 / 78

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4 Transfer of Hardware Components to and from the TEE

One advantage of the TEE over other HSM-like security solutions is its ability to share trusted peripherals
(such as displays and touch sensors) with other Execution Environments in a device.

Figure 5-4: Shared Trusted Peripherals

While enabling a range of unique and valuable use cases, this does bring risks. When a Shared Trusted
Peripheral is transferred to a TEE’s control from elsewhere, the transferred component must not have the
potential to violate the Protection Profile of the TEE or the other environments in the device.

5.4.1 Accidental Exposure of TEE Assets by Transfer

In general, when a Shared Trusted Peripheral is transferred out of the TEE, the TEE must not accidentally
transfer a controlled data asset out at the same time.

For example, consider a touch panel controller (TPC). When transferred out of the TEE, the TPC
registers should not contain any information on recent touch locations that might be used to infer a
password entry or other similar action.

When a TEE is evaluated for compliance to the GlobalPlatform TEE Protection Profile, testing will have shown
that such transfers do not enable such violation.

78 / 78 TEE System Architecture – Public Release v1.3

Copyright  2011-2022 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4.2 Moving a Shared Trusted Peripheral into TEE Use

In general, when a Shared Trusted Peripheral is transferred into the TEE, the TEE SHALL NOT accidentally
create a security hole at the same time.

For example, consider a simple Direct Memory Access (DMA) controller. When transferred into the TEE,
the operating state of a DMA should not enable the DMA to be set up by something in the REE to
instigate unauthorized data transfer from inside the TEE to outside of the TEE.

For Shared Trusted Peripherals that have some level of programmability:

• When a transferred Shared Trusted Peripheral with internal firmware is transferred to a TEE, one of
the following SHALL be true:

o That firmware SHALL NOT have been modified by systems outside of the TEE.

o Or any modifications made outside of the TEE SHALL be evaluated by the TEE before the system
is used.

This might be done by restarting the Shared Trusted Peripheral, so that its firmware goes through
a trusted boot sequence, or by having a part of the TEE check some form of signature of the
current firmware.

o Or the TEE SHALL reload the image from a known good image.

• When a transferred Shared Trusted Peripheral with modifiable functionality (e.g. an FPGA or PLA) is
transferred to a TEE, one of the following SHALL be true:

o That functionality SHALL NOT have been modified by systems outside of the TEE.

o Or any modifications made outside of the TEE SHALL be evaluated by the TEE for acceptability,
before the system is used.

This might be done by having a part of the TEE check some form of signature of the transferred
Shared Trusted Peripheral’s image followed by a forced reload of that validated image into the
transferred Shared Trusted Peripheral.

o Or the TEE SHALL reload the image from a known good image followed by forcing the reload of
that image into the Shared Trusted Peripheral.

When a TEE is evaluated for compliance to the GlobalPlatform TEE Protection Profile, testing will have shown
that such transfers do not enable such violation.

5.4.3 Respect of REE Security and Transfer of Assets to the REE

While it is up to a REE to define its protection profile (or equivalent security statement), and it is up to a device
implementer to bring together the various security needs of the systems in a device, the TEE implementor
should enable the system to meet those restrictions where the TEE may impact them.

As such a TEE shall not act on (read/write/delete/block) an external EE (e.g. through shared memory) unless
this is in line with the Access Control Rules and settings of that external EE.

It follows that any EE in a device might also wish to take TEE-like precautions (as mentioned in section 5.4.2)
when receiving a Shared Trusted Peripheral from a TEE or elsewhere. Whether it needs to do so depends on
its trust relationship with the sourcing EE.

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 TEE Device Architecture Overview
	2.1 Typical Chipset Architecture
	2.2 Hardware Architecture
	2.2.1 TEE High Level Security Requirements
	2.2.2 Roots of Trust and TEE
	2.2.3 TEE Resources
	2.2.4 REE and TEE Resource Sharing
	2.2.4.1 Isolation of Trusted Resources

	3 TEE Software Interfaces
	3.1 The TEE Software Architecture
	3.2 Components of a GPD TEE
	3.2.1 REE Interfaces to the TEE
	3.2.2 Trusted OS Components
	3.2.3 Trusted Applications (TAs)
	3.2.4 Shared Memory
	3.2.5 TA to TA Communication

	3.3 Relationship between TEE APIs
	3.4 The TEE Client API Architecture
	3.5 The TEE Internal API Architecture
	3.5.1 The TEE Internal Core API
	3.5.1.1 Trusted Storage API
	3.5.1.2 Peripheral and Event APIs

	3.5.2 The TEE Sockets API
	3.5.3 The TEE TA Debug API
	3.5.4 The TEE Secure Element API
	3.5.5 The TEE Trusted User Interface API
	3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API
	3.5.7 Cryptography and the TEE

	3.6 Variations of TEE Architecture Found on Real Devices
	3.6.1 A GPD TEE Can Have Proprietary Extensions
	3.6.2 A Device Can Have Many TEEs
	3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant
	3.6.4 TEEs and TEE-enabling Hypervisors
	3.6.4.1 Hypervisor Isolation from the Hardware Point of View
	3.6.4.2 Isolated TEEs from the Software Point of View
	3.6.4.2.1 A Single TEE System with a Hypervisor
	3.6.4.2.2 Minimizing Code with High Privilege
	3.6.4.2.3 Various Examples of Multiple TEE Systems
	3.6.4.2.4 Isolation Boundaries in a Hypervisor-based System

	3.6.5 Executing alongside Other Environments: Trust vs. Respect
	3.6.6 Communicating with Other Environments: Trust vs. Respect

	4 TEE Management
	4.1 Overview of TEE and TA Management
	4.2 Overview of TA Management Hierarchies
	4.3 Overview of ASN.1 Profile, X.509 Profile, and Cross-profile Mapping
	4.4 Roots of Trust and the Trusted Management Framework
	4.5 Configurations of the TMF ASN.1 Profile
	4.5.1 Model A Is the Constrained IoT Device Design
	4.5.2 Model B Is for More Complex Devices

	4.6 TMF OTrP Profile
	4.6.1 TMF OTrP Configurations

	4.7 OMIL and OTrP to ASN.1 Profile Mapping

	5 TEE Implementation Considerations
	5.1 Device States
	5.2 Boot Time Environment
	5.2.1 Typical Boot Sequence

	5.3 Run-time Environment
	5.3.1 TEE Functionality Availability

	5.4 Transfer of Hardware Components to and from the TEE
	5.4.1 Accidental Exposure of TEE Assets by Transfer
	5.4.2 Moving a Shared Trusted Peripheral into TEE Use
	5.4.3 Respect of REE Security and Transfer of Assets to the REE

		2023-02-07T15:09:40-0800
	Document Management

