

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents
or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. This document is currently in draft form, and the
technology provided or described herein may be subject to updates, revisions, extensions, review, and
enhancement by GlobalPlatform or its Committees or Working Groups. Prior to publication of this
document by GlobalPlatform, neither Members nor third parties have any right to use this document for
anything other than review and study purposes. Use of this information is governed by the GlobalPlatform
license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Technology
TEE Internal Core API Specification
Version 1.2.1.31 [target v1.3]

Public Review
September 2020
Document Reference: GPD_SPE_010

 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE Internal Core API Specification – Public Review v1.2.1.31 3 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 14
1.1 Audience ... 14
1.2 IPR Disclaimer... 15
1.3 References .. 15
1.4 Terminology and Definitions .. 17
1.5 Abbreviations and Notations ... 21
1.6 Revision History .. 24

2 Overview of the TEE Internal Core API Specification .. 27
2.1 Trusted Applications .. 28

2.1.1 TA Interface .. 29
2.1.2 Instances, Sessions, Tasks, and Commands .. 30
2.1.3 Sequential Execution of Entry Points ... 30
2.1.4 Cancellations .. 30
2.1.5 Unexpected Client Termination .. 31
2.1.6 Instance Types ... 31
2.1.7 Configuration, Development, and Management .. 31

2.2 TEE Internal Core APIs ... 32
2.2.1 Trusted Core Framework API .. 32
2.2.2 Trusted Storage API for Data and Keys ... 32
2.2.3 Cryptographic Operations API ... 33
2.2.4 Time API ... 33
2.2.5 TEE Arithmetical API .. 33
2.2.6 Peripheral and Event APIs ... 34

2.3 Error Handling ... 34
2.3.1 Normal Errors ... 34
2.3.2 Programmer Errors .. 34
2.3.3 Panics ... 35

2.4 Opaque Handles ... 37
2.5 Properties .. 38
2.6 Peripheral Support .. 38

3 Common Definitions .. 39
3.1 Header File .. 39

3.1.1 API Version .. 39
3.1.2 Target and Version Optimization.. 40
3.1.3 Support for Optional Capabilities ... 41

3.2 Data Types .. 42
3.2.1 Basic Types .. 42
3.2.2 Bit Numbering... 42
3.2.3 TEE_Result, TEEC_Result .. 43
3.2.4 TEE_UUID, TEEC_UUID ... 44

3.3 Constants .. 45
3.3.1 Return Code Ranges and Format .. 45
3.3.2 Return Codes ... 45

3.4 Parameter Annotations ... 47
3.4.1 [in], [out], and [inout] ... 47
3.4.2 [outopt] ... 47
3.4.3 [inbuf] and [inoutbuf] ... 48
3.4.4 [outbuf] ... 48

4 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.5 [outbufopt] .. 49
3.4.6 [instring] and [instringopt] ... 49
3.4.7 [outstring] and [outstringopt] ... 49
3.4.8 [ctx] ... 49

3.5 Backward Compatibility ... 49
3.5.1 Version Compatibility Definitions.. 50

4 Trusted Core Framework API .. 52
4.1 Data Types .. 53

4.1.1 TEE_Identity ... 53
4.1.2 TEE_Param .. 53
4.1.3 TEE_TASessionHandle ... 54
4.1.4 TEE_PropSetHandle .. 54

4.2 Constants .. 55
4.2.1 Parameter Types .. 55
4.2.2 Login Types .. 55
4.2.3 Origin Codes .. 56
4.2.4 Property Set Pseudo-Handles.. 56
4.2.5 Memory Access Rights .. 56

4.3 TA Interface ... 57
4.3.1 TA_CreateEntryPoint ... 60
4.3.2 TA_DestroyEntryPoint .. 60
4.3.3 TA_OpenSessionEntryPoint .. 61
4.3.4 TA_CloseSessionEntryPoint .. 63
4.3.5 TA_InvokeCommandEntryPoint ... 64
4.3.6 Operation Parameters in the TA Interface ... 65

4.4 Property Access Functions ... 69
4.4.1 TEE_GetPropertyAsString ... 71
4.4.2 TEE_GetPropertyAsBool ... 72
4.4.3 TEE_GetPropertyAsUnn .. 73
4.4.4 TEE_GetPropertyAsBinaryBlock.. 75
4.4.5 TEE_GetPropertyAsUUID .. 76
4.4.6 TEE_GetPropertyAsIdentity ... 77
4.4.7 TEE_AllocatePropertyEnumerator ... 78
4.4.8 TEE_FreePropertyEnumerator .. 78
4.4.9 TEE_StartPropertyEnumerator .. 79
4.4.10 TEE_ResetPropertyEnumerator .. 79
4.4.11 TEE_GetPropertyName ... 80
4.4.12 TEE_GetNextProperty ... 81

4.5 Trusted Application Configuration Properties ... 82
4.6 Client Properties .. 85
4.7 Implementation Properties .. 87

4.7.1 Specification Version Number Property ... 94
4.8 Panics .. 95

4.8.1 TEE_Panic ... 95
4.9 Internal Client API ... 96

4.9.1 TEE_OpenTASession .. 96
4.9.2 TEE_CloseTASession .. 98
4.9.3 TEE_InvokeTACommand .. 99
4.9.4 Operation Parameters in the Internal Client API .. 101

4.10 Cancellation Functions .. 103
4.10.1 TEE_GetCancellationFlag .. 104
4.10.2 TEE_UnmaskCancellation ... 105

TEE Internal Core API Specification – Public Review v1.2.1.31 5 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10.3 TEE_MaskCancellation .. 105
4.11 Memory Management Functions... 106

4.11.1 TEE_CheckMemoryAccessRights ... 106
4.11.2 TEE_SetInstanceData .. 109
4.11.3 TEE_GetInstanceData ... 110
4.11.4 TEE_Malloc .. 111
4.11.5 TEE_Realloc .. 113
4.11.6 TEE_Free ... 115
4.11.7 TEE_MemMove.. 116
4.11.8 TEE_MemCompare ... 117
4.11.9 TEE_MemFill .. 118

5 Trusted Storage API for Data and Keys .. 119
5.1 Summary of Features and Design .. 119
5.2 Trusted Storage and Rollback Protection ... 123
5.3 Data Types .. 124

5.3.1 TEE_Attribute ... 124
5.3.2 TEE_ObjectInfo .. 125
5.3.3 TEE_Whence ... 126
5.3.4 TEE_ObjectHandle .. 126
5.3.5 TEE_ObjectEnumHandle ... 126

5.4 Constants .. 127
5.4.1 Constants Used in Trusted Storage API for Data and Keys .. 127
5.4.2 Constants Used in Cryptographic Operations API ... 129

5.5 Generic Object Functions .. 130
5.5.1 TEE_GetObjectInfo1 .. 130
5.5.2 TEE_RestrictObjectUsage1 ... 132
5.5.3 TEE_GetObjectBufferAttribute ... 133
5.5.4 TEE_GetObjectValueAttribute ... 135
5.5.5 TEE_CloseObject ... 136

5.6 Transient Object Functions ... 137
5.6.1 TEE_AllocateTransientObject .. 137
5.6.2 TEE_FreeTransientObject ... 141
5.6.3 TEE_ResetTransientObject ... 141
5.6.4 TEE_PopulateTransientObject... 142
5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute .. 147
5.6.6 TEE_CopyObjectAttributes1 .. 149
5.6.7 TEE_GenerateKey ... 151

5.7 Persistent Object Functions .. 155
5.7.1 TEE_OpenPersistentObject ... 155
5.7.2 TEE_CreatePersistentObject ... 157
5.7.3 Persistent Object Sharing Rules .. 160
5.7.4 TEE_CloseAndDeletePersistentObject1 .. 162
5.7.5 TEE_RenamePersistentObject .. 163

5.8 Persistent Object Enumeration Functions ... 164
5.8.1 TEE_AllocatePersistentObjectEnumerator .. 164
5.8.2 TEE_FreePersistentObjectEnumerator ... 164
5.8.3 TEE_ResetPersistentObjectEnumerator ... 165
5.8.4 TEE_StartPersistentObjectEnumerator ... 166
5.8.5 TEE_GetNextPersistentObject ... 167

5.9 Data Stream Access Functions ... 169
5.9.1 TEE_ReadObjectData .. 169
5.9.2 TEE_WriteObjectData .. 171

6 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.3 TEE_TruncateObjectData .. 173
5.9.4 TEE_SeekObjectData .. 174

6 Cryptographic Operations API .. 176
6.1 Data Types .. 178

6.1.1 TEE_OperationMode ... 178
6.1.2 TEE_OperationInfo .. 179
6.1.3 TEE_OperationInfoMultiple .. 179
6.1.4 TEE_OperationHandle ... 180

6.2 Generic Operation Functions .. 181
6.2.1 TEE_AllocateOperation .. 181
6.2.2 TEE_FreeOperation ... 186
6.2.3 TEE_GetOperationInfo ... 187
6.2.4 TEE_GetOperationInfoMultiple .. 189
6.2.5 TEE_ResetOperation ... 191
6.2.6 TEE_SetOperationKey ... 192
6.2.7 TEE_SetOperationKey2 ... 195
6.2.8 TEE_CopyOperation .. 197
6.2.9 TEE_IsAlgorithmSupported .. 198

6.3 Message Digest Functions .. 199
6.3.1 TEE_DigestUpdate .. 200
6.3.2 TEE_DigestDoFinal .. 201
6.3.3 TEE_DigestExtract ... 202

6.4 Symmetric Cipher Functions ... 203
6.4.1 TEE_CipherInit ... 204
6.4.2 TEE_CipherUpdate .. 206
6.4.3 TEE_CipherDoFinal ... 207

6.5 MAC Functions .. 208
6.5.1 TEE_MACInit.. 209
6.5.2 TEE_MACUpdate ... 210
6.5.3 TEE_MACComputeFinal .. 211
6.5.4 TEE_MACCompareFinal .. 212

6.6 Authenticated Encryption Functions ... 213
6.6.1 TEE_AEInit ... 214
6.6.2 TEE_AEUpdateAAD .. 216
6.6.3 TEE_AEUpdate .. 217
6.6.4 TEE_AEEncryptFinal ... 218
6.6.5 TEE_AEDecryptFinal ... 219

6.7 Asymmetric Functions ... 220
6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt ... 221
6.7.2 TEE_AsymmetricSignDigest .. 223
6.7.3 TEE_AsymmetricVerifyDigest .. 226

6.8 Key Derivation Functions .. 228
6.8.1 TEE_DeriveKey .. 228

6.9 Random Data Generation Function .. 232
6.9.1 TEE_GenerateRandom .. 232

6.10 Cryptographic Algorithms Specification .. 233
6.10.1 List of Algorithm Identifiers ... 233
6.10.2 Object Types .. 237
6.10.3 Optional Cryptographic Elements .. 239

6.11 Object or Operation Attributes ... 241

7 Time API .. 245

TEE Internal Core API Specification – Public Review v1.2.1.31 7 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.1 Data Types .. 245
7.1.1 TEE_Time .. 245

7.2 Time Functions .. 246
7.2.1 TEE_GetSystemTime .. 246
7.2.2 TEE_Wait ... 247
7.2.3 TEE_GetTAPersistentTime .. 248
7.2.4 TEE_SetTAPersistentTime .. 250
7.2.5 TEE_GetREETime ... 251

8 TEE Arithmetical API .. 252
8.1 Introduction .. 252
8.2 Error Handling and Parameter Checking .. 252
8.3 Data Types .. 253

8.3.1 TEE_BigInt ... 253
8.3.2 TEE_BigIntFMMContext .. 254
8.3.3 TEE_BigIntFMM ... 254

8.4 Memory Allocation and Size of Objects .. 255
8.4.1 TEE_BigIntSizeInU32 .. 255
8.4.2 TEE_BigIntFMMContextSizeInU32 .. 256
8.4.3 TEE_BigIntFMMSizeInU32 .. 257

8.5 Initialization Functions ... 258
8.5.1 TEE_BigIntInit .. 258
8.5.2 TEE_BigIntInitFMMContext1 .. 259
8.5.3 TEE_BigIntInitFMM .. 260

8.6 Converter Functions .. 261
8.6.1 TEE_BigIntConvertFromOctetString .. 261
8.6.2 TEE_BigIntConvertToOctetString .. 262
8.6.3 TEE_BigIntConvertFromS32 .. 263
8.6.4 TEE_BigIntConvertToS32 .. 264

8.7 Logical Operations .. 265
8.7.1 TEE_BigIntCmp.. 265
8.7.2 TEE_BigIntCmpS32 ... 265
8.7.3 TEE_BigIntShiftRight ... 266
8.7.4 TEE_BigIntGetBit ... 267
8.7.5 TEE_BigIntGetBitCount ... 267
8.7.6 TEE_BigIntSetBit ... 268
8.7.7 TEE_BigIntAssign .. 269
8.7.8 TEE_BigIntAbs ... 270

8.8 Basic Arithmetic Operations .. 271
8.8.1 TEE_BigIntAdd ... 271
8.8.2 TEE_BigIntSub ... 272
8.8.3 TEE_BigIntNeg... 273
8.8.4 TEE_BigIntMul ... 274
8.8.5 TEE_BigIntSquare ... 275
8.8.6 TEE_BigIntDiv .. 276

8.9 Modular Arithmetic Operations .. 277
8.9.1 TEE_BigIntMod .. 277
8.9.2 TEE_BigIntAddMod .. 278
8.9.3 TEE_BigIntSubMod .. 279
8.9.4 TEE_BigIntMulMod .. 280
8.9.5 TEE_BigIntSquareMod .. 281
8.9.6 TEE_BigIntInvMod ... 282
8.9.7 TEE_BigIntExpMod .. 283

8 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10 Other Arithmetic Operations .. 284
8.10.1 TEE_BigIntRelativePrime ... 284
8.10.2 TEE_BigIntComputeExtendedGcd .. 285
8.10.3 TEE_BigIntIsProbablePrime .. 286

8.11 Fast Modular Multiplication Operations ... 287
8.11.1 TEE_BigIntConvertToFMM .. 287
8.11.2 TEE_BigIntConvertFromFMM .. 288
8.11.3 TEE_BigIntComputeFMM .. 289

9 Peripheral and Event APIs ... 290
9.1 Introduction .. 290

9.1.1 Peripherals ... 290
9.1.2 Event Loop ... 292
9.1.3 Peripheral State ... 292
9.1.4 Overview of Peripheral and Event APIs ... 292

9.2 Constants .. 295
9.2.1 Handles .. 295
9.2.2 Maximum Sizes .. 295
9.2.3 TEE_EVENT_TYPE ... 295
9.2.4 TEE_PERIPHERAL_TYPE .. 297
9.2.5 TEE_PERIPHERAL_FLAGS .. 298
9.2.6 TEE_PeripheralStateId Values .. 299

9.3 Peripheral State Table .. 300
9.3.1 Peripheral Name .. 300
9.3.2 Firmware Information ... 300
9.3.3 Manufacturer .. 301
9.3.4 Flags ... 301
9.3.5 Exclusive Access ... 301

9.4 Operating System Pseudo-peripheral ... 302
9.4.1 State Table ... 302
9.4.2 Events .. 302

9.5 Session Pseudo-peripheral ... 303
9.5.1 State Table ... 303
9.5.2 Events .. 303

9.6 Data Structures ... 304
9.6.1 TEE_Peripheral .. 304
9.6.2 TEE_PeripheralDescriptor ... 305
9.6.3 TEE_PeripheralHandle .. 305
9.6.4 TEE_PeripheralId ... 306
9.6.5 TEE_PeripheralState ... 307
9.6.6 TEE_PeripheralStateId .. 308
9.6.7 TEE_PeripheralValueType ... 308
9.6.8 TEE_Event ... 309
9.6.9 Generic Payloads ... 310
9.6.10 TEE_EventQueueHandle ... 312
9.6.11 TEE_EventSourceHandle .. 312

9.7 Peripheral API Functions .. 313
9.7.1 TEE_Peripheral_Close ... 313
9.7.2 TEE_Peripheral_CloseMultiple .. 314
9.7.3 TEE_Peripheral_GetPeripherals .. 315
9.7.4 TEE_Peripheral_GetState .. 317
9.7.5 TEE_Peripheral_GetStateTable... 318
9.7.6 TEE_Peripheral_Open ... 319

TEE Internal Core API Specification – Public Review v1.2.1.31 9 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.7 TEE_Peripheral_OpenMultiple ... 321
9.7.8 TEE_Peripheral_Read ... 323
9.7.9 TEE_Peripheral_SetState .. 325
9.7.10 TEE_Peripheral_Write ... 326

9.8 Event API Functions .. 327
9.8.1 TEE_Event_AddSources ... 327
9.8.2 TEE_Event_CancelSources ... 328
9.8.3 TEE_Event_CloseQueue ... 329
9.8.4 TEE_Event_DropSources .. 330
9.8.5 TEE_Event_ListSources .. 331
9.8.6 TEE_Event_OpenQueue ... 332
9.8.7 TEE_Event_TimerCreate ... 334
9.8.8 TEE_Event_Wait .. 335

Annex A Panicked Function Identification ... 337

Annex B Deprecated Functions, Identifiers, Properties, and Attributes 343
B.1 Deprecated Functions ... 343

B.1.1 TEE_GetObjectInfo – Deprecated ... 343
B.1.2 TEE_RestrictObjectUsage – Deprecated .. 345
B.1.3 TEE_CopyObjectAttributes – Deprecated ... 346
B.1.4 TEE_CloseAndDeletePersistentObject – Deprecated ... 346
B.1.5 TEE_BigIntInitFMMContext – Deprecated ... 348

B.2 Deprecated Object Identifiers .. 349
B.3 Deprecated Algorithm Identifiers ... 350
B.4 Deprecated Properties .. 352
B.5 Deprecated Object or Operation Attributes ... 352
B.6 Deprecated API Return Codes .. 353

Annex C Normative References for Algorithms ... 354

Annex D Peripheral API Usage (Informative) .. 359

Functions... 363

Functions by Category ... 365

10 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures
Figure 2-1: Trusted Application Interactions with the Trusted OS ... 29

Figure 5-1: State Diagram for TEE_ObjectHandle (Informative) .. 122

Figure 6-1: State Diagram for TEE_OperationHandle for Message Digest Functions (Informative) 199

Figure 6-2: State Diagram for TEE_OperationHandle for Symmetric Cipher Functions (Informative) 203

Figure 6-3: State Diagram for TEE_OperationHandle for MAC Functions (Informative) 208

Figure 6-4: State Diagram for TEE_OperationHandle for Authenticated Encryption Functions
(Informative) .. 213

Figure 6-5: State Diagram for TEE_OperationHandle for Asymmetric Functions (Informative) 220

Figure 6-6: State Diagram for TEE_OperationHandle for Key Derivation Functions (Informative) 228

Figure 7-1: Persistent Time Status State Machine .. 248

Figure 9-1: Example of Multiple Access to Bus-oriented Peripheral (Informative) .. 291

Figure 9-2: Peripheral API Overview ... 293

Figure 9-3: Event API Overview .. 294

TEE Internal Core API Specification – Public Review v1.2.1.31 11 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables
Table 1-1: Normative References .. 15

Table 1-2: Informative References .. 16

Table 1-3: Terminology and Definitions ... 17

Table 1-4: Abbreviations .. 21

Table 1-5: Revision History ... 24

Table 2-1: Handle Types ... 37

Table 3-0: Internal API Names Strings Definition .. 41

Table 3-1: UUID Usage Reservations ... 44

Table 3-2: Return Code Formats and Ranges .. 45

Table 3-3: API Return Codes .. 46

Table 4-1: Parameter Type Constants .. 55

Table 4-2: Login Type Constants .. 55

Table 4-3: Origin Code Constants ... 56

Table 4-4: Property Set Pseudo-Handle Constants .. 56

Table 4-5: Memory Access Rights Constants ... 56

Table 4-6: TA Interface Functions ... 57

Table 4-7: Effect of Client Operation on TA Interface ... 58

Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called....................................... 66

Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returns 67

Table 4-10: Property Sets .. 69

Table 4-11: Trusted Application Standard Configuration Properties ... 82

Table 4-12: Standard Client Properties ... 85

Table 4-13: Client Identities ... 85

Table 4-14: Implementation Properties ... 87

Table 4-14b: Specification Version Number Property – 32-bit Integer Structure .. 94

Table 4-15: Interpretation of params[i] on Entry to Internal Client API ... 101

Table 4-16: Effects of Internal Client API on params[i] ... 101

Table 4-17: Valid Hint Values .. 111

Table 5-1: Values of Trusted Storage Space Rollback Protection Properties [obsolete] 123

Table 5-1b: TEE_Whence Constants ... 126

Table 5-2: Object Storage Constants .. 127

Table 5-3: Data Flag Constants ... 127

Table 5-4: Usage Constants .. 128

Table 5-4b: Miscellaneous Constants [formerly Table 5-8] ... 128

12 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-5: Handle Flag Constants ... 129

Table 5-6: Operation Constants .. 129

Table 5-7: Operation States .. 129

Table 5-8: [moved – now Table 5-4b] .. 129

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizes .. 137

Table 5-10: TEE_PopulateTransientObject Supported Attributes ... 142

Table 5-11: TEE_CopyObjectAttributes1 Parameter Types .. 149

Table 5-12: TEE_GenerateKey Parameters ... 151

Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of TEE_CreatePersistentObject 158

Table 5-14: Examples of TEE_OpenPersistentObject Sharing Rules ... 161

Table 6-1: Supported Cryptographic Algorithms ... 176

Table 6-2: Optional Cryptographic Algorithms .. 177

Table 6-3: Possible TEE_OperationMode Values ... 178

Table 6-4: TEE_AllocateOperation Algorithms Allowed per Mode and Object Type 182

Table 6-5: Public Key Allowed Modes ... 192

Table 6-6: Key-Pair Parts for Operation Modes .. 193

Table 6-6b: Symmetric Encrypt/Decrypt Operation Parameters ... 205

Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameters ... 221

Table 6-8: Asymmetric Sign/Verify Operation Parameters .. 223

Table 6-9: Asymmetric Verify Operation Parameters [obsolete] ... 226

Table 6-10: Key Derivation Operation Parameters ... 229

Table 6-11: List of Algorithm Identifiers ... 233

Table 6-12: Structure of Algorithm Identifier or Object Type Identifier [obsolete] ... 236

Table 6-12b: Algorithm Subtype Identifier [obsolete] .. 236

Table 6-13: List of Object Types .. 237

Table 6-14: List of Optional Cryptographic Elements .. 239

Table 6-15: Object or Operation Attributes .. 241

Table 6-16: Attribute Format Definitions .. 243

Table 6-17: Partial Structure of Attribute Identifier .. 244

Table 6-18: Attribute Identifier Flags ... 244

Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property ... 246

Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property 249

Table 9-1: Maximum Sizes of Structure Payloads .. 295

Table 9-2: TEE_EVENT_TYPE Values ... 296

Table 9-3: TEE_PERIPHERAL_TYPE Values ... 297

Table 9-4: TEE_PERIPHERAL_FLAGS Values ... 298

TEE Internal Core API Specification – Public Review v1.2.1.31 13 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 9-5: TEE_PeripheralStateId Values ... 299

Table 9-6: TEE_PERIPHERAL_STATE_NAME Values ... 300

Table 9-7: TEE_PERIPHERAL_STATE_FW_INFO Values ... 300

Table 9-8: TEE_PERIPHERAL_STATE_MANUFACTURER Values ... 301

Table 9-9: TEE_PERIPHERAL_STATE_FLAGS Values ... 301

Table 9-10: TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS Values ... 301

Table 9-11: TEE_PERIPHERAL_OS State Table Values ... 302

Table 9-12: TEE_PERIPHERAL_SESSION State Table Values ... 303

Table 9-13: TEE_PeripheralValueType Values ... 308

Table 9-14: Value of version in payload Structures ... 310

Table A-1: Function Identification Values .. 337

Table B-1: Deprecated Object Identifiers .. 349

Table B-2: Deprecated Algorithm Identifiers.. 350

Table B-3: Deprecated Properties ... 352

Table B-4: Deprecated Object or Operation Attributes .. 352

Table B-5: Deprecated Return Codes ... 353

Table C-1: Normative References for Algorithms .. 354

14 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction 1

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside a 2
Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the 3
requirements defined in the GlobalPlatform TEE System Architecture ([Sys Arch]) specification, i.e. it is 4
accessible from a Regular Execution Environment (REE) through the GlobalPlatform TEE Client API 5
(described in the GlobalPlatform TEE Client API Specification [Client API]) but is specifically protected against 6
malicious attacks and only runs code trusted in integrity and authenticity. 7

The APIs defined in this document target the C language and provide the following set of functionalities to TA 8
developers: 9

• Basic OS-like functionalities, such as memory management, timer, and access to configuration 10
properties 11

• Communication means with Client Applications (CAs) running in the Regular Execution Environment 12

• Trusted Storage facilities 13

• Cryptographic facilities 14

• Time management facilities 15

• Peripheral interface and Event handling facilities 16

The scope of this document is the development of Trusted Applications in the C language and their interactions 17
with the TEE Client API. It does not cover other possible language bindings or the run-time installation and 18
management of Trusted Applications. 19

 20

If you are implementing this specification and you think it is not clear on something:

1. Check with a colleague.

And if that fails:

2. Contact GlobalPlatform at TEE-issues-GPD_SPE_010_v1.3@globalplatform.org

 21

1.1 Audience 22

This document is suitable for software developers implementing Trusted Applications running inside the TEE 23
which need to expose an externally visible interface to Client Applications and to use resources made available 24
through the TEE Internal Core API, such as cryptographic capabilities and Trusted Storage. 25

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework, 26
the TEE APIs, and the communications infrastructure required to access Trusted Applications. 27

mailto:TEE-issues-GPD_SPE_010_v1.3@globalplatform.org

TEE Internal Core API Specification – Public Review v1.2.1.31 15 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.2 IPR Disclaimer 28

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work 29
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For 30
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, 31
please visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held 32
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the 33
evidence, validity, or scope of any such IPR. 34

1.3 References 35

The tables below list references applicable to this specification. The latest version of each reference applies 36
unless a publication date or version is explicitly stated. 37

See also Annex C: Normative References for Algorithms. 38

Table 1-1: Normative References 39

Standard / Specification Description Ref

GPD_SPE_007 GlobalPlatform Technology
TEE Client API Specification

[Client API]

GPD_SPE_009 GlobalPlatform Technology
TEE System Architecture

[Sys Arch]

GPD_SPE_025 GlobalPlatform Technology
TEE TA Debug Specification

[TEE TA Debug]

GPD_SPE_120 GlobalPlatform Technology
TEE Management Framework (including ASN.1 Profile)
[Initially published as TEE Management Framework]

[TMF ASN.1]

GPD_SPE_123 GlobalPlatform Technology
TEE Management Framework:
Open Trust Protocol (OTrP) Profile

[TMF OTrP]

GPD_SPE_042 GlobalPlatform Technology
TEE TUI Extension: Biometrics API

[TEE TUI Bio]

GPD_SPE_055 GlobalPlatform Technology
TEE Trusted User Interface Low-level API

[TEE TUI Low]

GPD_SPE_021 GlobalPlatform Technology
TEE Protection Profile

[TEE PP]

BSI-CC-PP-0084-2014 Security IC Platform BSI Protection Profile 2014 with
Augmentation Packages.

[PP-0084]

BSI TR-03111 BSI Technical Guideline TR-03111: Elliptic Curve
Cryptography

[BSI TR 03111]

ISO/IEC 9899:1999 Programming languages – C [C99]

NIST Recommended
Elliptic Curves

Recommended Elliptic Curves for Federal Government
Use

[NIST Re Cur]

NIST SP800-56B Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography

[NIST SP800-56B]

https://globalplatform.org/specifications/ip-disclaimers/

16 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
NIST SP800-185 SHA-3 Derived Functions: cSHAKE, KMAC,

TupleHash, and ParallelHash
[NIST SP800-185]

RFC 2045 Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies

[RFC 2045]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

RFC 4122 A Universally Unique IDentifier (UUID) URN
Namespace

[RFC 4122]

RFC 7748 Elliptic Curves for Security [X25519]

RFC 8032 Edwards-Curve Digital Signature Algorithm [Ed25519]

SM2 Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2 Based
on Elliptic Curves", December 2010

[SM2]

SM2-2 Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2 Based
on Elliptic Curves – Part 2: Digital Signature Algorithm”,
December 2010

[SM2-2]

SM2-4 Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2 Based
on Elliptic Curves – Part 4: Public Key Encryption
Algorithm”, December 2010

[SM2-4]

SM2-5 Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2 Based
on Elliptic Curves – Part 5: Parameter definitions”,
December 2010

[SM2-5]

SM3 Organization of State Commercial Administration of
China, “SM3 Cryptographic Hash Algorithm”,
December 2010

[SM3]

SM4 Organization of State Commercial Administration of
China, “SM4 block cipher algorithm”, December 2010

[SM4]

 40

Table 1-2: Informative References 41

Standard / Specification Description Ref

GP_GUI_001 GlobalPlatform Document Management Guide [Doc Mgmt]

ISO/IEC 10118-3 Information technology – Security techniques –
Hash-functions – Part 3: Dedicated hash-functions
(English language reference for SM3)

[ISO 10118-3]

ISO/IEC 14888-3 Information technology – Security techniques – Digital
signatures with appendix – Part 3: Discrete logarithm
based mechanisms
(English Language reference for SM2)

[ISO 14888-3]

TEE Internal Core API Specification – Public Review v1.2.1.31 17 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
ISO/IEC 15408 Information technology – Security techniques –

Evaluation criteria for IT security
[ISO 15408]

ISO/IEC 18033-3 Information technology – Security techniques –
Encryption algorithms – Part 3: Block ciphers
(English Language reference for SM4)

[ISO 18033-3]

 42

1.4 Terminology and Definitions 43

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and 44
MAY in this document (refer to [RFC 2119]): 45

• SHALL indicates an absolute requirement, as does MUST. 46

• SHALL NOT indicates an absolute prohibition, as does MUST NOT. 47

• SHOULD and SHOULD NOT indicate recommendations. 48

• MAY indicates an option. 49

Selected terms used in this document are included in the following table. 50

Table 1-3: Terminology and Definitions 51

Term Definition

Cancellation Flag An indicator that a Client has requested cancellation of an operation.

Client Either of the following:
• a Client Application using the TEE Client API
• a Trusted Application acting as a client of another Trusted

Application, using the Internal Client API

Client Application (CA) An application running outside of the Trusted Execution Environment
(TEE) making use of the TEE Client API ([Client API]) to access
facilities provided by Trusted Applications inside the TEE.
Contrast Trusted Application (TA).

Client Properties A set of properties associated with the Client of a Trusted Application.

Command A message (including a Command Identifier and four Operation
Parameters) send by a Client to a Trusted Application to initiate an
operation.

Command Identifier A 32-bit integer identifying a Command.

Cryptographic Key Object An object containing key material.

Cryptographic Key-Pair Object An object containing material associated with both keys of a key-pair.

Cryptographic Operation
Handle

An opaque reference that identifies a particular cryptographic operation.

Cryptographic Operation Key The key to be used for a particular operation.

Data Object An object containing a data stream but no key material.

18 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Data Stream Data associated with a Persistent Object (excluding Object Attributes

and metadata).

Event API An API that supports the event loop. See Chapter 9.

Event loop A mechanism by which a TA can enquire for and then process
messages from types of peripherals including pseudo-peripherals.

Function Number Identifies a function within a specification. With the Specification
Number, forms a unique identifier for a function. May be displayed when
a Panic occurs or in debug messages where supported.

Implementation Properties A set of properties describing the TEE implementation, including the
associated hardware and Trusted OS.

Initialized Describes a transient object whose attributes have been populated.

Instance A particular execution of a Trusted Application, having physical memory
space that is separated from the physical memory space of all other TA
instances.

Key Size The key size associated with a Cryptographic Object; values are limited
by the key algorithm used.

Key Usage Flags Indicators of the operations permitted with a Cryptographic Object.

Memory Reference Parameter An Operation Parameter that carries a pointer to a client-owned
memory buffer.
Contrast Value Parameter.

Metadata Additional data associated with a Cryptographic Object: Key Size and
Key Usage Flags.

Multi Instance Trusted
Application

Denotes a Trusted Application for which each session opened by a
client is directed to a separate TA instance.

Object Attribute Small amounts of data used to store key material in a structured way.

Object Handle An opaque reference that identifies a particular object.

Object Identifier A variable-length binary buffer identifying a persistent object.

Operation Parameter One of four data items passed in a Command, which can contain
integer values or references to client-owned shared memory blocks.

Panic An exception that kills a whole TA instance. See section 2.3.3 for full
definition.

Panic Reason A programmer error that makes it impossible to produce the result of a
function and requires that the API panic the calling TA instance. See
section 2.3.3 for further information.

Parameter Annotation Denotes the pattern of usage of a function parameter or pair of function
parameters.

Peripheral API A low-level API that enables a Trusted Application to interact with
peripherals via the Trusted OS. See Chapter 9.

Persistent Object An object identified by an Object Identifier and including a Data Stream.
Contrast Transient Object.

TEE Internal Core API Specification – Public Review v1.2.1.31 19 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Property An immutable value identified by a name.

Property Set Any of the following:
• The configuration properties of a Trusted Application
• Properties associated with a Client Application by the Regular

Execution Environment
• Properties describing characteristics of a TEE implementation

Protection Profile (PP) A document according to the Common Criteria, as described in
[ISO 15408], used as part of the security certification process; defines
the specific set of security features required of a technology to claim
compliance.

REE Time A time value that is as trusted as the REE.

Regular Execution
Environment (REE)

An Execution Environment comprising at least one Regular OS and all
other components of the device (SoCs, other discrete components,
firmware, and software) which execute, host, and support the Regular
OS (excluding any Secure Components included in the device).
From the viewpoint of a Secure Component, everything in the REE is
considered untrusted, though from the Regular OS point of view there
may be internal trust structures.
(Formerly referred to as a Rich Execution Environment (REE).)
Contrast Trusted Execution Environment (TEE).

Regular OS An OS executing in a Regular Execution Environment. May be anything
from a large OS such as Linux down to a minimal set of statically linked
libraries providing services such as a TCP/IP stack.
(Formerly referred to as a Rich OS or Device OS.)
Contrast Trusted OS.

Secure Component GlobalPlatform terminology to represent either a Secure Element or a
Trusted Execution Environment.

Secure Element A tamper-resistant secure hardware component which is used in a
device to provide the security, confidentiality, and multiple application
environment required to support various business models. May exist in
any form factor, such as embedded or integrated SE, SIM/UICC,
smart card, smart microSD, etc.

Security Domain An on-device representative of an Authority in the TEE Management
Framework security model. Security Domains are responsible for the
control of administration operations. SDs are used to perform the
provisioning of TEE properties and to manage the life cycle of Trusted
Applications and SDs associated with them.

Session Logically connects multiple commands invoked on a Trusted Application
or a Security Domain.

Simple Symmetric Key Type In the context of this specification, any of a set of object types defined in
Table 5-10.

Single Instance Trusted
Application

Denotes a Trusted Application for which all sessions opened by clients
are directed to a single TA instance.

20 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Specification Number Identifies the specification within which a function is defined. May be

displayed when a Panic occurs or in debug messages where supported.

Storage Identifier A 32-bit identifier for a Trusted Storage Space that can be accessed by
a Trusted Application.

System Time A time value that can be used to compute time differences and
operation deadlines.

TA Persistent Time A time value set by the Trusted Application that persists across platform
reboots and whose level of trust can be queried.

Tamper-resistant secure
hardware

Hardware designed to isolate and protect embedded software and data
by implementing appropriate security measures. The hardware and
embedded software meet the requirements of the latest Security IC
Platform Protection Profile ([PP-0084]) including resistance to physical
tampering scenarios described in that Protection Profile.

Task The entity that executes any code executed in a Trusted Application.

TEE Client API The software interface used by clients running in the REE to
communicate with the TEE and with the Trusted Applications executed
by the TEE. For details, see [Client API].

TEE Management Framework A security model for administration of Trusted Execution Environments
(TEEs) and for administration and life cycle management of Trusted
Applications (TAs) and corresponding Security Domains (SDs).

Transient Object An object containing attributes but no data stream, which is reclaimed
when closed or when the TA instance is destroyed.
Contrast Persistent Object.

Trusted Application (TA) An application running inside the Trusted Execution Environment that
provides security related functionality to Client Applications outside of
the TEE or to other Trusted Applications inside the TEE.
Contrast Client Application (CA).

Trusted Application
Configuration Properties

A set of properties associated with the installation of a Trusted
Application.

Trusted Core Framework or
“Framework”

The part of the Trusted OS responsible for implementing the Trusted
Core Framework API1 that provides OS-like facilities to Trusted
Applications and a way for the Trusted OS to interact with the Trusted
Applications.

1 The Trusted Core Framework API is described in Chapter 4.

TEE Internal Core API Specification – Public Review v1.2.1.31 21 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Trusted Execution
Environment (TEE)

An Execution Environment that runs alongside but isolated from an
REE. A TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets against a set of defined threats
which include general software attacks as well as some hardware
attacks, and defines rigid safeguards as to data and functions that a
program can access. There are multiple technologies that can be used
to implement a TEE, and the level of security achieved varies
accordingly.
Contrast Regular Execution Environment (REE).

Trusted OS An OS executing in a Secure Component.
Contrast Regular OS.

Trusted Storage Space Storage that is protected either by the hardware of the TEE or
cryptographically by keys held in the TEE. Data held in such storage is
either private to the Trusted Application that created it or is shared
according to the rules of a Security Domain hierarchy.
See [TMF ASN.1] sections 4.1 and 5.5 regarding Security Domains and
Trusted Storage.

Trusted User Interface (TUI) A hardware protected user interface that may be used to limit exposure
of information exchanged between a Trusted Application and a user.
For example, a TA may use the TUI to display transaction data and
obtain user confirmation of the data’s correctness.

Uninitialized Describes a transient object allocated with a certain object type and
maximum size but with no attributes.

Universally Unique Identifier
(UUID)

An identifier as specified in RFC 4122 ([RFC 4122]).

Value Parameter An Operation Parameter that carries two 32-bit integers.
Contrast Memory Reference Parameter.

 52

1.5 Abbreviations and Notations 53

Table 1-4: Abbreviations 54

Abbreviation / Notation Meaning

AAD Additional Authenticated Data

AE Authenticated Encryption

AES Advanced Encryption Standard

API Application Programming Interface

CA Client Application

CMAC Cipher-based MAC

CRT Chinese Remainder Theorem

CTS CipherText Stealing

22 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation / Notation Meaning
DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ETSI European Telecommunications Standards Institute

FMM Fast Modular Multiplication

gcd Greatest Common Divisor

HMAC Hash-based Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPR Intellectual Property Rights

ISO International Organization for Standardization

IV Initialization Vector

LS Liaison Statement

MAC Message Authentication Code

MD5 Message Digest 5

MGF Mask Generating Function

NIST National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

OS Operating System

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

REE Regular Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF

RSA Rivest, Shamir, Adleman asymmetric algorithm

SDO Standards Defining Organization

SHA Secure Hash Algorithm

TA Trusted Application

TEE Trusted Execution Environment

UTC Coordinated Universal Time

UTF Unicode Transformation Format

UUID Universally Unique Identifier

TEE Internal Core API Specification – Public Review v1.2.1.31 23 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation / Notation Meaning
XOF eXtendable-Output Functions

XTS XEX-based Tweaked Codebook mode with ciphertext stealing (CTS)

24 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.6 Revision History 55

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are 56
minor releases where changes typically introduce supplementary items that do not impact backward 57
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance 58
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks. 59

Table 1-5: Revision History 60

Date Version Description

December
2011

1.0 Initial Public Release, as “TEE Internal API Specification”.

June 2014 1.1 Public Release, as “TEE Internal Core API Specification”.

June 2016 1.1.1 Public Release, showing all non-trivial changes since v1.1.
Significant changes include:
• Many parameters were defined as size_t in v1.0 then changed to

uint32_t in v1.1, and have now been reverted.
• Improved clarity of specification with regard to TEE_GenerateKey

parameter checking. Reverted over-prescriptive requirements for parameter
vetting, re-enabling practical prime checking.

• Clarification of invalid storage ID handling with regard to
TEE_CreatePersistentObject and TEE_OpenPersistentObject.

• Clarified which algorithms may use an IV.
• Clarified the availability of TEE_GetPropertyAsBinaryBlock.
• Clarified mismatches between Table 6-12 and elsewhere.
• Deprecated incorrectly defined algorithm identifiers and defined a distinct set.
• Corrected an error in TEE_BigIntComputeExtendedGcd range validation.
• Clarified operation of TEEC_OpenSession with NULL TEEC_Operation.
• Clarified relationship of specification with FIPS 186-2 and FIPS 186-4.
• Clarified uniqueness of gpd.tee.deviceID in case of multiple TEEs on a

device.
• Corrected details of when TEE_HANDLE_FLAG_INITIALIZED is set.
• Clarified the security of the location of operation parameters that the TA is

acting on.
• Clarified the handling and validation of storage identifiers.
• Clarified the protection level relationships with anti-rollback, and the way

anti-rollback violation is signaled to a TA.
• Clarified the data retention requirement for an unused “b” attribute value.
• Clarified the acceptable bit size for some security operations.
• Relaxed attribute restrictions such that TEE_PopulateTransientObject

and TEE_GenerateKey are aligned.
• Clarified the handling of ACCESS_WRITE_META.

TEE Internal Core API Specification – Public Review v1.2.1.31 25 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Date Version Description
November
2016

1.1.2 Public Release, showing all non-trivial changes since v1.1, both those included
in v1.1.1 and the following:
• New section 3.1.1, API Version – Added #define TEE_CORE_API specific

to API specification version.
• Section 4.7, Implementation Properties – Clarified existing

gpd.tee.apiversion, and noted that it is deprecated.
• Section 4.7 – Added more precise gpd.tee.internalCore.version.
• New section 4.7.1, Specification Version Number Property – Defined

structure of integer version field structure as used in other GlobalPlatform
specs.

October
2018

1.2 Public Release
• Introduced:

o Curve 25519 & BSI related curves and algorithms support
o Chinese Algorithms
o Peripheral API and Event API
o TEE_IsAlgorithmSupported to interrogate available algorithms
o TEE_BigIntAbs, TEE_BigIntExpMod, TEE_BigIntSetBit,

TEE_BigIntAssign bignum functions
o Memory allocation options with No Share and No Fill hints

• Clarified principles used in defining Panic Reasons.
• Improved version control allowing TA builder to potentially request an API

version.
• Improved support for 32-bit or 64-bit TA operation.
• Clarified functionality:

o Cryptographic operation states with regard to reset
o Use of identical keys in TEE_SetOperationKey2
o State transitions in TEE_AEUpdateAAD and associated functionality

May 2019 1.2.1 Public Release, showing all non-trivial changes since v1.2
• Clarified TEE_ERROR_CIPHERTEXT_INVALID return code.
• Clarified generic payloads with reference to [TEE TUI Low] v1.0.1 in

section 9.6.9, Generic Payloads.
• In Figure 5-1, State Diagram for TEE_ObjectHandle, corrected

TEE_RestrictObjectInfo1 references to
TEE_RestrictObjectUsage1. Updated the associated text in section 5.5.2.

• Updated Figure 6-1, State Diagram for TEE_OperationHandle, to include
the missing TEE_SetOperationKey and TEE_SetOperationKey2
transitions.

Oct 2019 1.2.1.9 Committee Review

26 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Date Version Description
April 2020 1.2.1.25 Member Review

• Introduced:
o Storage types TEE_STORAGE_PERSO and TEE_STORAGE_PROTECTED
o Support for ed448 and x448 algorithms
o Support for SHA-3 including SHAKE128 and SHAKE256

• Updated section 5.7.2, TEE_CreatePersistentObject, to support
transition from a transient object to a persistent object.

• In section 6, Cryptographic Operations API, added the extracting state
signifying digest extraction.

• Added section 6.3.3, TEE_DigestExtract, for use with XOF.
• Clarified functionality:

o Genericized the Peripheral and Event APIs (section 9) where the text
specifically mentioned a TUI session.

o Resolved inconsistency in the input data buffer annotation between
TEE_WriteObjectData and TEE_CreatePersistentObject.

• In section 5.9.4, TEE_SeekObjectData, corrected the offset parameter
type.

• Clarified throughout the use of illegal values reserved for testing.

September
2020

1.2.1.31 Public Review
• Added TEE_ALG_HKDF to support key derivation operations.
• Added gpd.ta.doesNotCloseHandleOnCorruptObject property to

define corrupted object behavior and clarified throughout.
• TEE_ERROR_OLD_VERSION renamed to

TEE_ERROR_UNSUPPORTED_VERSION.
• Clarified behavior when calling TEE_GetObjectBufferAttribute with a

NULL buffer.
• Defined ‘Simple Symmetric Key Types’.
• Clarified behavior of keySize parameter in TEE_GenerateKey.
• Updated Table 6-4 to associate the algorithm, object type, and mode of

operation.

TBD 1.3 Public Release

 61

TEE Internal Core API Specification – Public Review v1.2.1.31 27 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Overview of the TEE Internal Core API Specification 62

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside a 63
Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the 64
requirements defined in [Sys Arch], i.e. it is accessible from a Regular Execution Environment (REE) through 65
the GlobalPlatform TEE Client API ([Client API]) but is specifically protected against malicious attacks and 66
runs only code trusted in integrity and authenticity. 67

All security statements expressed in this document are themselves bound by the relevant Protection Profile 68
([TEE PP]). Comments such as “an asset is immune to modification”, or “is only accessible by appropriate 69
authorization” are therefore limited by the security requirements of the Protection Profile. 70

A TEE provides the Trusted Applications an execution environment with defined security boundaries, a set of 71
security enabling capabilities, and means to communicate with Client Applications (CAs) running in the Regular 72
Execution Environment. This document specifies how to use these capabilities and communication means for 73
Trusted Applications developed using the C programming language. It does not cover how Trusted 74
Applications are installed or managed (described in TEE Management Framework (including ASN.1 Profile) – 75
[TMF ASN.1] and TEE Management Framework: Open Trust Protocol (OTrP) Profile – [TMF OTrP]) and 76
does not cover other language bindings. 77

Sections below provide an overview of the TEE Internal Core API specification. 78

• Section 2.1 describes Trusted Applications and their operations and interactions with other TEE 79
components. 80

• Section 2.2 gives an overview of the TEE Internal Core APIs that provide core secure services to the 81
Trusted Applications. 82

• Section 2.3 describes error handling, including how errors are handled by TEE internal specifications, 83
whether detected during TA execution or in a Panic situation. 84

• Section 2.4 describes different opaque handle types used in the specification. These opaque handles 85
refer to objects created by the API implementation for a TA instance. 86

• Section 2.5 describes TEE properties that refer to configuration parameters, permissions, or 87
implementation characteristics. 88

28 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1 Trusted Applications 89

A Trusted Application (TA) is a program that runs in a Trusted Execution Environment (TEE) and exposes 90
security services to its Clients. 91

A Trusted Application is command-oriented. Clients access a Trusted Application by opening a session with 92
the Trusted Application and invoking commands within the session. When a Trusted Application receives a 93
command, it parses the messages associated with the command, performs any required processing, and then 94
sends a response back to the client. 95

A Client typically runs in the Regular Execution Environment and communicates with a Trusted Application 96
using the TEE Client API [Client API]. It is then called a “Client Application”. It is also possible for a Trusted 97
Application to act as a client of another Trusted Application, using the Internal Client API (see section 4.9). 98
The term “Client” covers both cases. 99

TEE Internal Core API Specification – Public Review v1.2.1.31 29 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1.1 TA Interface 100

Each Trusted Application exposes an interface (the TA interface) composed of a set of entry point functions 101
that the Trusted Core Framework implementation calls to inform the TA about life cycle changes and to relay 102
communication between Clients and the TA. Once the Trusted Core Framework has called one of the TA entry 103
points, the TA can make use of the TEE Internal Core API to access the facilities of the Trusted OS, as 104
illustrated in Figure 2-1. For more information on the TA interface, see section 4.3. 105

Each Trusted Application is identified by a Universally Unique Identifier (UUID) as specified in [RFC 4122]. 106
Each Trusted Application also comes with a set of Trusted Application Configuration Properties. These 107
properties are used to configure the Trusted OS facilities exposed to the Trusted Application. Properties can 108
also be used by the Trusted Application itself as a means of configuration. 109

Figure 2-1: Trusted Application Interactions with the Trusted OS 110

 111
 112

30 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1.2 Instances, Sessions, Tasks, and Commands 113

When a Client creates a session with a Trusted Application, it connects to an Instance of that Trusted 114
Application. A Trusted Application instance has physical memory space which is separated from the physical 115
memory space of all other Trusted Application instances. The Trusted Application instance memory space 116
holds the Trusted Application instance heap and writable global and static data. 117

All code executed in a Trusted Application is said to be executed by Tasks. A Task keeps a record of its 118
execution history (typically realized with a stack) and current execution state. This record is collectively called 119
a Task context. A Task SHALL be created each time the Trusted OS calls an entry point of the Trusted 120
Application. Once the entry point has returned, an implementation may recycle a Task to call another entry 121
point but this SHALL appear like a completely new Task was created to call the new entry point. 122

A Session is used to logically connect multiple commands invoked in a Trusted Application. Each session has 123
its own state, which typically contains the session context and the context(s) of the Task(s) executing the 124
session. 125

A Command is issued within the context of a session and contains a Command Identifier, which is a 32-bit 126
integer, and four Operation Parameters, which can contain integer values or references to client-owned shared 127
memory blocks. 128

It is up to the Trusted Application implementer to define the combinations of commands and their parameters 129
that are supported by the Trusted Application. This is out of scope of this specification. 130

2.1.3 Sequential Execution of Entry Points 131

All entry point calls within a given Trusted Application instance are called in sequence, i.e. no more than one 132
entry point is executed at any point in time. The Trusted Core Framework implementation SHALL guarantee 133
that a commenced entry point call is completed before any new entry point call is allowed to begin execution. 134

If there is more than one entry point call to complete at any point in time, all but one call SHALL be queued by 135
the Framework. The order in which the Framework queues and picks enqueued calls for execution is 136
implementation-defined. 137

It is not possible to execute multiple concurrent commands within a session. The TEE guarantees that a 138
pending command has completed before a new command is executed. 139

Since all entry points of a given Trusted Application instance are called in sequence, there is no need to use 140
any dedicated synchronization mechanisms to maintain consistency of any Trusted Application instance 141
memory. The sequential execution of entry points inherently guarantees this consistency. 142

2.1.4 Cancellations 143

Clients can request the cancellation of open-session and invoke-command operations at any time. 144

If an operation is requested to be cancelled and has not reached the Trusted Application yet but has been 145
queued, then the operation is simply retired from the queue. 146

If the operation has already been transmitted to the Trusted Application, then the task running the operation is 147
put in the cancelled state. This has an effect on a few “cancellable” functions, such as TEE_Wait, but this 148
effect may also be masked by the Trusted Application if it does not want to be affected by client cancellations. 149
See section 4.10 for more details on how a Trusted Application can handle cancellation requests and mask 150
their effect. 151

TEE Internal Core API Specification – Public Review v1.2.1.31 31 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1.5 Unexpected Client Termination 152

When the client of a Trusted Application dies or exits abruptly and when it can be properly detected, then this 153
SHALL appear to the Trusted Application as if the client requests cancellation of all pending operations and 154
gracefully closes all its client sessions. It SHALL be indistinguishable from a clean session closing. 155

More precisely, the REE SHOULD detect when a Client Application dies or exits. When this happens, the REE 156
SHALL initiate a termination process that SHALL result in the following sequence of events for all Trusted 157
Application instances that are serving a session with the terminating client: 158

• If an operation is pending in the closing session, it SHALL appear as if the client had requested its 159
cancellation. 160

• When no operation remains pending in the session, the session SHALL be closed. 161

If a TA client is a TA itself, this sequence of events SHALL happen when the client TA panics or exits due to 162
the termination of its own Client Application.2 163

2.1.6 Instance Types 164

At least two Trusted Application instance types SHALL be supported: Multi Instance and Single Instance. 165
Whether a Trusted Application is Multi Instance or Single Instance is part of its configuration properties and 166
SHALL be enforced by the Trusted OS. See section 4.5 for more information on configuration properties. 167

• For a Multi Instance Trusted Application, each session opened by a client is directed to a separate 168
Trusted Application instance, created on demand when the session is opened and destroyed when 169
the session closes. By definition, every instance of such a Trusted Application accepts and handles 170
one and only one session at a given time. 171

• For a Single Instance Trusted Application, all sessions opened by the clients are directed to a single 172
Trusted Application instance. From the Trusted Application point of view, all sessions share the same 173
Trusted Application instance memory space, which means for example that memory dynamically 174
allocated for one session is accessible in all other sessions. It is also configurable whether a Single 175
Instance Trusted Application accepts multiple concurrent sessions or not. 176

2.1.7 Configuration, Development, and Management 177

Trusted Applications as discussed in this document are developed using the C language. The way Trusted 178
Applications are compiled and linked is implementation-dependent. 179

[TMF ASN.1] and [TMF OTrP] define mechanisms by which Trusted Applications can be configured and 180
installed in a TEE. The scope of this specification does not include configuration, installation, de-installation, 181
signing, verification, or any other life cycle or deployment aspects. 182

2 Panics are discussed in section 2.3.3.

32 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2 TEE Internal Core APIs 183

The TEE Internal Core APIs provide specified functionality that SHALL be available on a GlobalPlatform TEE 184
implementation alongside optional functionality that MAY be available in a GlobalPlatform TEE 185
implementation. The Trusted OS implements TEE Internal Core APIs that are used by Trusted Applications to 186
develop secure tasks. These APIs provide building blocks to TAs by offering them a set of core services. 187

A guiding principle for the TEE Internal Core APIs is that it should be possible for a TA implementer to write 188
source code which is portable to different TEE implementations. In particular, the TEE Internal Core APIs are 189
designed to be used portably on TEE implementations which might have very different CPU architectures 190
running the Trusted OS. 191

The TEE Internal Core APIs are further classified into six broad categories described below. 192

2.2.1 Trusted Core Framework API 193

This specification defines an API that provides OS functionality – integration, scheduling, communication, 194
memory management, and system information retrieval interfaces – and channels communications from Client 195
Applications or other Trusted Applications to the Trusted Application. 196

2.2.2 Trusted Storage API for Data and Keys 197

This specification defines an API that defines Trusted Storage for keys or general purpose data. This API 198
provides access to the following facilities: 199

• Trusted Storage for general purpose data and key material with guarantees on the confidentiality and 200
integrity of the data stored and atomicity of the operations that modify the storage 201

o The Trusted Storage may be backed by non-secure resources as long as suitable cryptographic 202
protection is applied, which SHALL be as strong as the means used to protect the TEE code and 203
data itself. 204

o The Trusted Storage SHALL be bound to a particular device, which means that it SHALL be 205
accessible or modifiable only by authorized TAs running in the same TEE and on the same device 206
as when the data was created. 207

o See [Sys Arch] section 2.2 for more details on the security requirements for the Trusted Storage. 208

• Ability to hide sensitive key material from the TA itself 209

• Association of data and key: Any key object can be associated with a data stream and pure data 210
objects contain only the data stream and no key material. 211

• Separation of storage among different TAs: 212

o Each TA has access to its own storage space that is shared among all the instances of that TA but 213
separated from the other TAs. 214

TEE Internal Core API Specification – Public Review v1.2.1.31 33 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.3 Cryptographic Operations API 215

This specification defines an API that provides the following cryptographic facilities: 216

• Generation and derivation of keys and key-pairs 217

• Support for the following types of cryptographic algorithms: 218

o Digests 219

o Symmetric Ciphers 220

o Message Authentication Codes (MAC) 221

o Authenticated Encryption (AE) algorithms such as AES-CCM and AES-GCM 222

o Asymmetric Encryption and Signature 223

o Key Exchange algorithms 224

• Pre-allocation of cryptographic operations and key containers so that resources can be allocated 225
ahead of time and reused for multiple operations and with multiple keys over time 226

2.2.4 Time API 227

This specification defines an API to access three sources of time: 228

• The System Time has an arbitrary non-persistent origin. It may use a secure dedicated hardware timer 229
or be based on the REE timers. 230

• The TA Persistent Time is real-time and persistent but its origin is individually controlled by each TA. 231
This allows each TA to independently synchronize its time with the external source of trusted time of 232
its choice. The TEE itself is not required to have a defined trusted source of time. 233

• The REE Time is real-time but SHOULD NOT be more trusted than the REE and the user. 234

The level of trust that a Trusted Application can put in System Time and its TA Persistent Time is 235
implementation-defined as a given implementation may not include fully trustable hardware sources of time 236
and hence may have to rely on untrusted real-time clocks and timers managed by the Regular Execution 237
Environment. However, when a more trustable source of time is available, it is expected that it will be exposed 238
to Trusted Applications through this Time API. Note that a Trusted Application can programmatically determine 239
the level of protection of time sources by querying implementation properties 240
gpd.tee.systemTime.protectionLevel and gpd.tee.TAPersistentTime.protectionLevel. 241

2.2.5 TEE Arithmetical API 242

The TEE Arithmetical API is a low-level API that complements the Cryptographic API when a Trusted 243
Application needs to implement asymmetric algorithms, modes, or paddings not supported by the 244
Cryptographic API. 245

The API provides arithmetical functions to work on big numbers and prime field elements. It provides 246
operations including regular arithmetic, modular arithmetic, primality test, and fast modular multiplication that 247
can be based on the Montgomery reduction or a similar technique. 248

34 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.6 Peripheral and Event APIs 249

The Peripheral and Event APIs are low-level APIs that enable a Trusted Application to interact with peripherals 250
via the Trusted OS. 251

The Peripheral and Event APIs offer mechanisms to: 252

• Discover and identify the peripherals available to a Trusted Application. 253

• Determine the level of trust associated with data coming to and from the peripheral. 254

• Configure peripherals. 255

• Open and close connections between the Trusted Application and peripherals. 256

• Interact with peripherals using polling mechanism. 257

• Receive input from peripherals and other event sources using an asynchronous event mechanism. 258

 259

2.3 Error Handling 260

2.3.1 Normal Errors 261

The TEE Internal Core API functions usually return a return code of type TEE_Result to indicate errors to 262
the caller. This is used to denote “normal” run-time errors that the TA code is expected to catch and handle, 263
such as out-of-memory conditions or short buffers. Unless specified otherwise (e.g. for 264
TEE_ERROR_CORRUPT_OBJECT and TEE_ERROR_CORRUPT_OBJECT_2, see section 5.1), if any function 265
returns a code other than TEE_SUCCESS, it SHALL have no other effect. 266

Routines defined in this specification SHOULD only return the return codes defined in their definition in this 267
specification. Where return codes are defined, they SHOULD only be returned with the meaning defined by 268
this specification: Errors which are detected for which no return code has been defined SHALL cause the 269
routine to panic. 270

2.3.2 Programmer Errors 271

There are a number of conditions in this specification that can only occur as a result of programmer error, 272
i.e. they are triggered by incorrect use of the API by a Trusted Application, such as wrong parameters, wrong 273
state, invalid pointers, etc., rather than by run-time errors such as out-of-memory conditions. 274

Some programmer errors are explicitly tagged as “Panic Reasons” and SHALL be reliably detected by an 275
implementation. These errors make it impossible to produce the result of the function and require that the API 276
panic the calling TA instance, which kills the instance. If such a Panic Reason occurs, it SHALL NOT go 277
undetected and, e.g. produce incorrect results or corrupt TA data. 278

However, it is accepted that some programmer errors cannot be realistically detected at all times and that 279
precise behavior cannot be specified without putting too much of a burden on the implementation. In case of 280
such a programmer error, an implementation is therefore not required to gracefully handle the error or even to 281
behave consistently, but the implementation SHOULD still make a best effort to detect the error and panic the 282
calling TA. In any case, a Trusted Application SHALL NOT be able to use a programmer error on purpose to 283
circumvent the security boundaries enforced by an implementation. 284

In general, incorrect handles—i.e. handles not returned by the API, already closed, with the wrong owner, 285
type, or state—are definite Panic Reasons while incorrect pointers are imprecise programmer errors. 286

TEE Internal Core API Specification – Public Review v1.2.1.31 35 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Any routine defined by this specification MAY generate a Panic if it detects a relevant hardware failure or is 287
passed invalid arguments that could have been detected by the programmer, even if no Panic Reasons are 288
listed for that routine. 289

2.3.3 Panics 290

The GlobalPlatform TA interface assumes that parameters have been validated prior to calling. While some 291
platforms might return errors for invalid parameters, security vulnerabilities are often created by incorrect error 292
handling. Thus, rather than returning errors, the general design of the GlobalPlatform interfaces invokes a 293
Panic in the TA. 294

To avoid TA Panics, the TA implementer SHALL handle potential fault conditions before calling the Trusted 295
OS. This approach reduces the likelihood of a TA implementer introducing security vulnerabilities. 296

A Panic is an instance-wide uncatchable exception that kills a whole TA instance. 297

1. A Panic SHALL be raised when the implementation detects an avoidable programmer error and there 298
is no specifically defined error code which covers the problem. 299

2. A Panic SHALL be raised when the Trusted Application itself requests a Panic by calling the function 300
TEE_Panic. 301

3. A Panic MAY be raised if the TA’s action results in detection of a fault in the TEE itself (e.g. a corrupted 302
TEE library) which renders the called services temporarily or permanently unavailable. 303

4. A Trusted OS MAY raise a TA Panic under implementation-defined circumstances. 304

In earlier versions of this and other GlobalPlatform TEE specifications, function definitions frequently contain 305
the "catch all" statement that a TA may panic if an error occurs which is not one of those specified for an API 306
which has been called by the TA. 307

With the introduction of the Peripheral API, and in particular the Event API, it should be noted that: 308

• A function SHALL NOT cause a Panic if the error detected during the call is not specifically defined for 309
or occurring within that function. 310

• A function SHALL NOT cause a Panic due to an error detected during an asynchronous operation. 311

• It is the responsibility of the Trusted OS to cause a Panic based on the criteria of a specific 312
function/operation. 313

• An asynchronous operation SHALL cause a Panic in the background of any function if one or more of 314
the Panic Reasons defined for that asynchronous operation is met. 315

• In all cases, any reported specification number and function number SHALL be for the operation or 316
function that met one or more of its Panic Reasons and SHALL NOT be for any other operation or 317
function that is occurring at the same time. 318

When a Panic occurs, the Trusted Core Framework kills the panicking TA instance and does the following: 319

• It discards all client entry point calls queued on the TA instance and closes all sessions opened by 320
Clients. 321

• It closes all resources that the TA instance opened, including all handles and all memory, and 322
destroys the instance. Note that multiple instances can reference a common resource, for example an 323
object. If an instance sharing a resource is destroyed, the Framework does not destroy the shared 324
resource immediately, but will wait until no other instances reference the resource before reclaiming it. 325

After a Panic, no TA function of the instance is ever called again, not even TA_DestroyEntryPoint. 326

36 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

From the client’s point of view, when a Trusted Application panics, the client commands SHALL return the 327
error TEE_ERROR_TARGET_DEAD with an origin value of TEE_ORIGIN_TEE until the session is closed. (For 328
details about return origins, see the function TEE_InvokeTACommand in section 4.9.3 or the function 329
TEEC_InvokeCommand in [Client API] section 4.5.9.) 330

When a Panic occurs, an implementation in a non-production environment, such as in a development or 331
pre-production state, is encouraged to issue precise diagnostic information using the mechanisms defined in 332
GlobalPlatform TEE TA Debug Specification ([TEE TA Debug]) or an implementation-specific alternative to 333
help the developer understand the programmer error. Diagnostic information SHOULD NOT be exposed 334
outside of a secure development environment. 335

The debug API defined mechanism [TEE TA Debug] passes a Panic code among the information it returns. 336
This SHALL either be the Panic code passed to TEE_Panic or any standard or implementation-specific error 337
code which best indicates the reason for the Panic. 338

TEE Internal Core API Specification – Public Review v1.2.1.31 37 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.4 Opaque Handles 339

This specification makes use of handles that opaquely refer to objects created by the API implementation for 340
a particular TA instance. A handle is only valid in the context of the TA instance that creates it and SHALL 341
always be associated with a type. 342

The special value TEE_HANDLE_NULL, which SHALL always be 0, is used to denote the absence of a handle. 343
It is typically used when an error occurs or sometimes to trigger a special behavior in some function. For 344
example, the function TEE_SetOperationKey clears the operation key if passed TEE_HANDLE_NULL. In 345
general, the “close”-like functions do nothing if they are passed the NULL handle. 346

Other than the particular case of TEE_HANDLE_NULL, this specification does not define any constraint on the 347
actual value of a handle. 348

Passing an invalid handle, i.e. a handle not returned by the API, already closed, or of the wrong type, is always 349
a programmer error, except sometimes for the specific value TEE_HANDLE_NULL. When a handle is 350
dereferenced by the API, the implementation SHALL always check its validity and panic the TA instance if it is 351
not valid. 352

This specification defines a C type for each high-level type of handle. The following types are defined: 353

Table 2-1: Handle Types 354

Handle Type Handle Purpose
TEE_TASessionHandle Handle on sessions opened by a TA on another TA

TEE_PropSetHandle Handle on a property set or a property enumerator

TEE_ObjectHandle Handle on a cryptographic object

TEE_ObjectEnumHandle Handle on a persistent object enumerator

TEE_OperationHandle Handle on a cryptographic operation

TEE_PeripheralHandle Handle on a peripheral

TEE_EventQueueHandle Handle on an event queue

TEE_EventSourceHandle Handle on an event source

 355

These C types are defined as pointers on undefined structures. For example, TEE_TASessionHandle is 356
defined as struct __TEE_TASessionHandle*. This is just a means to leverage the C language type-357
system to help separate different handle types. It does not mean that an implementation has to define the 358
structure, and handles do not need to represent addresses. 359

38 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.5 Properties 360

This specification makes use of Properties to represent configuration parameters, permissions, or 361
implementation characteristics. 362

A property is an immutable value identified by a name, which is a Unicode string. The property value can be 363
retrieved in a variety of formats: Unicode string, binary block, 32-bit integer, Boolean, and Identity. 364

Property names and values are intended to be rather small with a few hundreds of characters at most, although 365
the specification defines no limit on the size of names or values. 366

In this specification, Unicode strings are always encoded in zero-terminated UTF-8, which means that a 367
Unicode string cannot contain the U+0000 code point. 368

The value of a property is immutable: A Trusted Application can only retrieve it and cannot modify it. The value 369
is set and controlled by the implementation and SHALL be trustable by the Trusted Applications. 370

The following Property Sets are exposed in the API: 371

• Each Trusted Application can access its own configuration properties. Some of these parameters 372
affect the behavior of the Trusted OS itself. Others can be used to configure the behavior of the TAs 373
that this TA connects to. 374

• A TA instance can access a set of properties for each of its Clients. When the Client is a Trusted 375
Application, the property set contains the configuration properties of that Trusted Application. 376
Otherwise, it contains properties set by the Regular Execution Environment. 377

• Finally, a TA can access properties describing characteristics of the implementation, including the 378
hardware platform on which it is executing. 379

Property names are case-sensitive and have a hierarchical structure with levels in the hierarchy separated by 380
the dot character “.”. Property names SHOULD use the reverse domain name convention to minimize the risk 381
of collisions between properties defined by different organization, although this cannot really be enforced by 382
an implementation. For example, the ACME company SHOULD use the “com.acme.” prefix and properties 383
standardized at ISO will use the “org.iso.” namespace. 384

This specification reserves the “gpd.” namespace and defines the meaning of a few properties in this 385
namespace. Any implementation SHALL refuse to define properties in this namespace unless they are defined 386
in the GlobalPlatform specifications. 387

2.6 Peripheral Support 388

This specification defines support for managing peripherals. There are functions for communicating directly, in 389
a low-level manner, with peripherals and support for an event loop which can receive events from peripherals 390
such as touch screens and biometric authenticators. 391

In this specification, the Peripheral API and Event API are optional. Implementation of other GlobalPlatform 392
specifications may make the presence of the Peripheral API and Event API mandatory. As an example, at the 393
time of writing the GlobalPlatform TEE TUI Extension: Biometrics API ([TEE TUI Bio]) and GlobalPlatform 394
TEE Trusted User Interface Low-level API ([TEE TUI Low]) specifications require support of the Peripheral 395
and Event APIs. 396

 397

TEE Internal Core API Specification – Public Review v1.2.1.31 39 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 Common Definitions 398

This chapter specifies the header file, common data types, constants, and parameter annotations used 399
throughout the specification. 400

3.1 Header File 401

Since: TEE Internal API v1.0 402

The header file for the TEE Internal Core API SHALL have the name “tee_internal_api.h”. 403

#include "tee_internal_api.h" 404

 405

3.1.1 API Version 406

Since: TEE Internal Core API v1.1.2 407

The header file SHALL contain version specific definitions from which TA compilation options can be selected. 408

#define TEE_CORE_API_MAJOR_VERSION ([Major version number]) 409
#define TEE_CORE_API_MINOR_VERSION ([Minor version number]) 410
#define TEE_CORE_API_MAINTENANCE_VERSION ([Maintenance version number]) 411
#define TEE_CORE_API_VERSION (TEE_CORE_API_MAJOR_VERSION << 24) + 412
(TEE_CORE_API_MINOR_VERSION << 16) + 413
(TEE_CORE_API_MAINTENANCE_VERSION << 8) 414

The document version-numbering format is X.Y[.z], where: 415

• Major Version (X) is a positive integer identifying the major release. 416

• Minor Version (Y) is a positive integer identifying the minor release. 417

• The optional Maintenance Version (z) is a positive integer identifying the maintenance release. 418

TEE_CORE_API_MAJOR_VERSION indicates the major version number of the TEE Internal Core API. It SHALL 419
be set to the major version number of this specification. 420

TEE_CORE_API_MINOR_VERSION indicates the minor version number of the TEE Internal Core API. It SHALL 421
be set to the minor version number of this specification. If the minor version is zero, then one zero shall be 422
present. 423

TEE_CORE_API_MAINTENANCE_VERSION indicates the maintenance version number of the TEE Internal Core 424
API. It SHALL be set to the maintenance version number of this specification. If the maintenance version is 425
zero, then one zero shall be present. 426

The definitions of “Major Version”, “Minor Version”, and “Maintenance Version” in the version number of this 427
specification are determined as defined in the GlobalPlatform Document Management Guide ([Doc Mgmt]). In 428
particular, the value of TEE_CORE_API_MAINTENANCE_VERSION SHALL be zero if it is not already defined 429
as part of the version number of this document. The “Draft Revision” number SHALL NOT be provided as an 430
API version indication. 431

A compound value SHALL also be defined. If the Maintenance version number is 0, the compound value 432
SHALL be defined as: 433

#define TEE_CORE_API_[Major version number]_[Minor version number] 434

40 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

If the Maintenance version number is not zero, the compound value SHALL be defined as: 435

#define TEE_CORE_API_[Major version number]_[Minor version 436
number]_[Maintenance version number] 437

Some examples of version definitions: 438

For GlobalPlatform TEE Internal Core API Specification v1.3, these would be: 439

#define TEE_CORE_API_MAJOR_VERSION (1) 440
#define TEE_CORE_API_MINOR_VERSION (3) 441
#define TEE_CORE_API_MAINTENANCE_VERSION (0) 442
#define TEE_CORE_API_1_3 443

And the value of TEE_CORE_API_VERSION would be 0x01030000. 444

For a maintenance release of the specification as v2.14.7, these would be: 445

#define TEE_CORE_API_MAJOR_VERSION (2) 446
#define TEE_CORE_API_MINOR_VERSION (14) 447
#define TEE_CORE_API_MAINTENANCE_VERSION (7) 448
#define TEE_CORE_API_2_14_7 449

And the value of TEE_CORE_API_VERSION would be 0x020E0700. 450

 451

3.1.2 Target and Version Optimization 452

This specification supports definitions that TA vendors can use to specialize behavior at compile time to provide 453
version and target-specific optimizations. 454

This version of the specification is designed so that it can be used in conjunction with mechanisms to: 455

• Provide information about the target platform and Trusted OS 456

• Configure the compile and link environment to the configuration best suited to a Trusted Application 457

The detail of these mechanisms and their output is out of scope of this document, but it is intended that the 458
output could be generated automatically from build system metadata and included by tee_internal_api.h. 459

The file prefix “gpd_ta_build_” is reserved for files generated by the build system, possibly derived from 460
metadata. 461

The model for TA construction supported by this specification assumes that a TA will be built to comply to a 462
specific target and set of API versions which is fixed at compile time. A Trusted OS MAY support more than 463
one set of target and API versions at run-time by mechanisms which are out of scope of this specification. 464

 465

TEE Internal Core API Specification – Public Review v1.2.1.31 41 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1.3 Support for Optional Capabilities 466

Since: TEE Internal Core API v1.2 467

A Trusted OS supporting the optional Peripheral and Event APIs SHALL define the following sentinel: 468

#define TEE_CORE_API_EVENT 469

470

Since: TEE Internal Core API v1.3 471

To support TMF audit capabilities, the following value is defined in alignment with [TMF ASN.1] Table 9-7. 472

Table 3-0: Internal API Names Strings Definition 473

Strings Description
Core-EP Peripheral and Event APIs

42 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2 Data Types 474

In general, comparison of values of given data types is only valid within the scope of a TA instance. Even in 475
the same Trusted OS, other TA instances may have different endianness and word length. It is up to the TA 476
implementer to make sure their TA to TA protocols take this in to account. 477

3.2.1 Basic Types 478

This specification makes use of the integer and Boolean C types as defined in the C99 standard 479
(ISO/IEC 9899:1999 – [C99]). In the event of any difference between the definitions in this specification and 480
those in [C99], C99 shall prevail. 481

The following basic types are used: 482

size_t The unsigned integer type of the result of the sizeof operator.

uintptr_t An unsigned integer type with the property that any valid pointer to void can be
converted to this type, then converted back to void* in a given TA instance, and the
result will compare equal to the original pointer.

intptr_t A signed integer type with the property that any valid pointer to void can be
converted to this type, then converted back to void* in a given TA instance, and the
result will compare equal to the original pointer.

intmax_t A signed integer type capable of representing any value of any signed integer type.

uint64_t Unsigned 64-bit integer

int64_t Signed 64-bit integer

uint32_t Unsigned 32-bit integer

int32_t Signed 32-bit integer

uint16_t Unsigned 16-bit integer

int16_t Signed 16-bit integer

uint8_t Unsigned 8-bit integer

int8_t Signed 8-bit integer

bool Boolean type with the values true and false

char Character; used to denote a byte in a zero-terminated string encoded in UTF-8

3.2.2 Bit Numbering 483

In this specification, bits in integers are numbered from 0 (least-significant bit) to n (most-significant bit), 484
where n + 1 bits are used to represent the integer, e.g. for a 2048-bit TEE_BigInt, the bits would be numbered 485
0 to 2047 and for a 32-bit uint32_t they would be numbered from 0 to 31. 486

TEE Internal Core API Specification – Public Review v1.2.1.31 43 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.3 TEE_Result, TEEC_Result 487

Since: TEE Internal API v1.0 488

typedef uint32_t TEE_Result; 489

TEE_Result is the type used for return codes from the APIs. 490

 491

For compatibility with [Client API], the following alias of this type is also defined: 492

Since: TEE Internal API v1.0 493

typedef TEE_Result TEEC_Result; 494

 495

44 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.4 TEE_UUID, TEEC_UUID 496

Since: TEE Internal API v1.0 497

typedef struct 498
{ 499
 uint32_t timeLow; 500
 uint16_t timeMid; 501
 uint16_t timeHiAndVersion; 502
 uint8_t clockSeqAndNode[8]; 503
} TEE_UUID; 504

TEE_UUID is the Universally Unique Resource Identifier type as defined in [RFC 4122]. This type is used to 505
identify Trusted Applications and clients. 506

UUIDs can be directly hard-coded in the Trusted Application code. For example, the UUID 79B77788-9789-507
4a7a-A2BE-B60155EEF5F3 can be hard-coded using the following code: 508

static const TEE_UUID myUUID = 509
{ 510
 0x79b77788, 0x9789, 0x4a7a, 511
 { 0xa2, 0xbe, 0xb6, 0x1, 0x55, 0xee, 0xf5, 0xf3 } 512
}; 513

 514

For compatibility with [Client API], the following alias of this type is also defined: 515

Note: The TEE_UUID structure is sensitive to differences in the endianness of the Client API and the TA. 516
It is the responsibility of the Trusted OS to ensure that any endianness difference between client and TA is 517
managed internally when those structures are passed through one of the defined APIs. The definition below 518
assumes that the endianness of both Client API and TA are the same, and needs to be changed 519
appropriately if this is not the case. 520

Since: TEE Internal API v1.0 521

typedef TEE_UUID TEEC_UUID; 522

 523

Universally Unique Resource Identifiers come in a number of different versions. The following reservations of 524
usage are made: 525

Since: TEE Internal Core API v1.1, based on [TMF ASN.1] v1.0 526

Table 3-1: UUID Usage Reservations 527

Version Reservation

UUID v5 If a TEE supports [TMF ASN.1], then TA and Security Domain (SD) UUIDs using version 5
SHALL conform to the extended v5 requirements found in that specification.

 528

TEE Internal Core API Specification – Public Review v1.2.1.31 45 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3 Constants 529

3.3.1 Return Code Ranges and Format 530

The format of return codes and the reserved ranges are defined in the following table. 531

Table 3-2: Return Code Formats and Ranges 532

Range Value Format Notes
TEE_SUCCESS 0x00000000

Reserved for use in GlobalPlatform
specifications, providing non-error
information

0x00000001 – 0x6FFFFFFF The return code may
identify the specification, as
discussed following the
table.

Reserved for implementation-specific
return code providing non-error information

0x70000000 – 0x7FFFFFFF

Reserved for implementation-specific
errors

0x80000000 – 0x8FFFFFFF

Reserved for future use in GlobalPlatform
specifications

0x90000000 – 0xEFFFFFFF

Reserved for GlobalPlatform TEE API
defined errors

0xF0000000 – 0xFFFEFFFF The return code may
identify the specification, as
discussed following the
table.

Client API defined Errors (TEEC_*)
Note that some return codes from this
and other specifications have incorrectly
been defined in this range and are
therefore grandfathered in.

0xFFFF0000 – 0xFFFFFFFF

 533

An error code is a return code that denotes some failure: These are the return codes above 0x7FFFFFFF. 534

Return codes in specified ranges in Table 3-2 MAY include the specification number as a 3-digit BCD (Binary 535
Coded Decimal) value in nibbles 7 through 5 (where the high nibble is considered nibble 8). 536

For example, GPD_SPE_123 may define return codes as follows: 537

• Specification unique non-error return codes may be numbered 0x01230000 to 0x0123FFFF. 538

• Specification unique error codes may be numbered 0xF1230000 to 0xF123FFFF. 539

3.3.2 Return Codes 540

Table 3-3 lists return codes that are used throughout the APIs. 541

Note: While a minor specification version update does not intentionally break backwards compatibility, it does 542
occasionally have to add new return codes to existing API. For this reason, we advise the developer not only 543
to check for known return codes but to assume that there may be other unknown error codes reported by a 544
function when a TA is running in a newer environment than that for which the TA was originally developed. By 545
default, only TEE_SUCCESS is a success and ANYTHING else should be considered a failure. 546

46 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 3-3: API Return Codes 547

Constant Names and Aliases Value
TEE_SUCCESS TEEC_SUCCESS 0x00000000

TEE_ERROR_CORRUPT_OBJECT 0xF0100001

TEE_ERROR_CORRUPT_OBJECT_2 0xF0100002

TEE_ERROR_STORAGE_NOT_AVAILABLE 0xF0100003

TEE_ERROR_STORAGE_NOT_AVAILABLE_2 0xF0100004

TEE_ERROR_UNSUPPORTED_VERSION 0xF0100005

TEE_ERROR_CIPHERTEXT_INVALID 0xF0100006

TEE_ERROR_GENERIC TEEC_ERROR_GENERIC 0xFFFF0000

TEE_ERROR_ACCESS_DENIED TEEC_ERROR_ACCESS_DENIED 0xFFFF0001

TEE_ERROR_CANCEL TEEC_ERROR_CANCEL 0xFFFF0002

TEE_ERROR_ACCESS_CONFLICT TEEC_ERROR_ACCESS_CONFLICT 0xFFFF0003

TEE_ERROR_EXCESS_DATA TEEC_ERROR_EXCESS_DATA 0xFFFF0004

TEE_ERROR_BAD_FORMAT TEEC_ERROR_BAD_FORMAT 0xFFFF0005

TEE_ERROR_BAD_PARAMETERS TEEC_ERROR_BAD_PARAMETERS 0xFFFF0006

TEE_ERROR_BAD_STATE TEEC_ERROR_BAD_STATE 0xFFFF0007

TEE_ERROR_ITEM_NOT_FOUND TEEC_ERROR_ITEM_NOT_FOUND 0xFFFF0008

TEE_ERROR_NOT_IMPLEMENTED TEEC_ERROR_NOT_IMPLEMENTED 0xFFFF0009

TEE_ERROR_NOT_SUPPORTED TEEC_ERROR_NOT_SUPPORTED 0xFFFF000A

TEE_ERROR_NO_DATA TEEC_ERROR_NO_DATA 0xFFFF000B

TEE_ERROR_OUT_OF_MEMORY TEEC_ERROR_OUT_OF_MEMORY 0xFFFF000C

TEE_ERROR_BUSY TEEC_ERROR_BUSY 0xFFFF000D

TEE_ERROR_COMMUNICATION TEEC_ERROR_COMMUNICATION 0xFFFF000E

TEE_ERROR_SECURITY TEEC_ERROR_SECURITY 0xFFFF000F

TEE_ERROR_SHORT_BUFFER TEEC_ERROR_SHORT_BUFFER 0xFFFF0010

TEE_ERROR_EXTERNAL_CANCEL TEEC_ERROR_EXTERNAL_CANCEL 0xFFFF0011

TEE_ERROR_TIMEOUT 0xFFFF3001

TEE_ERROR_OVERFLOW 0xFFFF300F

TEE_ERROR_TARGET_DEAD TEEC_ERROR_TARGET_DEAD 0xFFFF3024

TEE_ERROR_STORAGE_NO_SPACE 0xFFFF3041

TEE_ERROR_MAC_INVALID 0xFFFF3071

TEE_ERROR_SIGNATURE_INVALID 0xFFFF3072

TEE_ERROR_TIME_NOT_SET 0xFFFF5000

TEE_ERROR_TIME_NEEDS_RESET 0xFFFF5001

 548

TEE Internal Core API Specification – Public Review v1.2.1.31 47 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4 Parameter Annotations 549

This specification uses a set of patterns on the function parameters. Instead of repeating this pattern again on 550
each occurrence, these patterns are referred to with Parameter Annotations. It is expected that this will also 551
help with systematically translating the APIs into languages other than the C language. 552

The following sub-sections list all the parameter annotations used in the specification. 553

Note that these annotations cannot be expressed in the C language. However, the [in], [inbuf], 554
[instring], [instringopt], and [ctx] annotations can make use of the const C keyword. This keyword 555
is omitted in the specification of the functions to avoid mixing the formal annotations and a less expressive C 556
keyword. However, the C header file of a compliant implementation SHOULD use the const keyword when 557
these annotations appear. 558

3.4.1 [in], [out], and [inout] 559

The annotation [in] applies to a parameter that has a pointer type on a structure, a base type, or more 560
generally a buffer of a size known in the context of the API call. If the size needs to be clarified, the syntax 561
[in(size)] is used. 562

When the [in] annotation is present on a parameter, it means that the API implementation uses the pointer 563
only for reading and does not accept shared memory. 564

When a Trusted Application calls an API function that defines a parameter annotated with [in], the parameter 565
SHALL be entirely readable by the Trusted Application and SHALL be entirely owned by the calling Trusted 566
Application instance, as defined in section 4.11.1. In particular, this means that the parameter SHALL NOT 567
reside in a block of shared memory owned by a client of the Trusted Application. The implementation SHALL 568
check these conditions and if they are not satisfied, the API call SHALL panic the calling Trusted Application 569
instance. 570

The annotations [out] and [inout] are equivalent to [in] except that they indicate write access and 571
read-and-write access respectively. 572

Note that, as described in section 4.11.1, the NULL pointer SHALL never be accessible to a Trusted 573
Application. This means that a Trusted Application SHALL NOT pass the NULL pointer in an [in] parameter, 574
except perhaps if the buffer size is zero. 575

See the function TEE_CheckMemoryAccessRights in section 4.11.1 for more details about shared memory 576
and the NULL pointer. See the function TEE_Panic in section 4.8.1 for information about Panics. 577

3.4.2 [outopt] 578

The [outopt] annotation is equivalent to [out] except that the caller can set the parameter to NULL, in 579
which case the result SHALL be discarded. 580

48 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.3 [inbuf] and [inoutbuf] 581

The [inbuf] annotation applies to a pair of parameters, the first of which is of pointer type, such as a void*, 582
and the second of which is of type size_t. It means that the parameters describe an input data buffer. The 583
entire buffer SHALL be readable by the Trusted Application and there is no restriction on the owner of the 584
buffer: It can reside in shared memory or in private memory. 585

The implementation SHALL check that the buffer is entirely readable and SHALL panic the calling Trusted 586
Application instance if that is not the case. 587

Because the NULL pointer is never accessible, a Trusted Application cannot pass NULL in the first (pointer) 588
parameter unless the second (size_t) parameter is set to 0. 589

The [inoutbuf] annotation is equivalent to [inbuf] except that it indicates read-and-write access to the data 590
buffer. The implementation SHALL check that the buffer is entirely readable and writable and SHALL panic 591
the calling Trusted Application instance if that is not the case. 592

3.4.4 [outbuf] 593

The [outbuf] annotation applies to a pair of parameters, the first of which is of pointer type, such as a 594
void*, and the second of which is of type size_t*, herein referenced with the names buffer and size. 595
It is used by API functions to return an output data buffer. The data buffer SHALL be allocated by the calling 596
Trusted Application and passed in the buffer parameter. Because the size of the output buffer cannot 597
generally be determined in advance, the following convention is used: 598

• On entry, *size contains the number of bytes actually allocated in buffer. The buffer with this 599
number of bytes SHALL be entirely writable by the Trusted Application; otherwise the implementation 600
SHALL panic the calling Trusted Application instance. In any case, the implementation SHALL NOT 601
write beyond this limit. 602

• On return: 603

o If the output fits in the output buffer, then the implementation SHALL write the output in buffer 604
and SHALL update *size with the actual size of the output in bytes. 605

o If the output does not fit in the output buffer, then the implementation SHALL update *size with 606
the required number of bytes and SHALL return TEE_ERROR_SHORT_BUFFER. It is 607
implementation-dependent whether the output buffer is left untouched or contains part of the 608
output. In any case, the TA SHOULD consider that its content is undefined after the function 609
returns. 610

When the function returns TEE_ERROR_SHORT_BUFFER, it SHALL return the size of the output data. 611

Note that if the caller sets *size to 0, the function will always return TEE_ERROR_SHORT_BUFFER unless 612
the actual output data is empty. In this case, the parameter buffer can take any value, e.g. NULL, as it 613
will not be accessed by the implementation. If *size is set to a non-zero value on entry, then buffer cannot 614
be NULL because the buffer starting from the NULL address is never writable. 615

There is no restriction on the owner of the buffer: It can reside in shared memory or in private memory. 616

The parameter size SHALL be considered as [inout]. That is, size SHALL be readable and writable by 617
the Trusted Application. The parameter size SHALL NOT be NULL and SHALL NOT reside in shared 618
memory. The implementation SHALL check these conditions and panic the calling Trusted Application instance 619
if they are not satisfied. 620

TEE Internal Core API Specification – Public Review v1.2.1.31 49 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.5 [outbufopt] 621

The [outbufopt] annotation is equivalent to [outbuf] but if the parameter size is set to NULL, then the 622
function SHALL behave as if the output buffer was not large enough to hold the entire output data and the 623
output data SHALL be discarded. In this case, the parameter buffer is ignored, but SHOULD normally be 624
set to NULL, too. 625

Note the difference between passing a size pointer set to NULL and passing a size that points to 0. 626
Assuming the function does not fail for any other reasons: 627

• If size is set to NULL, the function performs the operation, returns TEE_SUCCESS, and the output 628
data is discarded. 629

• If size points to 0, the function does not perform the operation. It just updates *size with the 630
output size and returns TEE_ERROR_SHORT_BUFFER. 631

3.4.6 [instring] and [instringopt] 632

The [instring] annotation applies to a single [in] parameter, which SHALL contain a zero-terminated 633
string of char characters. Because the buffer is [in], it cannot reside in shared memory. 634

The [instringopt] annotation is equivalent to [instring] but the parameter can be set to NULL to 635
denote the absence of a string. 636

3.4.7 [outstring] and [outstringopt] 637

The [outstring] annotation is equivalent to [outbuf], but the output data is specifically a zero-terminated 638
string of char characters. The size of the buffer SHALL account for the zero terminator. The buffer may 639
reside in shared memory. 640

The [outstringopt] annotation is equivalent to [outstring] but with [outbufopt] instead of [outbuf], 641
which means that size can be set to NULL to discard the output. 642

3.4.8 [ctx] 643

The [ctx] annotation applies to a void* parameter. It means that the parameter is not accessed by the 644
implementation, but will merely be stored to be provided to the Trusted Application later. Although a Trusted 645
Application typically uses such parameters to store pointers to allocated structures, they can contain any value. 646

3.5 Backward Compatibility 647

It is an explicit principle of the design of the TEE Internal Core API that backward compatibility is supported 648
between specification versions with the same major version number. It is, in addition, a principle of the design 649
of this specification that the API should not depend on details of the implementation platform. 650

There are cases where previous versions of the TEE Internal Core API contain API definitions which depend 651
on memory accesses being expressible using 32-bit representations for pointers and buffer sizes. In TEE 652
Internal Core API v1.2 and later we resolve this issue in a way which is backward compatible with idiomatic 653
C99 code, but which may cause issues with code which has been written making explicit assumptions about 654
C language type coercions to 32-bit integers. 655

From TEE Internal Core API v1.2 onward, definitions are available which allow a TA or its build environment 656
to define the API version it requires. A Trusted OS or the corresponding TA build system can use these to 657
select how TEE Internal Core API features are presented to the TA. 658

50 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.1 Version Compatibility Definitions 659

A TA can set the definitions in this section to non-zero values if it was written in a way that requires strict 660
compatibility with a specific version of this specification. These definitions could, for example, be set in the TA 661
source code, or they could be set by the build system provided by the Trusted OS, based on metadata that is 662
out of scope of this specification. 663

This mechanism can be used where a TA depends for correct operation on the older definition. TA authors are 664
warned that older versions are updated to clarify intended behavior rather than to change it, and there may be 665
inconsistent behavior between different Trusted OS platforms where these definitions are used. 666

This mechanism resolves all necessary version information when a TA is compiled to run on a given Trusted 667
OS. 668

Since: TEE Internal Core API v1.2 669

#define TEE_CORE_API_REQUIRED_MAJOR_VERSION (major) 670
#define TEE_CORE_API_REQUIRED_MINOR_VERSION (minor) 671
#define TEE_CORE_API_REQUIRED_MAINTENANCE_VERSION (maintenance) 672

The following rules govern the use of TEE_CORE_API_REQUIRED_MAJOR_VERSION, 673
TEE_CORE_API_REQUIRED_MINOR_VERSION, and TEE_CORE_API_REQUIRED_MAINTENANCE_VERSION by 674
TA implementers: 675

• If TEE_CORE_API_REQUIRED_MAINTENANCE_VERSION is defined by a TA, then 676
TEE_CORE_API_REQUIRED_MAJOR_VERSION and TEE_CORE_API_REQUIRED_MINOR_VERSION 677
SHALL also be defined by the TA. 678

• If TEE_CORE_API_REQUIRED_MINOR_VERSION is defined by a TA, then 679
TEE_CORE_API_REQUIRED_MAJOR_VERSION SHALL also be defined by the TA. 680

If the TA violates any rule above, TA compilation SHALL stop with an error indicating the reason. 681

TEE_CORE_API_REQUIRED_MAJOR_VERSION is used by a TA to indicate that it requires strict compatibility 682
with a specific major version of this specification in order to operate correctly. If this value is set to 0 or is 683
unset, it indicates that the latest major version of this specification SHALL be used. 684

TEE_CORE_API_REQUIRED_MINOR_VERSION is used by a TA to indicate that it requires strict compatibility 685
with a specific minor version of this specification in order to operate correctly. If this value is unset, it indicates 686
that the latest minor version of this specification associated with the determined 687
TEE_CORE_API_REQUIRED_MAJOR_VERSION SHALL be used. 688

TEE_CORE_API_REQUIRED_MAINTENANCE_VERSION is used by a TA to indicate that it requires strict 689
compatibility with a specific major version of this specification in order to operate correctly. If this value is unset, 690
it indicates that the latest maintenance version of this specification associated with 691
TEE_CORE_API_REQUIRED_MAJOR_VERSION and TEE_CORE_API_REQUIRED_MINOR_VERSION SHALL be 692
used. 693

If none of the definitions above is set, a Trusted OS or its build system SHALL select the most recent version 694
of this specification that it supports, as defined in section 3.1.1. 695

If the Trusted OS is unable to provide an implementation matching the request from the TA, compilation of the 696
TA against that Trusted OS or its build system SHALL fail with an error indicating that the Trusted OS is 697
incompatible with the TA. This ensures that TAs originally developed against previous versions of this 698
specification can be compiled with identical behavior, or will fail to compile. 699

TEE Internal Core API Specification – Public Review v1.2.1.31 51 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

If the above definitions are set, a Trusted OS SHALL behave exactly according to the definitions for the 700
indicated version of the specification, with only the definitions in that version of the specification being exported 701
to a TA by the trusted OS or its build system. In particular an implementation SHALL NOT enable APIs which 702
were first defined in a later version of this specification than the version requested by the TA. 703

If the above definitions are set to 0 or are not set, then the Trusted OS SHALL behave according to this 704
version of the specification. 705

To assist TA developers wishing to make use of backward-compatible behavior, each API in this document is 706
marked with the version of this specification in which it was last modified. Where strict backward compatibility 707
is not maintained, information has been provided to explain any changed behavior. 708

As an example, consider a TA which requires strict compatibility with TEE Internal Core API v1.1: 709

#define TEE_CORE_API_REQUIRED_MAJOR_VERSION (1) 710
#define TEE_CORE_API_REQUIRED_MINOR_VERSION (1) 711
#define TEE_CORE_API_REQUIRED_MAINTENANCE_VERSION (0) 712

Due to the semantics of the C preprocessor, the above definitions SHALL be defined before the main body of 713
definitions in “tee_internal_api.h” is processed. The mechanism by which this occurs is out of scope of 714
this specification. 715

 716

52 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 Trusted Core Framework API 717

This chapter defines the Trusted Core Framework API, defining OS-like APIs and infrastructure. It contains 718
the following sections: 719

• Section 4.1, Data Types 720

• Section 4.2, Constants 721

Common definitions used throughout the chapter. 722

• Section 4.3, TA Interface 723

Defines the entry points that each TA SHALL define. 724

• Section 4.4, Property Access Functions 725

Defines the generic functions to access properties. These functions can be used to access 726
TA Configuration Properties, Client Properties, and Implementation Properties. 727

• Section 4.5, Trusted Application Configuration Properties 728

Defines the standard Trusted Application Configuration Properties. 729

• Section 4.6, Client Properties 730

Defines the standard Client Properties. 731

• Section 4.7, Implementation Properties 732

Defines the standard Implementation Properties of the TEE. 733

• Section 4.8, Panics 734

Defines the function TEE_Panic. 735

• Section 4.9, Internal Client API 736

Defines the Internal Client API that allows a Trusted Application to act as a Client of another Trusted 737
Application. 738

• Section 4.10, Cancellation Functions 739

Defines how a Trusted Application can handle client cancellation requests, acknowledge them, and 740
mask or unmask the propagated effects of cancellation requests on cancellable functions. 741

• Section 4.11, Memory Management Functions 742

Defines how to check the access rights to memory buffers, how to access global variables, how to 743
allocate memory (similar to malloc), and a few utility functions to fill or copy memory blocks. 744

TEE Internal Core API Specification – Public Review v1.2.1.31 53 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1 Data Types 745

4.1.1 TEE_Identity 746

Since: TEE Internal API v1.0 747

typedef struct 748
{ 749
 uint32_t login; 750
 TEE_UUID uuid; 751
} TEE_Identity; 752

The TEE_Identity structure defines the full identity of a Client: 753

• login is one of the TEE_LOGIN_XXX constants. (See section 4.2.2.) 754

• uuid contains the client UUID or Nil (as defined in [RFC 4122]) if not applicable. 755

 756

4.1.2 TEE_Param 757

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 758

typedef union 759
{ 760
 struct 761
 { 762
 void* buffer; size_t size; 763
 } memref; 764
 struct 765
 { 766
 uint32_t a; 767
 uint32_t b; 768
 } value; 769
} TEE_Param; 770

This union describes one parameter passed by the Trusted Core Framework to the entry points 771
TA_OpenSessionEntryPoint or TA_InvokeCommandEntryPoint or by the TA to the functions 772
TEE_OpenTASession or TEE_InvokeTACommand. 773

Which of the field value or memref to select is determined by the parameter type specified in the argument 774
paramTypes passed to the entry point. See section 4.3.6.1 and section 4.9.4 for more details on how this 775
type is used. 776

Backward Compatibility 777

TEE Internal Core API v1.1 used a different type for size. 778

 779

54 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1.3 TEE_TASessionHandle 780

Since: TEE Internal API v1.0 781

typedef struct __TEE_TASessionHandle* TEE_TASessionHandle; 782

TEE_TASessionHandle is an opaque handle (as defined in section 2.4) on a TA Session. These handles are 783
returned by the function TEE_OpenTASession specified in section 4.9.1. 784

 785

4.1.4 TEE_PropSetHandle 786

Since: TEE Internal API v1.0 787

typedef struct __TEE_PropSetHandle* TEE_PropSetHandle; 788

TEE_PropSetHandle is an opaque handle (as defined in section 2.4) on a property set or enumerator. These 789
handles either are returned by the function TEE_AllocatePropertyEnumerator specified in section 4.4.7 790
or are one of the pseudo-handles defined in section 4.2.4. 791

 792

Since: TEE Internal Core API v1.2 793

TEE_PropSetHandle values use interfaces that are shared between defined constants and real opaque 794
handles. 795

The Trusted OS SHALL take precautions that it will never generate a real opaque handle of type 796
TEE_PropSetHandle using constant values defined in section 4.2.4, and that when acting upon a 797
TEE_PropSetHandle it will, where appropriate, filter for these constant values first. 798

TEE Internal Core API Specification – Public Review v1.2.1.31 55 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Constants 799

4.2.1 Parameter Types 800

Table 4-1: Parameter Type Constants 801

Constant Name Equivalent on Client API Constant Value
TEE_PARAM_TYPE_NONE TEEC_NONE 0

TEE_PARAM_TYPE_VALUE_INPUT TEEC_VALUE_INPUT 1

TEE_PARAM_TYPE_VALUE_OUTPUT TEEC_VALUE_OUTPUT 2

TEE_PARAM_TYPE_VALUE_INOUT TEEC_VALUE_INOUT 3

TEE_PARAM_TYPE_MEMREF_INPUT TEEC_MEMREF_TEMP_INPUT
or

TEEC_MEMREF_PARTIAL_INPUT

5

TEE_PARAM_TYPE_MEMREF_OUTPUT TEEC_MEMREF_TEMP_OUTPUT
or

TEEC_MEMREF_PARTIAL_OUTPUT

6

TEE_PARAM_TYPE_MEMREF_INOUT TEEC_MEMREF_TEMP_INOUT
or

TEEC_MEMREF_PARTIAL_INOUT

7

 802

4.2.2 Login Types 803

Table 4-2: Login Type Constants 804

Constant Name Equivalent on Client API Constant Value
TEE_LOGIN_PUBLIC TEEC_LOGIN_PUBLIC 0x00000000

TEE_LOGIN_USER TEEC_LOGIN_USER 0x00000001

TEE_LOGIN_GROUP TEEC_LOGIN_GROUP 0x00000002

TEE_LOGIN_APPLICATION TEEC_LOGIN_APPLICATION 0x00000004

TEE_LOGIN_APPLICATION_USER TEEC_LOGIN_APPLICATION_USER 0x00000005

TEE_LOGIN_APPLICATION_GROUP TEEC_LOGIN_APPLICATION_GROUP 0x00000006

Reserved for future GlobalPlatform defined login types 0x00000007 –
0x7FFFFFFF

Reserved for implementation-specific login types 0x80000000 –
0xEFFFFFFF

TEE_LOGIN_TRUSTED_APP 0xF0000000

Reserved for future GlobalPlatform defined login types 0xF0000001 –
0xFFFFFFFF

 805

56 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.3 Origin Codes 806

Table 4-3: Origin Code Constants 807

Constant Names Constant Value
TEE_ORIGIN_API TEEC_ORIGIN_API 0x00000001

TEE_ORIGIN_COMMS TEEC_ORIGIN_COMMS 0x00000002

TEE_ORIGIN_TEE TEEC_ORIGIN_TEE 0x00000003

TEE_ORIGIN_TRUSTED_APP TEEC_ORIGIN_TRUSTED_APP 0x00000004

Reserved for future GlobalPlatform use 0x00000005 – 0xEFFFFFFF

Reserved for implementation-specific origin values 0xF0000000 – 0xFFFFFFFF

 808

Note: Other specifications can define additional origin code constants, so TA implementers SHOULD ensure 809
that they include default handling for other values. 810

 811

4.2.4 Property Set Pseudo-Handles 812

Table 4-4: Property Set Pseudo-Handle Constants 813

Constant Name Constant Value

Reserved for use by allocated property set
pseudo-handles

All 32-bit address boundary aligned values (i.e. any value
with the least significant two address bits zero) are
reserved for use as non-constant values allocated by the
API as opaque handles.

Reserved Non 32-bit boundary aligned values in the range
0x00000000 – 0xEFFFFFFF

Reserved for implementation-specific
property sets

Non 32-bit boundary aligned values in the range:
0xF0000000 – 0xFFFEFFFF

Reserved for future GlobalPlatform use Non 32-bit boundary aligned values in the range:
0xFFFF0000 – 0xFFFFFFFC

TEE_PROPSET_TEE_IMPLEMENTATION (TEE_PropSetHandle)0xFFFFFFFD

TEE_PROPSET_CURRENT_CLIENT (TEE_PropSetHandle)0xFFFFFFFE

TEE_PROPSET_CURRENT_TA (TEE_PropSetHandle)0xFFFFFFFF

 814

4.2.5 Memory Access Rights 815

Table 4-5: Memory Access Rights Constants 816

Constant Name Constant Value
TEE_MEMORY_ACCESS_READ 0x00000001

TEE_MEMORY_ACCESS_WRITE 0x00000002

TEE_MEMORY_ACCESS_ANY_OWNER 0x00000004

TEE Internal Core API Specification – Public Review v1.2.1.31 57 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3 TA Interface 817

Each Trusted Application SHALL provide the implementation with a number of functions, collectively called 818
the “TA interface”. These functions are the entry points called by the Trusted Core Framework to create the 819
instance, notify the instance that a new client is connecting, notify the instance when the client invokes a 820
command, etc. These entry points cannot be registered dynamically by the Trusted Application code: They 821
SHALL be bound to the framework before the Trusted Application code is started. 822

The following table lists the functions in the TA interface. 823

Table 4-6: TA Interface Functions 824

TA Interface Function (Entry Point) Description
TA_CreateEntryPoint This is the Trusted Application constructor. It is called once and

only once in the lifetime of the Trusted Application instance. If
this function fails, the instance is not created.

TA_DestroyEntryPoint This is the Trusted Application destructor. The Trusted Core
Framework calls this function just before the Trusted Application
instance is terminated. The Framework SHALL guarantee that no
sessions are open when this function is called. When
TA_DestroyEntryPoint returns, the Framework SHALL
collect all resources claimed by the Trusted Application instance.

TA_OpenSessionEntryPoint This function is called whenever a client attempts to connect to
the Trusted Application instance to open a new session. If this
function returns an error, the connection is rejected and no new
session is opened.
In this function, the Trusted Application can attach an opaque
void* context to the session. This context is recalled in all
subsequent TA calls within the session.

TA_CloseSessionEntryPoint This function is called when the client closes a session and
disconnects from the Trusted Application instance. The
implementation guarantees that there are no active commands in
the session being closed. The session context reference is given
back to the Trusted Application by the Framework.
It is the responsibility of the Trusted Application to deallocate the
session context if memory has been allocated for it.

TA_InvokeCommandEntryPoint This function is called whenever a client invokes a Trusted
Application command. The Framework gives back the session
context reference to the Trusted Application in this function call.

 825

58 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The following table summarizes client operations and the resulting Trusted Application effect. 826

Table 4-7: Effect of Client Operation on TA Interface 827

Client Operation Trusted Application Effect
TEEC_OpenSession

or
TEE_OpenTASession

If a new Trusted Application instance is needed to handle
the session, TA_CreateEntryPoint is called.
Then, TA_OpenSessionEntryPoint is called.

TEEC_InvokeCommand
or

TEE_InvokeTACommand

TA_InvokeCommandEntryPoint is called.

TEEC_CloseSession
or

TEE_CloseTASession

TA_CloseSessionEntryPoint is called.
For a multi-instance TA or for a single-instance,
non keep-alive TA, if the session closed was the last session
on the instance, then TA_DestroyEntryPoint is called.
Otherwise, the instance is kept until the TEE shuts down.

TEEC_RequestCancellation
or

The function TEE_OpenTASession or
TEE_InvokeTACommand is cancelled.

See section 4.10 for details on the effect of cancellation
requests.

Client terminates unexpectedly From the point of view of the TA instance, the behavior
SHALL be identical to the situation where the client does not
terminate unexpectedly but, for all opened sessions:
• requests the cancellation of all pending operations in that

session,
• waits for the completion of all these operations in that

session,
• and finally closes that session.
Note that there is no way for the TA to distinguish between
the client gracefully cancelling all its operations and closing
all its sessions and the implementation taking over when the
client dies unexpectedly.

 828

Interface Operation Parameters 829

When a Client opens a session on a Trusted Application or invokes a command, it can send Operation 830
Parameters to the Trusted Application. The parameters encode the data associated with the operation. Up to 831
four parameters can be sent in an operation. If these are insufficient, then one of the parameters may be used 832
to carry further parameter data via a Memory Reference. 833

Each parameter can be individually typed by the Client as a Value Parameter, carrying two 32-bit integers, or 834
a Memory Reference Parameter, carrying a pointer to a client-owned memory buffer. Each parameter is also 835
tagged with a direction of data flow (input, output, or both input and output). For output Memory References, 836
there is a built-in mechanism for the Trusted Applications to report the necessary size of the buffer in case of 837
a too-short buffer. See section 4.3.6 for more information about the handling of parameters in the TA interface. 838

TEE Internal Core API Specification – Public Review v1.2.1.31 59 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that Memory Reference Parameters typically point to memory owned by the client and shared with the 839
Trusted Application for the duration of the operation. This is especially useful in the case of REE Clients to 840
minimize the number of memory copies and the data footprint in case a Trusted Application needs to deal with 841
large data buffers, for example to process a multimedia stream protected by DRM. 842

Security Considerations 843

The fact that Memory References may use memory directly shared with the client implies that the Trusted 844
Application needs to be especially careful when handling such data: Even if the client is not allowed to access 845
the shared memory buffer during an operation on this buffer, the Trusted OS usually cannot enforce this 846
restriction. A badly-designed or rogue client may well change the content of the shared memory buffer at any 847
time, even between two consecutive memory accesses by the Trusted Application. This means that the 848
Trusted Application needs to be carefully written to avoid any security problem if this happens. If values in the 849
buffer are security critical, the Trusted Application SHOULD always read data only once from a shared buffer 850
and then validate it. It SHALL NOT assume that data written to the buffer can be read unchanged later on. 851

Error Handling 852

All TA interface functions except TA_DestroyEntryPoint and TA_CloseSessionEntryPoint return a 853
return code of type TEE_Result. The behavior of the Framework when an entry point returns an error 854
depends on the entry point called: 855

• If TA_CreateEntryPoint returns an error, the Trusted Application instance is not created. 856

• If TA_OpenSessionEntryPoint returns an error code, the client connection is rejected. 857
Additionally, the error code is propagated to the client as described below. 858

• If TA_InvokeCommandEntryPoint returns an error code, this error code is propagated to the client. 859

• TA_CloseSessionEntryPoint and TA_DestroyEntryPoint cannot return an error. 860

TA_OpenSessionEntryPoint and TA_InvokeCommandEntryPoint return codes are propagated to the 861
client via the TEE Client API (see [Client API]) or the Internal Client API (see section 4.9) with the origin set to 862
TEEC_ORIGIN_TRUSTED_APP. 863

Client Properties 864

When a Client connects to a Trusted Application, the Framework associates the session with Client Properties. 865
Trusted Applications can retrieve the identity and properties of their client by calling one of the property access 866
functions with the TEE_PROPSET_CURRENT_CLIENT. The standard Client Properties are fully specified in 867
section 4.6. 868

The TA_EXPORT keyword 869

Depending on the compiler used and the targeted platform, a TA entry point may need to be decorated with 870
an annotation such as __declspec(dllexport) or similar. This annotation SHALL be defined in the TEE 871
Internal Core API header file as TA_EXPORT and placed between the entry point return type and function 872
name as shown in the specification of each entry point. 873

60 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.1 TA_CreateEntryPoint 874

Since: TEE Internal API v1.0 875

TEE_Result TA_EXPORT TA_CreateEntryPoint(void); 876

Description 877

The function TA_CreateEntryPoint is the Trusted Application’s constructor, which the Framework calls 878
when it creates a new instance of the Trusted Application. 879

To register instance data, the implementation of this constructor can use either global variables or the function 880
TEE_SetInstanceData (described in section 4.11.2). 881

Specification Number: 10 Function Number: 0x102 882

Return Code 883

• TEE_SUCCESS: If the instance is successfully created, the function SHALL return TEE_SUCCESS. 884

• Any other value: If any other code is returned, then the instance is not created, and no other entry 885
points of this instance will be called. The Framework SHALL reclaim all resources and dereference all 886
objects related to the creation of the instance. 887

If this entry point was called as a result of a client opening a session, the return code is returned to the 888
client and the session is not opened. 889

Panic Reasons 890

• If the implementation detects any error that cannot be represented by any defined or implementation 891
defined error code. 892

4.3.2 TA_DestroyEntryPoint 893

Since: TEE Internal API v1.0 894

void TA_EXPORT TA_DestroyEntryPoint(void); 895

Description 896

The function TA_DestroyEntryPoint is the Trusted Application’s destructor, which the Framework calls 897
when the instance is being destroyed. 898

When the function TA_DestroyEntryPoint is called, the Framework guarantees that no client session is 899
currently open. Once the call to TA_DestroyEntryPoint has been completed, no other entry point of this 900
instance will ever be called. 901

Note that when this function is called, all resources opened by the instance are still available. It is only after 902
the function returns that the implementation SHALL start automatically reclaiming resources left open. 903

After this function returns, the implementation SHALL consider the instance destroyed and SHALL reclaim all 904
resources left open by the instance. 905

Specification Number: 10 Function Number: 0x103 906

Panic Reasons 907

• If the implementation detects any error. 908

TEE Internal Core API Specification – Public Review v1.2.1.31 61 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.3 TA_OpenSessionEntryPoint 909

Since: TEE Internal API v1.0 910

TEE_Result TA_EXPORT TA_OpenSessionEntryPoint(911
 uint32_t paramTypes, 912
 [inout] TEE_Param params[4], 913
 [out][ctx] void** sessionContext); 914

Description 915

The Framework calls the function TA_OpenSessionEntryPoint when a client requests to open a session 916
with the Trusted Application. The open session request may result in a new Trusted Application instance being 917
created as defined by the gpd.ta.singleInstance property described in section 4.5. 918

The client can specify parameters in an open operation which are passed to the Trusted Application instance 919
in the arguments paramTypes and params. These arguments can also be used by the Trusted Application 920
instance to transfer response data back to the client. See section 4.3.6 for a specification of how to handle the 921
operation parameters. 922

If this function returns TEE_SUCCESS, the client is connected to a Trusted Application instance and can invoke 923
Trusted Application commands. When the client disconnects, the Framework will eventually call the 924
TA_CloseSessionEntryPoint entry point. 925

If the function returns any error, the Framework rejects the connection and returns the return code and the 926
current content of the parameters to the client. The return origin is then set to TEEC_ORIGIN_TRUSTED_APP. 927

The Trusted Application instance can register a session data pointer by setting *sessionContext. The 928
framework SHALL ensure that sessionContext is a valid address of a pointer, and that it is unique per TEE 929
Client session. 930

The value of this pointer is not interpreted by the Framework, and is simply passed back to other TA_ functions 931
within this session. Note that *sessionContext may be set with a pointer to a memory allocated by the 932
Trusted Application instance or with anything else, such as an integer, a handle, etc. The Framework will not 933
automatically free *sessionContext when the session is closed; the Trusted Application instance is 934
responsible for freeing memory if required. 935

During the call to TA_OpenSessionEntryPoint the client may request to cancel the operation. See 936
section 4.10 for more details on cancellations. If the call to TA_OpenSessionEntryPoint returns 937
TEE_SUCCESS, the client SHALL consider the session as successfully opened and explicitly close it if 938
necessary. 939

Parameters 940

• paramTypes: The types of the four parameters. See section 4.3.6.1 for more information. 941

• params: A pointer to an array of four parameters. See section 4.3.6.2 for more information. 942

The params parameter is defined in the prototype as an array of length 4. Implementers should be 943
aware that the address of the start of the array is passed to the callee. 944

• sessionContext: A pointer to a variable that can be filled by the Trusted Application instance with 945
an opaque void* data pointer 946

Specification Number: 10 Function Number: 0x105 947

62 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Code 948

• TEE_SUCCESS: If the session is successfully opened. 949

• Any other value: If the session could not be opened. 950

o The return code may be one of the pre-defined codes, or may be a new return code defined by the 951
Trusted Application implementation itself. In any case, the implementation SHALL report the return 952
code to the client with the origin TEEC_ORIGIN_TRUSTED_APP. 953

Panic Reasons 954

• If the implementation detects any error that cannot be expressed by any defined or implementation 955
defined error code. 956

TEE Internal Core API Specification – Public Review v1.2.1.31 63 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.4 TA_CloseSessionEntryPoint 957

Since: TEE Internal API v1.0 958

void TA_EXPORT TA_CloseSessionEntryPoint(959
 [ctx] void* sessionContext); 960

Description 961

The Framework calls the function TA_CloseSessionEntryPoint to close a client session. 962

The Trusted Application implementation is responsible for freeing any resources consumed by the session 963
being closed. Note that the Trusted Application cannot refuse to close a session, but can hold the closing until 964
it returns from TA_CloseSessionEntryPoint. This is why this function cannot return a return code. 965

Parameters 966

• sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the 967
function TA_OpenSessionEntryPoint for this session. 968

Specification Number: 10 Function Number: 0x101 969

Return Value 970

This function can return no success or error code. 971

Panic Reasons 972

• If the implementation detects any error. 973

64 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.5 TA_InvokeCommandEntryPoint 974

Since: TEE Internal API v1.0 975

TEE_Result TA_EXPORT TA_InvokeCommandEntryPoint(976
 [ctx] void* sessionContext, 977
 uint32_t commandID, 978
 uint32_t paramTypes, 979
 [inout] TEE_Param params[4]); 980

Description 981

The Framework calls the function TA_InvokeCommandEntryPoint when the client invokes a command 982
within the given session. 983

The Trusted Application can access the parameters sent by the client through the paramTypes and params 984
arguments. It can also use these arguments to transfer response data back to the client. See section 4.3.6 for 985
a specification of how to handle the operation parameters. 986

During the call to TA_InvokeCommandEntryPoint the client may request to cancel the operation. See 987
section 4.10 for more details on cancellations. 988

A command is always invoked within the context of a client session. Thus, any Client Property (see section 4.6) 989
can be accessed by the command implementation. 990

Parameters 991

• sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the 992
function TA_OpenSessionEntryPoint 993

• commandID: A Trusted Application-specific code that identifies the command to be invoked 994

• paramTypes: The types of the four parameters. See section 4.3.6.1 for more information. 995

• params: A pointer to an array of four parameters. See section 4.3.6.2 for more information. 996

The params parameter is defined in the prototype as an array of length 4. Implementers should be 997
aware that the address of the start of the array is passed to the callee. 998

Specification Number: 10 Function Number: 0x104 999

Return Code 1000

• TEE_SUCCESS: If the command is successfully executed, the function SHALL return this value. 1001

• Any other value: If the invocation of the command fails for any reason 1002

o The return code may be one of the pre-defined codes, or may be a new return code defined by the 1003
Trusted Application implementation itself. In any case, the implementation SHALL report the return 1004
code to the client with the origin TEEC_ORIGIN_TRUSTED_APP. 1005

Panic Reasons 1006

• If the implementation detects any error that cannot be expressed by any defined or implementation 1007
defined error code. 1008

TEE Internal Core API Specification – Public Review v1.2.1.31 65 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6 Operation Parameters in the TA Interface 1009

When a client opens a session or invokes a command within a session, it can transmit operation parameters 1010
to the Trusted Application instance and receive response data back from the Trusted Application instance. 1011

Arguments paramTypes and params are used to encode the operation parameters and their types which 1012
are passed to the Trusted Application instance. While executing the open session or invoke command entry 1013
points, the Trusted Application can also write in params to encode the response data. 1014

4.3.6.1 Content of paramTypes Argument 1015

The argument paramTypes encodes the type of each of the four parameters passed to an entry point. The 1016
content of paramTypes is implementation-dependent. 1017

Each parameter type can take one of the TEE_PARAM_TYPE_XXX values listed in section 4.2.1. The type of 1018
each parameter determines whether the parameter is used or not, whether it is a Value or a Memory 1019
Reference, and the direction of data flow between the Client and the Trusted Application instance: Input (Client 1020
to Trusted Application instance), Output (Trusted Application instance to Client), or both Input and Output. The 1021
parameter type is set to TEE_PARAM_TYPE_NONE when no parameters are passed by the client in either 1022
TEEC_OpenSession or TEEC_InvokeCommand; this includes when the operation parameter itself is set to 1023
NULL. 1024

The following macros are available to decode paramTypes: 1025

#define TEE_PARAM_TYPES(t0,t1,t2,t3) \ 1026
 ((t0) | ((t1) << 4) | ((t2) << 8) | ((t3) << 12)) 1027
 1028
#define TEE_PARAM_TYPE_GET(t, i) (((t) >> ((i)*4)) & 0xF) 1029

The macro TEE_PARAM_TYPES can be used to construct a value that you can compare against an incoming 1030
paramTypes to check the type of all the parameters in one comparison, as in the following example: 1031

if (paramTypes != 1032
 TEE_PARAM_TYPES(1033
 TEE_PARAM_TYPE_MEMREF_INPUT, 1034
 TEE_PARAM_TYPE_MEMREF_OUTPUT, 1035
 TEE_PARAM_TYPE_NONE, 1036
 TEE_PARAM_TYPE_NONE)) 1037
{ 1038
 /* Bad parameter types */ 1039
 return TEE_ERROR_BAD_PARAMETERS; 1040
} 1041

The macro TEE_PARAM_TYPE_GET can be used to extract the type of a given parameter from paramTypes 1042
if you need more fine-grained type checking. 1043

66 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.2 Initial Content of params Argument 1044

When the Framework calls the Trusted Application entry point, it initializes the content of params[i] as 1045
described in the following table. 1046

Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called 1047

Value of type[i] Content of params[i] when the Entry Point is Called

TEE_PARAM_TYPE_NONE
TEE_PARAM_TYPE_VALUE_OUTPUT

Filled with zeroes.

TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b contain
the two integers sent by the client

TEE_PARAM_TYPE_MEMREF_INPUT
TEE_PARAM_TYPE_MEMREF_OUTPUT
TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.buffer is a pointer to memory buffer
shared by the client. This can be NULL.
params[i].memref.size describes the size of the buffer.
If buffer is NULL, size is guaranteed to be zero.

 1048

Note that if the Client is a Client Application that uses the TEE Client API ([Client API]), the Trusted Application 1049
cannot distinguish between a registered and a temporary Memory Reference. Both are encoded as one of the 1050
TEE_PARAM_TYPE_MEMREF_XXX types and a pointer to the data is passed to the Trusted Application. 1051

Security Warning: For a Memory Reference Parameter, the buffer may concurrently exist within the client 1052
and Trusted Application instance memory spaces. It SHALL therefore be assumed that the client is able to 1053
make changes to the content of this buffer asynchronously at any moment. It is a security risk to assume 1054
otherwise. 1055

Any Trusted Application which implements functionality that needs some guarantee that the contents of a 1056
buffer are constant SHOULD copy the contents of a shared buffer into Trusted Application instance-owned 1057
memory. 1058

To determine whether a given buffer is a Memory Reference or a buffer owned by the Trusted Application 1059
itself, the function TEE_CheckMemoryAccessRights defined in section 4.11.1 can be used. 1060

TEE Internal Core API Specification – Public Review v1.2.1.31 67 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.3 Behavior of the Framework when the Trusted Application Returns 1061

When the Trusted Application entry point returns, the Framework reads the content of each params[i] to 1062
determine what response data to send to the client, as described in the following table. 1063

Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returns 1064

Value of type[i] Behavior of the Framework when Entry Point Returns

TEE_PARAM_TYPE_NONE
TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_MEMREF_INPUT

The content of params[i] is ignored.

TEE_PARAM_TYPE_VALUE_OUTPUT
TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b contain the
two integers sent to the client.

TEE_PARAM_TYPE_MEMREF_OUTPUT
TEE_PARAM_TYPE_MEMREF_INOUT

The Framework reads params[i].memref.size:
• If it is equal or less than the original value of size, it is

considered as the actual size of the memory buffer. In this
case, the Framework assumes that the Trusted Application
has not written beyond this actual size and only this actual
size will be synchronized with the client.

• If it is greater than the original value of size, it is considered
as a request for a larger buffer. In this case, the Framework
assumes that the Trusted Application has not written
anything in the buffer and no data will be synchronized.

 1065

68 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.4 Memory Reference and Memory Synchronization 1066

Note that if a parameter is a Memory Reference, the memory buffer may be released or unmapped immediately 1067
after the operation completes. Also, some implementations may explicitly synchronize the contents of the 1068
memory buffer before the operation starts and after the operation completes. 1069

As a consequence: 1070

• The Trusted Application SHALL NOT access the memory buffer after the operation completes. In 1071
particular, it cannot be used as a long-term communication means between the client and the Trusted 1072
Application instance. A Memory Reference SHALL be accessed only during the lifetime of the 1073
operation. 1074

• The Trusted Application SHALL NOT attempt to write into a memory buffer of type 1075
TEE_PARAM_TYPE_MEMREF_INPUT. 1076

o It is a programmer error to attempt to do this but the implementation is not required to detect this 1077
and the access may well be just ignored. 1078

• For a Memory Reference Parameter marked as OUTPUT or INOUT, the Trusted Application can write 1079
in the entire range described by the initial content of params[i].memref.size. However, the 1080
implementation SHALL only guarantee that the client will observe the modifications below the final 1081
value of size and only if the final value is equal or less than the original value. 1082

For example, assume the original value of size is 100: 1083

o If the Trusted Application does not modify the value of size, the complete buffer is synchronized 1084
and the client is guaranteed to observe all the changes. 1085

o If the Trusted Application writes 50 in size, then the client is only guaranteed to observe the 1086
changes within the range from index 0 to index 49. 1087

o If the Trusted Application writes 200 in size, then no data is guaranteed to be synchronized with 1088
the client. However, the client will receive the new value of size. The Trusted Application can 1089
typically use this feature to tell the client that the Memory Reference was too small and request 1090
that the client retry with a Memory Reference of at least 200 bytes. 1091

Failure to comply with these constraints will result in undefined behavior and is a programmer error. 1092

TEE Internal Core API Specification – Public Review v1.2.1.31 69 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 Property Access Functions 1093

This section defines a set of functions to access individual properties in a property set, to convert them into a 1094
variety of types (printable strings, integers, Booleans, binary blocks, etc.), and to enumerate the properties in 1095
a property set. These functions can be used to access TA Configuration Properties, Client Properties, and 1096
Implementation Properties. 1097

The property set is passed to each function in a pseudo-handle parameter. The following table lists the defined 1098
property sets. 1099

Table 4-10: Property Sets 1100

Pseudo-Handle Meaning
TEE_PROPSET_CURRENT_TA The configuration properties for the current Trusted

Application. See section 4.5 for a definition of these
properties.

TEE_PROPSET_CURRENT_CLIENT The properties of the current client. This pseudo-handle is
valid only in the context of the following entry points:

o TA_OpenSessionEntryPoint
o TA_InvokeCommandEntryPoint
o TA_CloseSessionEntryPoint

See section 4.6 for a definition of these properties.

TEE_PROPSET_TEE_IMPLEMENTATION The properties of the TEE implementation. See
section 4.7.

 1101

Properties can be retrieved and converted using TEE_GetPropertyAsXXX access functions (described in 1102
the following sections). 1103

A property may be retrieved and converted into a printable string or into the type defined for the property which 1104
will be one of the following types: 1105

• Binary block 1106

• 32-bit unsigned integer 1107

• 64-bit unsigned integer 1108

• Boolean 1109

• UUID 1110

• Identity (a pair composed of a login method and a UUID) 1111

Retrieving as a String 1112

While implementations have latitude on how they set and store properties internally, a property that is retrieved 1113
via the function TEE_GetPropertyAsString SHALL always be converted into a printable string encoded in 1114
UTF-8. 1115

To ensure consistency between the representation of a property as one of the above types and its 1116
representation as a printable string encoded in UTF-8, the following conversion rules apply: 1117

70 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Binary block 1118

is converted into a string that is consistent with a Base64 encoding of the binary block as defined in 1119
RFC 2045 ([RFC 2045]) section 6.8 but with the following tolerance: 1120

o An implementation is allowed not to encode the final padding ‘=’ characters. 1121

o An implementation is allowed to insert characters that are not in the Base64 character set. 1122

• 32-bit and 64-bit unsigned integers 1123

are converted into strings that are consistent with the following syntax: 1124

integer: decimal-integer 1125
 | hexadecimal-integer 1126
 | binary-integer 1127
 1128
decimal-integer: [0-9,_]+{K,M}? 1129
hexadecimal-integer: 0[x,X][0-9,a-f,A-F,_]+ 1130
binary-integer: 0[b,B][0,1,_]+ 1131

Note that the syntax allows returning the integer either in decimal, hexadecimal, or binary format, that 1132
the representation can mix cases and can include underscores to separate groups of digits, and finally 1133
that the decimal representation may use ‘K’ or ‘M’ to denote multiplication by 1024 or 1048576 1134
respectively. 1135

For example, here are a few acceptable representations of the number 1024: “1K”, “0X400”, 1136
“0b100_0000_0000”. 1137

• Boolean 1138

is converted into a string equal to “true” or “false” case-insensitive, depending on the value of the 1139
Boolean. 1140

• UUID 1141

is converted into a string that is consistent with the syntax defined in [RFC 4122]. Note that this string 1142
may mix character cases. 1143

• Identity 1144

is converted into a string consistent with the following syntax: 1145

identity: integer (':' uuid)? 1146

where: 1147

 The integer is consistent with the integer syntax described above 1148

 If the identity UUID is Nil, then it can be omitted from the string representation of the property 1149

Enumerating Properties 1150

Properties in a property set can also be enumerated. For this: 1151

• Allocate a property enumerator using the function TEE_AllocatePropertyEnumerator. 1152

• Start the enumeration by calling TEE_StartPropertyEnumerator, passing the pseudo-handle on 1153
the desired property set. 1154

• Call the functions TEE_GetProperty[AsXXX] with the enumerator handle and a NULL name. 1155

An enumerator provides the properties in an arbitrary order. In particular, they are not required to be sorted by 1156
name although a given implementation may ensure this. 1157

TEE Internal Core API Specification – Public Review v1.2.1.31 71 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.1 TEE_GetPropertyAsString 1158

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 1159

TEE_Result TEE_GetPropertyAsString(1160
 TEE_PropSetHandle propsetOrEnumerator, 1161
 [instringopt] char* name, 1162
 [outstring] char* valueBuffer, size_t* valueBufferLen); 1163

Description 1164

The TEE_GetPropertyAsString function performs a lookup in a property set to retrieve an individual 1165
property and convert its value into a printable string. 1166

When the lookup succeeds, the implementation SHALL convert the property into a printable string and copy 1167
the result into the buffer described by valueBuffer and valueBufferLen. 1168

Parameters 1169

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1170
enumerator 1171

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1172
content is case-sensitive and it SHALL be encoded in UTF-8. 1173

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1174

o Otherwise, name SHALL NOT be NULL 1175

• valueBuffer, valueBufferLen: Output buffer for the property value 1176

Specification Number: 10 Function Number: 0x207 1177

Return Code 1178

• TEE_SUCCESS: In case of success. 1179

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1180

• TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value 1181

Panic Reasons 1182

• If the implementation detects any error associated with this function that is not explicitly associated 1183
with a defined return code for this function. 1184

Backward Compatibility 1185

TEE Internal Core API v1.1 used a different type for valueBufferLen. 1186

 1187

72 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.2 TEE_GetPropertyAsBool 1188

Since: TEE Internal API v1.0 1189

TEE_Result TEE_GetPropertyAsBool(1190
 TEE_PropSetHandle propsetOrEnumerator, 1191
 [instringopt] char* name, 1192
 [out] bool* value); 1193

Description 1194

The TEE_GetPropertyAsBool function retrieves a single property in a property set and converts its value 1195
to a Boolean. 1196

If a property cannot be viewed as a Boolean, this function SHALL return TEE_ERROR_BAD_FORMAT. 1197

Parameters 1198

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1199
enumerator 1200

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1201
content is case-sensitive and SHALL be encoded in UTF-8. 1202

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1203

o Otherwise, name SHALL NOT be NULL. 1204

• value: A pointer to the variable that will contain the value of the property on success or false on 1205
error. 1206

Specification Number: 10 Function Number: 0x205 1207

Return Code 1208

• TEE_SUCCESS: In case of success. 1209

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1210

• TEE_ERROR_BAD_FORMAT: If the property value is not defined as a Boolean 1211

Panic Reasons 1212

• If the implementation detects any error associated with the execution of this function that is not 1213
explicitly associated with a defined return code for this function. 1214

TEE Internal Core API Specification – Public Review v1.2.1.31 73 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.3 TEE_GetPropertyAsUnn 1215

4.4.3.1 TEE_GetPropertyAsU32 1216

Since: TEE Internal API v1.0 1217

TEE_Result TEE_GetPropertyAsU32(1218
 TEE_PropSetHandle propsetOrEnumerator, 1219
 [instringopt] char* name, 1220
 [out] uint32_t* value); 1221

Description 1222

The TEE_GetPropertyAsU32 function retrieves a single property in a property set and converts its value to 1223
a 32-bit unsigned integer. 1224

Parameters 1225

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1226
enumerator 1227

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1228
content is case-sensitive and SHALL be encoded in UTF-8. 1229

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1230

o Otherwise, name SHALL NOT be NULL. 1231

• value: A pointer to the variable that will contain the value of the property on success, or zero on 1232
error. 1233

Specification Number: 10 Function Number: 0x208 1234

Return Code 1235

• TEE_SUCCESS: In case of success. 1236

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1237

• TEE_ERROR_BAD_FORMAT: If the property value is not defined as an unsigned 32-bit integer 1238

Panic Reasons 1239

• If the implementation detects any error associated with this function that is not explicitly associated 1240
with a defined return code for this function. 1241

74 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.3.2 TEE_GetPropertyAsU64 1242

Since: TEE Internal Core API v1.2 1243

TEE_Result TEE_GetPropertyAsU64(1244
 TEE_PropSetHandle propsetOrEnumerator, 1245
 [instringopt] char* name, 1246
 [out] uint64_t* value); 1247

Description 1248

The TEE_GetPropertyAsU64 function retrieves a single property in a property set and converts its value to 1249
a 64-bit unsigned integer. If the underlying value is a 32-bit integer, the Trusted OS SHALL zero extend it. 1250

Parameters 1251

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1252
enumerator 1253

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1254
content is case-sensitive and SHALL be encoded in UTF-8. 1255

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1256

o Otherwise, name SHALL NOT be NULL. 1257

• value: A pointer to the variable that will contain the value of the property on success, or zero on 1258
error. 1259

Specification Number: 10 Function Number: 0x20D 1260

Return Code 1261

• TEE_SUCCESS: In case of success. 1262

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1263

• TEE_ERROR_BAD_FORMAT: If the property value is not defined as an unsigned 64-bit integer 1264

Panic Reasons 1265

• If the implementation detects any error associated with this function that is not explicitly associated 1266
with a defined return code for this function. 1267

TEE Internal Core API Specification – Public Review v1.2.1.31 75 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.4 TEE_GetPropertyAsBinaryBlock 1268

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 1269

TEE_Result TEE_GetPropertyAsBinaryBlock(1270
 TEE_PropSetHandle propsetOrEnumerator, 1271
 [instringopt] char* name, 1272
 [outbuf] void* valueBuffer, size_t* valueBufferLen); 1273

Description 1274

The function TEE_GetPropertyAsBinaryBlock retrieves an individual property and converts its value into 1275
a binary block. 1276

If a property cannot be viewed as a binary block, this function SHALL return TEE_ERROR_BAD_FORMAT. 1277

Parameters 1278

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1279
enumerator 1280

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1281
content is case-sensitive and SHALL be encoded in UTF-8. 1282

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1283

o Otherwise, name SHALL NOT be NULL. 1284

• valueBuffer, valueBufferLen: Output buffer for the binary block 1285

Specification Number: 10 Function Number: 0x204 1286

Return Code 1287

• TEE_SUCCESS: In case of success. 1288

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1289

• TEE_ERROR_BAD_FORMAT: If the property cannot be retrieved as a binary block 1290

• TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value 1291

Panic Reasons 1292

• If the implementation detects any error associated with this function that is not explicitly associated 1293
with a defined return code for this function. 1294

Backward Compatibility 1295

TEE Internal Core API v1.1 used a different type for valueBufferLen. 1296

 1297

76 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.5 TEE_GetPropertyAsUUID 1298

Since: TEE Internal API v1.0 1299

TEE_Result TEE_GetPropertyAsUUID(1300
 TEE_PropSetHandle propsetOrEnumerator, 1301
 [instringopt] char* name, 1302
 [out] TEE_UUID* value); 1303

Description 1304

The function TEE_GetPropertyAsUUID retrieves an individual property and converts its value into a UUID. 1305

If a property cannot be viewed as a UUID, this function SHALL return TEE_ERROR_BAD_FORMAT. 1306

Parameters 1307

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1308
enumerator 1309

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1310
content is case-sensitive and SHALL be encoded in UTF-8. 1311

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1312

o Otherwise, name SHALL NOT be NULL. 1313

• value: A pointer filled with the UUID. SHALL NOT be NULL. 1314

Specification Number: 10 Function Number: 0x209 1315

Return Code 1316

• TEE_SUCCESS: In case of success. 1317

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1318

• TEE_ERROR_BAD_FORMAT: If the property cannot be converted into a UUID 1319

Panic Reasons 1320

• If the implementation detects any error associated with this function that is not explicitly associated 1321
with a defined return code for this function. 1322

TEE Internal Core API Specification – Public Review v1.2.1.31 77 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.6 TEE_GetPropertyAsIdentity 1323

Since: TEE Internal API v1.0 1324

TEE_Result TEE_GetPropertyAsIdentity(1325
 TEE_PropSetHandle propsetOrEnumerator, 1326
 [instringopt] char* name, 1327
 [out] TEE_Identity* value); 1328

Description 1329

The function TEE_GetPropertyAsIdentity retrieves an individual property and converts its value into a 1330
TEE_Identity. 1331

If a property cannot be viewed as an identity, this function SHALL return TEE_ERROR_BAD_FORMAT. 1332

Parameters 1333

• propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property 1334
enumerator 1335

• name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its 1336
content is case-sensitive and SHALL be encoded in UTF-8. 1337

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL. 1338

o Otherwise, name SHALL NOT be NULL. 1339

• value: A pointer filled with the identity. SHALL NOT be NULL. 1340

Specification Number: 10 Function Number: 0x206 1341

Return Code 1342

• TEE_SUCCESS: In case of success. 1343

• TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding 1344

• TEE_ERROR_BAD_FORMAT: If the property value cannot be converted into an Identity 1345

Panic Reasons 1346

• If the implementation detects any error associated with this function that is not explicitly associated 1347
with a defined return code for this function. 1348

78 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.7 TEE_AllocatePropertyEnumerator 1349

Since: TEE Internal API v1.0 1350

TEE_Result TEE_AllocatePropertyEnumerator(1351
 [out] TEE_PropSetHandle* enumerator); 1352

Description 1353

The function TEE_AllocatePropertyEnumerator allocates a property enumerator object. Once a handle 1354
on a property enumerator has been allocated, it can be used to enumerate properties in a property set using 1355
the function TEE_StartPropertyEnumerator. 1356

Parameters 1357

• enumerator: A pointer filled with an opaque handle on the property enumerator on success and with 1358
TEE_HANDLE_NULL on error 1359

Specification Number: 10 Function Number: 0x201 1360

Return Code 1361

• TEE_SUCCESS: In case of success. 1362

• TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the property enumerator 1363

Panic Reasons 1364

• If the implementation detects any error associated with this function that is not explicitly associated 1365
with a defined return code for this function. 1366

 1367

4.4.8 TEE_FreePropertyEnumerator 1368

Since: TEE Internal API v1.0 1369

void TEE_FreePropertyEnumerator(1370
 TEE_PropSetHandle enumerator); 1371

Description 1372

The function TEE_FreePropertyEnumerator deallocates a property enumerator object. 1373

Parameters 1374

• enumerator: A handle on the enumerator to free 1375

Specification Number: 10 Function Number: 0x202 1376

Panic Reasons 1377

• If the implementation detects any error. 1378

 1379

TEE Internal Core API Specification – Public Review v1.2.1.31 79 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.9 TEE_StartPropertyEnumerator 1380

Since: TEE Internal API v1.0 1381

void TEE_StartPropertyEnumerator(1382
 TEE_PropSetHandle enumerator, 1383
 TEE_PropSetHandle propSet); 1384

Description 1385

The function TEE_StartPropertyEnumerator starts to enumerate the properties in an enumerator. 1386

Once an enumerator is attached to a property set: 1387

• Properties can be retrieved using one of the TEE_GetPropertyAsXXX functions, passing the 1388
enumerator handle as the property set and NULL as the name. 1389

• The function TEE_GetPropertyName can be used to retrieve the name of the current property in the 1390
enumerator. 1391

• The function TEE_GetNextProperty can be used to advance the enumeration to the next property 1392
in the property set. 1393

Parameters 1394

• enumerator: A handle on the enumerator 1395

• propSet: A pseudo-handle on the property set to enumerate. SHALL be one of the 1396
TEE_PROPSET_XXX pseudo-handles. 1397

Specification Number: 10 Function Number: 0x20C 1398

Panic Reasons 1399

• If the implementation detects any error. 1400

 1401

4.4.10 TEE_ResetPropertyEnumerator 1402

Since: TEE Internal API v1.0 1403

void TEE_ResetPropertyEnumerator(1404
 TEE_PropSetHandle enumerator); 1405

Description 1406

The function TEE_ResetPropertyEnumerator resets a property enumerator to its state immediately after 1407
allocation. If an enumeration is currently started, it is abandoned. 1408

Parameters 1409

• enumerator: A handle on the enumerator to reset 1410

Specification Number: 10 Function Number: 0x20B 1411

Panic Reasons 1412

• If the implementation detects any error. 1413

80 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.11 TEE_GetPropertyName 1414

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 1415

TEE_Result TEE_GetPropertyName(1416
 TEE_PropSetHandle enumerator, 1417
 [outstring] void* nameBuffer, size_t* nameBufferLen); 1418

Description 1419

The function TEE_GetPropertyName gets the name of the current property in an enumerator. 1420

The property name SHALL be the valid UTF-8 encoding of a Unicode string containing no intermediate U+0000 1421
code points. 1422

Parameters 1423

• enumerator: A handle on the enumerator 1424

• nameBuffer, nameBufferLen: The buffer filled with the name 1425

Specification Number: 10 Function Number: 0x20A 1426

Return Code 1427

• TEE_SUCCESS: In case of success. 1428

• TEE_ERROR_ITEM_NOT_FOUND: If there is no current property either because the enumerator has not 1429
started or because it has reached the end of the property set 1430

• TEE_ERROR_SHORT_BUFFER: If the name buffer is not large enough to contain the property name 1431

Panic Reasons 1432

• If the implementation detects any error associated with this function that is not explicitly associated 1433
with a defined return code for this function. 1434

Backward Compatibility 1435

TEE Internal Core API v1.1 used a different type for nameBufferLen. 1436

 1437

TEE Internal Core API Specification – Public Review v1.2.1.31 81 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.12 TEE_GetNextProperty 1438

Since: TEE Internal API v1.0 1439

TEE_Result TEE_GetNextProperty(1440
 TEE_PropSetHandle enumerator); 1441

Description 1442

The function TEE_GetNextProperty advances the enumerator to the next property. 1443

Parameters 1444

• enumerator: A handle on the enumerator 1445

Specification Number: 10 Function Number: 0x203 1446

Return Code 1447

• TEE_SUCCESS: In case of success. 1448

• TEE_ERROR_ITEM_NOT_FOUND: If the enumerator has reached the end of the property set or if it has 1449
not started 1450

Panic Reasons 1451

• If the implementation detects any error associated with this function that is not explicitly associated 1452
with a defined return code for this function. 1453

82 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5 Trusted Application Configuration Properties 1454

Each Trusted Application is associated with configuration properties that are accessible using the generic 1455
Property Access Functions and the TEE_PROPSET_CURRENT_TA pseudo-handle. This section defines a few 1456
standard configuration properties that affect the behavior of the implementation. Other configuration properties 1457
can be defined: 1458

• either by the implementation to configure implementation-defined behaviors, 1459

• or by the Trusted Application itself for its own configuration purposes. 1460

The way properties are actually configured and attached to a Trusted Application is out of scope of this 1461
specification. 1462

The following table defines the standard configuration properties for Trusted Applications. 1463

Table 4-11: Trusted Application Standard Configuration Properties 1464

Property Name Type Meaning
gpd.ta.appID UUID Since: TEE Internal API v1.0

The identifier of the Trusted Application.

gpd.ta.singleInstance Boolean Since: TEE Internal API v1.0

Whether the implementation SHALL create a single TA
instance for all the client sessions (if true) or SHALL
create a separate instance for each client session
(if false).

gpd.ta.multiSession Boolean Since: TEE Internal API v1.0

Whether the Trusted Application instance supports
multiple sessions.
This property is ignored when gpd.ta.singleinstance
is set to false.

TEE Internal Core API Specification – Public Review v1.2.1.31 83 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.ta.instanceKeepAlive Boolean Since: TEE Internal API v1.0

Whether the Trusted Application instance context SHALL
be preserved when there are no sessions connected to the
instance. The instance context is defined as all writable
data within the memory space of the Trusted Application
instance, including the instance heap.
This property is meaningful only when the
gpd.ta.singleInstance is set to true.
When this property is set to false, then the TA instance
SHALL be created when one or more sessions are opened
on the TA and it SHALL be destroyed when there are no
more sessions opened on the instance.
When this property is set to true, then the TA instance is
terminated only when the TEE shuts down, which includes
when the device goes through a system-wide global power
cycle. Note that the TEE SHALL NOT shut down
whenever the REE does not shut down and keeps a
restorable state, including when it goes through transitions
into lower power states (hibernation, suspend, etc.).
The exact moment when a keep-alive single instance is
created is implementation-defined but it SHALL be no later
than the first session opening.

gpd.ta.dataSize Integer Since: TEE Internal API v1.0

Maximum estimated amount of dynamic data in bytes
configured for the Trusted Application. The memory blocks
allocated through TEE_Malloc are drawn from this
space, as well as the task stacks. How this value precisely
relates to the exact number and sizes of blocks that can
be allocated is implementation-dependent.

gpd.ta.stackSize Integer Since: TEE Internal API v1.0

Maximum stack size in bytes available to any task in the
Trusted Application at any point in time. This corresponds
to the stack size used by the TA code itself and does not
include stack space possibly used by the Trusted Core
Framework. For example, if this property is set to “512”,
then the Framework SHALL guarantee that, at any time,
the TA code can consume up to 512 bytes of stack and
still be able to call any functions in the API.

gpd.ta.version String Since: TEE Internal Core API v1.1

Version number of this Trusted Application.

gpd.ta.description String Since: TEE Internal Core API v1.1

Optional description of the Trusted Application

84 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.ta.endian Integer Since: TEE Internal Core API v1.2

Endianness of the current TA. Legal values are:
• The value 0 indicates little-endian TA.
• The value 1 indicates a big-endian TA.
• Values from 2 to 0x7FFFFFFF are reserved for

future versions of this specification.
• Values in the range 0x80000000 to 0xFFFFFFFF

are implementation defined.

gpd.ta.doesNotClose
HandleOnCorruptObject

Boolean Since: TEE Internal Core API v1.3
• If set to false, then all APIs returning

TEE_ERROR_CORRUPT_OBJECT or
TEE_ERROR_CORRUPT_OBJECT_2 will behave as
specified in versions prior to TEE Internal Core API
v1.3.

• If set to true, then:
o When a function returns

TEE_ERROR_CORRUPT_OBJECT or
TEE_ERROR_CORRUPT_OBJECT_2, the stated
closure of the object handle SHALL NOT occur and
the handle SHALL need to be closed using the
normal methods.

o While the handle remains valid until closed, the
underlying object SHALL immediately be deleted.

 1465

TEE Internal Core API Specification – Public Review v1.2.1.31 85 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6 Client Properties 1466

This section defines the standard Client Properties, accessible using the generic Property Access Functions 1467
and the TEE_PROPSET_CURRENT_CLIENT pseudo-handle. Other non-standard client properties can be 1468
defined by specific implementations, but they SHALL be defined outside the “gpd.” namespace. 1469

Note that Client Properties can be accessed only in the context of a TA entry point associated with a client, 1470
i.e. in one of the following entry point functions: TA_OpenSessionEntryPoint, 1471
TA_InvokeCommandEntryPoint, or TA_CloseSessionEntryPoint. 1472

The following table defines the standard Client Properties. 1473

Table 4-12: Standard Client Properties 1474

Property Name Type Meaning
gpd.client.identity Identity Since: TEE Internal API v1.0

Identity of the current client. This can be conveniently retrieved
using the function TEE_GetPropertyAsIdentity (see
section 4.4.6).
A Trusted Application can use the client identity to perform
access control. For example, it can refuse to open a session for
a client that is not identified.

gpd.client.endian Integer Since: TEE Internal Core API v1.2

Endianness of the current client. Legal values are as defined for
gpd.ta.endian in Table 4-11.

 1475

As shown in Table 4-13, the client identity and the client properties that the Trusted Application can retrieve 1476
depend on the nature of the client and the method it has used to connect. (The constant values associated 1477
with the login methods are listed in section 4.2.2.) 1478

Table 4-13: Client Identities 1479

Login Method Meaning
TEE_LOGIN_PUBLIC The client is in the Regular Execution Environment and is

neither identified nor authenticated. The client has no identity
and the UUID is the Nil UUID as defined in [RFC 4122].

TEE_LOGIN_USER The Client Application has been identified by the Regular
Execution Environment and the client UUID reflects the
actual user that runs the calling application independently of
the actual application.

TEE_LOGIN_GROUP The client UUID reflects a group identity that is executing the
calling application. The notion of group identity and the
corresponding UUID is REE-specific.

TEE_LOGIN_APPLICATION The Client Application has been identified by the Regular
Execution Environment independently of the identity of the
user executing the application. The nature of this
identification and the corresponding UUID is REE-specific.

TEE_LOGIN_APPLICATION_USER The client UUID identifies both the calling application and the
user that is executing it.

86 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Login Method Meaning
TEE_LOGIN_APPLICATION_GROUP The client UUID identifies both the calling application and a

group that is executing it.

TEE_LOGIN_TRUSTED_APP The client is another Trusted Application. The client identity
assigned to this session is the UUID of the calling Trusted
Application.
The client properties are all the configuration properties of the
calling Trusted Application.

The range 0x80000000–0xEFFFFFFF is
reserved for implementation-defined login
methods.

The meaning of the Client UUID and the associated client
properties are implementation-defined. If the Trusted
Application does not support the particular implementation, it
SHOULD assume that the client has minimum rights, i.e.
rights equivalent to the login method TEE_LOGIN_PUBLIC.

Other values are reserved for
GlobalPlatform use, as described in
section 4.2.2.

 1480

Client Properties are meant to be managed by either the Regular OS or the Trusted OS and these SHALL 1481
ensure that a Client cannot tamper with its own properties in the following sense: 1482

• The property gpd.client.identity SHALL always be determined by the Trusted OS and the 1483
determination of whether or not it is equal to TEE_LOGIN_TRUSTED_APP SHALL be as trustworthy as 1484
the Trusted OS itself. 1485

• When gpd.client.identity is equal to TEE_LOGIN_TRUSTED_APP then the Trusted OS SHALL 1486
ensure that the remaining properties are equal to the properties of the calling TA up to the same level 1487
of trustworthiness that the target TA places in the Trusted OS. 1488

• When gpd.client.identity is not equal to TEE_LOGIN_TRUSTED_APP, then the Regular OS is 1489
responsible for ensuring that the Client Application cannot tamper with its own properties. 1490

Note that if a Client wants to transmit a property that is not synthesized by the Regular OS or Trusted OS, 1491
such as a password, then it SHALL use a parameter to the session open operation or in subsequent 1492
commands. 1493

TEE Internal Core API Specification – Public Review v1.2.1.31 87 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.7 Implementation Properties 1494

The implementation properties can be retrieved by the generic Property Access Functions with the 1495
TEE_PROPSET_TEE_IMPLEMENTATION pseudo-handle. 1496

The following table defines the standard implementation properties. 1497

Table 4-14: Implementation Properties 1498

Property Name Type Meaning
gpd.tee.apiversion String Since: TEE Internal API v1.0; deprecated in TEE

Internal Core API v1.1.2

A string composed of the Major and Minor version of
the specification, e.g. “1.1”. Zero values must be
represented (e.g. version 3.0 is “3.0”). This string
does NOT include any other parts of the version
number.
(This property is deprecated in favor of
gpd.tee.internalCore.version.)

gpd.tee.internalCore.version Integer Since: TEE Internal Core API v1.1.2

The TEE Internal Core API Specification version
number expressed as an integer. See section 4.7.1
for details of the structure of this integer field.

gpd.tee.description String Since: TEE Internal API v1.0

A description of the implementation. The content of
this property is implementation-dependent but
typically contains a version and build number of the
implementation as well as other configuration
information.
Note that implementations are free to define their
own non-standard identification property names,
provided they are not in the “gpd.” namespace.

88 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.deviceID UUID Since: TEE Internal API v1.0

A device identifier that SHALL be globally unique
among all GlobalPlatform TEEs whatever the
manufacturer, vendor, or integration.
Since: TEE Internal Core API v1.1.1

If there are multiple GlobalPlatform TEEs on one
device, each such TEE SHALL have a unique
gpd.tee.deviceID.
Implementer’s Note
It is acceptable to derive this device identifier from
statistically unique secret or public information, such
as a Hardware Unique Key, die identifiers, etc.
However, note that this property is intended to be
public and exposed to any software running on the
device, not only to Trusted Applications. The
derivation SHALL therefore be carefully designed so
that it does not compromise secret information.

gpd.tee.systemTime.
protectionLevel

Integer Since: TEE Internal API v1.0

The protection level provided by the system time
implementation. See the function
TEE_GetSystemTime in section 7.2.1 for more
details.

gpd.tee.TAPersistentTime.
protectionLevel

Integer Since: TEE Internal API v1.0

The protection level provided for the TA Persistent
Time. See the function
TEE_GetTAPersistentTime in section 7.2.3 for
more details.

gpd.tee.arith.maxBigIntSize Integer Since: TEE Internal API v1.0

Maximum size in bits of the big integers for all the
functions in the TEE Arithmetical API specified in
Chapter 8. Beyond this limit, some of the functions
MAY panic due to insufficient pre-allocated resources
or hardware limitations.

gpd.tee.cryptography.ecc Boolean Since: TEE Internal Core API v1.1; deprecated in
TEE Internal Core API v1.2

If set to true, then the Elliptic Curve Cryptographic
(ECC) algorithms shown in Table 6-2 are supported.
(This property is deprecated; however, see
section 6.10.3 regarding responding when this
property is queried.)

TEE Internal Core API Specification – Public Review v1.2.1.31 89 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.cryptography.nist Boolean Since: TEE Internal Core API v1.2

If set to true, then all of the cryptographic elements
defined in Table 6-14 with the Source column marked
NIST are supported.
If it is set to false or is absent, it does not mean
that none of these cryptographic elements are
supported. See TEE_IsAlgorithmSupported in
section 6.2.9.

gpd.tee.cryptography.bsi-r Boolean Since: TEE Internal Core API v1.2

If set to true, then all of the cryptographic elements
defined in Table 6-14 with the Source column marked
BSI-R are supported.
If it is set to false or is absent, it does not mean
that none of these cryptographic elements are
supported. See TEE_IsAlgorithmSupported in
section 6.2.9.

gpd.tee.cryptography.bsi-t Boolean Since: TEE Internal Core API v1.2

If set to true, then all of the cryptographic elements
defined in Table 6-14 with the Source column marked
BSI-T are supported.
If it is set to false or is absent, it does not mean
that none of these cryptographic elements are
supported. See TEE_IsAlgorithmSupported in
section 6.2.9.

gpd.tee.cryptography.ietf Boolean Since: TEE Internal Core API v1.2

If set to true, then all of the cryptographic elements
defined in Table 6-14 with the Source column marked
IETF are supported.
If it is set to false or is absent, it does not mean
that none of these cryptographic elements are
supported. See TEE_IsAlgorithmSupported in
section 6.2.9.

gpd.tee.cryptography.octa Boolean Since: TEE Internal Core API v1.2

If set to true, then the cryptographic elements
defined in Table 6-14 with the Source column marked
OCTA are supported. In addition, all definitions
related to SM3 and SM4 are also supported.
If it is set to false or is absent, it does not mean
that none of these cryptographic elements are
supported. See TEE_IsAlgorithmSupported in
section 6.2.9.

90 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.trustedStorage.
private.rollbackProtection

Integer Since: TEE Internal Core API v1.3

Indicates the level of rollback detection provided by
Trusted Storage supplied by the implementation:

100: Rollback detection mechanism for the Trusted
Storage SHALL be enforced at the REE level.
1000: Rollback detection mechanism for the
Trusted Storage SHALL be based on
TEE-controlled hardware. This hardware SHALL be
out of reach of software attacks from the REE.
10000: The Trusted Storage Space SHALL be
implemented on TEE-controlled hardware and
SHALL be immune to rollback.
All other values: Reserved for future use

External actors may be able to roll back the Trusted
Storage in the case of protection levels 100 and 1000
but this SHALL be detected by the implementation.
If an active TA attempts to access material held in
Trusted Storage that has been rolled back, it will
receive an error equivalent to a corrupted object.

gpd.tee.trustedStorage.perso.
rollbackProtection

gpd.tee.trustedStorage.
protected.rollbackProtection

Integer Since: TEE Internal Core API v1.3

Indicates the level of protection from rollback of
Trusted Storage supplied by the implementation:

10000: The Trusted Storage Space SHALL be
implemented on TEE-controlled hardware and
SHALL be immune to rollback.
All other values: Reserved for future use

TEE Internal Core API Specification – Public Review v1.2.1.31 91 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.trustedStorage.
antiRollback.protectionLevel

Integer Since: TEE Internal Core API v1.2; deprecated in
TEE Internal Core API v1.3 – See Backward
Compatibility note below.

Indicates the level of protection from rollback of
Trusted Storage supplied by the implementation:

100: Anti-rollback mechanism for the Trusted
Storage SHALL be enforced at the REE level.
1000: Anti-rollback mechanism for the Trusted
Storage SHALL be based on TEE-controlled
hardware. This hardware SHALL be out of reach of
software attacks from the REE.
All other values: Reserved.

If an active TA attempts to access material held in
Trusted Storage that has been rolled back, it will
receive an error equivalent to a corrupted object.
External actors may still be able to roll back the
Trusted Storage but this SHALL be detected by the
implementation.

Backward Compatibility
Versions prior to TEE Internal Core API v1.2 allowed
no anti-rollback protection to be reported. For any
Trusted OS claiming compatibility to v1.2 or later of
this specification, reporting no anti-rollback protection
is no longer allowed, and the Trusted OS SHALL
implement some form of anti-rollback protection.
If the Trusted Storage Space is implemented entirely
on hardware with a protection level greater than
1000, then the implementation SHALL set this
property value to 1000; otherwise the lowest
protection level SHALL be reported.

92 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.trustedStorage.
rollbackDetection.
protectionLevel

Integer Since: TEE Internal Core API v1.1; deprecated in
TEE Internal Core API v1.3 – See Backward
Compatibility note below.

Indicates the level of protection that a Trusted
Application can assume from the rollback detection
mechanism of the Trusted Storage:

100: Rollback detection mechanism for the Trusted
Storage is enforced at the REE level.
1000: Rollback detection mechanism for the
Trusted Storage is based on TEE-controlled
hardware. This hardware SHALL be out of reach of
software attacks from the REE. Users may still be
able to roll back the Trusted Storage but this
SHALL be detected by the implementation.
All other values: Reserved.

Backward Compatibility
If the Trusted Storage Space is implemented on
TEE-controlled hardware immune to rollback then the
implementation SHALL set this property value to
1000.

gpd.tee.trustedos.
implementation.version

String Since: TEE Internal Core API v1.1

The detailed version number of the Trusted OS.
The value of this property SHALL change whenever
anything changes in the code forming the Trusted OS
which provides the TEE, i.e. any patch SHALL
change this string.

gpd.tee.trustedos.
implementation.binaryversion

Binary Since: TEE Internal Core API v1.1

A binary value which is equivalent to
gpd.tee.trustedos.implementation.version.
May be derived from some form of certificate
indicating the software has been signed, a
measurement of the image, a checksum, a direct
binary conversion of
gpd.tee.trustedos.implementation.version,
or any other binary value that the TEE manufacturer
chooses to provide. The Trusted OS manufacturer’s
documentation SHALL state the format of this value.
The value of this property SHALL change whenever
anything changes in the code forming the Trusted OS
which provides the TEE, i.e. any patch SHALL
change this binary.

gpd.tee.trustedos.
manufacturer

String Since: TEE Internal Core API v1.1

Name of the manufacturer of the Trusted OS.

TEE Internal Core API Specification – Public Review v1.2.1.31 93 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning
gpd.tee.firmware.
implementation.version

String Since: TEE Internal Core API v1.1

The detailed version number of the firmware which
supports the Trusted OS implementation. This
includes all privileged software involved in the secure
booting and support of the TEE apart from the secure
OS and Trusted Applications.
The value of this property SHALL change whenever
anything changes in this code, i.e. any patch SHALL
change this string. The value of this property MAY be
the empty string if there is no such software.

gpd.tee.firmware.
implementation.binaryversion

Binary Since: TEE Internal Core API v1.1

A binary value which is equivalent to
gpd.tee.firmware.implementation.version.
May be derived from some form of certificate
indicating the firmware has been signed, a
measurement of the image, a checksum, a direct
binary conversion of
gpd.tee.firmware.implementation.version,
or any other binary value that the Trusted OS
manufacturer chooses to provide. The Trusted OS
manufacturer’s documentation SHALL state the
format of this value.
The value of this property SHALL change whenever
anything changes in this code, i.e. any patch SHALL
change this binary. The value of this property MAY
be a zero length value if there is no such firmware.

gpd.tee.firmware.manufacturer String Since: TEE Internal Core API v1.1

Name of the manufacturer of the firmware which
supports the Trusted OS or the empty string if there
is no such firmware.

gpd.tee.event.maxSources Integer Since: TEE Internal Core API v1.2

The maximum number of secure event sources the
implementation can support.

 1499

94 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.7.1 Specification Version Number Property 1500

This specification defines a TEE property containing the version number of the specification that the 1501
implementation conforms to. The property can be retrieved using the normal Property Access Functions. The 1502
property SHALL be named “gpd.tee.internalCore.version” and SHALL be of integer type with the 1503
interpretation given below. 1504

The specification version number property consists of four positions: major, minor, maintenance, and RFU. 1505
These four bytes are combined into a 32-bit unsigned integer as follows: 1506

• The major version number of the specification is placed in the most significant byte. 1507

• The minor version number of the specification is placed in the second most significant byte. 1508

• The maintenance version number of the specification is placed in the second least significant byte. 1509
If the version is not a maintenance version, this SHALL be zero. 1510

• The least significant byte is reserved for future use. Currently this byte SHALL be zero. 1511

Table 4-14b: Specification Version Number Property – 32-bit Integer Structure 1512

Bits [24-31] (MSB) Bits [16-23] Bits [8-15] Bits [0-7] (LSB)

Major version number
of the specification

Minor version number
of the specification

Maintenance version
number of the
specification

Reserved for use by
GlobalPlatform.
Currently SHALL be zero.

 1513

So, for example: 1514

• Specification version 1.1 will be held as 0x01010000 (16842752 in base 10). 1515

• Specification version 1.2 will be held as 0x01020000 (16908288 in base 10). 1516

• Specification version 1.2.3 will be held as 0x01020300 (16909056 in base 10). 1517

• Specification version 12.13.14 will be held as 0x0C0D0E00 (202182144 in base 10). 1518

• Specification version 212.213.214 will be held as 0xD4D5D600 (3570783744 in base 10). 1519

This places the following requirement on the version numbering: 1520

• No specification can have a Major or Minor or Maintenance version number greater than 255. 1521

 1522

TEE Internal Core API Specification – Public Review v1.2.1.31 95 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.8 Panics 1523

4.8.1 TEE_Panic 1524

Since: TEE Internal API v1.0 1525

void TEE_Panic(TEE_Result panicCode); 1526

Description 1527

The TEE_Panic function raises a Panic in the Trusted Application instance. 1528

When a Trusted Application calls the TEE_Panic function, the current instance SHALL be destroyed and all 1529
the resources opened by the instance SHALL be reclaimed. All sessions opened from the panicking instance 1530
on another TA SHALL be gracefully closed and all cryptographic objects and operations SHALL be closed 1531
properly. 1532

When an instance panics, its clients receive the return code TEE_ERROR_TARGET_DEAD of origin 1533
TEE_ORIGIN_TEE until they close their session. This applies to Regular Execution Environment clients calling 1534
through the TEE Client API (see [Client API]) and to Trusted Execution Environment clients calling through the 1535
Internal Client API (see section 4.9). 1536

When this routine is called, an implementation in a non-production environment, such as in a development or 1537
pre-production state, SHALL display the supplied panicCode using the mechanisms defined in 1538
[TEE TA Debug] (or an implementation-specific alternative) to help the developer understand the programmer 1539
error. Diagnostic information SHOULD NOT be exposed outside of a secure development environment. 1540

Once an instance is panicked, no TA entry point is ever called again for this instance, not even 1541
TA_DestroyEntryPoint. The caller cannot expect that the TEE_Panic function will return. 1542

Parameters 1543

• panicCode: An informative Panic code defined by the TA. May be displayed in traces if traces are 1544
available. 1545

Specification Number: 10 Function Number: 0x301 1546

96 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9 Internal Client API 1547

This API allows a Trusted Application to act as a client to another Trusted Application. 1548

4.9.1 TEE_OpenTASession 1549

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 1550

TEE_Result TEE_OpenTASession(1551
 [in] TEE_UUID* destination, 1552
 uint32_t cancellationRequestTimeout, 1553
 uint32_t paramTypes, 1554
 [inout] TEE_Param params[4], 1555
 [out] TEE_TASessionHandle* session, 1556
 [out] uint32_t* returnOrigin); 1557

Description 1558

The function TEE_OpenTASession opens a new session with a Trusted Application. 1559

The destination Trusted Application is identified by its UUID passed in destination. A set of four parameters 1560
can be passed during the operation. See section 4.9.4 for a detailed specification of how these parameters 1561
are passed in the paramTypes and params arguments. 1562

The result of this function is returned both in the return code and the return origin, stored in the variable pointed 1563
to by returnOrigin: 1564

• If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it 1565
could reach the target Trusted Application. The possible return codes are listed in “Return Code” 1566
below. 1567

• If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return code depends on 1568
the protocol exposed by the target Trusted Application. However, if TEE_SUCCESS is returned, it 1569
always means that the session was successfully opened and if the function returns a code different 1570
from TEE_SUCCESS, it means that the session opening failed. 1571

When the session is successfully opened, i.e. when the function returns TEE_SUCCESS, a valid session handle 1572
is written into *session. Otherwise, the value TEE_HANDLE_NULL is written into *session. 1573

Parameters 1574

• destination: A pointer to a TEE_UUID structure containing the UUID of the destination Trusted 1575
Application 1576

• cancellationRequestTimeout: Timeout in milliseconds or the special value 1577
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE SHALL act as 1578
though a cancellation request for the operation had been sent. 1579

• paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details. 1580

• params: The parameters passed in the operation. See section 4.9.4 for more details. These are 1581
updated only if the returnOrigin is TEE_ORIGIN_TRUSTED_APP. 1582

The params parameter is defined in the prototype as an array of length 4. Implementers should be 1583
aware that the address of the start of the array is passed to the callee. 1584

• session: A pointer to a variable that will receive the client session handle. The pointer SHALL NOT 1585
be NULL. The value is set to TEE_HANDLE_NULL upon error. 1586

TEE Internal Core API Specification – Public Review v1.2.1.31 97 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if 1587
the return origin is not needed. 1588

Specification Number: 10 Function Number: 0x403 1589

Return Code 1590

• TEE_SUCCESS: In case of success; the session was successfully opened. 1591

• Any other value: The opening failed. 1592

If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed 1593
by the destination Trusted Application. 1594

If the return origin is other than TEE_ORIGIN_TRUSTED_APP, one of the following return codes can be 1595
returned: 1596

o TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to open the session 1597

o TEE_ERROR_ITEM_NOT_FOUND: If no Trusted Application matches the requested destination UUID 1598

o TEE_ERROR_ACCESS_DENIED: If access to the destination Trusted Application is denied 1599

o TEE_ERROR_BUSY: If the destination Trusted Application does not allow more than one session at 1600
a time and already has a session in progress 1601

o TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the 1602
operation 1603

o TEE_ERROR_CANCEL: If the request is cancelled by anything other than the destination Trusted 1604
Application 1605

Panic Reasons 1606

• If the implementation detects any error that cannot be represented by any defined or implementation 1607
defined error code. 1608

• If memory which was allocated with TEE_MALLOC_NO_SHARE is referenced by one of the parameters. 1609

Backward Compatibility 1610

The error code TEE_CANCEL was added in TEE Internal Core API v1.2. 1611

 1612

98 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9.2 TEE_CloseTASession 1613

Since: TEE Internal API v1.0 1614

void TEE_CloseTASession(TEE_TASessionHandle session); 1615

Description 1616

The function TEE_CloseTASession closes a client session. 1617

Parameters 1618

• session: An opened session handle 1619

Specification Number: 10 Function Number: 0x401 1620

Panic Reasons 1621

• If the implementation detects any error. 1622

TEE Internal Core API Specification – Public Review v1.2.1.31 99 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9.3 TEE_InvokeTACommand 1623

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 1624

TEE_Result TEE_InvokeTACommand(1625
 TEE_TASessionHandle session, 1626
 uint32_t cancellationRequestTimeout, 1627
 uint32_t commandID, 1628
 uint32_t paramTypes, 1629
 [inout] TEE_Param params[4], 1630
 [out] uint32_t* returnOrigin); 1631

Description 1632

The function TEE_InvokeTACommand invokes a command within a session opened between the client 1633
Trusted Application instance and a destination Trusted Application instance. 1634

The parameter session SHALL reference a valid session handle opened by TEE_OpenTASession. 1635

Up to four parameters can be passed during the operation. See section 4.9.4 for a detailed specification of 1636
how these parameters are passed in the paramTypes and params arguments. 1637

The result of this function is returned both in the return code and the return origin, stored in the variable pointed 1638
to by returnOrigin: 1639

If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it could 1640
reach the destination Trusted Application. The possible return codes are listed in “Return Code” below. 1641

If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return code is determined by the 1642
protocol exposed by the destination Trusted Application. It is recommended that the Trusted Application 1643
developer choose TEE_SUCCESS (0) to indicate success in their protocol, as this makes it possible to 1644
determine success or failure without looking at the return origin. 1645

Parameters 1646

• session: An opened session handle 1647

• cancellationRequestTimeout: Timeout in milliseconds or the special value 1648
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE SHALL act as 1649
though a cancellation request for the operation had been sent. 1650

• commandID: The identifier of the Command to invoke. The meaning of each Command Identifier 1651
SHALL be defined in the protocol exposed by the target Trusted Application. 1652

• paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details. 1653

• params: The parameters passed in the operation. See section 4.9.4 for more details. 1654

The params parameter is defined in the prototype as an array of length 4. Implementers should be 1655
aware that the address of the start of the array is passed to the callee. 1656

• returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if 1657
the return origin is not needed. 1658

Specification Number: 10 Function Number: 0x402 1659

100 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Code 1660

• If the return origin is different from TEE_ORIGIN_TRUSTED_APP, one of the following return codes can 1661
be returned: 1662

o TEE_SUCCESS: In case of success. 1663

o TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation 1664

o TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the 1665
operation 1666

o TEE_ERROR_CANCEL: If the request is cancelled by anything other than the destination Trusted 1667
Application 1668

• If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed 1669
by the destination Trusted Application. 1670

Panic Reasons 1671

• If the implementation detects that the security characteristics of a memory buffer would be 1672
downgraded by the requested access rights. See Table 4-5. 1673

• If the implementation detects any error associated with this function that is not explicitly associated 1674
with a defined return code for this function. 1675

• If memory which was allocated with TEE_MALLOC_NO_SHARE is referenced by one of the parameters. 1676

Backward Compatibility 1677

The error code TEE_CANCEL was added in TEE Internal Core API v1.2. 1678

 1679

TEE Internal Core API Specification – Public Review v1.2.1.31 101 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9.4 Operation Parameters in the Internal Client API 1680

The functions TEE_OpenTASession and TEE_InvokeTACommand take paramTypes and params as 1681
arguments. The calling Trusted Application can use these arguments to pass up to four parameters. 1682

Each of the parameters has a type, which is one of the TEE_PARAM_TYPE_XXX values listed in section 4.2.1. 1683
The content of paramTypes SHOULD be built using the macro TEE_PARAM_TYPES (see section 4.3.6.1). 1684

Unless all parameter types are set to TEE_PARAM_TYPE_NONE, params SHALL NOT be NULL and SHALL 1685
point to an array of four TEE_Param elements. Each of the params[i] is interpreted as follows. 1686

When the operation starts, the Framework reads the parameters as described in the following table. 1687

Table 4-15: Interpretation of params[i] on Entry to Internal Client API 1688

Parameter Type Interpretation of params[i]
TEE_PARAM_TYPE_NONE
TEE_PARAM_TYPE_VALUE_OUTPUT

Ignored.

TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_VALUE_INOUT

Contains two integers in params[i].value.a and
params[i].value.b.

TEE_PARAM_TYPE_MEMREF_INPUT
TEE_PARAM_TYPE_MEMREF_OUTPUT
TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.buffer and
params[i].memref.size SHALL be initialized with a
memory buffer that is accessible with the access rights
described in the type. The buffer can be NULL, in which
case size SHALL be set to 0.

 1689

During the operation, the destination Trusted Application can update the contents of the OUTPUT or INOUT 1690
Memory References. 1691

When the operation completes, the Framework updates the structure params[i] as described in the 1692
following table. 1693

Table 4-16: Effects of Internal Client API on params[i] 1694

Parameter Type Effects on params[i]
TEE_PARAM_TYPE_NONE
TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_MEMREF_INPUT

Unchanged.

TEE_PARAM_TYPE_VALUE_OUTPUT
TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b are
updated with the value sent by the destination Trusted
Application.

TEE_PARAM_TYPE_MEMREF_OUTPUT
TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.size is updated to reflect the actual
or requested size of the buffer.

 1695

102 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The implementation SHALL enforce the following restrictions on TEE_PARAM_TYPE_MEMREF_XXX values: 1696

• Where all or part of the referenced memory buffer was passed to the TA from the REE or from another 1697
TA, the implementation SHALL NOT result in downgrade of the security characteristics of the buffer – 1698
see Table 4-5. 1699

• Where all or part of the referenced buffer was allocated by the TA with the TEE_MALLOC_NO_SHARE 1700
hint, the implementation SHALL raise a Panic for the TA. 1701

TEE Internal Core API Specification – Public Review v1.2.1.31 103 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10 Cancellation Functions 1702

This section defines functions for Trusted Applications to handle cancellation requested by a Client where a 1703
Client is either an REE Client Application or a TA. 1704

When a Client requests cancellation using the function TEEC_RequestCancellation (in the case of an 1705
REE Client using the [Client API]) or a cancellation is created through a timeout (in the case of a TA Client), 1706
the implementation SHALL do the following: 1707

• If the operation has not reached the TA yet but has been queued in the TEE, then it SHALL be retired 1708
from the queue and fail with the return code: 1709

o For an REE Client, TEEC_ERROR_CANCEL and the origin TEEC_ORIGIN_TEE; 1710

o For a TEE Client, TEE_ERROR_CANCEL and the origin TEE_ORIGIN_TEE. 1711

• If the operation has been transmitted to the Trusted Application, the implementation SHALL set the 1712
Cancellation Flag of the task executing the command. If the Peripheral and Event APIs are present, a 1713
TEE_Event_ClientCancel event shall be inserted into the event queue by the session peripheral. 1714

• If the Trusted Application has unmasked the effects of cancellation by using the function 1715
TEE_UnmaskCancellation, and if the task is engaged in a cancellable function when the 1716
Cancellation Flag is set, then that cancellable function is interrupted. The Trusted Application can 1717
detect that the function has been interrupted because it returns TEE_ERROR_CANCEL. It can then 1718
execute cleanup code and possibly fail the current client operation, although it may well report a 1719
success. 1720

o Note that this version of the specification defines the following cancellable functions: TEE_Wait 1721
and TEE_Event_Wait. 1722

o The functions TEE_OpenTASession and TEE_InvokeTACommand, while not cancellable per se, 1723
SHALL transmit cancellation requests: If the Cancellation Flag is set and the effects of 1724
cancellation are not masked, then the Trusted Core Framework SHALL consider that the 1725
cancellation of the corresponding operation is requested. 1726

• When the Cancellation Flag is set for a given task, the function TEE_GetCancellationFlag 1727
SHALL return true, but only in the case the cancellations are not masked. This allows the Trusted 1728
Application to poll the Cancellation Flag, for example, when it is engaged in a lengthy active 1729
computation not using cancellable functions such as TEE_Wait. 1730

 1731

104 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10.1 TEE_GetCancellationFlag 1732

Since: TEE Internal API v1.0 1733

bool TEE_GetCancellationFlag(void); 1734

Description 1735

The TEE_GetCancellationFlag function determines whether the current task’s Cancellation Flag is set. If 1736
cancellations are masked, this function SHALL return false. This function cannot panic. 1737

Specification Number: 10 Function Number: 0x501 1738

Return Value 1739

• true if the Cancellation Flag is set and cancellations are not masked 1740

• false if the Cancellation Flag is not set or if cancellations are masked 1741

TEE Internal Core API Specification – Public Review v1.2.1.31 105 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10.2 TEE_UnmaskCancellation 1742

Since: TEE Internal API v1.0 1743

bool TEE_UnmaskCancellation(void); 1744

Description 1745

The TEE_UnmaskCancellation function unmasks the effects of cancellation for the current task. 1746

When cancellation requests are unmasked, the Cancellation Flag interrupts cancellable functions such as 1747
TEE_Wait and requests the cancellation of operations started with TEE_OpenTASession or 1748
TEE_InvokeTACommand. 1749

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to 1750
cope with the effects of cancellation requests. 1751

Specification Number: 10 Function Number: 0x503 1752

Return Value 1753

• true if cancellations were masked prior to calling this function 1754

• false otherwise 1755

Panic Reasons 1756

• If the implementation detects any error. 1757

 1758

4.10.3 TEE_MaskCancellation 1759

Since: TEE Internal API v1.0 1760

bool TEE_MaskCancellation(void); 1761

Description 1762

The TEE_MaskCancellation function masks the effects of cancellation for the current task. 1763

When cancellation requests are masked, the Cancellation Flag does not have an effect on the cancellable 1764
functions and cannot be retrieved using TEE_GetCancellationFlag. 1765

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to 1766
cope with the effects of cancellation requests. 1767

Specification Number: 10 Function Number: 0x502 1768

Return Value 1769

• true if cancellations were masked prior to calling this function 1770

• false otherwise 1771

Panic Reasons 1772

• If the implementation detects any error. 1773

106 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11 Memory Management Functions 1774

This section defines the following functions: 1775

• A function to check the access rights of a given buffer. This can be used in particular to check if the 1776
buffer belongs to shared memory. 1777

• Access to an instance data register, which provides a possibly more efficient alternative to using read-1778
write C global variables 1779

• A malloc facility 1780

• A few utilities to copy and fill data blocks 1781

 1782

4.11.1 TEE_CheckMemoryAccessRights 1783

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 1784

TEE_Result TEE_CheckMemoryAccessRights(1785
 uint32_t accessFlags, 1786
 [inbuf] void* buffer, size_t size); 1787

Description 1788

The TEE_CheckMemoryAccessRights function causes the implementation to examine a buffer of memory 1789
specified in the parameters buffer and size and to determine whether the current Trusted Application 1790
instance has the access rights requested in the parameter accessFlags. If the characteristics of the buffer 1791
are compatible with accessFlags, then the function returns TEE_SUCCESS. Otherwise, it returns 1792
TEE_ERROR_ACCESS_DENIED. Note that the buffer SHOULD NOT be accessed by the function, but the 1793
implementation SHOULD check the access rights based on the address of the buffer and internal memory 1794
management information. 1795

The parameter accessFlags can contain one or more of the following flags: 1796

• TEE_MEMORY_ACCESS_READ: Check that the buffer is entirely readable by the current Trusted 1797
Application instance. 1798

• TEE_MEMORY_ACCESS_WRITE: Check that the buffer is entirely writable by the current Trusted 1799
Application instance. 1800

• TEE_MEMORY_ACCESS_ANY_OWNER: 1801

o If this flag is not set, then the function checks that the buffer is not shared, i.e. whether it can be 1802
safely passed in an [in] or [out] parameter. 1803

o If this flag is set, then the function does not check ownership. It returns TEE_SUCCESS if the 1804
Trusted Application instance has read or write access to the buffer, independently of whether the 1805
buffer resides in memory owned by a Client or not. 1806

• All other flags are reserved for future use and SHOULD be set to 0. 1807

The result of this function is valid until: 1808

• The allocated memory area containing the supplied buffer is passed to TEE_Realloc or TEE_Free. 1809

• One of the entry points of the Trusted Application returns. 1810

• Actors outside of the TEE change the memory access rights when the memory is shared with an 1811
outside entity. 1812

TEE Internal Core API Specification – Public Review v1.2.1.31 107 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

In the first two situations, the access rights of a given buffer MAY change and the Trusted Application SHOULD 1813
call the function TEE_CheckMemoryAccessRights again. 1814

When this function returns TEE_SUCCESS, and as long as this result is still valid, the implementation SHALL 1815
guarantee the following properties: 1816

• For the flag TEE_MEMORY_ACCESS_READ and TEE_MEMORY_ACCESS_WRITE, the implementation 1817
SHALL guarantee that subsequent read or write accesses by the Trusted Application wherever in the 1818
buffer will succeed and will not panic. 1819

• When the flag TEE_MEMORY_ACCESS_ANY_OWNER is not set, the implementation SHALL guarantee 1820
that the memory buffer is owned either by the Trusted Application instance or by a more trusted 1821
component, and cannot be controlled, modified, or observed by a less trusted component, such as the 1822
Client of the Trusted Application. This means that the Trusted Application can assume the following 1823
guarantees: 1824

o Read-after-read consistency: If the Trusted Application performs two successive read accesses 1825
to the buffer at the same address and if, between the two read accesses, it performs no write, 1826
either directly or indirectly through the API to that address, then the two reads SHALL return the 1827
same result. 1828

o Read-after-write consistency: If the Trusted Application writes some data in the buffer and 1829
subsequently reads the same address and if it performs no write, either directly or indirectly 1830
through the API to that address in between, the read SHALL return the data. 1831

o Non-observability: If the Trusted Application writes some data in the buffer, then the data 1832
SHALL NOT be observable by components less trusted than the Trusted Application itself. 1833

Note that when true memory sharing is implemented between Clients and the Trusted Application, the Memory 1834
Reference Parameters passed to the TA entry points will typically not satisfy these requirements. In this case, 1835
the function TEE_CheckMemoryAccessRights SHALL return TEE_ERROR_ACCESS_DENIED. The code 1836
handling such buffers has to be especially careful to avoid security issues brought by this lack of guarantees. 1837
For example, it can read each byte in the buffer only once and refrain from writing temporary data in the buffer. 1838

Additionally, the implementation SHALL guarantee that some types of memory blocks have a minimum set of 1839
access rights: 1840

• The following blocks SHALL allow read and write accesses, SHALL be owned by the Trusted 1841
Application instance, and SHOULD NOT allow code execution: 1842

o All blocks returned by TEE_Malloc or TEE_Realloc 1843

o All the local and global non-const C variables 1844

o The TEE_Param structures passed to the entry points TA_OpenSessionEntryPoint and 1845
TA_InvokeCommandEntryPoint. This applies to the immediate contents of the TEE_Param 1846
structures, but not to the pointers contained in the fields of such structures, which can of course 1847
point to memory owned by the client. Note that this also means that these TEE_Param structures 1848
SHALL NOT directly point to the corresponding structures in the TEE Client API (see [Client API]) 1849
or the Internal Client API (see section 4.9). The implementation SHALL perform a copy into a safe 1850
TA-owned memory buffer before passing the structures to the entry points. 1851

• The following blocks SHALL allow read accesses, SHALL be owned by the Trusted Application 1852
instance, and SHOULD NOT allow code execution: 1853

o All const local or global C variables 1854

• The following blocks MAY allow read accesses, SHALL be owned by the Trusted Application instance, 1855
and SHALL allow code execution: 1856

o The code of the Trusted Application itself 1857

108 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• When a particular parameter passed in the structure TEE_Param to a TA entry point is a Memory 1858
Reference as specified in its parameter type, then this block, as described by the initial values of the 1859
fields buffer and size in that structure, SHALL allow read and/or write accesses as specified in 1860
the parameter type. As noted above, this buffer is not required to reside in memory owned by the TA 1861
instance. 1862

Finally, any implementation SHALL also guarantee that the NULL pointer cannot be dereferenced. If a Trusted 1863
Application attempts to read one byte at the address NULL, it SHALL panic. This guarantee SHALL extend to 1864
a segment of addresses starting at NULL, but the size of this segment is implementation-dependent. 1865

Parameters 1866

• accessFlags: The access flags to check. Valid values are shown in Table 4-5. 1867

• buffer, size: The description of the buffer to check. 1868

Specification Number: 10 Function Number: 0x601 1869

Return Code 1870

• TEE_SUCCESS: If the entire buffer allows the requested accesses 1871

• TEE_ERROR_ACCESS_DENIED: If at least one byte in the buffer is not accessible with the requested 1872
accesses 1873

Panic Reasons 1874

TEE_CheckMemoryAccessRights SHALL NOT panic for any reason. 1875

Backward Compatibility 1876

TEE Internal Core API v1.1 used a different type for size. 1877

Prior to TEE Internal Core API v1.2, TEE_CheckMemoryAccessRights did not specify the [inbuf] 1878
annotation on buffer. 1879

 1880

TEE Internal Core API Specification – Public Review v1.2.1.31 109 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.2 TEE_SetInstanceData 1881

Since: TEE Internal API v1.0 1882

void TEE_SetInstanceData(1883
 [ctx] void* instanceData); 1884

Description 1885

The TEE_SetInstanceData and TEE_GetInstanceData functions provide an alternative to writable 1886
global data (writable variables with global scope and writable static variables with global or function scope). 1887
While an implementation SHALL support C global variables, using these functions may be sometimes more 1888
efficient, especially if only a single instance data variable is required. 1889

These two functions can be used to register and access an instance variable. Typically this instance variable 1890
can be used to hold a pointer to a Trusted Application-defined memory block containing any writable data that 1891
needs instance global scope, or writable static data that needs instance function scope. 1892

The value of this pointer is not interpreted by the Framework, and is simply passed back to other 1893
TA_ functions within this session. Note that *instanceData may be set with a pointer to a buffer allocated 1894
by the Trusted Application instance or with anything else, such as an integer, a handle, etc. The Framework 1895
will not automatically free *instanceData when the session is closed; the Trusted Application instance is 1896
responsible for freeing memory if required. 1897

An equivalent session context variable for managing session global and static data exists for sessions (see 1898
TA_OpenSessionEntryPoint, TA_InvokeCommandEntryPoint, and TA_CloseSessionEntryPoint in 1899
section 4.3). 1900

This function sets the Trusted Application instance data pointer. The data pointer can then be retrieved by the 1901
Trusted Application instance by calling the TEE_GetInstanceData function. 1902

Parameters 1903

• instanceData: A pointer to the global Trusted Application instance data. This pointer may be NULL. 1904

Specification Number: 10 Function Number: 0x609 1905

Panic Reasons 1906

• If the implementation detects any error. 1907

110 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.3 TEE_GetInstanceData 1908

Since: TEE Internal API v1.0 1909

 [ctx] void* TEE_GetInstanceData(void); 1910

Description 1911

The TEE_GetInstanceData function retrieves the instance data pointer set by the Trusted Application using 1912
the TEE_SetInstanceData function. 1913

Specification Number: 10 Function Number: 0x603 1914

Return Value 1915

The value returned is the previously set pointer to the Trusted Application instance data, or NULL if no instance 1916
data pointer has yet been set. 1917

Panic Reasons 1918

• If the implementation detects any error. 1919

TEE Internal Core API Specification – Public Review v1.2.1.31 111 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.4 TEE_Malloc 1920

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 1921

void* TEE_Malloc(1922
 size_t size, 1923
 uint32_t hint); 1924

Description 1925

The TEE_Malloc function allocates space for an object whose size in bytes is specified in the parameter 1926
size. 1927

The pointer returned is guaranteed to be aligned such that it may be assigned as a pointer to any basic C type. 1928

The parameter hint is a hint to the allocator. The valid values for the hint are defined in Table 4-17. The 1929
valid hint values are a bitmask and can be independently set. This parameter allows Trusted Applications to 1930
refer to various pools of memory or to request special characteristics for the allocated memory by using an 1931
implementation-defined hint. Future versions of this specification may introduce additional standard hints. 1932

The hint values should be treated as a mask – they can be logically 'or'd together. In Table 4-17: 1933

• 'x' in a field means that the value of that bit or bits can be 1 or 0. 1934

• ‘y’ in a field means that the value of that bit or bits is irrelevant to the definition of that row, UNLESS 1935
already defined in a previous row, and can be either 1 or 0. 1936

Table 4-17: Valid Hint Values 1937

Name Bit Number Meaning
 31 30 – 2 1 0

TEE_MALLOC_FILL_ZERO 0 x x 0 Memory block returned SHALL be filled with
zeros.
Note: TEE_MALLOC_NO_FILL has precedence
over TEE_MALLOC_FILL_ZERO.

TEE_MALLOC_NO_FILL 0 x x 1 Memory block returned may not be filled with
zeros

TEE_MALLOC_NO_SHARE 0 x 1 x The returned block of memory will not be shared
with other TA instances.

Reserved 0 y Reserved for future versions of this specification.

Implementation defined 1 y Reserved for implementation-defined hints.

 1938

The hint SHALL be attached to the allocated block and SHALL be used when the block is reallocated with 1939
TEE_Realloc. 1940

If the space cannot be allocated, given the current hint value (for example because the hint value is not 1941
implemented), a NULL pointer SHALL be returned. 1942

TEE_MALLOC_NO_SHARE provides a mechanism for a TA developer to indicate that the allocation request is 1943
not to be shared with other TAs. Implementations MAY choose to use this hint to allocate memory from memory 1944
pools which are optimized for performance at the expense of sharing. 1945

TEE_MALLOC_NO_FILL provides a mechanism to allow a TA to indicate that it does not assume that memory 1946
will be zero filled. It SHALL be used in conjunction with TEE_MALLOC_NO_SHARE. 1947

112 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

A Trusted OS MAY use the TEE_MALLOC_NO_FILL hint to avoid clearing memory on allocation where it is 1948
safe to do so. When allocating to a TA, a Trusted OS SHALL zero fill memory which: 1949

• Has previously been allocated to another TA instance; 1950

• Has previously been allocated to internal structures of the TEE. 1951

• Does not have the TEE_MALLOC_NO_SHARE hint. 1952

Parameters 1953

• size: The size of the buffer to be allocated. 1954

• hint: A hint to the allocator. See Table 4-17 for valid values. 1955

Specification Number: 10 Function Number: 0x604 1956

Return Value 1957

Upon successful completion, with size not equal to zero, the function returns a pointer to the allocated space. 1958
If the space cannot be allocated, given the current hint value, a NULL pointer is returned. 1959

If the size of the requested space is zero: 1960

• The value returned is undefined but guaranteed to be different from NULL. This non-NULL value 1961
ensures that the hint can be associated with the returned pointer for use by TEE_Realloc. 1962

• The Trusted Application SHALL NOT access the returned pointer. The Trusted Application 1963
SHOULD panic if the memory pointed to by such a pointer is accessed for either read or write. 1964

Panic Reasons 1965

• If the implementation detects any error. 1966

• If TEE_MALLOC_NO_FILL is used without TEE_MALLOC_NO_SHARE. 1967

Backward Compatibility 1968

TEE Internal Core API v1.1 used a different type for size. 1969

The hint values TEE_MALLOC_NO_SHARE and TEE_MALLOC_NO_FILL were added in TEE Internal Core 1970
API v1.2. 1971

 1972

TEE Internal Core API Specification – Public Review v1.2.1.31 113 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.5 TEE_Realloc 1973

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 1974

void* TEE_Realloc(1975
 [inout] void* buffer, 1976
 size_t newSize); 1977

Description 1978

The TEE_Realloc function changes the size of the memory object pointed to by buffer to the size specified 1979
by newSize. 1980

The content of the object remains unchanged up to the lesser of the new and old sizes. Space in excess of 1981
the old size contains unspecified content. 1982

If the new size of the memory object requires movement of the object, the space for the previous instantiation 1983
of the object is deallocated. If the space cannot be allocated, the original object remains allocated, and this 1984
function returns a NULL pointer. 1985

If buffer is NULL, TEE_Realloc is equivalent to TEE_Malloc for the specified size. The associated hint 1986
applied SHALL be the default value defined in TEE_Malloc. 1987

It is a programmer error if buffer does not match a pointer previously returned by TEE_Malloc or 1988
TEE_Realloc, or if the space has previously been deallocated by a call to TEE_Free or TEE_Realloc. 1989

If the hint initially provided when the block was allocated with TEE_Malloc is 0, then the extended space is 1990
filled with zeroes. In general, the function TEE_Realloc SHOULD allocate the new memory buffer using 1991
exactly the same hint as for the buffer initially allocated with TEE_Malloc. In any case, it SHALL NOT 1992
downgrade the security or performance characteristics of the buffer. 1993

Note that any pointer returned by TEE_Malloc or TEE_Realloc and not yet freed or reallocated can be 1994
passed to TEE_Realloc. This includes the special non-NULL pointer returned when an allocation for 0 bytes 1995
is requested. 1996

Parameters 1997

• buffer: The pointer to the object to be reallocated 1998

• newSize: The new size required for the object 1999

Specification Number: 10 Function Number: 0x608 2000

Return Value 2001

Upon successful completion, TEE_Realloc returns a pointer to the (possibly moved) allocated space. 2002

If there is not enough available memory, TEE_Realloc returns a NULL pointer and the original buffer is still 2003
allocated and unchanged. 2004

Panic Reasons 2005

• If the implementation detects any error. 2006

114 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Backward Compatibility 2007

Prior to TEE Internal Core API v1.2: 2008

• TEE_Realloc used the [in] annotation for buffer. 2009

• TEE_Realloc used type uint32_t for the size parameter. On a Trusted OS with natural word 2010
length greater than 32 bits this leads to operation limitations, and the size parameter was changed to 2011
a size_t. 2012

A backward compatible version of TEE_Realloc can be selected at compile time if the version compatibility 2013
definitions (see section 3.5.1) indicate that compatibility with a version of this specification before v1.2 is 2014
required. 2015

void* TEE_Realloc(2016
 [in] void* buffer, 2017
 uint32_t newSize); 2018

 2019

TEE Internal Core API Specification – Public Review v1.2.1.31 115 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.6 TEE_Free 2020

Since: TEE Internal API v1.0 2021

void TEE_Free(void *buffer); 2022

Description 2023

The TEE_Free function causes the space pointed to by buffer to be deallocated; that is, made available 2024
for further allocation. 2025

If buffer is a NULL pointer, TEE_Free does nothing. Otherwise, it is a programmer error if the argument 2026
does not match a pointer previously returned by the TEE_Malloc or TEE_Realloc if the space has been 2027
deallocated by a call to TEE_Free or TEE_Realloc. 2028

Parameters 2029

• buffer: The pointer to the memory block to be freed 2030

Specification Number: 10 Function Number: 0x602 2031

Panic Reasons 2032

• If the implementation detects any error. 2033

 2034

116 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.7 TEE_MemMove 2035

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 2036

void TEE_MemMove(2037
 [outbuf(size)] void* dest, 2038
 [inbuf(size)] void* src, 2039
 size_t size); 2040

Description 2041

The TEE_MemMove function copies size bytes from the buffer pointed to by src into the buffer pointed to 2042
by dest. 2043

Copying takes place as if the size bytes from the buffer pointed to by src are first copied into a temporary 2044
array of size bytes that does not overlap the buffers pointed to by dest and src, and then the size 2045
bytes from the temporary array are copied into the buffer pointed to by dest. 2046

Parameters 2047

• dest: A pointer to the destination buffer 2048

• src: A pointer to the source buffer 2049

• size: The number of bytes to be copied 2050

Specification Number: 10 Function Number: 0x607 2051

Panic Reasons 2052

• If the implementation detects any error. 2053

Backward Compatibility 2054

Prior to TEE Internal Core API v1.2, TEE_MemMove used type uint32_t for the size parameter. On a 2055
Trusted OS with natural word length greater than 32 bits this leads to operation limitations, and the size 2056
parameter was changed to a size_t. 2057

A backward compatible version of TEE_MemMove can be selected at compile time if the version compatibility 2058
definitions (see section 3.5.1) indicate that compatibility with a version of this specification before v1.2 is 2059
required. 2060

void TEE_MemMove(2061
 [inbuf(size)] void* buffer1, 2062
 [inbuf(size)] void* buffer2, 2063
 uint32_t size); 2064

 2065

TEE Internal Core API Specification – Public Review v1.2.1.31 117 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.8 TEE_MemCompare 2066

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 2067

int32_t TEE_MemCompare(2068
 [inbuf(size)] void* buffer1, 2069
 [inbuf(size)] void* buffer2, 2070
 size_t size); 2071

Description 2072

The TEE_MemCompare function compares the first size bytes of the buffer pointed to by buffer1 to the 2073
first size bytes of the buffer pointed to by buffer2. 2074

Parameters 2075

• buffer1: A pointer to the first buffer 2076

• buffer2: A pointer to the second buffer 2077

• size: The number of bytes to be compared 2078

Specification Number: 10 Function Number: 0x605 2079

Return Value 2080

The sign of a non-zero return value is determined by the sign of the difference between the values of the first 2081
pair of bytes (both interpreted as type uint8_t) that differ in the objects being compared. 2082

• If the first byte that differs is higher in buffer1, then return an integer greater than zero. 2083

• If the first size bytes of the two buffers are identical, then return zero. 2084

• If the first byte that differs is higher in buffer2, then return an integer lower than zero. 2085

Panic Reasons 2086

• If the implementation detects any error. 2087

Backward Compatibility 2088

Prior to TEE Internal Core API v1.2, TEE_MemCompare used type uint32_t for the size parameter. On 2089
a Trusted OS with natural word length greater than 32 bits this leads to operation limitations, and the size 2090
parameter was changed to a size_t. 2091

A backward compatible version of TEE_MemCompare can be selected at compile time if the version 2092
compatibility definitions (see section 3.5.1) indicate that compatibility with a version of this specification before 2093
v1.2 is required. 2094

int32_t TEE_MemCompare(2095
 [inbuf(size)] void* buffer1, 2096
 [inbuf(size)] void* buffer2, 2097
 uint32_t size); 2098

 2099

118 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.9 TEE_MemFill 2100

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 2101

void TEE_MemFill(2102
 [outbuf(size)] void* buffer, 2103
 uint8_t x, 2104
 size_t size); 2105

Description 2106

The TEE_MemFill function writes the byte x into the first size bytes of the buffer pointed to by buffer. 2107

Parameters 2108

• buffer: A pointer to the destination buffer 2109

• x: The value to be set 2110

• size: The number of bytes to be set 2111

Specification Number: 10 Function Number: 0x606 2112

Panic Reasons 2113

• If the implementation detects any error. 2114

Backward Compatibility 2115

Prior to TEE Internal Core API v1.2, TEE_MemFill used type uint32_t for the x and size parameters. 2116

• The previous definition of x stated that the value of x would be cast to a uint8_t, which has now 2117
been made explicit. 2118

• Using uint32_t for a size parameter can lead to limitations on some platforms, and the size 2119
parameter has been changed to a size_t. 2120

A backward compatible version of TEE_MemFill can be selected at compile time if the version compatibility 2121
definitions (see section 3.5.1) indicate that compatibility with a version of this specification before v1.2 is 2122
required. 2123

void TEE_MemFill(2124
 [outbuf(size)] void* buffer, 2125
 uint32_t x, 2126
 uint32_t size); 2127

 2128

TEE Internal Core API Specification – Public Review v1.2.1.31 119 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 Trusted Storage API for Data and Keys 2129

This chapter includes the following sections: 2130

5.1 Summary of Features and Design .. 119 2131
5.2 Trusted Storage and Rollback Protection ... 123 2132
5.3 Data Types ... 124 2133
5.4 Constants.. 127 2134
5.5 Generic Object Functions ... 130 2135
5.6 Transient Object Functions... 137 2136
5.7 Persistent Object Functions.. 155 2137
5.8 Persistent Object Enumeration Functions .. 164 2138
5.9 Data Stream Access Functions .. 169 2139

 2140

5.1 Summary of Features and Design 2141

This section provides a summary of the features and design of the Trusted Storage API. 2142

• Each TA has access to a set of Trusted Storage Spaces, identified by 32-bit Storage Identifiers. 2143

o This specification defines three Trusted Storage Spaces for each TA, which are its own private 2144
storage spaces. 2145

 TEE_STORAGE_PRIVATE 2146

• A storage space that SHALL be private to the TEE, but that MAY be external to the 2147
hardware supporting the TEE. 2148

• Tampering SHALL be detected. 2149

• Rollback SHALL be detected as described in section 5.2. 2150

• This storage space MAY NOT be available if the REE is not active. 2151

• This storage space SHALL be erased by a factory reset. 2152

 TEE_STORAGE_PERSO (Optional) 2153

• A storage space that SHALL be private to the TEE, but that MAY be external to the 2154
hardware supporting the TEE. 2155

• Required by TMF (see [TMF ASN.1] section 5.5). 2156

• Tampering SHALL be detected. 2157

• Rollback SHALL be detected as described in section 5.2. 2158

• This storage space MAY NOT be available if the REE is not active. 2159

• Immunity from factory reset if present in the gpd.tee.tmf.resetpreserved.entities 2160
property (see [TMF ASN.1] section 6.5.4). 2161

 TEE_STORAGE_PROTECTED (Optional) 2162

• A storage space with additional characteristics over TEE_STORAGE_PRIVATE including: 2163

o Immunity from tampering. 2164

o Immunity from rollback. 2165

120 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o Immunity from factory reset if present in the 2166
gpd.tee.tmf.resetpreserved.entities property (see [TMF ASN.1] 2167
section 6.5.4). 2168

• This storage space MAY impose relatively low per TA storage limits and MAY impose rate 2169
limits. If storage or rate limiting is required, it SHALL be enforced by the Trusted OS. 2170

• This storage space MAY also be available while the REE is booting. GlobalPlatform believes 2171
that this can be implemented using a Replay Protected Memory Block (RPMB). 2172

o Unless explicitly overridden by other specifications, the objects in any Trusted Storage Space are 2173
accessible only to the TA that created them and SHALL NOT be visible to other TEE entities 2174
except those associated directly with implementing the Trusted Storage System. 2175

o Other storage identifiers may be defined in future versions of this specification or by an 2176
implementation, e.g. to refer to storage spaces shared among multiple TAs or for communicating 2177
between boot-time entities and run-time Trusted Applications. 2178

• A Trusted Storage Space contains Persistent Objects. Each persistent object is identified by an Object 2179
Identifier, which is a variable-length binary buffer from 0 to 64 bytes. Object identifiers can contain 2180
any bytes, including bytes corresponding to non-printable characters. 2181

• A persistent object can be a Cryptographic Key Object, a Cryptographic Key-Pair Object, or a Data 2182
Object. 2183

• Each persistent object has a type, which precisely defines the content of the object. For example, 2184
there are object types for AES keys, RSA key-pairs, data objects, etc. 2185

• All persistent objects have an associated Data Stream. Persistent data objects have only a data 2186
stream. Persistent cryptographic objects (that is, keys or key-pairs) have a data stream, Object 2187
Attributes, and metadata. 2188

o The Data Stream is entirely managed in the TA memory space. It can be loaded into a 2189
TA-allocated buffer when the object is opened or stored from a TA-allocated buffer when the object 2190
is created. It can also be accessed as a stream, so it can be used to store large amounts of data 2191
accessed by small chunks. 2192

o Object Attributes are used for small amounts of data (typically a few tens or hundreds of bytes). 2193
They can be stored in a memory pool that is separated from the TA instance and some attributes 2194
may be hidden from the TA itself. Attributes are used to store the key material in a structured way. 2195
For example, an RSA key-pair has an attribute for the modulus, the public exponent, the private 2196
exponent, etc. When an object is created, all mandatory Object Attributes SHALL be specified and 2197
optional attributes MAY be specified. 2198

Note that an implementation is allowed to store more information in an object than the visible 2199
attributes. For example, some data might be pre-computed and stored internally to accelerate 2200
subsequent cryptographic operations. 2201

o The metadata associated with each cryptographic object includes: 2202

 Key Size in bits. The precise meaning depends on the key algorithm. For example, AES key 2203
can have 128 bits, 192 bits, or 256 bits; RSA keys can have 1024 bits or 2048 bits or any other 2204
supported size, etc. 2205

 Key Usage Flags, which define the operations permitted with the key as well as whether the 2206
sensitive parts of the key material can be retrieved by the TA or not. 2207

• A TA can also allocate Transient Objects. Compared to persistent objects: 2208

o Transient objects are held in memory and are automatically wiped and reclaimed when they are 2209
closed or when the TA instance is destroyed. 2210

TEE Internal Core API Specification – Public Review v1.2.1.31 121 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o Transient objects contain only attributes and no data stream. 2211

o A transient object can be uninitialized, in which case it is an object container allocated with a 2212
certain object type and maximum size but with no attributes. A transient object becomes initialized 2213
when its attributes are populated. Note that persistent objects are always created initialized. This 2214
means that when the TA wants to generate or derive a persistent key, it has to first use a transient 2215
object then write the attributes of a transient object into a persistent object. 2216

o Transient objects have no identifier, they are only manipulated through object handles. 2217

o Currently, transient objects are used for cryptographic keys and key-pairs. 2218

• Any function that accesses a persistent object handle MAY return a status of 2219
TEE_ERROR_CORRUPT_OBJECT or TEE_ERROR_CORRUPT_OBJECT_2, which indicates that corruption 2220
of the object has been detected. Before this status is returned, the implementation SHALL delete the 2221
corrupt object and MAY close the associated handle; see 2222
gpd.ta.doesNotCloseHandleOnCorruptedObject on page 84. 2223

• Any function that accesses a persistent object MAY return a status of 2224
TEE_ERROR_STORAGE_NOT_AVAILABLE or TEE_ERROR_STORAGE_NOT_AVAILABLE_2, which 2225
indicates that the storage system in which the object is stored is not accessible for some reason. 2226

• Persistent and transient objects are manipulated through opaque Object Handles. 2227

o Some functions accept both types of object handles. For example, a cryptographic operation can 2228
be started with either a transient key handle or a persistent key handle. 2229

o Some functions accept only handles on transient objects. For example, populating the attributes of 2230
an object works only with a transient object because it requires an uninitialized object and 2231
persistent objects are always fully initialized. 2232

o Finally, the file-like API functions to access the data stream work only with persistent objects 2233
because transient objects have no data stream. 2234

Cryptographic operations are described in Chapter 6. 2235

Figure 5-1 illustrates how a TEE_ObjectHandle is manipulated by the Trusted Storage API. The state 2236
diagram is expressed in terms of the state that is revealed in the handleFlags by TEE_GetObjectInfo1. 2237

122 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-1: State Diagram for TEE_ObjectHandle (Informative) 2238

 2239
 2240

TEE Internal Core API Specification – Public Review v1.2.1.31 123 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2 Trusted Storage and Rollback Protection 2241

The level of protection that a Trusted Application can assume from the rollback detection mechanism of the 2242
Trusted Storage Spaces is implementation defined. The implementation SHALL provide appropriate properties 2243
as defined in Table 4-14 in section 4.7 to indicate the level of protection provided. 2244

gpd.tee.trustedStorage.private.rollbackProtection 2245

gpd.tee.trustedStorage.perso.rollbackProtection 2246

gpd.tee.trustedStorage.protected.rollbackProtection 2247

Trusted Applications can query the implementation properties to discover the level of protection. 2248

 2249

Table 5-1: Values of Trusted Storage Space Rollback Protection Properties [obsolete] 2250

Property Value Meaning
This table existed in previous versions of the specification and was removed in v1.3.

The values of the rollback protection properties are discussed in Table 4-14: Implementation Properties.

See page 90.

124 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3 Data Types 2251

5.3.1 TEE_Attribute 2252

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2253

An array of this type is passed whenever a set of attributes is specified as argument to a function of the API. 2254

typedef struct { 2255
 uint32_t attributeID; 2256
 union 2257
 { 2258
 struct 2259
 { 2260
 [inoutbuf] void* buffer; size_t length; 2261
 } ref; 2262
 struct 2263
 { 2264
 uint32_t a; 2265
 uint32_t b; 2266
 } value; 2267
 } content; 2268
} TEE_Attribute; 2269

An attribute can be either a buffer attribute or a value attribute. This is determined by bit [29] of the attribute 2270
identifier. If this bit is set to 0, then the attribute is a buffer attribute and the field ref SHALL be selected. 2271
If the bit is set to 1, then it is a value attribute and the field value SHALL be selected. 2272

When an array of attributes is passed to a function, either to populate an object or to specify operation 2273
parameters, and if an attribute identifier occurs twice in the array, then only the first occurrence is used. 2274

Backward Compatibility 2275

TEE Internal Core API v1.1 used a different type for length. 2276

Versions prior to TEE Internal Core API v1.3 used a different notation for buffer. 2277

 2278

TEE Internal Core API Specification – Public Review v1.2.1.31 125 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3.2 TEE_ObjectInfo 2279

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 2280

typedef struct { 2281
 uint32_t objectType; 2282
 uint32_t objectSize; 2283
 uint32_t maxObjectSize; 2284
 uint32_t objectUsage; 2285
 size_t dataSize; 2286
 size_t dataPosition; 2287
 uint32_t handleFlags; 2288
} TEE_ObjectInfo; 2289

See the documentation of function TEE_GetObjectInfo1 in section 5.5.1 for a description of this structure. 2290

Backward Compatibility 2291

Prior to TEE Internal Core API v1.2, dataSize and dataPosition were defined as uint32_t. Note that 2292
objectType and objectSize have intentionally remained as uint32_t as they are used to define keys 2293
and similar material which can always be represented in a buffer which can be indexed by a uint32_t. 2294

 2295

126 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3.3 TEE_Whence 2296

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 2297

typedef uint32_t TEE_Whence; 2298

This structure indicates the possible start offset when moving a data position in the data stream associated 2299
with a persistent object. The following table lists the legal values for TEE_Whence. All other values are 2300
reserved. 2301

Table 5-1b: TEE_Whence Constants 2302

Constant Name Value
TEE_DATA_SEEK_SET 0x00000000

TEE_DATA_SEEK_CUR 0x00000001

TEE_DATA_SEEK_END 0x00000002

Reserved 0x00000003 – 0x7FFFFFFE

TEE_WHENCE_ILLEGAL_VALUE 0x7FFFFFFF

Implementation defined 0x80000000 – 0xFFFFFFFF

 2303

TEE_WHENCE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined 2304
value when provided to the TEE_SeekObjectData function. 2305

Backward Compatibility 2306

Prior to TEE Internal Core API v1.2, TEE_Whence was defined as an enum. 2307

 2308

5.3.4 TEE_ObjectHandle 2309

Since: TEE Internal API v1.0 2310

typedef struct __TEE_ObjectHandle* TEE_ObjectHandle; 2311

TEE_ObjectHandle is an opaque handle (as defined in section 2.4) on an object. 2312

These handles are returned by the functions TEE_AllocateTransientObject (section 5.6.1), 2313
TEE_OpenPersistentObject (section 5.7.1), and TEE_CreatePersistentObject (section 5.7.2). 2314

 2315

5.3.5 TEE_ObjectEnumHandle 2316

Since: TEE Internal API v1.0 2317

typedef struct __TEE_ObjectEnumHandle* TEE_ObjectEnumHandle; 2318

TEE_ObjectEnumHandle is an opaque handle (as defined in section 2.4) on an object enumerator. These 2319
handles are returned by the function TEE_AllocatePersistentObjectEnumerator specified in 2320
section 5.8.1. 2321

 2322

TEE Internal Core API Specification – Public Review v1.2.1.31 127 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4 Constants 2323

5.4.1 Constants Used in Trusted Storage API for Data and Keys 2324

The following tables pertain to the Trusted Storage API for Data and Keys (Chapter 5). 2325

Table 5-2: Object Storage Constants 2326

Constant Name Value

Reserved 0x00000000

TEE_STORAGE_PRIVATE 0x00000001

TEE_STORAGE_PERSO 0x00000002

TEE_STORAGE_PROTECTED 0x00000003

Reserved for future use 0x00000004-0x7FFFFFFE

TEE_STORAGE_ILLEGAL_VALUE 0x7FFFFFFF

Reserved for implementation defined storage 0x80000000-0xFFFFFFFF

 2327

TEE_STORAGE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined 2328
value when provided to the TEE_OpenPersistentObject or TEE_CreatePersistentObject function. 2329

 2330

Table 5-3: Data Flag Constants 2331

Constant Name Value
TEE_DATA_FLAG_ACCESS_READ 0x00000001

TEE_DATA_FLAG_ACCESS_WRITE 0x00000002

TEE_DATA_FLAG_ACCESS_WRITE_META 0x00000004

TEE_DATA_FLAG_SHARE_READ 0x00000010

TEE_DATA_FLAG_SHARE_WRITE 0x00000020

TEE_DATA_FLAG_OVERWRITE 0x00000400

TEE_DATA_FLAG_EXCLUSIVE
(deprecated, replace with TEE_DATA_FLAG_OVERWRITE)

0x00000400

Set bits reserved for use by GlobalPlatform 0x007FF800

TEE_DATA_FLAG_ILLEGAL_VALUE 0x00800000

Set bits reserved for implementation defined flags 0xFF000000

 2332

TEE_DATA_FLAG_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 2333
undefined value when provided to the TEE_OpenPersistentObject or TEE_CreatePersistentObject 2334
function. 2335

 2336

128 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-4: Usage Constants 2337

Constant Name Value
TEE_USAGE_EXTRACTABLE 0x00000001

TEE_USAGE_ENCRYPT 0x00000002

TEE_USAGE_DECRYPT 0x00000004

TEE_USAGE_MAC 0x00000008

TEE_USAGE_SIGN 0x00000010

TEE_USAGE_VERIFY 0x00000020

TEE_USAGE_DERIVE 0x00000040

Set bits reserved for use by GlobalPlatform 0x007FFF80

TEE_USAGE_ILLEGAL_VALUE 0x00800000

Set bits reserved for implementation defined flags 0xFF000000

 2338

TEE_USAGE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined 2339
value when provided to the TEE_RestrictObjectUsage1 or TEE_GetObjectInfo1 function. 2340

 2341

Table 5-4b: Miscellaneous Constants [formerly Table 5-8] 2342

Constant Name Value
TEE_DATA_MAX_POSITION 0xFFFFFFFF

TEE_OBJECT_ID_MAX_LEN 64

 2343

TEE Internal Core API Specification – Public Review v1.2.1.31 129 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4.2 Constants Used in Cryptographic Operations API 2344

The following tables pertain to the Cryptographic Operations API (Chapter 6). 2345

Table 5-5: Handle Flag Constants 2346

Constant Name Value

Set bits reserved for implementation defined flags 0x0000FFFF

TEE_HANDLE_FLAG_PERSISTENT 0x00010000

TEE_HANDLE_FLAG_INITIALIZED 0x00020000

TEE_HANDLE_FLAG_KEY_SET 0x00040000

TEE_HANDLE_FLAG_EXPECT_TWO_KEYS 0x00080000

TEE_HANDLE_FLAG_EXTRACTING 0x00100000

Set bits reserved for use by GlobalPlatform 0xFFE00000

 2347

Table 5-6: Operation Constants 2348

Constant Name Value
TEE_OPERATION_CIPHER 1

TEE_OPERATION_MAC 3

TEE_OPERATION_AE 4

TEE_OPERATION_DIGEST 5

TEE_OPERATION_ASYMMETRIC_CIPHER 6

TEE_OPERATION_ASYMMETRIC_SIGNATURE 7

TEE_OPERATION_KEY_DERIVATION 8

Reserved for future use 0x00000009-0x7FFFFFFF

Implementation defined 0x80000000-0xFFFFFFFF

 2349

Table 5-7: Operation States 2350

Constant Name Value
TEE_OPERATION_STATE_INITIAL 0x00000000

TEE_OPERATION_STATE_ACTIVE 0x00000001

TEE_OPERATION_STATE_EXTRACTING 0x00000002

Reserved for future use 0x00000003-0x7FFFFFFF

Implementation defined 0x80000000-0xFFFFFFFF

 2351

Table 5-8: [moved – now Table 5-4b] 2352

130 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5 Generic Object Functions 2353

These functions can be called on both transient and persistent object handles. 2354

5.5.1 TEE_GetObjectInfo1 2355

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2356

TEE_Result TEE_GetObjectInfo1(2357
 TEE_ObjectHandle object, 2358
 [out] TEE_ObjectInfo* objectInfo); 2359

Description 2360

This function replaces the TEE_GetObjectInfo function, whose use is deprecated. 2361

The TEE_GetObjectInfo1 function returns the characteristics of an object. It fills in the following fields in 2362
the structure TEE_ObjectInfo (section 5.3.2): 2363

• objectType: The parameter objectType passed when the object was created 2364

• objectSize: The current size in bits of the object as determined by its attributes. This will always be 2365
less than or equal to maxObjectSize. Set to 0 for uninitialized and data only objects. 2366

• maxObjectSize: The maximum objectSize which this object can represent. 2367

o For a persistent object, set to objectSize 2368

o For a transient object, set to the parameter maxObjectSize passed to 2369
TEE_AllocateTransientObject 2370

• objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4. 2371

• dataSize 2372

o For a persistent object, set to the current size of the data associated with the object 2373

o For a transient object, always set to 0 2374

• dataPosition 2375

o For a persistent object, set to the current position in the data for this handle. Data positions for 2376
different handles on the same object may differ. 2377

o For a transient object, set to 0 2378

• handleFlags: A bit vector containing one or more of the following flags: 2379

o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object 2380

o TEE_HANDLE_FLAG_INITIALIZED 2381

 For a persistent object, always set 2382

 For a transient object, initially cleared, then set when the object becomes initialized 2383

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object 2384

Parameters 2385

• object: Handle of the object 2386

• objectInfo: Pointer to a structure filled with the object information 2387

TEE Internal Core API Specification – Public Review v1.2.1.31 131 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: 10 Function Number: 0x706 2388

Return Code 2389

• TEE_SUCCESS: In case of success. 2390

• TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle SHALL behave 2391
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 2392

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2393
currently inaccessible. 2394

Panic Reasons 2395

• If object is not a valid opened object handle. 2396

• If the implementation detects any other error associated with this function that is not explicitly 2397
associated with a defined return code for this function. 2398

Backward Compatibility 2399

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 2400
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 2401

 2402

132 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.2 TEE_RestrictObjectUsage1 2403

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2404

TEE_Result TEE_RestrictObjectUsage1(2405
 TEE_ObjectHandle object, 2406
 uint32_t objectUsage); 2407

Description 2408

This function replaces the TEE_RestrictObjectUsage function, whose use is deprecated. 2409

The TEE_RestrictObjectUsage1 function restricts the object usage flags of an object handle to contain at 2410
most the flags passed in the objectUsage parameter. 2411

For each bit in the parameter objectUsage: 2412

• If the bit is set to 1, the corresponding usage flag in the object is left unchanged. 2413

• If the bit is set to 0, the corresponding usage flag in the object is cleared. 2414

For example, if the usage flags of the object are set to TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and 2415
if objectUsage is set to TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining 2416
usage flag in the object after calling the function TEE_RestrictObjectUsage1 is TEE_USAGE_ENCRYPT. 2417

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent 2418
object. 2419

A transient object’s object usage flags are reset to 1 using the TEE_ResetTransientObject function. 2420

For a persistent object, setting the object usage SHALL be an atomic operation. 2421

Parameters 2422

• object: Handle on an object 2423

• objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_XXX 2424
constants defined in Table 5-4 2425

Specification Number: 10 Function Number: 0x707 2426

Return Code 2427

• TEE_SUCCESS: In case of success. 2428

• TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle SHALL behave 2429
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 2430

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2431
currently inaccessible. 2432

Panic Reasons 2433

• If object is not a valid opened object handle. 2434

• If the implementation detects any other error associated with this function that is not explicitly 2435
associated with a defined return code for this function. 2436

Backward Compatibility 2437

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 2438
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 2439

TEE Internal Core API Specification – Public Review v1.2.1.31 133 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.3 TEE_GetObjectBufferAttribute 2440

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2441

TEE_Result TEE_GetObjectBufferAttribute(2442
 TEE_ObjectHandle object, 2443
 uint32_t attributeID, 2444
 [outbuf] void* buffer, size_t* size); 2445

Description 2446

The TEE_GetObjectBufferAttribute function extracts one buffer attribute from an object. 2447

The attribute is identified by the argument attributeID. The precise meaning of this parameter depends on 2448
the container type and size and is defined in section 6.1.1. 2449

Bit [29] of the attribute identifier SHALL be set to 0; i.e. it SHALL denote a buffer attribute. 2450

There are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17): 2451

• Public object attributes can always be extracted whatever the status of the container. 2452

• Protected attributes can be extracted only if the object’s key usage contains the 2453
TEE_USAGE_EXTRACTABLE flag. 2454

See section 6.1.1 for a definition of all available object attributes, their formats, and their level of protection. 2455

Note: It is recommended that TA writers do not rely on implementations stripping leading zeros from bignum 2456
attributes and check actual key size using the TEE_GetObjectInfo1 function. However, calling 2457
TEE_GetObjectBufferAttribute with a NULL buffer will trigger a TEE_ERROR_SHORT_BUFFER return 2458
value (see section 3.4.4) and is guaranteed to return a size sufficient to hold the attribute. 2459

Parameters 2460

• object: Handle of the object 2461

• attributeID: Identifier of the attribute to retrieve 2462

• buffer, size: Output buffer to get the content of the attribute 2463

Specification Number: 10 Function Number: 0x702 2464

Return Code 2465

• TEE_SUCCESS: In case of success. 2466

• TEE_ERROR_ITEM_NOT_FOUND: If the attribute is not found on this object 2467

• TEE_ERROR_SHORT_BUFFER: If buffer is NULL or too small to contain the key part 2468

• TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle SHALL behave 2469
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 2470

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2471
currently inaccessible. 2472

Panic Reasons 2473

• If object is not a valid opened object handle. 2474

• If the object is not initialized. 2475

• If Bit [29] of attributeID is not set to 0, so the attribute is not a buffer attribute. 2476

134 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If Bit [28] of attributeID is set to 0, denoting a protected attribute, and the object usage does not 2477
contain the TEE_USAGE_EXTRACTABLE flag. 2478

• If the implementation detects any other error associated with this function that is not explicitly 2479
associated with a defined return code for this function. 2480

Backward Compatibility 2481

TEE Internal Core API v1.1 used a different type for size. 2482

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 2483
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 2484

 2485

TEE Internal Core API Specification – Public Review v1.2.1.31 135 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.4 TEE_GetObjectValueAttribute 2486

Since: TEE Internal API v1.3 – See Backward Compatibility note below. 2487

TEE_Result TEE_GetObjectValueAttribute(2488
 TEE_ObjectHandle object, 2489
 uint32_t attributeID, 2490
 [outopt] uint32_t* a, 2491
 [outopt] uint32_t* b); 2492

Description 2493

The TEE_GetObjectValueAttribute function extracts a value attribute from an object. 2494

The attribute is identified by the argument attributeID. The precise meaning of this parameter depends on 2495
the container type and size and is defined in section 6.1.1. 2496

Bit [29] of the attribute identifier SHALL be set to 1, i.e. it SHALL denote a value attribute. 2497

They are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17): 2498

• Public object attributes can always be extracted whatever the status of the container. 2499

• Protected attributes can be extracted only if the object’s key usage contains the 2500
TEE_USAGE_EXTRACTABLE flag. 2501

See section 6.1.1 for a definition of all available object attributes and their level of protection. 2502

Where the format of the attribute (see Table 6-16) does not define a meaning for b, the value returned for b 2503
is implementation defined. 2504

Parameters 2505

• object: Handle of the object 2506

• attributeID: Identifier of the attribute to retrieve 2507

• a, b: Pointers on the placeholders filled with the attribute fields a and b. Each can be NULL if the 2508
corresponding field is not of interest to the caller. 2509

Specification Number: 10 Function Number: 0x704 2510

Return Code 2511

• TEE_SUCCESS: In case of success. 2512

• TEE_ERROR_ITEM_NOT_FOUND: If the attribute is not found on this object 2513

• TEE_ERROR_ACCESS_DENIED: Deprecated: Handled by a Panic 2514

• TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle SHALL behave 2515
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 2516

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2517
currently inaccessible. 2518

Panic Reasons 2519

• If object is not a valid opened object handle. 2520

• If the object is not initialized. 2521

• If Bit [29] of attributeID is not set to 1, so the attribute is not a value attribute. 2522

136 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If Bit [28] of attributeID is set to 0, denoting a protected attribute, and the object usage does not 2523
contain the TEE_USAGE_EXTRACTABLE flag. 2524

• If the implementation detects any other error associated with this function that is not explicitly 2525
associated with a defined return code for this function. 2526

Backward Compatibility 2527

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 2528
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 2529

 2530

5.5.5 TEE_CloseObject 2531

Since: TEE Internal API v1.0 2532

void TEE_CloseObject(TEE_ObjectHandle object); 2533

Description 2534

The TEE_CloseObject function closes an opened object handle. The object can be persistent or transient. 2535
For transient objects, TEE_CloseObject is equivalent to TEE_FreeTransientObject. 2536

This function will operate correctly even if the object or the containing storage is corrupt. 2537

Parameters 2538

• object: Handle on the object to close. If set to TEE_HANDLE_NULL, does nothing. 2539

Specification Number: 10 Function Number: 0x701 2540

Panic Reasons 2541

• If object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL. 2542

• If the implementation detects any other error. 2543

TEE Internal Core API Specification – Public Review v1.2.1.31 137 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6 Transient Object Functions 2544

5.6.1 TEE_AllocateTransientObject 2545

Since: TEE Internal API v1.3 – See Backward Compatibility note below. 2546

TEE_Result TEE_AllocateTransientObject(2547
 uint32_t objectType, 2548
 uint32_t maxObjectSize, 2549
 [out] TEE_ObjectHandle* object); 2550

Description 2551

The TEE_AllocateTransientObject function allocates an uninitialized transient object, i.e. a container 2552
for attributes. Transient objects are used to hold a cryptographic object (key or key-pair). 2553

The object type SHALL be specified. The maximum key size SHALL also be specified with all of the object 2554
types defined in Table 5-9. 2555

The value TEE_KEYSIZE_NO_KEY SHOULD be used for maxObjectSize for object types that do not require 2556
a key so that all the container resources can be pre-allocated. For backward compatibility reasons, a Trusted 2557
OS SHALL treat object types that are not defined in Table 5-9 as though they require TEE_KEYSIZE_NO_KEY. 2558

As allocated, the container is uninitialized. It can be initialized by subsequently importing the object material, 2559
generating an object, deriving an object, or loading an object from the Trusted Storage. 2560

The initial value of the key usage associated with the container is 0xFFFFFFFF, which means that it contains 2561
all usage flags. You can use the function TEE_RestrictObjectUsage1 to restrict the usage of the container. 2562

The returned handle is used to refer to the newly-created container in all subsequent functions that require an 2563
object container: key management and operation functions. The handle remains valid until the container is 2564
deallocated using the function TEE_FreeTransientObject. 2565

As shown in Table 5-9, the object type determines the possible object size to be passed to 2566
TEE_AllocateTransientObject, which is not necessarily the size of the object to allocate. In particular, for 2567
key objects the size to be passed is one of the appropriate key sizes described in Table 5-9. 2568

A compliant implementation SHALL implement all object types and key sizes as described in Table 5-9. 2569

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizes3 2570

Object Type Possible Key Sizes
TEE_TYPE_AES 128, 192, or 256 bits

TEE_TYPE_DES Always 64 bits including the parity bits. This gives an effective key
size of 56 bits

TEE_TYPE_DES3 128 or 192 bits including the parity bits. This gives effective key
sizes of 112 or 168 bits

TEE_TYPE_HMAC_MD5 Between 64 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA1 Between 80 and 512 bits, multiple of 8 bits

3 WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with

time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate government guidelines.

138 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Possible Key Sizes
TEE_TYPE_HMAC_SHA224 Between 112 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA256 Between 192 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA384 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA512 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA3_224 Between 192 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA3_256 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA3_384 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA3_512 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_RSA_PUBLIC_KEY The number of bits in the modulus.
256, 512, 768, 1024, 1536, 2048, 3072, and 4096 bit keys SHALL
be supported. Support for other key sizes including bigger key sizes
is implementation-dependent. Minimum key size is 256 bits.

TEE_TYPE_RSA_KEYPAIR Same as for RSA public key size.

TEE_TYPE_DSA_PUBLIC_KEY Depends on algorithm:

TEE_ALG_DSA_SHA1 Between 512 and 1024 bits,
multiple of 64 bits

TEE_ALG_DSA_SHA224 2048 bits

TEE_ALG_DSA_SHA256 2048 or 3072 bits

TEE_ALG_DSA_SHA3_224 2048 or 3072 bits

TEE_ALG_DSA_SHA3_256 2048 or 3072 bits

TEE_ALG_DSA_SHA3_384 2048 or 3072 bits

TEE_ALG_DSA_SHA3_512 2048 or 3072 bits

TEE_TYPE_DSA_KEYPAIR Same as for DSA public key size.

TEE_TYPE_DH_KEYPAIR From 256 to 2048 bits, multiple of 8 bits.

TEE_TYPE_ECDSA_PUBLIC_KEY Between 160 and 521 bits. Conditional: Available only if at least
one of the ECC curves defined in Table 6-14 with "generic" equal to
"Y" is supported.

TEE_TYPE_ECDSA_KEYPAIR Between 160 and 521 bits. Conditional: Available only if at least
one of the ECC curves defined in Table 6-14 with "generic" equal to
"Y" is supported. SHALL be same value as for ECDSA public key
size (for values, see Table 6-14).

TEE_TYPE_ECDH_PUBLIC_KEY Between 160 and 521 bits. Conditional: Available only if at least
one of the ECC curves defined in Table 6-14 with "generic" equal to
"Y" is supported.

TEE Internal Core API Specification – Public Review v1.2.1.31 139 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Possible Key Sizes
TEE_TYPE_ECDH_KEYPAIR Between 160 and 521 bits. Conditional: Available only if at least

one of the ECC curves defined in Table 6-14 with "generic" equal to
"Y" is supported. SHALL be same value as for ECDH public key size
(for values, see Table 6-14).

TEE_TYPE_ED25519_PUBLIC_KEY 256 bits. Conditional: Available only if TEE_ECC_CURVE_25519
defined in Table 6-14 is supported. TEE_TYPE_ED25519_KEYPAIR

TEE_TYPE_X25519_PUBLIC_KEY

TEE_TYPE_X25519_KEYPAIR

TEE_TYPE_ED448_PUBLIC_KEY 448 bits. Conditional: Available only if TEE_ECC_CURVE_448
defined in Table 6-14 is supported. TEE_TYPE_ED448_KEYPAIR

TEE_TYPE_X448_PUBLIC_KEY

TEE_TYPE_X448_KEYPAIR

TEE_TYPE_SM2_DSA_PUBLIC_KEY 256 bits. Conditional: Available only if TEE_ECC_CURVE_SM2
defined in Table 6-14 is supported. TEE_TYPE_SM2_DSA_KEYPAIR

TEE_TYPE_SM2_KEP_PUBLIC_KEY

TEE_TYPE_SM2_KEP_KEYPAIR

TEE_TYPE_SM2_PKE_PUBLIC_KEY

TEE_TYPE_SM2_PKE_KEYPAIR

TEE_TYPE_SM4 128 bits. Conditional: Available only if TEE_ECC_CURVE_SM2 is
supported.

TEE_TYPE_HMAC_SM3 Between 80 and 1024 bits, multiple of 8 bits. Conditional: Available
only if TEE_ECC_CURVE_SM2 is supported.

TEE_TYPE_GENERIC_SECRET Multiple of 8 bits, up to 4096 bits. This type is intended for secret
data that has been derived from a key derivation scheme.

 2571

Parameters 2572

• objectType: Type of uninitialized object container to be created (see Table 6-13). 2573

• maxObjectSize: Key Size of the object. Valid values depend on the object type and are defined in 2574
Table 5-9 above. 2575

• object: Filled with a handle on the newly created key container 2576

Specification Number: 10 Function Number: 0x801 2577

Return Code 2578

• TEE_SUCCESS: On success. 2579

• TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to allocate the object handle 2580

• TEE_ERROR_NOT_SUPPORTED: If the key size is not supported or the object type is not supported. 2581

140 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons 2582

• If the implementation detects any error associated with this function that is not explicitly associated 2583
with a defined return code for this function. 2584

Backward Compatibility 2585

Prior to TEE Internal Core API v1.3, object type TEE_TYPE_DATA was included in Table 5-9, erroneously 2586
indicating that TEE_AllocateTransientObject could be used to allocate an object of that type. 2587

 2588

TEE Internal Core API Specification – Public Review v1.2.1.31 141 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.2 TEE_FreeTransientObject 2589

Since: TEE Internal API v1.0 2590

void TEE_FreeTransientObject(2591
 TEE_ObjectHandle object); 2592

Description 2593

The TEE_FreeTransientObject function deallocates a transient object previously allocated with 2594
TEE_AllocateTransientObject. After this function has been called, the object handle is no longer valid 2595
and all resources associated with the transient object SHALL have been reclaimed. 2596

If the object is initialized, the object attributes are cleared before the object is deallocated. 2597

This function does nothing if object is TEE_HANDLE_NULL. 2598

Parameters 2599

• object: Handle on the object to free 2600

Specification Number: 10 Function Number: 0x803 2601

Panic Reasons 2602

• If object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL. 2603

• If the implementation detects any other error. 2604

 2605

5.6.3 TEE_ResetTransientObject 2606

Since: TEE Internal API v1.0 2607

void TEE_ResetTransientObject(2608
 TEE_ObjectHandle object); 2609

Description 2610

The TEE_ResetTransientObject function resets a transient object to its initial state after allocation. 2611

If the object is currently initialized, the function clears the object of all its material. The object is then uninitialized 2612
again. 2613

In any case, the function resets the key usage of the container to 0xFFFFFFFFF. 2614

This function does nothing if object is set to TEE_HANDLE_NULL. 2615

Parameters 2616

• object: Handle on a transient object to reset 2617

Specification Number: 10 Function Number: 0x808 2618

Panic Reasons 2619

• If object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL. 2620

• If the implementation detects any other error. 2621

142 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.4 TEE_PopulateTransientObject 2622

Since: TEE Internal API v1.0 2623

TEE_Result TEE_PopulateTransientObject(2624
 TEE_ObjectHandle object, 2625
 [in] TEE_Attribute* attrs, uint32_t attrCount); 2626

Description 2627

The TEE_PopulateTransientObject function populates an uninitialized object container with object 2628
attributes passed by the TA in the attrs parameter. 2629

When this function is called, the object SHALL be uninitialized. If the object is initialized, the caller SHALL first 2630
clear it using the function TEE_ResetTransientObject. 2631

Note that if the object type is a key-pair, then this function sets both the private and public attributes of the key-2632
pair. 2633

As shown in the following table, the interpretation of the attrs parameter depends on the object type. The 2634
values of all attributes are copied into the object so that the attrs array and all the memory buffers it points 2635
to may be freed after this routine returns without affecting the object. 2636

Table 5-10: TEE_PopulateTransientObject Supported Attributes 2637

Object Type Attributes
TEE_TYPE_AES For all secret key objects, the TEE_ATTR_SECRET_VALUE SHALL

be provided.
For TEE_TYPE_DES and TEE_TYPE_DES3, the buffer associated
with this attribute SHALL include parity bits.
These object types are collectively known as the ‘Simple Symmetric
Key Types’.

TEE_TYPE_DES

TEE_TYPE_DES3

TEE_TYPE_SM4

TEE_TYPE_HMAC_MD5

TEE_TYPE_HMAC_SHA1

TEE_TYPE_HMAC_SHA224

TEE_TYPE_HMAC_SHA256

TEE_TYPE_HMAC_SHA384

TEE_TYPE_HMAC_SHA512

TEE_TYPE_HMAC_SHA3_224

TEE_TYPE_HMAC_SHA3_256

TEE_TYPE_HMAC_SHA3_384

TEE_TYPE_HMAC_SHA3_512

TEE_TYPE_HMAC_SM3

TEE_TYPE_GENERIC_SECRET

TEE_TYPE_RSA_PUBLIC_KEY The following attributes SHALL be provided:
TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT

TEE Internal Core API Specification – Public Review v1.2.1.31 143 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Attributes
TEE_TYPE_RSA_KEYPAIR The following attributes SHALL be provided:

TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT
TEE_ATTR_RSA_PRIVATE_EXPONENT

The CRT parameters are optional. If any of these attributes is
provided, then all of them SHALL be provided:
TEE_ATTR_RSA_PRIME1
TEE_ATTR_RSA_PRIME2
TEE_ATTR_RSA_EXPONENT1
TEE_ATTR_RSA_EXPONENT2
TEE_ATTR_RSA_COEFFICIENT

TEE_TYPE_ECDSA_PUBLIC_KEY Conditional: If ECC is supported, then the following attributes
SHALL be provided:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDSA_KEYPAIR Conditional: If ECC is supported, then the following attributes
SHALL be provided:
TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDH_PUBLIC_KEY Conditional: If ECC is supported, then the following attributes
SHALL be provided:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDH_KEYPAIR Conditional: If ECC is supported, then the following attributes
SHALL be provided:
TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_DSA_PUBLIC_KEY The following attributes SHALL be provided:
TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE
TEE_ATTR_DSA_PUBLIC_VALUE

144 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Attributes
TEE_TYPE_DSA_KEYPAIR The following attributes SHALL be provided:

TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE
TEE_ATTR_DSA_PRIVATE_VALUE
TEE_ATTR_DSA_PUBLIC_VALUE

TEE_TYPE_DH_KEYPAIR The following attributes SHALL be provided:
TEE_ATTR_DH_PRIME
TEE_ATTR_DH_BASE
TEE_ATTR_DH_PUBLIC_VALUE
TEE_ATTR_DH_PRIVATE_VALUE

The following parameters can optionally be passed:
TEE_ATTR_DH_SUBPRIME (q)

If present, constrains the private value x to be in the range
[2, q-2], and a mismatch will cause a
TEE_ERROR_BAD_PARAMETERS error.

TEE_ATTR_DH_X_BITS (l)
If present, constrains the private value x to have l bits, and a
mismatch will cause a TEE_ERROR_BAD_PARAMETERS error.

If neither of these optional parts is specified, then the only constraint
on x is that it is less than p-1.

TEE_TYPE_ED25519_PUBLIC_KEY Conditional: If TEE_ECC_CURVE_25519 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ED25519_PUBLIC_VALUE

TEE_TYPE_ED25519_KEYPAIR Conditional: If TEE_ECC_CURVE_25519 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ED25519_PUBLIC_VALUE
TEE_ATTR_ED25519_PRIVATE_VALUE

TEE_TYPE_X25519_PUBLIC_KEY Conditional: If TEE_ECC_CURVE_25519 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_X25519_PUBLIC_VALUE

TEE_TYPE_X25519_KEYPAIR Conditional: If TEE_ECC_CURVE_25519 is supported, then the
following attributes SHALL be provided:

TEE_ATTR_X25519_PUBLIC_VALUE
TEE_ATTR_X25519_PRIVATE_VALUE

TEE_TYPE_ED448_PUBLIC_KEY Conditional: If TEE_ECC_CURVE_448 is supported, then the
following attributes SHALL be provided:

TEE_ATTR_ED448_PUBLIC_VALUE

TEE Internal Core API Specification – Public Review v1.2.1.31 145 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Attributes
TEE_TYPE_ED448_KEYPAIR Conditional: If TEE_ECC_CURVE_448 is supported, then the

following attributes SHALL be provided:
TEE_ATTR_ED448_PUBLIC_VALUE

TEE_ATTR_ED448_PRIVATE_VALUE

TEE_TYPE_X448_PUBLIC_KEY Conditional: If TEE_ECC_CURVE_448 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_X448_PUBLIC_VALUE

TEE_TYPE_X448_KEYPAIR Conditional: If TEE_ECC_CURVE_448 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_X448_PUBLIC_VALUE
TEE_ATTR_X448_PRIVATE_VALUE

TEE_TYPE_SM2_DSA_PUBLIC_KEY Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided (each 32 bytes):
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_DSA_KEYPAIR Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_KEP_PUBLIC_KEY Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_KEP_KEYPAIR Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_PKE_PUBLIC_KEY Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_PKE_KEYPAIR Conditional: if TEE_ECC_CURVE_SM2 is supported, then the
following attributes SHALL be provided:
TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

 2638

146 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

All mandatory attributes SHALL be specified; otherwise the routine will panic. 2639

If attribute values are larger than the maximum size specified when the object was created, the implementation 2640
SHALL panic. 2641

The implementation can attempt to detect whether the attribute values are consistent; for example, if the 2642
numbers supposed to be prime are indeed prime. However, it is not required to do these checks fully and 2643
reliably. If it detects invalid attributes, it SHALL return the error code TEE_ERROR_BAD_PARAMETERS and 2644
SHALL NOT panic. If it does not detect any inconsistencies, it SHALL be able to later proceed with all 2645
operations associated with the object without error. In this case, it is not required to make sensible 2646
computations, but all computations SHALL terminate and output some result. 2647

Only the attributes specified in Table 5-10 associated with the object’s type are valid. The presence of any 2648
other attribute in the attribute list is an error and will cause the routine to panic. 2649

Parameters 2650

• object: Handle on an already created transient and uninitialized object 2651

• attrs, attrCount: Array of object attributes 2652

Specification Number: 10 Function Number: 0x807 2653

Return Code 2654

• TEE_SUCCESS: In case of success. In this case, the content of the object SHALL be initialized. 2655

• TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute value is detected. In this case, 2656
the content of the object SHALL remain uninitialized. 2657

Panic Reasons 2658

• If object is not a valid opened object handle that is transient and uninitialized. 2659

• If some mandatory attribute is missing. 2660

• If attrs includes an attribute that is not defined for the object’s type. 2661

• If an attribute value is too big to fit within the maximum object size specified when the object was 2662
created. 2663

• If the implementation detects any other error associated with this function that is not explicitly 2664
associated with a defined return code for this function. 2665

TEE Internal Core API Specification – Public Review v1.2.1.31 147 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute 2666

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 2667

void TEE_InitRefAttribute(2668
 [out] TEE_Attribute* attr, 2669
 uint32_t attributeID, 2670
 [inbuf] void* buffer, size_t length); 2671

 2672

void TEE_InitValueAttribute(2673
 [out] TEE_Attribute* attr, 2674
 uint32_t attributeID, 2675
 uint32_t a, 2676
 uint32_t b); 2677

Description 2678

The TEE_InitRefAttribute and TEE_InitValueAttribute helper functions can be used to populate 2679
a single attribute either with a reference to a buffer or with integer values. 2680

For example, the following code can be used to initialize a DH key generation: 2681

TEE_Attribute attrs[3]; 2682
TEE_InitRefAttribute(&attrs[0], TEE_ATTR_DH_PRIME, &p, len); 2683
TEE_InitRefAttribute(&attrs[1], TEE_ATTR_DH_BASE, &g, len); 2684
TEE_InitValueAttribute(&attrs[2], TEE_ATTR_DH_X_BITS, xBits, 0); 2685
TEE_GenerateKey(key, 1024, attrs, sizeof(attrs)/sizeof(TEE_Attribute)); 2686

Note that in the case of TEE_InitRefAttribute, only the buffer pointer is copied, not the content of the 2687
buffer. This means that the attribute structure maintains a pointer back to the supplied buffer. It is the 2688
responsibility of the TA author to ensure that the contents of the buffer maintain their value until the attributes 2689
array is no longer in use. 2690

Parameters 2691

• attr: attribute structure (defined in section 5.3.1) to initialize 2692

• attributeID: Identifier of the attribute to populate, defined in section 6.1.1 2693

• buffer, length: Input buffer that holds the content of the attribute. Assigned to the corresponding 2694
members of the attribute structure defined in section 5.3.1. 2695

• a: unsigned integer value to assign to the a member of the attribute structure defined in 2696
section 5.3.1 2697

• b: unsigned integer value to assign to the b member of the attribute structure defined in 2698
section 5.3.1 2699

TEE_InitRefAttribute: Specification Number: 10 Function Number: 0x805 2700

TEE_InitValueAttribute: Specification Number: 10 Function Number: 0x806 2701

148 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons 2702

• If Bit [29] of attributeID describing whether the attribute identifier is a value or reference (as 2703
discussed in Table 6-17) is not consistent with the function. 2704

• If the implementation detects any other error. 2705

Backward Compatibility 2706

TEE Internal Core API v1.1 used a different type for length. 2707

 2708

TEE Internal Core API Specification – Public Review v1.2.1.31 149 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.6 TEE_CopyObjectAttributes1 2709

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2710

TEE_Result TEE_CopyObjectAttributes1(2711
 [out] TEE_ObjectHandle destObject, 2712
 [in] TEE_ObjectHandle srcObject); 2713

Description 2714

This function replaces the TEE_CopyObjectAttributes function, whose use is deprecated. 2715

The TEE_CopyObjectAttributes1 function populates an uninitialized object handle with the attributes of 2716
another object handle; that is, it populates the attributes of destObject with the attributes of srcObject. 2717
It is most useful in the following situations: 2718

• To extract the public key attributes from a key-pair object 2719

• To copy the attributes from a persistent object into a transient object 2720

destObject SHALL refer to an uninitialized object handle and SHALL therefore be a transient object. 2721

The source and destination objects SHALL have compatible types and sizes in the following sense: 2722

• The type of destObject SHALL be a subtype of srcObject, i.e. one of the conditions listed in the 2723
following table SHALL be true. 2724

Table 5-11: TEE_CopyObjectAttributes1 Parameter Types 2725

Type of srcObject Type of destObject

Any Equal to type of srcObject

TEE_TYPE_RSA_KEYPAIR TEE_TYPE_RSA_PUBLIC_KEY

TEE_TYPE_DSA_KEYPAIR TEE_TYPE_DSA_PUBLIC_KEY

TEE_TYPE_ECDSA_KEYPAIR (optional) TEE_TYPE_ECDSA_PUBLIC_KEY (optional)

TEE_TYPE_ECDH_KEYPAIR (optional) TEE_TYPE_ECDH_PUBLIC_KEY (optional)

TEE_TYPE_ED25519_KEYPAIR (optional) TEE_TYPE_ED25519_PUBLIC_KEY (optional)

TEE_TYPE_X25519_KEYPAIR (optional) TEE_TYPE_X25519_PUBLIC_KEY (optional)

TEE_TYPE_ED448_KEYPAIR (optional) TEE_TYPE_ED448_PUBLIC_KEY (optional)

TEE_TYPE_X448_KEYPAIR (optional) TEE_TYPE_X448_PUBLIC_KEY (optional)

TEE_TYPE_SM2_DSA_KEYPAIR (optional) TEE_TYPE_SM2_DSA_PUBLIC_KEY (optional)

TEE_TYPE_SM2_KEP_KEYPAIR (optional) TEE_TYPE_SM2_KEP_PUBLIC_KEY (optional)

TEE_TYPE_SM2_PKE_KEYPAIR (optional) TEE_TYPE_SM2_PKE_PUBLIC_KEY (optional)

 2726

• The size of srcObject SHALL be less than or equal to the maximum size of destObject. 2727

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject 2728
except that the attributes are taken from srcObject instead of from parameters. 2729

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and 2730
the object usage of srcObject. 2731

150 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters 2732

• destObject: Handle on an uninitialized transient object 2733

• srcObject: Handle on an initialized object 2734

Specification Number: 10 Function Number: 0x809 2735

Return Code 2736

• TEE_SUCCESS: In case of success. 2737

• TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle SHALL behave 2738
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 2739

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2740
currently inaccessible. 2741

Panic Reasons 2742

• If srcObject is not initialized. 2743

• If destObject is initialized. 2744

• If the type and size of srcObject and destObject are not compatible. 2745

• If the implementation detects any other error associated with this function that is not explicitly 2746
associated with a defined return code for this function. 2747

Backward Compatibility 2748

Prior to TEE Internal Core API v1.2, TEE_CopyObjectAttributes1 did not specify the [in] or [out] 2749
annotations. 2750

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 2751
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 2752

 2753

TEE Internal Core API Specification – Public Review v1.2.1.31 151 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.7 TEE_GenerateKey 2754

Since: TEE Internal API v1.0 2755

TEE_Result TEE_GenerateKey(2756
 TEE_ObjectHandle object, 2757
 uint32_t keySize, 2758
 [in] TEE_Attribute* params, uint32_t paramCount); 2759

Description 2760

The TEE_GenerateKey function generates a random key or a key-pair and populates a transient key object 2761
with the generated key material. 2762

 2763

The size passed in the keySize parameter is dependent on the operation: 2764

• Where the key size is variable depending on the attributes provided for the object type, keySize 2765
SHALL be 0. The size of the generated key SHALL be less than or equal to the maximum key size 2766
specified when the transient object was created. 2767

• Where the key size is known for the attributes provided, the keySize parameter SHALL be less than 2768
or equal to the maximum key size specified when the transient object was created. The valid values 2769
for key size are defined in Table 5-9. 2770

As shown in the following table, the generation algorithm can take parameters depending on the object type. 2771

Table 5-12: TEE_GenerateKey Parameters 2772

Object Type Details
TEE_TYPE_AES No parameter is necessary. The function generates the attribute

TEE_ATTR_SECRET_VALUE. The generated value SHALL be the full
key size.

TEE_TYPE_DES

TEE_TYPE_DES3

TEE_TYPE_SM4

TEE_TYPE_HMAC_MD5

TEE_TYPE_HMAC_SHA1

TEE_TYPE_HMAC_SHA224

TEE_TYPE_HMAC_SHA256

TEE_TYPE_HMAC_SHA384

TEE_TYPE_HMAC_SHA512

TEE_TYPE_HMAC_SHA3_224

TEE_TYPE_HMAC_SHA3_256

TEE_TYPE_HMAC_SHA3_384

TEE_TYPE_HMAC_SHA3_512

TEE_TYPE_HMAC_SM3

TEE_TYPE_GENERIC_SECRET

152 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Details
TEE_TYPE_RSA_KEYPAIR No parameter is required.

The TEE_ATTR_RSA_PUBLIC_EXPONENT attribute may be specified;
if omitted, the default value is 65537.
Key generation SHALL follow the rules defined in [NIST SP800-56B].
The function generates and populates the following attributes:

TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT (if not specified)
TEE_ATTR_RSA_PRIVATE_EXPONENT
TEE_ATTR_RSA_PRIME1
TEE_ATTR_RSA_PRIME2
TEE_ATTR_RSA_EXPONENT1
TEE_ATTR_RSA_EXPONENT2
TEE_ATTR_RSA_COEFFICIENT

TEE_TYPE_DSA_KEYPAIR The following domain parameters SHALL be passed to the function:
TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE

The function generates and populates the following attributes:
TEE_ATTR_DSA_PUBLIC_VALUE
TEE_ATTR_DSA_PRIVATE_VALUE

TEE_TYPE_DH_KEYPAIR The following domain parameters SHALL be passed to the function:
TEE_ATTR_DH_PRIME
TEE_ATTR_DH_BASE

The following parameters can optionally be passed:
TEE_ATTR_DH_SUBPRIME (q): If present, constrains the private
value x to be in the range [2, q-2]
TEE_ATTR_DH_X_BITS (l) If present, constrains the private value x
to have l bits

If neither of these optional parts is specified, then the only
constraint on x is that it is less than p-1.

The function generates and populates the following attributes:
TEE_ATTR_DH_PUBLIC_VALUE
TEE_ATTR_DH_PRIVATE_VALUE
TEE_ATTR_DH_X_BITS (number of bits in x)

TEE_TYPE_ECDSA_KEYPAIR The following domain parameters SHALL be passed to the function:
TEE_ATTR_ECC_CURVE

The function generates and populates the following attributes:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_PRIVATE_VALUE

TEE Internal Core API Specification – Public Review v1.2.1.31 153 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Details
TEE_TYPE_ECDH_KEYPAIR The following domain parameters SHALL be passed to the function:

TEE_ATTR_ECC_CURVE
The function generates and populates the following attributes:

TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_PRIVATE_VALUE

TEE_TYPE_ED25519_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_ED25519_PUBLIC_VALUE
TEE_ATTR_ED25519_PRIVATE_VALUE

TEE_TYPE_X25519_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_X25519_PUBLIC_VALUE
TEE_ATTR_X25519_PRIVATE_VALUE

TEE_TYPE_ED448_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_ED448_PUBLIC_VALUE

TEE_ATTR_ED448_PRIVATE_VALUE

TEE_TYPE_X448_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_X448_PUBLIC_VALUE
TEE_ATTR_X448_PRIVATE_VALUE

TEE_TYPE_SM2_DSA_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_KEP_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_TYPE_SM2_PKE_KEYPAIR No parameter is required
The function generates and populates the following attributes:

TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

 2773

154 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Once the key material has been generated, the transient object is populated exactly as in the function 2774
TEE_PopulateTransientObject except that the key material is randomly generated internally instead of 2775
being passed by the caller. 2776

Parameters 2777

• object: Handle on an uninitialized transient key to populate with the generated key 2778

• keySize: Requested key size. 2779

• params, paramCount: Parameters for the key generation. The values of all parameters are copied 2780
into the object so that the params array and all the memory buffers it points to may be freed after this 2781
routine returns without affecting the object. 2782

Specification Number: 10 Function Number: 0x804 2783

Return Code 2784

• TEE_SUCCESS: On success. 2785

• TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute is detected. The checks that 2786
are performed depend on the implementation. 2787

Panic Reasons 2788

• If object is not a valid opened object handle that is transient and uninitialized. 2789

• If keySize is not supported or is too large. 2790

• If a mandatory parameter is missing. 2791

• If the implementation detects any other error associated with this function that is not explicitly 2792
associated with a defined return code for this function. 2793

 2794

TEE Internal Core API Specification – Public Review v1.2.1.31 155 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7 Persistent Object Functions 2795

5.7.1 TEE_OpenPersistentObject 2796

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 2797

TEE_Result TEE_OpenPersistentObject(2798
 uint32_t storageID, 2799
 [in(objectIDLength)] void* objectID, size_t objectIDLen, 2800
 uint32_t flags, 2801
 [out] TEE_ObjectHandle* object); 2802

Description 2803

The TEE_OpenPersistentObject function opens a handle on an existing persistent object. It returns a 2804
handle that can be used to access the object’s attributes and data stream. 2805

The storageID parameter indicates which Trusted Storage Space to access. Possible values are defined 2806
in Table 5-2. 2807

The flags parameter is a set of flags that controls the access rights and sharing permissions with which the 2808
object handle is opened. The value of the flags parameter is constructed by a bitwise-inclusive OR of flags 2809
from the following list: 2810

• Access control flags: 2811

o TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the 2812
Trusted Application to call the function TEE_ReadObjectData. 2813

o TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows 2814
the Trusted Application to call the functions TEE_WriteObjectData and 2815
TEE_TruncateObjectData. 2816

o TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right. 2817
This allows the Trusted Application to call the functions 2818
TEE_CloseAndDeletePersistentObject1 and TEE_RenamePersistentObject. 2819

• Sharing permission control flags: 2820

o TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with 2821
read access. 2822

o TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created 2823
with write access. 2824

• Other flags are reserved for future use and SHALL be set to 0. 2825

Multiple handles may be opened on the same object simultaneously, but sharing SHALL be explicitly allowed 2826
as described in section 5.7.3. 2827

The initial data position in the data stream is set to 0. 2828

Every Trusted Storage implementation is expected to return TEE_ERROR_CORRUPT_OBJECT if a Trusted 2829
Application attempts to open an object and the TEE determines that its contents (or those of the storage itself) 2830
have been tampered with or rolled back. 2831

156 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters 2832

• storageID: The storage to use. Valid values are defined in Table 5-2. 2833

• objectID, objectIDLen: The object identifier. Note that this buffer cannot reside in shared 2834
memory. 2835

• flags: The flags which determine the settings under which the object is opened. Valid values are 2836
defined in Table 5-3. 2837

• object: A pointer to the handle, which contains the opened handle upon successful completion. 2838
If this function fails for any reason, the value pointed to by object is set to TEE_HANDLE_NULL. 2839
When the object handle is no longer required, it SHALL be closed using a call to the 2840
TEE_CloseObject function. 2841

Specification Number: 10 Function Number: 0x903 2842

Return Code 2843

• TEE_SUCCESS: In case of success. 2844

• TEE_ERROR_ITEM_NOT_FOUND: If the storage denoted by storageID does not exist or if the object 2845
identifier cannot be found in the storage 2846

• TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while 2847
opening the object 2848

• TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation 2849

• TEE_ERROR_CORRUPT_OBJECT: If the storage or object is corrupt 2850

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2851
currently inaccessible. It may be associated with the device but unplugged, busy, or inaccessible for 2852
some other reason. 2853

Panic Reasons 2854

• If objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN. 2855

• If the implementation detects any other error associated with this function that is not explicitly 2856
associated with a defined return code for this function. 2857

Backward Compatibility 2858

TEE Internal Core API v1.1 used a different type for objectIDLen. 2859

 2860

TEE Internal Core API Specification – Public Review v1.2.1.31 157 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2 TEE_CreatePersistentObject 2861

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2862

TEE_Result TEE_CreatePersistentObject(2863
 uint32_t storageID, 2864
 [in(objectIDLength)] void* objectID, size_t objectIDLen, 2865
 uint32_t flags, 2866
 TEE_ObjectHandle attributes, 2867
 [inbuf] void* initialData, size_t initialDataLen, 2868
 [outopt] TEE_ObjectHandle* object); 2869

Description 2870

The TEE_CreatePersistentObject function creates a persistent object with initial attributes and an initial 2871
data stream content. The storageID parameter indicates which Trusted Storage Space to access; possible 2872
values are defined in Table 5-2. 2873

The flags parameter is a set of flags that controls the access rights, sharing permissions, and object creation 2874
mechanism with which the object handle is opened. The value of the flags parameter is constructed by a 2875
bitwise-inclusive OR of flags from the following list: 2876

• Access control flags: 2877

o TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the 2878
Trusted Application to call the function TEE_ReadObjectData. 2879

o TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows 2880
the Trusted Application to call the functions TEE_WriteObjectData and 2881
TEE_TruncateObjectData. 2882

o TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right. 2883
This allows the Trusted Application to call the functions 2884
TEE_CloseAndDeletePersistentObject1 and TEE_RenamePersistentObject. 2885

• Sharing permission control flags: 2886

o TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with 2887
read access. 2888

o TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created 2889
with write access. 2890

• TEE_DATA_FLAG_OVERWRITE: As summarized in Table 5-13: 2891

o If this flag is present and the object exists, then the object is deleted and re-created as an atomic 2892
operation: that is, the TA sees either the old object or the new one. 2893

o If the flag is absent and the object exists, then the function SHALL return 2894
TEE_ERROR_ACCESS_CONFLICT. 2895

• Other flags are reserved for future use and SHALL be set to 0. 2896

The attributes of the newly created persistent object are taken from attributes, which can be another 2897
persistent object or an initialized transient object. The object type, size, and usage are copied from 2898
attributes. 2899

To create a pure data object, the attributes argument can also be NULL. If attributes is NULL, the 2900
object type SHALL be set to TEE_TYPE_DATA to create a pure data object. 2901

158 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Multiple handles may be opened on the same object simultaneously, but sharing SHALL be explicitly allowed 2902
as described in section 5.7.3. 2903

The initial data position in the data stream is set to 0. 2904

To transform an initialized transient object into a persistent object, see the description of the object 2905
parameter following Table 5-13. 2906

Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of 2907
TEE_CreatePersistentObject 2908

TEE_DATA_FLAG_OVERWRITE
in flags

Object
Exists

Object Created? Return Code

Absent No Yes TEE_SUCCESS

Absent Yes No TEE_ERROR_ACCESS_CONFLICT

Present No Yes TEE_SUCCESS

Present Yes Deleted and re-created
as an atomic operation

TEE_SUCCESS

 2909

Parameters 2910

• storageID: The storage to use. Valid values are defined in Table 5-2. 2911

• objectID, objectIDLen: The object identifier. Note that this cannot reside in shared memory. 2912

• flags: The flags which determine the settings under which the object is opened 2913

• attributes: A handle on a persistent object or an initialized transient object from which to take the 2914
persistent object attributes. Can be TEE_HANDLE_NULL if the persistent object contains no attribute; 2915
for example, if it is a pure data object. 2916

• initialData, initialDataLen: The initial data content of the persistent object 2917

• object: An optional pointer to the handle. 2918

 When object is not NULL: 2919

o Contains the opened handle upon successful completion. 2920

o If this function fails for any reason, the value pointed to by object is set to TEE_HANDLE_NULL. 2921

o When the object handle is no longer required, it SHALL be closed using a call to the 2922
TEE_CloseObject function. 2923

When object is NULL: 2924

o If attributes is a handle on an initialized transient object, the initialized transient object SHALL 2925
be transformed to a persistent object. 2926

Specification Number: 10 Function Number: 0x902 2927

Return Code 2928

• TEE_SUCCESS: In case of success. 2929

• TEE_ERROR_ITEM_NOT_FOUND: If the storage denoted by storageID does not exist 2930

• TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while 2931
opening the object 2932

TEE Internal Core API Specification – Public Review v1.2.1.31 159 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation 2933

• TEE_ERROR_STORAGE_NO_SPACE: If insufficient space is available to create the persistent object 2934

• TEE_ERROR_CORRUPT_OBJECT: If the storage is corrupt 2935

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2936
currently inaccessible. It may be associated with the device but unplugged, busy, or inaccessible for 2937
some other reason. 2938

Panic Reasons 2939

• If objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN. 2940

• If attributes is not TEE_HANDLE_NULL and is not a valid handle on an initialized object 2941
containing the type and attributes of the persistent object to create. 2942

• If attributes is not a handle on an initialized transient object and object is NULL. 2943

• If the implementation detects any other error associated with this function that is not explicitly 2944
associated with a defined return code for this function. 2945

Backward Compatibility 2946

TEE Internal Core API v1.1 used a different type for objectIDLen and initialDataLen. 2947

Prior to TEE Internal Core API v1.3, output parameter object was mandatory. 2948

 2949

160 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.3 Persistent Object Sharing Rules 2950

Multiple handles may be opened on the same object simultaneously using the functions 2951
TEE_OpenPersistentObject or TEE_CreatePersistentObject, but sharing SHALL be explicitly 2952
allowed. More precisely, at any one time the following constraints apply: If more than one handle is opened 2953
on the same object, and if any of these object handles was opened with the flag 2954
TEE_DATA_FLAG_ACCESS_READ, then all the object handles SHALL have been opened with the flag 2955
TEE_DATA_FLAG_SHARE_READ. There is a corresponding constraint with the flags 2956
TEE_DATA_FLAG_ACCESS_WRITE and TEE_DATA_FLAG_SHARE_WRITE. Accessing an object with 2957
ACCESS_WRITE_META rights is exclusive and can never be shared. 2958

When one of the functions TEE_OpenPersistentObject or TEE_CreatePersistentObject is called 2959
and if opening the object would violate these constraints, then the function returns the return code 2960
TEE_ERROR_ACCESS_CONFLICT. 2961

Any bits in flags not defined in Table 5-3 of section 5.4 are reserved for future use and SHALL be set to 2962
zero. 2963

The examples in Table 5-14 illustrate the behavior of the TEE_OpenPersistentObject function when called 2964
twice on the same object. Note that for readability, the flag names used in Table 5-14 have been abbreviated 2965
by removing the ‘TEE_DATA_FLAG_’ prefix from their name, and any non-TEE_SUCCESS return codes have 2966
been shortened by removing the ‘TEE_ERROR_’ prefix. 2967

TEE Internal Core API Specification – Public Review v1.2.1.31 161 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-14: Examples of TEE_OpenPersistentObject Sharing Rules 2968

Value of flags for
First Open/Create

Value of flags for
Second
Open/Create

Return Code of
Second
Open/Create

Comments

ACCESS_READ ACCESS_READ ACCESS_CONFLICT The object handles have not
been opened with the flag
SHARE_READ. Only the first call
will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ ACCESS_CONFLICT Not all the object handles have
been opened with the flag
SHARE_READ. Only the first call
will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ |
SHARE_READ

TEE_SUCCESS All the object handles have been
opened with the flag
SHARE_READ.

ACCESS_READ ACCESS_WRITE ACCESS_CONFLICT Objects are not opened with
share flags. Only the first call will
succeed.

ACCESS_WRITE_META ACCESS_READ |
SHARE_READ |
ACCESS_WRITE |
SHARE_WRITE

ACCESS_CONFLICT The write-meta flag indicates an
exclusive access to the object.
Only the first Open/Create will
succeed.

ACCESS_WRITE_META
| (Anything)

(Anything) ACCESS_CONFLICT The write-meta flag indicates an
exclusive access to the object.
Only the first Open/Create will
succeed.

ACCESS_READ |
SHARE_READ |
SHARE_WRITE

ACCESS_WRITE |
SHARE_READ |
SHARE_WRITE

TEE_SUCCESS All the object handles have been
opened with the share flags.

ACCESS_READ |
SHARE_READ |
ACCESS_WRITE |
SHARE_WRITE

ACCESS_WRITE_META ACCESS_CONFLICT The write-meta flag indicates an
exclusive access to the object.
Only the first call will succeed.

SHARE_READ ACCESS_WRITE |
SHARE_WRITE

ACCESS_CONFLICT An object can be opened with
only share flags, which locks the
access to an object against a
given mode. Here the first call
prevents subsequent accesses in
write mode.

0 ACCESS_READ |
SHARE_READ

ACCESS_CONFLICT An object can be opened with no
flag set, which completely locks
all subsequent attempts to
access the object. Only the first
call will succeed.

 2969

162 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.4 TEE_CloseAndDeletePersistentObject1 2970

Since: TEE Internal Core API v1.1 2971

TEE_Result TEE_CloseAndDeletePersistentObject1(TEE_ObjectHandle object); 2972

Description 2973

This function replaces the TEE_CloseAndDeletePersistentObject function, whose use is 2974
deprecated. 2975

The TEE_CloseAndDeletePersistentObject1 function marks an object for deletion and closes the object 2976
handle. 2977

The object handle SHALL have been opened with the write-meta access right, which means access to the 2978
object is exclusive. 2979

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open 2980
handles for the object exist. This SHALL be the case even if the object or the storage containing it have become 2981
corrupted. 2982

The only reason this routine can fail is if the storage area containing the object becomes inaccessible (e.g. the 2983
user removes the media holding the object). In this case TEE_ERROR_STORAGE_NOT_AVAILABLE SHALL be 2984
returned. 2985

If object is TEE_HANDLE_NULL, the function does nothing. 2986

Parameters 2987

• object: The object handle 2988

Specification Number: 10 Function Number: 0x905 2989

Return Code 2990

• TEE_SUCCESS: In case of success. 2991

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 2992
currently inaccessible. 2993

Panic Reasons 2994

• If object is not a valid handle on a persistent object opened with the write-meta access right. 2995

• If the implementation detects any other error associated with this function that is not explicitly 2996
associated with a defined return code for this function. 2997

TEE Internal Core API Specification – Public Review v1.2.1.31 163 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.5 TEE_RenamePersistentObject 2998

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 2999

TEE_Result TEE_RenamePersistentObject(3000
 TEE_ObjectHandle object, 3001
 [in(newObjectIDLen)] void* newObjectID, size_t newObjectIDLen); 3002

Description 3003

The function TEE_RenamePersistentObject changes the identifier of an object. The object handle SHALL 3004
have been opened with the write-meta access right, which means access to the object is exclusive. 3005

Renaming an object is an atomic operation; either the object is renamed or nothing happens. 3006

Parameters 3007

• object: The object handle 3008

• newObjectID, newObjectIDLen: A buffer containing the new object identifier. The identifier 3009
contains arbitrary bytes, including the zero byte. The identifier length SHALL be less than or equal to 3010
TEE_OBJECT_ID_MAX_LEN and can be zero. The buffer containing the new object identifier cannot 3011
reside in shared memory. 3012

Specification Number: 10 Function Number: 0x904 3013

Return Code 3014

• TEE_SUCCESS: In case of success. 3015

• TEE_ERROR_ACCESS_CONFLICT: If an object with the same identifier already exists 3016

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3017
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3018

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3019
currently inaccessible. 3020

Panic Reasons 3021

• If object is not a valid handle on a persistent object that has been opened with the write-meta 3022
access right. 3023

• If newObjectID resides in shared memory. 3024

• If newObjectIDLen is more than TEE_OBJECT_ID_MAX_LEN. 3025

• If the implementation detects any other error associated with this function that is not explicitly 3026
associated with a defined return code for this function. 3027

Backward Compatibility 3028

TEE Internal Core API v1.1 used a different type for newObjectIDLen. 3029

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 3030
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 3031

 3032

164 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8 Persistent Object Enumeration Functions 3033

5.8.1 TEE_AllocatePersistentObjectEnumerator 3034

Since: TEE Internal API v1.0 3035

TEE_Result TEE_AllocatePersistentObjectEnumerator(3036
 [out] TEE_ObjectEnumHandle* objectEnumerator); 3037

Description 3038

The TEE_AllocatePersistentObjectEnumerator function allocates a handle on an object enumerator. 3039
Once an object enumerator handle has been allocated, it can be reused for multiple enumerations. 3040

Parameters 3041

• objectEnumerator: A pointer filled with the newly-allocated object enumerator handle on success. 3042
Set to TEE_HANDLE_NULL in case of error. 3043

Specification Number: 10 Function Number: 0xA01 3044

Return Code 3045

• TEE_SUCCESS: In case of success. 3046

• TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to allocate the enumerator handle 3047

Panic Reasons 3048

• If the implementation detects any error associated with this function that is not explicitly associated 3049
with a defined return code for this function. 3050

5.8.2 TEE_FreePersistentObjectEnumerator 3051

Since: TEE Internal API v1.0 3052

void TEE_FreePersistentObjectEnumerator(3053
 TEE_ObjectEnumHandle objectEnumerator); 3054

Description 3055

The TEE_FreePersistentObjectEnumerator function deallocates all resources associated with an object 3056
enumerator handle. After this function is called, the handle is no longer valid. 3057

Parameters 3058

• objectEnumerator: The handle to close. If objectEnumerator is TEE_HANDLE_NULL, then this 3059
function does nothing. 3060

Specification Number: 10 Function Number: 0xA02 3061

Panic Reasons 3062

• If objectEnumerator is not a valid handle on an object enumerator. 3063

• If the implementation detects any other error. 3064

TEE Internal Core API Specification – Public Review v1.2.1.31 165 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.3 TEE_ResetPersistentObjectEnumerator 3065

Since: TEE Internal API v1.0 3066

void TEE_ResetPersistentObjectEnumerator(3067
 TEE_ObjectEnumHandle objectEnumerator); 3068

Description 3069

The TEE_ResetPersistentObjectEnumerator function resets an object enumerator handle to its initial 3070
state after allocation. If an enumeration has been started, it is stopped. 3071

This function does nothing if objectEnumerator is TEE_HANDLE_NULL. 3072

Parameters 3073

• objectEnumerator: The handle to reset 3074

Specification Number: 10 Function Number: 0xA04 3075

Panic Reasons 3076

• If objectEnumerator is not TEE_HANDLE_NULL and is not a valid handle on an object 3077
enumerator. 3078

• If the implementation detects any other error. 3079

166 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.4 TEE_StartPersistentObjectEnumerator 3080

Since: TEE Internal API v1.0 3081

TEE_Result TEE_StartPersistentObjectEnumerator(3082
 TEE_ObjectEnumHandle objectEnumerator, 3083
 uint32_t storageID); 3084

Description 3085

The TEE_StartPersistentObjectEnumerator function starts the enumeration of all the persistent objects 3086
in a given Trusted Storage. The object information can be retrieved by calling the function 3087
TEE_GetNextPersistentObject repeatedly. 3088

The enumeration does not necessarily reflect a given consistent state of the storage: During the enumeration, 3089
other TAs or other instances of the TA may create, delete, or rename objects. It is not guaranteed that all 3090
objects will be returned if objects are created or destroyed while the enumeration is in progress. 3091

To stop an enumeration, the TA can call the function TEE_ResetPersistentObjectEnumerator, which 3092
detaches the enumerator from the Trusted Storage. The TA can call the function 3093
TEE_FreePersistentObjectEnumerator to completely deallocate the object enumerator. 3094

If this function is called on an enumerator that has already been started, the enumeration is first reset then 3095
started. 3096

Parameters 3097

• objectEnumerator: A valid handle on an object enumerator 3098

• storageID: The identifier of the storage in which the objects SHALL be enumerated. Possible values 3099
are defined in Table 5-2. 3100

Specification Number: 10 Function Number: 0xA05 3101

Return Code 3102

• TEE_SUCCESS: In case of success. 3103

• TEE_ERROR_ITEM_NOT_FOUND: If the storage does not exist or if there is no object in the specified 3104
storage 3105

• TEE_ERROR_CORRUPT_OBJECT: If the storage is corrupt 3106

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3107
currently inaccessible. 3108

Panic Reasons 3109

• If objectEnumerator is not a valid handle on an object enumerator. 3110

• If the implementation detects any other error associated with this function that is not explicitly 3111
associated with a defined return code for this function. 3112

TEE Internal Core API Specification – Public Review v1.2.1.31 167 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.5 TEE_GetNextPersistentObject 3113

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3114

TEE_Result TEE_GetNextPersistentObject(3115
 TEE_ObjectEnumHandle objectEnumerator, 3116
 [out] TEE_ObjectInfo* objectInfo, 3117
 [out] void* objectID, 3118
 [out] size_t* objectIDLen); 3119

Description 3120

The TEE_GetNextPersistentObject function gets the next object in an enumeration and returns 3121
information about the object: type, size, identifier, etc. 3122

If there are no more objects in the enumeration or if there is no enumeration started, then the function returns 3123
TEE_ERROR_ITEM_NOT_FOUND. 3124

If while enumerating objects a corrupt object is detected, then its object ID SHALL be returned in objectID, 3125
objectInfo SHALL be zeroed, and the function SHALL return TEE_ERROR_CORRUPT_OBJECT. 3126

If the set of available objects changes while an enumeration is taking place, then objects may be reported 3127
more than once, or not at all. 3128

Parameters 3129

• objectEnumerator: A handle on the object enumeration 3130

• objectInfo: A pointer to a TEE_ObjectInfo filled with the object information as specified in the 3131
function TEE_GetObjectInfo1 in section 5.5.1. It may be NULL. 3132

• objectID: Pointer to an array able to hold at least TEE_OBJECT_ID_MAX_LEN bytes. On return, the 3133
object identifier is written to this location 3134

• objectIDLen: Filled with the size of the object identifier (from 0 to TEE_OBJECT_ID_MAX_LEN) 3135

Specification Number: 10 Function Number: 0xA03 3136

Return Code 3137

• TEE_SUCCESS: In case of success. 3138

• TEE_ERROR_ITEM_NOT_FOUND: If there are no more elements in the object enumeration or if no 3139
enumeration is started on this handle 3140

• TEE_ERROR_CORRUPT_OBJECT: If the storage or returned object is corrupt 3141

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3142
currently inaccessible. 3143

168 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons 3144

• If objectEnumerator is not a valid handle on an object enumerator. 3145

• If objectID is NULL. 3146

• If objectIDLen is NULL. 3147

• If the implementation detects any other error associated with this function that is not explicitly 3148
associated with a defined return code for this function. 3149

Backward Compatibility 3150

TEE Internal Core API v1.1 used a different type for objectIDLen. 3151

TEE Internal Core API Specification – Public Review v1.2.1.31 169 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9 Data Stream Access Functions 3152

These functions can be used to access the data stream of persistent objects. They work like a file API. 3153

5.9.1 TEE_ReadObjectData 3154

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3155

TEE_Result TEE_ReadObjectData(3156
 TEE_ObjectHandle object, 3157
 [out] void* buffer, 3158
 size_t size, 3159
 [out] size_t* count); 3160

Description 3161

The TEE_ReadObjectData function attempts to read size bytes from the data stream associated with the 3162
object object into the buffer pointed to by buffer. 3163

The object handle SHALL have been opened with the read access right. 3164

The bytes are read starting at the position in the data stream currently stored in the object handle. The handle’s 3165
position is incremented by the number of bytes actually read. 3166

On completion TEE_ReadObjectData sets the number of bytes actually read in the uint32_t pointed to 3167
by count. The value written to *count may be less than size if the number of bytes until the end-of-3168
stream is less than size. It is set to 0 if the position at the start of the read operation is at or beyond the 3169
end-of-stream. These are the only cases where *count may be less than size. 3170

No data transfer can occur past the current end of stream. If an attempt is made to read past the end-of-3171
stream, the TEE_ReadObjectData function stops reading data at the end-of-stream and returns the data 3172
read up to that point. This is still a success. The position indicator is then set at the end-of-stream. If the 3173
position is at, or past, the end of the data when this function is called, then no bytes are copied to *buffer 3174
and *count is set to 0. 3175

Parameters 3176

• object: The object handle 3177

• buffer: A pointer to the memory which, upon successful completion, contains the bytes read 3178

• size: The number of bytes to read 3179

• count: A pointer to the variable which upon successful completion contains the number of bytes read 3180

Specification Number: 10 Function Number: 0xB01 3181

Return Code 3182

• TEE_SUCCESS: In case of success. 3183

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3184
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3185

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3186
currently inaccessible. 3187

170 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons 3188

• If object is not a valid handle on a persistent object opened with the read access right. 3189

• If the implementation detects any other error associated with this function that is not explicitly 3190
associated with a defined return code for this function. 3191

Backward Compatibility 3192

TEE Internal Core API v1.1 used a different type for size. 3193

Prior to TEE Internal Core API v1.2, TEE_ReadObjectData used a different type for count. 3194

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 3195
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 3196

 3197

TEE Internal Core API Specification – Public Review v1.2.1.31 171 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.2 TEE_WriteObjectData 3198

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3199

TEE_Result TEE_WriteObjectData(3200
 TEE_ObjectHandle object, 3201
 [inbuf] void* buffer, size_t size); 3202

Description 3203

The TEE_WriteObjectData function writes size bytes from the buffer pointed to by buffer to the data 3204
stream associated with the open object handle object. 3205

The object handle SHALL have been opened with the write access permission. 3206

If the current data position points before the end-of-stream, then size bytes are written to the data stream, 3207
overwriting bytes starting at the current data position. If the current data position points beyond the stream’s 3208
end, then the data stream is first extended with zero bytes until the length indicated by the data position 3209
indicator is reached, and then size bytes are written to the stream. Thus, the size of the data stream can be 3210
increased as a result of this operation. 3211

If the operation would move the data position indicator to beyond its maximum possible value, then 3212
TEE_ERROR_OVERFLOW is returned and the operation fails. 3213

The data position indicator is advanced by size. The data position indicators of other object handles opened 3214
on the same object are not changed. 3215

Writing in a data stream is atomic; either the entire operation completes successfully or no write is done. 3216

Parameters 3217

• object: The object handle 3218

• buffer: The buffer containing the data to be written 3219

• size: The number of bytes to write 3220

Specification Number: 10 Function Number: 0xB04 3221

Return Code 3222

• TEE_SUCCESS: In case of success. 3223

• TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available 3224

• TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would 3225
be greater than TEE_DATA_MAX_POSITION 3226

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3227
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3228

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3229
currently inaccessible. 3230

Panic Reasons 3231

• If object is not a valid handle on a persistent object opened with the write access right. 3232

• If the implementation detects any other error associated with this function that is not explicitly 3233
associated with a defined return code for this function. 3234

172 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Backward Compatibility 3235

TEE Internal Core API v1.1 used a different type for size. 3236

Prior to TEE Internal Core API v1.3: 3237

• TEE_WriteObjectData defined buffer as an [in]. 3238

• The behavior associated with the return code TEE_ERROR_CORRUPT_OBJECT resulted in the object 3239
handle always being closed. 3240

 3241

TEE Internal Core API Specification – Public Review v1.2.1.31 173 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.3 TEE_TruncateObjectData 3242

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3243

TEE_Result TEE_TruncateObjectData(3244
 TEE_ObjectHandle object, 3245
 size_t size); 3246

Description 3247

The function TEE_TruncateObjectData changes the size of a data stream. If size is less than the current 3248
size of the data stream then all bytes beyond size are removed. If size is greater than the current size of 3249
the data stream then the data stream is extended by adding zero bytes at the end of the stream. 3250

The object handle SHALL have been opened with the write access permission. 3251

This operation does not change the data position of any handle opened on the object. Note that if the current 3252
data position of such a handle is beyond size, the data position will point beyond the object data’s end after 3253
truncation. 3254

Truncating a data stream is atomic; either the data stream is successfully truncated or nothing happens. 3255

Parameters 3256

• object: The object handle 3257

• size: The new size of the data stream 3258

Specification Number: 10 Function Number: 0xB03 3259

Return Code 3260

• TEE_SUCCESS: In case of success. 3261

• TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to perform the operation 3262

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3263
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3264

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3265
currently inaccessible. 3266

Panic Reasons 3267

• If object is not a valid handle on a persistent object opened with the write access right. 3268

• If the implementation detects any other error associated with this function that is not explicitly 3269
associated with a defined return code for this function. 3270

Backward Compatibility 3271

Prior to TEE Internal Core API v1.2, a different type was used for size. 3272

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 3273
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 3274

 3275

 3276

174 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.4 TEE_SeekObjectData 3277

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3278

TEE_Result TEE_SeekObjectData(3279
 TEE_ObjectHandle object, 3280
 intmax_t offset, 3281
 TEE_Whence whence); 3282

Description 3283

The TEE_SeekObjectData function sets the data position indicator associated with the object handle. 3284

The parameter whence controls the meaning of offset: 3285

• If whence is TEE_DATA_SEEK_SET, the data position is set to offset bytes from the beginning of 3286
the data stream. 3287

• If whence is TEE_DATA_SEEK_CUR, the data position is set to its current position plus offset. 3288

• If whence is TEE_DATA_SEEK_END, the data position is set to the size of the object data plus 3289
offset. 3290

The TEE_SeekObjectData function may be used to set the data position beyond the end of stream; this 3291
does not constitute an error. However, the data position indicator does have a maximum value which is 3292
TEE_DATA_MAX_POSITION. If the value of the data position indicator resulting from this operation would be 3293
greater than TEE_DATA_MAX_POSITION, the error TEE_ERROR_OVERFLOW is returned. 3294

If an attempt is made to move the data position before the beginning of the data stream, the data position is 3295
set at the beginning of the stream. This does not constitute an error. 3296

Parameters 3297

• object: The object handle 3298

• offset: The number of bytes to move the data position. A positive value moves the data position 3299
forward; a negative value moves the data position backward. 3300

• whence: The position in the data stream from which to calculate the new position 3301

Specification Number: 10 Function Number: 0xB02 3302

Return Code 3303

• TEE_SUCCESS: In case of success. 3304

• TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would 3305
be greater than TEE_DATA_MAX_POSITION 3306

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3307
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3308

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3309
currently inaccessible. 3310

Panic Reasons 3311

• If object is not a valid handle on a persistent object. 3312

• If the implementation detects any other error associated with this function that is not explicitly 3313
associated with a defined return code for this function. 3314

TEE Internal Core API Specification – Public Review v1.2.1.31 175 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Backward Compatibility 3315

Prior to TEE Internal Core API v1.3: 3316

• A different type was used for offset. 3317

• The behavior associated with the return code TEE_ERROR_CORRUPT_OBJECT resulted in the object 3318
handle always being closed. 3319

 3320

176 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6 Cryptographic Operations API 3321

This part of the Cryptographic API defines how to actually perform cryptographic operations: 3322

• Cryptographic operations can be pre-allocated for a given operation type, algorithm, and key size. 3323
Resulting Cryptographic Operation Handles can be reused for multiple operations. 3324

• When required by the operation, the Cryptographic Operation Key can be set up independently and 3325
reused for multiple operations. Note that some cryptographic algorithms, such as AES-XTS, require 3326
two keys. 3327

• An operation may be in three states: initial state where nothing is going on, active state where an 3328
operation is in progress, and extracting state where a digest extraction operation is in progress. 3329

• The cryptographic algorithms listed in the following table are supported in this specification. 3330

Table 6-1: Supported Cryptographic Algorithms4 3331

Algorithm Type Supported Algorithm

Digests MD5
SHA-1

SHA-256
SHA-224
SHA-384
SHA-512
SM3-256

SHA3-224
SHA3-256
SHA3-384
SHA3-512

SHAKE128
SHAKE256

Symmetric ciphers DES
Triple-DES with double-length and triple-length keys
AES
SM4

Message Authentication Codes
(MACs)

DES-MAC
AES-MAC
AES-CMAC
HMAC with one of the supported digests

Authenticated Encryption (AE) AES-CCM with support for Additional Authenticated Data (AAD)
AES-GCM with support for Additional Authenticated Data (AAD)

Asymmetric Encryption
Schemes

RSA PKCS1-V1.5
RSA OAEP

Asymmetric Signature Schemes DSA
RSA PKCS1-V1.5
RSA PSS

Key Exchange Algorithms Diffie-Hellman

 3332

4 WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with

time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate government guidelines.

TEE Internal Core API Specification – Public Review v1.2.1.31 177 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• A number of cryptographic algorithms are optional in this specification. Optional algorithms if 3333
implemented SHALL be supported as defined in the following table. 3334

Table 6-2: Optional Cryptographic Algorithms 3335

Algorithm Type Optional Supported Algorithm

Asymmetric Signature Schemes on generic
curve types

ECDSA Required if supporting any curve for
which "Generic" in Table 6-14 is Y

Key Exchange Algorithms on generic curve
types

ECDH Required if supporting any curve for
which "Generic" in Table 6-14 is Y

Asymmetric Signature on Edwards Curves ED25519 Required if any Edwards curve is
supported

Key Exchange Algorithms on Edwards Curves X25519 Required if any Edwards curve is
supported

Asymmetric Signature on Edwards Curves ED448 Required if Edwards curve 448 is
supported

Key Exchange Algorithms on Edwards Curves X448 Required if Edwards curve 448 is
supported

Various asymmetric Elliptic Curve-based
cryptographic schemes using the SM2 curve

SM2 Requires support for SM3 and SM4

Various signature and HMAC schemes based
on the SM3 hash function

SM3

Various symmetric encryption-based schemes
based on SM4 symmetric encryption

SM4

 3336

• Digest, symmetric ciphers, MACs, and AE operations are always multi-stage, i.e. data can be provided 3337
in successive chunks to the API. On the other hand, asymmetric operations are always single stage. 3338

• Operation states can be copied from one operation handle into an uninitialized operation handle. This 3339
allows the TA to duplicate or fork a multi-stage operation, for example. 3340

178 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1 Data Types 3341

6.1.1 TEE_OperationMode 3342

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 3343

The TEE_OperationMode type is used to specify one of the available cryptographic operations. Table 6-3 3344
defines the legal values of TEE_OperationMode. 3345

typedef uint32_t TEE_OperationMode; 3346

Table 6-3: Possible TEE_OperationMode Values 3347

Constant Name Value Comment
TEE_MODE_ENCRYPT 0x00000000 Encryption mode

TEE_MODE_DECRYPT 0x00000001 Decryption mode

TEE_MODE_SIGN 0x00000002 Signature generation mode

TEE_MODE_VERIFY 0x00000003 Signature verification mode

TEE_MODE_MAC 0x00000004 MAC mode

TEE_MODE_DIGEST 0x00000005 Digest mode

TEE_MODE_DERIVE 0x00000006 Key derivation mode

Reserved for future
GlobalPlatform specifications

0x00000007 – 0x7FFFFFFE

TEE_MODE_ILLEGAL_VALUE 0x7FFFFFFF

Implementation defined 0x80000000 – 0xFFFFFFFF

 3348

TEE_MODE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined 3349
value when provided to a cryptographic operation function. 3350

Backward Compatibility 3351

Prior to TEE Internal Core API v1.2, TEE_OperationMode was defined as an enum. 3352

 3353

TEE Internal Core API Specification – Public Review v1.2.1.31 179 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1.2 TEE_OperationInfo 3354

Since: TEE Internal API v1.0 3355

typedef struct { 3356
 uint32_t algorithm; 3357
 uint32_t operationClass; 3358
 uint32_t mode; 3359
 uint32_t digestLength; 3360
 uint32_t maxKeySize; 3361
 uint32_t keySize; 3362
 uint32_t requiredKeyUsage; 3363
 uint32_t handleState; 3364
} TEE_OperationInfo; 3365

See the documentation of function TEE_GetOperationInfo in section 6.2.3 for a description of this 3366
structure. 3367

 3368

6.1.3 TEE_OperationInfoMultiple 3369

Since: TEE Internal Core API v1.1 3370

typedef struct { 3371
 uint32_t keySize; 3372
 uint32_t requiredKeyUsage; 3373
} TEE_OperationInfoKey; 3374
 3375
typedef struct { 3376
 uint32_t algorithm; 3377
 uint32_t operationClass; 3378
 uint32_t mode; 3379
 uint32_t digestLength; 3380
 uint32_t maxKeySize; 3381
 uint32_t handleState; 3382
 uint32_t operationState; 3383
 uint32_t numberOfKeys; 3384
 TEE_OperationInfoKey keyInformation[]; 3385
} TEE_OperationInfoMultiple; 3386

See the documentation of function TEE_GetOperationInfoMultiple in section 6.2.4 for a description of 3387
this structure. 3388

The buffer size to allocate to hold details of N keys is given by 3389

sizeof(TEE_OperationInfoMultiple) + N * sizeof(TEE_OperationInfoKey) 3390

 3391

180 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1.4 TEE_OperationHandle 3392

Since: TEE Internal API v1.0 3393

typedef struct __TEE_OperationHandle* TEE_OperationHandle; 3394

TEE_OperationHandle is an opaque handle (as defined in section 2.4) on a cryptographic operation. These 3395
handles are returned by the function TEE_AllocateOperation specified in section 6.2.1. 3396

TEE Internal Core API Specification – Public Review v1.2.1.31 181 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2 Generic Operation Functions 3397

Except where otherwise indicated, the functions in this subsection are common to all types of cryptographic 3398
operation. These functions support the following types of cryptographic operations: 3399

• Message Digests; see section 6.3 3400

• Symmetric Ciphers; see section 6.4 3401

• MACs; see section 6.5 3402

• Authenticated Encryptions; see section 6.6 3403

• Asymmetric Operations; see section 6.7 3404

• Key Derivations; see section 6.8 3405

6.2.1 TEE_AllocateOperation 3406

Since: TEE Internal API v1.0 3407

TEE_Result TEE_AllocateOperation(3408
 TEE_OperationHandle* operation, 3409
 uint32_t algorithm, 3410
 uint32_t mode, 3411
 uint32_t maxKeySize); 3412

Description 3413

The TEE_AllocateOperation function allocates a handle for a new cryptographic operation and sets the 3414
mode and algorithm type. If this function does not return with TEE_SUCCESS then there is no valid handle 3415
value. 3416

Once a cryptographic operation has been created, the implementation SHALL guarantee that all resources 3417
necessary for the operation are allocated and that any operation with a key of at most maxKeySize bits can 3418
be performed. For algorithms that take multiple keys, the maxKeySize parameter specifies the size of the 3419
largest key. It is up to the implementation to properly allocate space for multiple keys if the algorithm so 3420
requires. 3421

The parameter algorithm SHALL be one of the constants defined in section 6.10.1. 3422

The parameter mode SHALL be one of the constants defined in section 6.1.1. It SHALL be compatible with 3423
the algorithm as defined by Table 6-4. 3424

The parameter maxKeySize SHALL be a valid value as defined in Table 5-9 for the algorithm, for algorithms 3425
referenced in Table 5-9. For all other algorithms, the maxKeySize parameter may have any value. 3426

The operation is placed in initial state. 3427

182 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-4: TEE_AllocateOperation Algorithms Allowed per Mode and Object Type 3428

Algorithm Object Type Modes
TEE_ALG_AES_CBC_NOPAD
TEE_ALG_AES_CCM
TEE_ALG_AES_CTR
TEE_ALG_AES_CTS
TEE_ALG_AES_ECB_NOPAD
TEE_ALG_AES_GCM
TEE_ALG_AES_XTS

TEE_TYPE_AES
TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_DES_CBC_NOPAD
TEE_ALG_DES_ECB_NOPAD

TEE_TYPE_DES
TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_DES3_CBC_NOPAD
TEE_ALG_DES3_ECB_NOPAD

TEE_TYPE_DES3
TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_SM4_CBC_NOPAD
TEE_ALG_SM4_CBC_PKCS5
TEE_ALG_SM4_CTR
TEE_ALG_SM4_ECB_NOPAD
TEE_ALG_SM4_ECB_PKCS5

TEE_TYPE_SM4
TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_RSA_NOPAD
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512
TEE_ALG_RSAES_PKCS1_V1_5

TEE_TYPE_RSA_KEYPAIR
TEE_TYPE_RSA_PUBLIC_KEY

TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_SM2_PKE
TEE_TYPE_SM2_PKE_KEYPAIR
TEE_TYPE_SM2_PKE_PUBLIC_KEY

TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_AES_CBC_MAC_NOPAD
TEE_ALG_AES_CBC_MAC_PKCS5
TEE_ALG_AES_CMAC

TEE_TYPE_AES TEE_MODE_MAC

TEE_ALG_DES_CBC_MAC_NOPAD
TEE_ALG_DES_CBC_MAC_PKCS5

TEE_TYPE_DES TEE_MODE_MAC

TEE_ALG_DES3_CBC_MAC_NOPAD
TEE_ALG_DES3_CBC_MAC_PKCS5

TEE_TYPE_DES3 TEE_MODE_MAC

TEE_ALG_HMAC_MD5 TEE_TYPE_HMAC_MD5 TEE_MODE_MAC

TEE_ALG_HMAC_SHA1 TEE_TYPE_HMAC_SHA1 TEE_MODE_MAC

TEE_ALG_HMAC_SHA224 TEE_TYPE_HMAC_SHA224 TEE_MODE_MAC

TEE_ALG_HMAC_SHA256 TEE_TYPE_HMAC_SHA256 TEE_MODE_MAC

TEE_ALG_HMAC_SHA384 TEE_TYPE_HMAC_SHA384 TEE_MODE_MAC

TEE_ALG_HMAC_SHA512 TEE_TYPE_HMAC_SHA512 TEE_MODE_MAC

TEE Internal Core API Specification – Public Review v1.2.1.31 183 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Object Type Modes
TEE_ALG_HMAC_SHA3_224 TEE_TYPE_HMAC_SHA3_224 TEE_MODE_MAC

TEE_ALG_HMAC_SHA3_256 TEE_TYPE_HMAC_SHA3_256 TEE_MODE_MAC

TEE_ALG_HMAC_SHA3_384 TEE_TYPE_HMAC_SHA3_384 TEE_MODE_MAC

TEE_ALG_HMAC_SHA3_512 TEE_TYPE_HMAC_SHA3_512 TEE_MODE_MAC

TEE_ALG_HMAC_SM3 TEE_TYPE_HMAC_SM3 TEE_MODE_MAC

TEE_ALG_MD5
TEE_ALG_SHA1
TEE_ALG_SHA224
TEE_ALG_SHA256
TEE_ALG_SHA384
TEE_ALG_SHA3_224
TEE_ALG_SHA3_256
TEE_ALG_SHA3_384
TEE_ALG_SHA3_512
TEE_ALG_SHAKE128
TEE_ALG_SHAKE256
TEE_ALG_SM3

No associated object type TEE_MODE_DIGEST

TEE_ALG_DSA_SHA1
TEE_ALG_DSA_SHA224
TEE_ALG_DSA_SHA256
TEE_ALG_DSA_SHA3_224
TEE_ALG_DSA_SHA3_256
TEE_ALG_DSA_SHA3_384
TEE_ALG_DSA_SHA3_512

TEE_TYPE_DSA_KEYPAIR
TEE_TYPE_DSA_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

TEE_ALG_ECDSA_SHA1
TEE_ALG_ECDSA_SHA224
TEE_ALG_ECDSA_SHA256
TEE_ALG_ECDSA_SHA384
TEE_ALG_ECDSA_SHA512
TEE_ALG_ECDSA_SHA3_224
TEE_ALG_ECDSA_SHA3_256
TEE_ALG_ECDSA_SHA3_384
TEE_ALG_ECDSA_SHA3_512

TEE_TYPE_ECDSA_KEYPAIR
TEE_TYPE_ECDSA_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

TEE_ALG_ED25519
TEE_TYPE_ED25519_KEYPAIR
TEE_TYPE_ED25519_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

TEE_ALG_ED448
TEE_TYPE_ED448_KEYPAIR
TEE_TYPE_ED448_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

184 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Object Type Modes
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_512
TEE_ALG_RSASSA_PKCS1_V1_5_MD5
TEE_ALG_RSASSA_PKCS1_V1_5_SHA1
TEE_ALG_RSASSA_PKCS1_V1_5_SHA224
TEE_ALG_RSASSA_PKCS1_V1_5_SHA256
TEE_ALG_RSASSA_PKCS1_V1_5_SHA384
TEE_ALG_RSASSA_PKCS1_V1_5_SHA512
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_224
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_256
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_384
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_512

TEE_TYPE_RSA_KEYPAIR
TEE_TYPE_RSA_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

TEE_ALG_SM2_DSA_SM3
TEE_TYPE_SM2_DSA_KEYPAIR
TEE_TYPE_SM2_DSA_PUBLIC_KEY

TEE_MODE_SIGN
TEE_MODE_VERIFY

TEE_ALG_DH_DERIVE_SHARED_SECRET TEE_TYPE_DH_KEYPAIR TEE_MODE_DERIVE

TEE_ALG_ECDH_DERIVE_SHARED_SECRET TEE_TYPE_ECDH_KEYPAIR TEE_MODE_DERIVE

TEE_ALG_X25519 TEE_TYPE_X25519_KEYPAIR TEE_MODE_DERIVE

TEE_ALG_X448 TEE_TYPE_X448_KEYPAIR TEE_MODE_DERIVE

TEE_ALG_SM2_KEP TEE_TYPE_SM2_KEP_KEYPAIR TEE_MODE_DERIVE

TEE_ALG_HKDF TEE_TYPE_HKDF TEE_MODE_DERIVE

 3429

Note that all algorithms listed in Table 6-4 SHALL be supported by any compliant implementation (except the 3430
elliptic curve algorithms, which are optional; Table 6-11 identifies those algorithms explicitly). However, a 3431
particular implementation may also support more implementation-defined algorithms, modes, or key sizes. 3432

Parameters 3433

• operation: Reference to generated operation handle 3434

• algorithm: One of the cipher algorithms listed in section 6.10.1 3435

• mode: The operation mode 3436

• maxKeySize: Maximum key size in bits for the operation – must be a valid value for the algorithm as 3437
defined in Table 5-9. 3438

Specification Number: 10 Function Number: 0xC01 3439

TEE Internal Core API Specification – Public Review v1.2.1.31 185 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Code 3440

• TEE_SUCCESS: In case of success. 3441

• TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the operation 3442

• TEE_ERROR_NOT_SUPPORTED: If the mode is not compatible with the algorithm or key size or if the 3443
algorithm is not one of the listed algorithms or if maxKeySize is not appropriate for the algorithm. 3444

Panic Reasons 3445

• If the implementation detects any error associated with this function that is not explicitly associated 3446
with a defined return code for this function. 3447

186 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.2 TEE_FreeOperation 3448

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 3449

void TEE_FreeOperation(TEE_OperationHandle operation); 3450

Description 3451

The TEE_FreeOperation function deallocates all resources associated with an operation handle. After this 3452
function is called, the operation handle is no longer valid. All cryptographic material in the operation is 3453
destroyed. 3454

The function does nothing if operation is TEE_HANDLE_NULL. 3455

Parameters 3456

• operation: Reference to operation handle 3457

Specification Number: 10 Function Number: 0xC03 3458

Panic Reasons 3459

• If operation is not a valid handle on an operation and is not equal to TEE_HANDLE_NULL. 3460

• If the implementation detects any other error. 3461

Backward Compatibility 3462

Prior to TEE Internal Core API v1.2, TEE_FreeOperation MAY panic if operation is TEE_HANDLE_NULL. 3463

TEE Internal Core API Specification – Public Review v1.2.1.31 187 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.3 TEE_GetOperationInfo 3464

Since: TEE Internal API v1.0 3465

void TEE_GetOperationInfo(3466
 TEE_OperationHandle operation, 3467
 [out] TEE_OperationInfo* operationInfo); 3468

Description 3469

The TEE_GetOperationInfo function returns information about an operation handle. It fills the following 3470
fields in the structure operationInfo (defined in section 6.2.1): 3471

• algorithm, mode, maxKeySize: The parameters passed to the function 3472
TEE_AllocateOperation 3473

• operationClass: One of the constants from Table 5-6, describing the kind of operation. 3474

• keySize: 3475

o For an operation that makes no use of keys, 0. 3476

o For an operation that uses a single key, the actual size of this key. 3477

o For an operation that uses multiple keys, 0. 3478

 The actual value of keySize can be obtained by calling the 3479
TEE_GetOperationInfoMultiple routine defined in section 6.2.4. 3480

• requiredKeyUsage: 3481

o For an operation that makes no use of keys, 0. 3482

o For an operation that uses a single key, a bit vector that describes the necessary bits in the object 3483
usage for TEE_SetOperationKey to succeed without panicking. 3484

o For an operation that uses multiple keys, 0. 3485

 The actual value of requiredKeyUsage can be obtained by calling the 3486
TEE_GetOperationInfoMultiple routine defined in section 6.2.4. 3487

• digestLength: 3488

o For non-XOF MAC, AE, or Digest, describes the number of bytes in the digest or tag. 3489

o For XOF operations, 0. 3490

o For all other operations, this value is undefined. 3491

• handleState: A bit vector describing the current state of the operation. Contains one or more of the 3492
following flags: 3493

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using 3494
TEE_SetOperationKey2. 3495

o TEE_HANDLE_FLAG_KEY_SET: Set if the required operation key has been set. Always set for 3496
digest operations. 3497

o TEE_HANDLE_FLAG_INITIALIZED: For multi-stage operations, this flag is set using one of the 3498
TEE_XXXInit functions, and reset (set back to zero) using one of the TEE_XXXFinal functions or 3499
the TEE_ResetOperation function. This flag is always set for Digest operations. 3500

o TEE_HANDLE_FLAG_EXTRACTING: Set for Digest operations when the operation is in the 3501
extracting state. 3502

188 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters 3503

• operation: Handle on the operation 3504

• operationInfo: Pointer to a structure filled with the operation information 3505

Specification Number: 10 Function Number: 0xC04 3506

Panic Reasons 3507

• If operation is not a valid opened operation handle. 3508

• If the implementation detects any other error. 3509

TEE Internal Core API Specification – Public Review v1.2.1.31 189 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.4 TEE_GetOperationInfoMultiple 3510

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 3511

TEE_Result TEE_GetOperationInfoMultiple(3512
 TEE_OperationHandle operation, 3513
 [outbuf] TEE_OperationInfoMultiple* operationInfoMultiple, size_t* 3514
 operationSize); 3515

Description 3516

The TEE_GetOperationInfoMultiple function returns information about an operation handle. It fills the 3517
following fields in the structure operationInfoMultiple (defined in section 6.1.3): 3518

• algorithm, mode, maxKeySize: The parameters passed to the function 3519
TEE_AllocateOperation. 3520

• operationClass: One of the constants from Table 5-6, describing the kind of operation. 3521

• digestLength: For a MAC, AE, or Digest, describes the number of bytes in the digest or tag. For 3522
other kinds of operation, or when the digest length is unknown, this value SHALL be zero. 3523

• handleState: A bit vector describing the current state of the operation. Contains one or more of the 3524
following flags: 3525

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using 3526
TEE_SetOperationKey2. 3527

o TEE_HANDLE_FLAG_KEY_SET: Set if all required operation keys have been set. Always set for 3528
digest operations. 3529

o TEE_HANDLE_FLAG_INITIALIZED: For multi-stage operations, this flag is set using one of the 3530
TEE_XXXInit functions, and reset (set back to zero) using one of the TEE_XXXFinal functions 3531
or the TEE_ResetOperation function. This flag is always set for Digest operations. 3532

o TEE_HANDLE_FLAG_EXTRACTING: Set for Digest operations when the operation is in the 3533
extracting state. 3534

• operationState: One of the values from Table 5-7. This is set to 3535
TEE_OPERATION_STATE_ACTIVE if the operation is in active state, to 3536
TEE_OPERATION_STATE_INITIAL if the operation is in the initial state, and to 3537
TEE_OPERATION_STATE_EXTRACTING if the operation is in the extracting state. 3538

• numberOfKeys: This is set to the number of keys required by this operation. It indicates the number 3539
of TEE_OperationInfoKey structures which follow. May be 0 for an operation which requires no 3540
keys. 3541

• keyInformation: This array contains numberOfKeys entries, each of which defines the details for 3542
one key used by the operation, in the order they are defined. If the buffer is larger than required to 3543
support numberOfKeys entries, the additional space is not initialized or modified. For each element: 3544

o keySize: If a key is programmed in the operation, the actual size of this key; otherwise 0. 3545

o requiredKeyUsage: A bit vector that describes the necessary bits in the object usage for 3546
TEE_SetOperationKey or TEE_SetOperationKey2 to succeed without panicking. 3547

190 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters 3548

• operation: Handle on the operation 3549

• operationInfoMultiple, operationSize: Buffer filled with the operation information. The 3550
number of keys which can be contained is given by: 3551

(*operationSize–3552
sizeof(TEE_OperationInfoMultiple))/sizeof(TEE_OperationInfoKey)+1 3553

Specification Number: 10 Function Number: 0xC08 3554

Return Code 3555

• TEE_SUCCESS: In case of success. 3556

• TEE_ERROR_SHORT_BUFFER: If the operationInfo buffer is not large enough to hold a 3557
TEE_OperationInfoMultiple (defined in section 6.1.3) structure containing the number of keys 3558
required by a TEE_Operation of the type supplied. Table C-1 points to the normative references 3559
which define this information. 3560

Panic Reasons 3561

• If operation is not a valid opened operation handle. 3562

• If the implementation detects any other error associated with this function that is not explicitly 3563
associated with a defined return code for this function. 3564

Backward Compatibility 3565

TEE Internal Core API v1.1 used a different type for operationSize. 3566

TEE Internal Core API v1.2 clarified the legal values for digestLength. 3567

 3568

TEE Internal Core API Specification – Public Review v1.2.1.31 191 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.5 TEE_ResetOperation 3569

Since: TEE Internal API v1.0 3570

void TEE_ResetOperation(TEE_OperationHandle operation); 3571

Description 3572

For a multi-stage operation, the TEE_ResetOperation function resets the TEE_OperationHandle to the 3573
state after the initial TEE_AllocateOperation call with the addition of any keys which were configured 3574
subsequent to this so that the TEE_OperationHandle can be reused with the same keys. 3575

This function can be called on any operation and at any time after the key is set, but is meaningful only for the 3576
multi-stage operations, i.e. symmetric ciphers, MACs, AEs, and digests. 3577

When such a multi-stage operation is active, i.e. when it has been initialized but not yet successfully finalized, 3578
then the operation is reset to initial state. The operation key(s) are not cleared. 3579

Parameters 3580

• operation: Handle on the operation 3581

Specification Number: 10 Function Number: 0xC05 3582

Panic Reasons 3583

• If operation is not a valid opened operation handle. 3584

• If the key has not been set yet. 3585

• Hardware or cryptographic algorithm failure 3586

• If the implementation detects any other error. 3587

192 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.6 TEE_SetOperationKey 3588

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3589

TEE_Result TEE_SetOperationKey(3590
 TEE_OperationHandle operation, 3591
 [in] TEE_ObjectHandle key); 3592

Description 3593

The TEE_SetOperationKey function programs the key of an operation; that is, it associates an operation 3594
with a key. 3595

The key material is copied from the key object handle into the operation. After the key has been set, there is 3596
no longer any link between the operation and the key object. The object handle can be closed or reset and 3597
this will not affect the operation. This copied material exists until the operation is freed using 3598
TEE_FreeOperation or another key is set into the operation. 3599

This function accepts handles on both transient key objects and persistent key objects. 3600

The operation SHALL be in initial state before the operation and remains in initial state afterwards. 3601

Key object types referenced in Table 5-9 SHALL be sized as defined in the table; otherwise the key object size 3602
may have any value up to the maximum key size compatible with the operation. The operation mode SHALL 3603
be compatible with key usage: 3604

• In general, the operation mode SHALL be allowed in the object usage. 3605

• For the TEE_ALG_RSA_NOPAD algorithm: 3606

o The only supported modes are TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT. 3607

o For TEE_MODE_ENCRYPT, the object usage SHALL contain both the TEE_USAGE_ENCRYPT and 3608
TEE_USAGE_VERIFY flags. 3609

o For TEE_MODE_DECRYPT, the object usage SHALL contain both the TEE_USAGE_DECRYPT and 3610
TEE_USAGE_SIGN flags. 3611

• For a public key object, the allowed operation modes depend on the type of key and are specified in 3612
the following table. 3613

Table 6-5: Public Key Allowed Modes 3614

Key Type Allowed Operation Modes

TEE_TYPE_RSA_PUBLIC_KEY TEE_MODE_VERIFY or TEE_MODE_ENCRYPT

TEE_TYPE_DSA_PUBLIC_KEY TEE_MODE_VERIFY

TEE_TYPE_ECDSA_PUBLIC_KEY (optional)
TEE_TYPE_ED25519_PUBLIC_KEY (optional)
TEE_TYPE_ED448_PUBLIC_KEY (optional)

TEE_MODE_VERIFY

TEE_TYPE_ECDH_PUBLIC_KEY (optional)
TEE_TYPE_X25519_PUBLIC_KEY (optional)
TEE_TYPE_X448_PUBLIC_KEY (optional)

TEE_MODE_DERIVE

TEE_TYPE_SM2_DSA_PUBLIC_KEY (optional) TEE_MODE_VERIFY

TEE_TYPE_SM2_KEP_PUBLIC_KEY (optional) TEE_MODE_DERIVE

TEE Internal Core API Specification – Public Review v1.2.1.31 193 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Key Type Allowed Operation Modes
TEE_TYPE_SM2_PKE_PUBLIC_KEY (optional) TEE_MODE_ENCRYPT or TEE_MODE_DECRYPT

 3615

• If the object is a key-pair then the key parts used in the operation depend on the operation mode as 3616
defined in the following table. 3617

Table 6-6: Key-Pair Parts for Operation Modes 3618

Operation Mode Key Parts Used
TEE_MODE_VERIFY Public

TEE_MODE_SIGN Private

TEE_MODE_ENCRYPT Public

TEE_MODE_DECRYPT Private

TEE_MODE_DERIVE Public and Private
 3619

If key is set to TEE_HANDLE_NULL, then the operation key is cleared. 3620

If a key is present in the operation, then it is cleared and all key material copied into the operation is destroyed 3621
before the new key is inserted. 3622

Parameters 3623

• operation: Operation handle 3624

• key: A handle on a key object 3625

Specification Number: 10 Function Number: 0xC06 3626

Return Code 3627

• TEE_SUCCESS: In case of success. 3628

• TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle SHALL behave based on 3629
the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3630

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is 3631
currently inaccessible. 3632

Panic Reasons 3633

• If operation is not a valid opened operation handle. 3634

• If key is not TEE_HANDLE_NULL and is not a valid handle on a key object. 3635

• If key is not initialized. 3636

• If the type, size, or usage of key is not compatible with the algorithm, mode, or size of the 3637
operation. 3638

• If operation is not in initial state. 3639

• If the flag TEE_HANDLE_FLAG_INITIALIZED is set on the operation. 3640

• Hardware or cryptographic algorithm failure 3641

194 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If the implementation detects any other error associated with this function that is not explicitly 3642
associated with a defined return code for this function. 3643

Backward Compatibility 3644

Prior to TEE Internal Core API v1.2, TEE_SetOperationKey did not specify the [in] annotation on key. 3645

Prior to TEE Internal Core API v1.3, the behavior associated with the return code 3646
TEE_ERROR_CORRUPT_OBJECT resulted in the object handle always being closed. 3647

 3648

TEE Internal Core API Specification – Public Review v1.2.1.31 195 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.7 TEE_SetOperationKey2 3649

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 3650

TEE_Result TEE_SetOperationKey2(3651
 TEE_OperationHandle operation, 3652
 [in] TEE_ObjectHandle key1, 3653
 [in] TEE_ObjectHandle key2); 3654

Description 3655

The TEE_SetOperationKey2 function initializes an existing operation with two keys. This is used only for 3656
the algorithms TEE_ALG_AES_XTS and TEE_ALG_SM2_KEP. 3657

This function works like TEE_SetOperationKey except that two keys are set instead of a single key. 3658

key1 and key2 SHALL both be non-NULL or both NULL. key1 and key2 SHALL NOT refer to keys with 3659
bitwise identical TEE_ATTR_SECRET_VALUE attributes. 3660

• For TEE_ALG_SM2_KEP, key1 is the handle to the key object that contains the long-term key, and 3661
key2 is the handle to the key object that contains the ephemeral key. 3662

• For TEE_ALG_AES_XTS, key1 and key2 SHALL support key sizes of 128 and 256 bits. 3663

Parameters 3664

• operation: Operation handle 3665

• key1: A handle on a key object 3666

• key2: A handle on a key object 3667

Specification Number: 10 Function Number: 0xC07 3668

Return Code 3669

• TEE_SUCCESS: In case of success. 3670

• TEE_ERROR_CORRUPT_OBJECT: If the key1 object is corrupt. The object handle SHALL behave 3671
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3672

• TEE_ERROR_CORRUPT_OBJECT_2: If the key2 object is corrupt. The object handle SHALL behave 3673
based on the gpd.ta.doesNotCloseHandleOnCorruptObject property. 3674

• TEE_ERROR_STORAGE_NOT_AVAILABLE: If the key1 object is stored in a storage area which is 3675
currently inaccessible. 3676

• TEE_ERROR_STORAGE_NOT_AVAILABLE_2: If the key2 object is stored in a storage area which is 3677
currently inaccessible. 3678

• TEE_ERROR_SECURITY: If the key1 object and the key2 object are the same. 3679

Panic Reasons 3680

• If operation is not a valid opened operation handle. 3681

• If key1 and key2 are not both TEE_HANDLE_NULL and key1 or key2 or both are not valid 3682
handles on a key object. 3683

• If key1 and/or key2 are not initialized. 3684

196 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If the type, size, or usage of key1 or key2 is not compatible with the algorithm, mode, or size of the 3685
operation. 3686

• If operation is not in initial state. 3687

• Hardware or cryptographic algorithm failure 3688

• If the implementation detects any other error associated with this function that is not explicitly 3689
associated with a defined return code for this function. 3690

Backward Compatibility 3691

Prior to TEE Internal Core API v1.2: 3692

• TEE_SetOperationKey2 did not include the TEE_ERROR_SECURITY return code. 3693

• TEE_SetOperationKey2 did not specify the [in] annotation. 3694

If a TA indicates backward compatibility with a version of this specification before v1.2, the implementation 3695
MAY allow key1 and key2 to be the same. 3696

Prior to TEE Internal Core API v1.3, the behavior associated with the return codes 3697
TEE_ERROR_CORRUPT_OBJECT and TEE_ERROR_CORRUPT_OBJECT_2 resulted in the object handle always 3698
being closed. 3699

 3700

TEE Internal Core API Specification – Public Review v1.2.1.31 197 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.8 TEE_CopyOperation 3701

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 3702

void TEE_CopyOperation(3703
 [out] TEE_OperationHandle dstOperation, 3704
 [in] TEE_OperationHandle srcOperation); 3705

Description 3706

The TEE_CopyOperation function copies an operation state from one operation handle into another 3707
operation handle. This also copies the key material associated with the source operation. 3708

The state of srcOperation including the key material currently set up is copied into dstOperation. 3709

This function is useful in the following use cases: 3710

• “Forking” a digest operation after feeding some amount of initial data 3711

• Computing intermediate digests 3712

The algorithm and mode of dstOperation SHALL be equal to the algorithm and mode of srcOperation. 3713

The state of srcOperation (initial/active/extracting) is copied to dstOperation. 3714

If srcOperation has no key programmed, then the key in dstOperation is cleared. If there is a key 3715
programmed in srcOperation, then the maximum key size of dstOperation SHALL be greater than or 3716
equal to the actual key size of srcOperation. 3717

Parameters 3718

• dstOperation: Handle on the destination operation 3719

• srcOperation: Handle on the source operation 3720

Specification Number: 10 Function Number: 0xC02 3721

Panic Reasons 3722

• If dstOperation or srcOperation is not a valid opened operation handle. 3723

• If the algorithm or mode differ in dstOperation and srcOperation. 3724

• If srcOperation has a key and its size is greater than the maximum key size of dstOperation. 3725

• Hardware or cryptographic algorithm failure. 3726

• If the implementation detects any other error. 3727

Backward Compatibility 3728

Prior to TEE Internal Core API v1.2, TEE_CopyOperation did not specify the [in] or [out] annotations. 3729

 3730

198 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.9 TEE_IsAlgorithmSupported 3731

Since: TEE Internal Core API v1.2 3732

TEE_Result TEE_IsAlgorithmSupported(3733
 [in] uint32_t algId 3734
 [in] uint32_t element); 3735

Description 3736

The TEE_IsAlgorithmSupported function can be used to determine whether a combination of algId and 3737
element is supported. Implementations SHALL return TEE_ERROR_NOT_SUPPORTED for any value of algId 3738
or element which is reserved for future use. 3739

Parameters 3740

• algId: An algorithm identifier from Table 6-11 3741

• element: A cryptographic element from Table 6-14. Where algId fully defines the required 3742
support, the special value TEE_OPTIONAL_ELEMENT_NONE SHOULD be used. 3743

Specification Number: 10 Function Number: 0xC09 3744

Return Code 3745

• TEE_SUCCESS: The requested combination of algId and element is supported. 3746

• TEE_ERROR_NOT_SUPPORTED: The requested combination of algId and element is not 3747
supported. 3748

Panic Reasons 3749

TEE_IsAlgorithmSupported SHALL NOT panic. 3750

TEE Internal Core API Specification – Public Review v1.2.1.31 199 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3 Message Digest Functions 3751

Figure 6-1 illustrates how a TEE_OperationHandle is manipulated by the Message Digest functions. The 3752
state diagram is expressed in terms of the state that is revealed in the handleState flags by 3753
TEE_GetOperationInfo and TEE_GetOperationInfoMultiple. 3754

Figure 6-1: State Diagram for TEE_OperationHandle for Message Digest Functions (Informative) 3755

 3756

200 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3.1 TEE_DigestUpdate 3757

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3758

void TEE_DigestUpdate(3759
 TEE_OperationHandle operation, 3760
 [inbuf] void* chunk, size_t chunkSize); 3761

Description 3762

The TEE_DigestUpdate function accumulates message data for hashing. The message does not have to 3763
be block aligned. Subsequent calls to this function are possible. 3764

The operation may be in either initial or active state and becomes active. 3765

Parameters 3766

• operation: Handle of a running Message Digest operation 3767

• chunk, chunkSize: Chunk of data to be hashed 3768

Specification Number: 10 Function Number: 0xD02 3769

Panic Reasons 3770

• If operation is not a valid operation handle of class TEE_OPERATION_DIGEST. 3771

• If input data exceeds maximum length for algorithm. 3772

• Hardware or cryptographic algorithm failure. 3773

• It is illegal to call TEE_DigestUpdate when in the extracting state. 3774

• If the implementation detects any other error. 3775

Backward Compatibility 3776

TEE Internal Core API v1.1 used a different type for chunkSize. 3777

 3778

TEE Internal Core API Specification – Public Review v1.2.1.31 201 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3.2 TEE_DigestDoFinal 3779

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3780

TEE_Result TEE_DigestDoFinal(3781
 TEE_OperationHandle operation, 3782
 [inbuf] void* chunk, size_t chunkLen, 3783
 [outbuf] void* hash, size_t *hashLen); 3784

Description 3785

The TEE_DigestDoFinal function finalizes the message digest operation and produces the message hash. 3786
Afterwards the Message Digest operation is reset to initial state and can be reused. 3787

The input operation may be in either initial, active, or extracting state and becomes initial. 3788

If TEE_DigestExtract has returned some or all of a digest, then TEE_DigestDoFinal will only return the 3789
remaining part, which may be zero in length. 3790

If you are using an XOF function, hashLen bytes will be returned. 3791

Parameters 3792

• operation: Handle of a running Message Digest operation 3793

• chunk, chunkLen: Last chunk of data to be hashed 3794

• hash, hashLen: Output buffer filled with the message hash 3795

Specification Number: 10 Function Number: 0xD01 3796

Return Code 3797

• TEE_SUCCESS: On success. 3798

• TEE_ERROR_SHORT_BUFFER: Only returned in the case of a non-XOF operation. Returned if the 3799
output buffer is too small. In this case, the operation is not finalized. 3800

Panic Reasons 3801

• If operation is not a valid operation handle of class TEE_OPERATION_DIGEST. 3802

• If input data exceeds maximum length for algorithm. 3803

• Hardware or cryptographic algorithm failure. 3804

• If the implementation detects any other error associated with this function that is not explicitly 3805
associated with a defined return code for this function. 3806

• It is illegal to call TEE_DigestDoFinal with chunklen > 0 when in the extracting state. 3807

Backward Compatibility 3808

TEE Internal Core API v1.1 used a different type for chunkLen and hashLen. 3809

202 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3.3 TEE_DigestExtract 3810

Since: TEE Internal Core API v1.3 3811

TEE_Result TEE_DigestExtract(3812
 TEE_OperationHandle operation, 3813
 [outbuf] void* hash, 3814
 size_t *hashLen); 3815

Description 3816

The TEE_DigestExtract function extracts some or all of the digest depending on the size of the hash 3817
buffer. 3818

The operation may be in either initial, active, or extracting state and the state becomes extracting. 3819
Subsequent calls to this function are possible. 3820

If called with a non-XOF DIGEST operation handle (e.g. SHA-3), then TEE_DigestExtract will attempt to 3821
return the digest material from that digest function. Depending on whether there is still digest material to return, 3822
a subsequent call to TEE_DigestExtract or TEE_DigestDoFinal may return no data. 3823

Parameters 3824

• operation: Handle of a running Message Digest operation 3825

• hash: Filled with the unreported part of the digest 3826

• hashLen: Length of the unreported part of the digest 3827

Specification Number: 10 Function Number: 0xD03 3828

Return Code 3829

• TEE_SUCCESS: On success. 3830

Panic Reasons 3831

• If operation is not a valid operation handle of class TEE_OPERATION_DIGEST. 3832

• Hardware or cryptographic algorithm failure 3833

• If the implementation detects any other error associated with this function that is not explicitly 3834
associated with a defined return code for this function. 3835

 3836

TEE Internal Core API Specification – Public Review v1.2.1.31 203 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4 Symmetric Cipher Functions 3837

These functions define the way to perform symmetric cipher operations, such as AES. They cover both block 3838
ciphers and stream ciphers. 3839

Figure 6-2 illustrates how a TEE_OperationHandle is manipulated by the Symmetric Cipher functions. The 3840
state diagram is expressed in terms of the state that is revealed in the handleState flags by 3841
TEE_GetOperationInfo and TEE_GetOperationInfoMultiple. 3842

Figure 6-2: State Diagram for TEE_OperationHandle for Symmetric Cipher Functions (Informative) 3843

 3844

204 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4.1 TEE_CipherInit 3845

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3846

void TEE_CipherInit(3847
 TEE_OperationHandle operation, 3848
 [inbuf] void* IV, size_t IVLen); 3849

Description 3850

The TEE_CipherInit function starts the symmetric cipher operation. 3851

The operation SHALL have been associated with a key. 3852

If the operation is in active state, it is reset and then initialized. 3853

If the operation is in initial state, it is moved to active state. 3854

The counter for algorithm TEE_ALG_AES_CTR or TEE_ALG_SM4_CTR SHALL be encoded as a 16-byte buffer 3855
in big-endian form. Between two consecutive blocks, the counter SHALL be incremented by 1. If it reaches the 3856
limit of all 128 bits set to 1, it SHALL wrap around to 0. 3857

Parameters 3858

• operation: A handle on an opened cipher operation setup with a key 3859

• IV, IVLen: Buffer containing the operation Initialization Vector as appropriate (as indicated in the 3860
following table). 3861

TEE Internal Core API Specification – Public Review v1.2.1.31 205 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-6b: Symmetric Encrypt/Decrypt Operation Parameters 3862

Algorithm IV Required Meaning of IV
TEE_ALG_AES_CBC_NOPAD Yes

TEE_ALG_AES_CCM Yes Nonce value

TEE_ALG_AES_CTR Yes Initial Counter Value

TEE_ALG_AES_CTS Yes

TEE_ALG_AES_ECB_NOPAD No

TEE_ALG_AES_GCM Yes Nonce value

TEE_ALG_AES_XTS Yes Tweak value

TEE_ALG_DES_CBC_NOPAD Yes

TEE_ALG_DES_ECB_NOPAD No

TEE_ALG_DES3_CBC_NOPAD Yes

TEE_ALG_DES3_ECB_NOPAD No

TEE_ALG_SM4_CBC_NOPAD Yes IV SHOULD be randomly generated. This is the
responsibility of the caller.

TEE_ALG_SM4_CBC_PKCS5 Yes IV SHOULD be randomly generated. This is the
responsibility of the caller.

TEE_ALG_SM4_CTR Yes Initial Counter Value

TEE_ALG_SM4_ECB_NOPAD No

TEE_ALG_SM4_ECB_PKCS5 No

 3863

Specification Number: 10 Function Number: 0xE02 3864

Panic Reasons 3865

• If operation is not a valid operation handle of class TEE_OPERATION_CIPHER. 3866

• If no key is programmed in the operation. 3867

• If the Initialization Vector does not have the length required by the algorithm. 3868

• Hardware or cryptographic algorithm failure 3869

• If the implementation detects any other error. 3870

Backward Compatibility 3871

TEE Internal Core API v1.1 used a different type for IVLen. 3872

 3873

206 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4.2 TEE_CipherUpdate 3874

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3875

TEE_Result TEE_CipherUpdate(3876
 TEE_OperationHandle operation, 3877
 [inbuf] void* srcData, size_t srcLen, 3878
 [outbuf] void* destData, size_t *destLen); 3879

Description 3880

The TEE_CipherUpdate function encrypts or decrypts input data. 3881

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless 3882
one or more calls of this function have supplied sufficient input data, no output is generated. The cipher 3883
operation is finalized with a call to TEE_CipherDoFinal. 3884

The buffers srcData and destData SHALL be either completely disjoint or equal in their starting positions. 3885

The operation SHALL be in active state. 3886

Parameters 3887

• operation: Handle of a running Cipher operation 3888

• srcData, srcLen: Input data buffer to be encrypted or decrypted 3889

• destData, destLen: Output buffer 3890

Specification Number: 10 Function Number: 0xE03 3891

Return Code 3892

• TEE_SUCCESS: In case of success. 3893

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output. In this 3894
case, the input is not fed into the algorithm. 3895

Panic Reasons 3896

• If operation is not a valid operation handle of class TEE_OPERATION_CIPHER. 3897

• If the operation has not been started yet with TEE_CipherInit or has already been finalized. 3898

• If operation is not in active state. 3899

• Hardware or cryptographic algorithm failure 3900

• If the implementation detects any other error associated with this function that is not explicitly 3901
associated with a defined return code for this function. 3902

Backward Compatibility 3903

TEE Internal Core API v1.1 used a different type for srcLen and destLen. 3904

 3905

TEE Internal Core API Specification – Public Review v1.2.1.31 207 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4.3 TEE_CipherDoFinal 3906

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3907

TEE_Result TEE_CipherDoFinal(3908
 TEE_OperationHandle operation, 3909
 [inbuf] void* srcData, size_t srcLen, 3910
 [outbufopt] void* destData, size_t *destLen); 3911

Description 3912

The TEE_CipherDoFinal function finalizes the cipher operation, processing data that has not been 3913
processed by previous calls to TEE_CipherUpdate as well as data supplied in srcData. The operation 3914
handle can be reused or re-initialized. 3915

The buffers srcData and destData SHALL be either completely disjoint or equal in their starting positions. 3916

The operation SHALL be in active state. If the result is not TEE_ERROR_SHORT_BUFFER, the operation enters 3917
initial state afterwards. 3918

Parameters 3919

• operation: Handle of a running Cipher operation 3920

• srcData, srcLen: Reference to final chunk of input data to be encrypted or decrypted 3921

• destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it is 3922
known to be empty. 3923

Specification Number: 10 Function Number: 0xE01 3924

Return Code 3925

• TEE_SUCCESS: In case of success. 3926

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output 3927

Panic Reasons 3928

• If operation is not a valid operation handle of class TEE_OPERATION_CIPHER. 3929

• If the operation has not been started yet with TEE_CipherInit or has already been finalized. 3930

• If the total length of the input is not a multiple of a block size when the algorithm of the operation is a 3931
symmetric block cipher which does not specify padding. 3932

• If operation is not in active state. 3933

• Hardware or cryptographic algorithm failure 3934

• If the implementation detects any other error associated with this function that is not explicitly 3935
associated with a defined return code for this function. 3936

Backward Compatibility 3937

TEE Internal Core API v1.1 used a different type for srcLen and destLen. 3938

 3939

208 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5 MAC Functions 3940

These functions are used to perform MAC (Message Authentication Code) operations, such as HMAC or 3941
AES-CMAC operations. 3942

These functions are not used for Authenticated Encryption algorithms, which SHALL use the functions defined 3943
in section 6.6. 3944

Figure 6-3 illustrates how a TEE_OperationHandle is manipulated by the MAC functions. The state diagram 3945
is expressed in terms of the state that is revealed in the handleState flags by TEE_GetOperationInfo 3946
and TEE_GetOperationInfoMultiple. 3947

Figure 6-3: State Diagram for TEE_OperationHandle for MAC Functions (Informative) 3948

 3949

TEE Internal Core API Specification – Public Review v1.2.1.31 209 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.1 TEE_MACInit 3950

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3951

void TEE_MACInit(3952
 TEE_OperationHandle operation, 3953
 [inbuf] void* IV, size_t IVLen); 3954

Description 3955

The TEE_MACInit function initializes a MAC operation. 3956

The operation SHALL have been associated with a key. 3957

If the operation is in active state, it is reset and then initialized. 3958

If the operation is in initial state, it moves to active state. 3959

If the MAC algorithm does not require an IV, the parameters IV, IVLen are ignored. 3960

Parameters 3961

• operation: Operation handle 3962

• IV, IVLen: Input buffer containing the operation Initialization Vector, if applicable 3963

Specification Number: 10 Function Number: 0xF03 3964

Panic Reasons 3965

• If operation is not a valid operation handle of class TEE_OPERATION_MAC. 3966

• If no key is programmed in the operation. 3967

• If the Initialization Vector does not have the length required by the algorithm. 3968

• Hardware or cryptographic algorithm failure 3969

• If the implementation detects any other error. 3970

Backward Compatibility 3971

TEE Internal Core API v1.1 used a different type for IVLen. 3972

 3973

210 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.2 TEE_MACUpdate 3974

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3975

void TEE_MACUpdate(3976
 TEE_OperationHandle operation, 3977
 [inbuf] void* chunk, size_t chunkSize); 3978

Description 3979

The TEE_MACUpdate function accumulates data for a MAC calculation. 3980

Input data does not have to be a multiple of the block size. Subsequent calls to this function are possible. 3981
TEE_MACComputeFinal or TEE_MACCompareFinal are called to complete the MAC operation. 3982

The operation SHALL be in active state. 3983

Parameters 3984

• operation: Handle of a running MAC operation 3985

• chunk, chunkSize: Chunk of the message to be MACed 3986

Specification Number: 10 Function Number: 0xF04 3987

Panic Reasons 3988

• If operation is not a valid operation handle of class TEE_OPERATION_MAC. 3989

• If the operation has not been started yet with TEE_MACInit or has already been finalized. 3990

• If input data exceeds maximum length for algorithm. 3991

• If operation is not in active state. 3992

• Hardware or cryptographic algorithm failure 3993

• If the implementation detects any other error. 3994

Backward Compatibility 3995

TEE Internal Core API v1.1 used a different type for chunkSize. 3996

 3997

TEE Internal Core API Specification – Public Review v1.2.1.31 211 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.3 TEE_MACComputeFinal 3998

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 3999

TEE_Result TEE_MACComputeFinal(4000
 TEE_OperationHandle operation, 4001
 [inbuf] void* message, size_t messageLen, 4002
 [outbuf] void* mac, size_t *macLen); 4003

Description 4004

The TEE_MACComputeFinal function finalizes the MAC operation with a last chunk of message, and 4005
computes the MAC. Afterwards the operation handle can be reused or re-initialized with a new key. 4006

The operation SHALL be in active state. If the result is not TEE_ERROR_SHORT_BUFFER, the operation enters 4007
initial state afterwards. 4008

Parameters 4009

• operation: Handle of a MAC operation 4010

• message, messageLen: Input buffer containing a last message chunk to MAC 4011

• mac, macLen: Output buffer filled with the computed MAC 4012

Specification Number: 10 Function Number: 0xF02 4013

Return Code 4014

• TEE_SUCCESS: In case of success. 4015

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the computed MAC 4016

Panic Reasons 4017

• If operation is not a valid operation handle of class TEE_OPERATION_MAC. 4018

• If the operation has not been started yet with TEE_MACInit or has already been finalized. 4019

• If input data exceeds maximum length for algorithm. 4020

• If operation is not in active state. 4021

• Hardware or cryptographic algorithm failure 4022

• If the implementation detects any other error associated with this function that is not explicitly 4023
associated with a defined return code for this function. 4024

Backward Compatibility 4025

TEE Internal Core API v1.1 used a different type for messageLen and macLen. 4026

212 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.4 TEE_MACCompareFinal 4027

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4028

TEE_Result TEE_MACCompareFinal(4029
 TEE_OperationHandle operation, 4030
 [inbuf] void* message, size_t messageLen, 4031
 [inbuf] void* mac, size_t macLen); 4032

Description 4033

The TEE_MACCompareFinal function finalizes the MAC operation and compares the MAC with the buffer 4034
passed to the function. Afterwards the operation handle can be reused and initialized with a new key. 4035

The operation SHALL be in active state and moves to initial state afterwards. 4036

Parameters 4037

• operation: Handle of a MAC operation 4038

• message, messageLen: Input buffer containing the last message chunk to MAC 4039

• mac, macLen: Input buffer containing the MAC to check 4040

Specification Number: 10 Function Number: 0xF01 4041

Return Code 4042

• TEE_SUCCESS: If the computed MAC corresponds to the MAC passed in the parameter mac. 4043

• TEE_ERROR_MAC_INVALID: If the computed MAC does not correspond to the value passed in the 4044
parameter mac. This is regarded as a successful conclusion to the operation, and the operation 4045
moves to the initial state. 4046

Panic Reasons 4047

• If operation is not a valid operation handle of class TEE_OPERATION_MAC. 4048

• If the operation has not been started yet with TEE_MACInit or has already been finalized. 4049

• If input data exceeds maximum length for algorithm. 4050

• If operation is not in active state. 4051

• Hardware or cryptographic algorithm failure 4052

• If the implementation detects any other error associated with this function that is not explicitly 4053
associated with a defined return code for this function. 4054

Backward Compatibility 4055

TEE Internal Core API v1.1 used a different type for messageLen and macLen. 4056

TEE Internal Core API Specification – Public Review v1.2.1.31 213 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6 Authenticated Encryption Functions 4057

These functions are used for Authenticated Encryption operations, i.e. the TEE_ALG_AES_CCM and 4058
TEE_ALG_AES_GCM algorithms. 4059

Figure 6-4 illustrates how a TEE_OperationHandle is manipulated by the Authenticated Encryption 4060
functions. The state diagram is expressed in terms of the state that is revealed in the handleState flags by 4061
TEE_GetOperationInfo and TEE_GetOperationInfoMultiple. 4062

Figure 6-4: State Diagram for TEE_OperationHandle for Authenticated Encryption Functions 4063
(Informative) 4064

 4065

214 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.1 TEE_AEInit 4066

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4067

TEE_Result TEE_AEInit(4068
 TEE_OperationHandle operation, 4069
 [inbuf] void* nonce, size_t nonceLen, 4070
 uint32_t tagLen, 4071
 size_t AADLen, 4072
 size_t payloadLen); 4073

Description 4074

The TEE_AEInit function initializes an Authentication Encryption operation. 4075

The operation must be in the initial state and remains in the initial state afterwards. 4076

Parameters 4077

• operation: A handle on the operation 4078

• nonce, nonceLen: The operation nonce or IV 4079

• tagLen: Size in bits of the tag 4080

o For AES-GCM, SHALL be 128, 120, 112, 104, or 96 4081

o For AES-CCM, SHALL be 128, 112, 96, 80, 64, 48, or 32 4082

• AADLen: Length in bytes of the AAD 4083

o Used only for AES-CCM; otherwise ignored. 4084

• payloadLen: Length in bytes of the payload 4085

o Used only for AES-CCM; otherwise ignored. 4086

Specification Number: 10 Function Number: 0x1003 4087

Return Code 4088

• TEE_SUCCESS: On success. 4089

• TEE_ERROR_NOT_SUPPORTED: If the tag length is not supported by the algorithm 4090

Panic Reasons 4091

• If operation is not a valid operation handle of class TEE_OPERATION_AE. 4092

• If no key is programmed in the operation. 4093

• If the nonce length is not compatible with the length required by the algorithm. 4094

• If operation is not in initial state. 4095

• Hardware or cryptographic algorithm failure. 4096

• If the implementation detects any other error associated with this function that is not explicitly 4097
associated with a defined return code for this function. 4098

TEE Internal Core API Specification – Public Review v1.2.1.31 215 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Backward Compatibility 4099

TEE Internal Core API v1.1 used type uint32_t for nonceLen. 4100

Prior to TEE Internal Core API v1.2, AADLen and payloadLen used type uint32_t. 4101

 4102

216 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.2 TEE_AEUpdateAAD 4103

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4104

void TEE_AEUpdateAAD(4105
 TEE_OperationHandle operation, 4106
 [inbuf] void* AADdata, size_t AADdataLen); 4107

Description 4108

The TEE_AEUpdateAAD function feeds a new chunk of Additional Authentication Data (AAD) to the AE 4109
operation. Subsequent calls to this function are possible. 4110

The operation SHALL be in initial state and remains in initial state afterwards. 4111

Parameters 4112

• operation: Handle on the AE operation 4113

• AADdata, AADdataLen: Input buffer containing the chunk of AAD 4114

Specification Number: 10 Function Number: 0x1005 4115

Panic Reasons 4116

• If operation is not a valid operation handle of class TEE_OPERATION_AE. 4117

• If the operation has not been started yet using TEE_AEInit, or has already been finalized. 4118

• If the AAD length would exceed the length permitted by the algorithm. 4119

• If operation is not in initial state. 4120

• Hardware or cryptographic algorithm failure 4121

• If the implementation detects any other error. 4122

Backward Compatibility 4123

TEE Internal Core API v1.1 used a different type for AADdataLen. 4124

Versions of TEE_AEUpdateAAD prior to TEE Internal Core API v1.2 can be called in any state and enter 4125
active state on return. 4126

 4127

TEE Internal Core API Specification – Public Review v1.2.1.31 217 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.3 TEE_AEUpdate 4128

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4129

TEE_Result TEE_AEUpdate(4130
 TEE_OperationHandle operation, 4131
 [inbuf] void* srcData, size_t srcLen, 4132
 [outbuf] void* destData, size_t *destLen); 4133

Description 4134

The TEE_AEUpdate function accumulates data for an Authentication Encryption operation. 4135

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless 4136
one or more calls of this function have supplied sufficient input data, no output is generated. 4137

The buffers srcData and destData SHALL be either completely disjoint or equal in their starting positions. 4138

Warning: when using this routine to decrypt the returned data may be corrupt since the integrity check is not 4139
performed until all the data has been processed. If this is a concern then only use the TEE_AEDecryptFinal 4140
routine. 4141

The operation may be in either initial or active state. If the result is not TEE_ERROR_SHORT_BUFFER and if 4142
srcLen != 0, then the operation will be in active state afterwards. 4143

Parameters 4144

• operation: Handle of a running AE operation 4145

• srcData, srcLen: Input data buffer to be encrypted or decrypted 4146

• destData, destLen: Output buffer 4147

Specification Number: 10 Function Number: 0x1004 4148

Return Code 4149

• TEE_SUCCESS: In case of success. 4150

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output 4151

Panic Reasons 4152

• If operation is not a valid operation handle of class TEE_OPERATION_AE. 4153

• If the operation has not been started yet using TEE_AEInit, or has already been finalized. 4154

• If the AAD length required by the algorithm has not been provided yet. 4155

• If the maximum payload length for the algorithm would be exceeded. 4156

• Hardware or cryptographic algorithm failure 4157

• If the implementation detects any other error associated with this function that is not explicitly 4158
associated with a defined return code for this function. 4159

Backward Compatibility 4160

TEE Internal Core API v1.1 used a different type for srcLen and destLen. 4161

Prior to TEE Internal Core API v1.2, TEE_AEUpdate could be called in any state and could enter active state 4162
on return regardless of the value of srcLen. 4163

218 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.4 TEE_AEEncryptFinal 4164

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4165

TEE_Result TEE_AEEncryptFinal(4166
 TEE_OperationHandle operation, 4167
 [inbuf] void* srcData, size_t srcLen, 4168
 [outbufopt] void* destData, size_t* destLen, 4169
 [outbuf] void* tag, size_t* tagLen); 4170

Description 4171

The TEE_AEEncryptFinal function processes data that has not been processed by previous calls to 4172
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and computes the tag. 4173

The operation handle can be reused or newly initialized. 4174

The buffers srcData and destData SHALL be either completely disjoint or equal in their starting positions. 4175

The operation may be in either initial or active state. If the result is not TEE_ERROR_SHORT_BUFFER, the 4176
operation enters initial state afterwards. 4177

Parameters 4178

• operation: Handle of a running AE operation 4179

• srcData, srcLen: Reference to final chunk of input data to be encrypted 4180

• destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it is 4181
known to be empty, as described in section 3.4.5. 4182

• tag, tagLen: Output buffer filled with the computed tag 4183

Specification Number: 10 Function Number: 0x1002 4184

Return Code 4185

• TEE_SUCCESS: In case of success. 4186

• TEE_ERROR_SHORT_BUFFER: If the output or tag buffer is not large enough to contain the output 4187

Panic Reasons 4188

• If operation is not a valid operation handle of class TEE_OPERATION_AE. 4189

• If the operation has not been started yet using TEE_AEInit, or has already been finalized. 4190

• If the required payload or AAD length is known but has not been provided. 4191

• Hardware or cryptographic algorithm failure. 4192

• If the implementation detects any other error associated with this function that is not explicitly 4193
associated with a defined return code for this function. 4194

Backward Compatibility 4195

TEE Internal Core API v1.1 used a different type for srcLen, destLen, and tagLen. 4196

Prior to TEE Internal Core API v1.2, a valid destData buffer was always required. 4197

TEE Internal Core API Specification – Public Review v1.2.1.31 219 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.5 TEE_AEDecryptFinal 4198

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4199

TEE_Result TEE_AEDecryptFinal(4200
 TEE_OperationHandle operation, 4201
 [inbuf] void* srcData, size_t srcLen, 4202
 [outbuf] void* destData, size_t *destLen, 4203
 [in] void* tag, size_t tagLen); 4204

Description 4205

The TEE_AEDecryptFinal function processes data that has not been processed by previous calls to 4206
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and compares the 4207
computed tag with the tag supplied in the parameter tag. 4208

The operation handle can be reused or newly initialized. 4209

The buffers srcData and destData SHALL be either completely disjoint or equal in their starting positions. 4210

The operation may be in either initial or active state. If the result is not TEE_ERROR_SHORT_BUFFER, the 4211
operation enters initial state afterwards. 4212

Parameters 4213

• operation: Handle of a running AE operation 4214

• srcData, srcLen: Reference to final chunk of input data to be decrypted 4215

• destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it is 4216
known to be empty. 4217

• tag, tagLen: Input buffer containing the tag to compare 4218

Specification Number: 10 Function Number: 0x1001 4219

Return Code 4220

• TEE_SUCCESS: In case of success. 4221

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output 4222

• TEE_ERROR_MAC_INVALID: If the computed tag does not match the supplied tag. This is regarded as 4223
a successful conclusion to the operation, and the operation moves to the initial state. 4224

Panic Reasons 4225

• If operation is not a valid operation handle of class TEE_OPERATION_AE. 4226

• If the operation has not been started yet using TEE_AEInit, or has already been finalized. 4227

• If the required payload or AAD length is known but has not been provided. 4228

• Hardware or cryptographic algorithm failure 4229

• If the implementation detects any other error associated with this function that is not explicitly 4230
associated with a defined return code for this function. 4231

Backward Compatibility 4232

TEE Internal Core API v1.1 used a different type for srcLen, destLen, and tagLen. 4233

220 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7 Asymmetric Functions 4234

These functions allow the encryption and decryption of data using asymmetric algorithms, signatures of 4235
digests, and verification of signatures. 4236

Note that asymmetric encryption is always “single-stage”, which differs from symmetric ciphers which are 4237
always “multi-stage”. 4238

Figure 6-5 illustrates how a TEE_OperationHandle is manipulated by the Asymmetric functions. The state 4239
diagram is expressed in terms of the state that is revealed in the handleState flags by 4240
TEE_GetOperationInfo and TEE_GetOperationInfoMultiple. 4241

Figure 6-5: State Diagram for TEE_OperationHandle for Asymmetric Functions (Informative) 4242

 4243
 4244

TEE Internal Core API Specification – Public Review v1.2.1.31 221 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt 4245

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4246

TEE_Result TEE_AsymmetricEncrypt(4247
 TEE_OperationHandle operation, 4248
 [in] TEE_Attribute* params, uint32_t paramCount, 4249
 [inbuf] void* srcData, size_t srcLen, 4250
 [outbuf] void* destData, size_t *destLen); 4251
 4252
TEE_Result TEE_AsymmetricDecrypt(4253
 TEE_OperationHandle operation, 4254
 [in] TEE_Attribute* params, uint32_t paramCount, 4255
 [inbuf] void* srcData, size_t srcLen, 4256
 [outbuf] void* destData, size_t *destLen); 4257

Description 4258

The TEE_AsymmetricEncrypt function encrypts a message within an asymmetric operation, and the 4259
TEE_AsymmetricDecrypt function decrypts the result. 4260

These functions can be called only with an operation of certain algorithms. Table 6-4 on page 182 lists the 4261
algorithms that are supported for various modes; see the asymmetric algorithms listed for modes 4262
TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT. 4263

The parameters params, paramCount contain the operation parameters listed in the following table. 4264

Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameters 4265

Algorithm Possible Operation Parameters
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_XXX TEE_ATTR_RSA_OAEP_LABEL: This parameter is

optional. If not present, an empty label is assumed.

 4266

Parameters 4267

• operation: Handle on the operation, which SHALL have been suitably set up with an operation key 4268

• params, paramCount: Optional operation parameters 4269

• srcData, srcLen: Input buffer 4270

• destData, destLen: Output buffer 4271

TEE_AsymmetricDecrypt: Specification Number: 10 Function Number: 0x1101 4272

TEE_AsymmetricEncrypt: Specification Number: 10 Function Number: 0x1102 4273

Return Code 4274

• TEE_SUCCESS: In case of success. 4275

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold the result 4276

• TEE_ERROR_BAD_PARAMETERS 4277

o If the length of the input buffer is not consistent with the algorithm or key size. Refer to Table 5-9 4278
for algorithm references and supported sizes. 4279

222 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o If an incorrect or inconsistent attribute is detected. The checks that are performed depend on the 4280
implementation. 4281

• TEE_ERROR_CIPHERTEXT_INVALID: If the ciphertext is invalid for the given key, for example 4282
because of invalid padding. 4283

Panic Reasons 4284

• If operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_CIPHER. 4285

• If no key is programmed in the operation. 4286

• If the mode is not compatible with the function. 4287

• Hardware or cryptographic algorithm failure 4288

• If the implementation detects any other error associated with this function that is not explicitly 4289
associated with a defined return code for this function. 4290

Backward Compatibility 4291

TEE Internal Core API v1.1 used a different type for srcLen and destLen of both functions. 4292

Versions prior to TEE Internal Core API v1.2 did not define TEE_ERROR_CIPHERTEXT_INVALID. 4293

 4294

TEE Internal Core API Specification – Public Review v1.2.1.31 223 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7.2 TEE_AsymmetricSignDigest 4295

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 4296

TEE_Result TEE_AsymmetricSignDigest(4297
 TEE_OperationHandle operation, 4298
 [in] TEE_Attribute* params, uint32_t paramCount, 4299
 [inbuf] void* digest, size_t digestLen, 4300
 [outbuf] void* signature, size_t *signatureLen 4301
); 4302

Description 4303

The TEE_AsymmetricSignDigest function signs a message digest within an asymmetric operation. 4304

Note that only an already hashed message can be signed, with the exception of TEE_ALG_ED25519 and 4305
TEE_ALG_ED448 for which digest and digestLen refer to the message to be signed. 4306

This function can be called only with an operation of an algorithm listed for modes TEE_MODE_SIGN and 4307
TEE_MODE_VERIFY in Table 6-4 on page 182. 4308

The parameters params, paramCount contain the operation parameters listed in Table 6-8. 4309

Table 6-8: Asymmetric Sign/Verify Operation Parameters 4310

Algorithm Possible Operation Parameters
TEE_ALG_RSASSA_
PKCS1_PSS_MGF1_XXX

TEE_ATTR_RSA_PSS_SALT_LENGTH: Number of bytes in the salt. This
parameter is optional. If not present, the salt length is equal to the hash length.

TEE_ALG_ED25519 Since: TEE Internal Core API v1.3 – See Backward Compatibility note at end of
section.

TEE_ATTR_EDDSA_PREHASH: Optional a and b uint32_t, default 0,0.
o If a=1 and b=0, then:
 The algorithm selected is Ed25519ph ([Ed25519]).
 The digest parameter is the pre-hashed message.
 If TEE_ATTR_EDDSA_CTX is not present, then the context string is

assumed to be empty.
o If a=0 and b=0, then:
 The digest parameter is the message in full.
 If TEE_ATTR_EDDSA_CTX is present, then the algorithm selected is

Ed25519ctx; otherwise it is Ed25519.
o a = 0x7FFF FFFF should be treated as an illegal value in this context.
o Values of a from 0x0000 0000 to 0x7FFF FFFE are reserved for

GlobalPlatform, and may have been defined above. When a is in this
range, the value of b will be defined by GlobalPlatform.

o Values of a from 0x8000 0000 to 0xFFFF FFFF are reserved for
implementers. When a is in this range, the value of b will be defined by
the implementer.

TEE_ATTR_EDDSA_CTX: Optional buffer, maximum length 255.
o If present, TEE_ATTR_EDDSA_CTX is the context string.

224 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Possible Operation Parameters
TEE_ALG_ED448 TEE_ATTR_EDDSA_PREHASH: Optional a and b uint32_t, default 0,0.

o If a=1 and b=0, then:
 The algorithm selected is Ed448ph ([Ed25519]).
 The digest parameter is the pre-hashed message.

o If a=0 and b=0, then the digest parameter is the message in full.
o a = 0x7FFF FFFF is a GlobalPlatform reserved value and should be

treated as an illegal value in this context.
o Values of a from 0x0000 0002 to 0x7FFF FFFE are reserved for

GlobalPlatform. When a is in this range, the value of b will be defined
by GlobalPlatform.

o Values of a from 0x8000 0000 to 0xFFFF FFFF are reserved for
implementers. When a is in this range, the value of b will be defined by
the implementer.

TEE_ATTR_EDDSA_CTX: Optional buffer, maximum length 255.
o If present, TEE_ATTR_EDDSA_CTX is the context string; otherwise the

context string is assumed to be empty.
 4311

Where a hash algorithm is specified in the algorithm, digestLen SHALL be equal to the digest length of this 4312
hash algorithm. For TEE_ALG_ED25519 and TEE_ALG_ED448, if the TEE_ATTR_EDDSA_PREHASH attribute 4313
has a=1 , b=0, then the implementation SHALL accept a digestLen of 64, and MAY accept other values. 4314

Parameters 4315

• operation: Handle on the operation, which SHALL have been suitably set up with an operation key 4316

• params, paramCount: Optional operation parameters 4317

• digest, digestLen: Input buffer containing the input message digest 4318

• signature, signatureLen: Output buffer written with the signature of the digest 4319

Specification Number: 10 Function Number: 0x1103 4320

Return Code 4321

• TEE_SUCCESS: In case of success. 4322

• TEE_ERROR_SHORT_BUFFER: If the signature buffer is not large enough to hold the result 4323

Panic Reasons 4324

• If operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE. 4325

• If no key is programmed in the operation. 4326

• If the operation mode is not TEE_MODE_SIGN. 4327

• If digestLen is not equal to the hash size of the algorithm in non-XOF functions 4328

• Hardware or cryptographic algorithm failure 4329

• If an optional algorithm which is not supported by the Trusted OS is passed in 4330
TEE_OperationHandle. 4331

• If an illegal value is passed as an operation parameter. 4332

TEE Internal Core API Specification – Public Review v1.2.1.31 225 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If the implementation detects any other error associated with this function that is not explicitly 4333
associated with a defined return code for this function. 4334

Backward Compatibility 4335

TEE Internal Core API v1.1 used a different type for digestLen and signatureLen. 4336

TEE Internal Core API v1.3: 4337

Renamed TEE_ATTR_ED25519_CTX to TEE_ATTR_EDDSA_CTX. 4338

Deprecated use of TEE_ATTR_ED25519_PH, replacing it with the generic TEE_ATTR_EDDSA_PREHASH. 4339
Note that these two operation parameters are not identical when used with Ed25519 because the earlier 4340
version didn’t cover the full spectrum of Ed25519 options. 4341

 4342

226 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7.3 TEE_AsymmetricVerifyDigest 4343

Since: TEE Internal Core API v1.3 – See Backward Compatibility note below. 4344

TEE_Result TEE_AsymmetricVerifyDigest(4345
 TEE_OperationHandle operation, 4346
 [in] TEE_Attribute* params, uint32_t paramCount, 4347
 [inbuf] void* digest, size_t digestLen, 4348
 [inbuf] void* signature, size_t signatureLen); 4349

Description 4350

The TEE_AsymmetricVerifyDigest function verifies a message digest signature within an asymmetric 4351
operation. 4352

This function can be called only with an operation of an algorithm listed for modes TEE_MODE_SIGN and 4353
TEE_MODE_VERIFY in Table 6-4 on page 182. 4354

The parameters params, paramCount contain the operation parameters listed in Table 6-8 on page 223. 4355

Table 6-9: Asymmetric Verify Operation Parameters [obsolete] 4356

Algorithm Possible Operation Parameters

This table existed in previous versions of the specification and was removed in v1.3.

The information previously in this table has been merged into Table 6-8.

 4357

Where a hash algorithm is specified in the algorithm, digestLen SHALL be equal to the digest length of this 4358
hash algorithm. For TEE_ALG_ED25519 and TEE_ALG_ED448, if the TEE_ATTR_EDDSA_PREHASH attribute 4359
has a=1 , b=0, then the implementation SHALL accept a digestLen of 64, and MAY accept other values. 4360

Parameters 4361

• operation: Handle on the operation, which SHALL have been suitably set up with an operation key 4362

• params, paramCount: Optional operation parameters 4363

• digest, digestLen: Input buffer containing the input message digest 4364

• signature, signatureLen: Input buffer containing the signature to verify 4365

Specification Number: 10 Function Number: 0x1104 4366

Return Code 4367

• TEE_SUCCESS: In case of success. 4368

• TEE_ERROR_SIGNATURE_INVALID: If the signature is invalid 4369

Panic Reasons 4370

• If operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE. 4371

• If no key is programmed in the operation. 4372

• If the operation mode is not TEE_MODE_VERIFY. 4373

• If digestLen is not equal to the hash size of the algorithm 4374

TEE Internal Core API Specification – Public Review v1.2.1.31 227 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Hardware or cryptographic algorithm failure 4375

• If an optional algorithm which is not supported by the Trusted OS is passed in 4376
TEE_OperationHandle. 4377

• If an illegal value is passed as an operation parameter. 4378

• If the implementation detects any other error associated with this function that is not explicitly 4379
associated with a defined return code for this function. 4380

Backward Compatibility 4381

TEE Internal Core API v1.1 used a different type for digestLen and signatureLen. 4382

TEE Internal Core API v1.3: 4383

Renamed TEE_ATTR_ED25519_CTX to TEE_ATTR_EDDSA_CTX. 4384

Deprecated use of TEE_ATTR_ED25519_PH, and replaced it with the generic 4385
TEE_ATTR_EDDSA_PREHASH. Note that these two operation parameters are not identical when used with 4386
Ed25519 because the earlier version didn’t cover the full spectrum of Ed25519 options. 4387

 4388

228 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.8 Key Derivation Functions 4389

Figure 6-6 illustrates how a TEE_OperationHandle is manipulated by the Key Derivation functions. The 4390
state diagram is expressed in terms of the state that is revealed in the handleState flags by 4391
TEE_GetOperationInfo and TEE_GetOperationInfoMultiple. 4392

Figure 6-6: State Diagram for TEE_OperationHandle for Key Derivation Functions (Informative) 4393

 4394
 4395

6.8.1 TEE_DeriveKey 4396

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4397

void TEE_DeriveKey(4398
 TEE_OperationHandle operation, 4399
 [inout] TEE_Attribute* params, uint32_t paramCount, 4400
 TEE_ObjectHandle derivedKey); 4401

Description 4402

The TEE_DeriveKey function takes one of the Key Derivation Operation Parameters in Table 6-10 as input, 4403
and outputs a key object. 4404

The TEE_DeriveKey function can only be used with algorithms defined in Table 6-10. 4405

The parameters params, paramCount contain the operation parameters listed in Table 6-10. 4406

TEE Internal Core API Specification – Public Review v1.2.1.31 229 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-10: Key Derivation Operation Parameters 4407

Algorithm Possible Operation Parameters Output Key Type
TEE_ALG_DH_DERIVE_
SHARED_SECRET

TEE_ATTR_DH_PUBLIC_VALUE
Public key of the other party. This parameter
is mandatory.

TEE_TYPE_GENERIC_SECRET

TEE_ALG_ECDH_DERIVE_
SHARED_SECRET

TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

Public key of the other party. These
parameters are mandatory.

TEE_TYPE_GENERIC_SECRET

TEE_ALG_X25519 TEE_ATTR_X25519_PUBLIC_VALUE
Public key of the other party. This parameter
is mandatory.

TEE_TYPE_GENERIC_SECRET

TEE_ALG_X448 TEE_ATTR_X448_PUBLIC_VALUE
Public key of the other party. This parameter
is mandatory.

TEE_TYPE_GENERIC_SECRET

TEE_ALG_SM2_KEP Mandatory parameters:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y

Public key of the other party.
TEE_ATTR_SM2_KEP_USER

Value specifying the role of the user.
Value 0 means initiator and non-zero
means responder.

TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X
TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y

Ephemeral public key of the other party.
TEE_ATTR_SM2_ID_INITIATOR

Identifier of initiator.
TEE_ATTR_SM2_ID_RESPONDER

Identifier of responder.
Optional parameters:
If peers want to confirm key agreement, they
can provide:
TEE_ATTR_SM2_KEP_CONFIRMATION_IN

Confirmation value from the other peer
(optional).

TEE_ATTR_SM2_KEP_CONFIRMATION_OUT
Confirmation value of the caller (optional).

TEE_TYPE_GENERIC_SECRET,
TEE_TYPE_SM3, or
TEE_TYPE_SM4

230 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Possible Operation Parameters Output Key Type
TEE_ALG_HKDF Optional parameters:

TEE_ATTR_HKDF_SALT
If present, TEE_ATTR_HKDF_SALT is the
salt value; otherwise the salt is set to
hashLen zero octets. (hashLen denotes
the length of the hash function output in
octets.)

TEE_ATTR_HKDF_INFO
If present, TEE_ATTR_HKDF_INFO is the
info value; otherwise the info value is set to a
zero length string.

TEE_ATTR_HKDF_HASH_ALGORITHM
If present, TEE_ATTR_HKDF_HASH_
ALGORITHM SHALL be TEE_ALG_SHA256;
otherwise TEE_ALG_SHA256 is used.

TEE_ATTR_KDF_KEY_SIZE
If present, TEE_ATTR_KDF_KEY_SIZE is the
desired output length in octets; otherwise the
maximum length of the derived key object
converted to octets is used.

Any Simple Symmetric Key
Type (see Table 5-10)

 4408

The derivedKey handle SHALL refer to an object with one of the types listed in Table 6-10 as an Output 4409
Key Type for the algorithm to be used. 4410

The caller SHALL have set the private part of the operation DH key using the TEE_SetOperationKey 4411
function. 4412

The caller SHALL pass the other party’s public key as a parameter of the TEE_DeriveKey function. 4413

On completion the derived key is placed into the TEE_ATTR_SECRET_VALUE attribute of the derivedKey 4414
handle. 4415

In the case of TEE_ALG_SM2_KEP, the caller SHALL have set the long-term and ephemeral private key of the 4416
caller by using TEE_SetOperationKey2. The caller must provide additional attributes specifying role, 4417
ephemeral public key of other peer, and identifiers of both peers. Two roles exist, initiator and responder; one 4418
or both of the parties may confirm the Key Agreement result. The function computes and populates the 4419
TEE_ATTR_SM2_KEP_CONFIRMATION_OUT parameter, which the other peer will use as the 4420
TEE_ATTR_SM2_KEP_CONFIRMATION_IN parameter. 4421

Note that in the case of TEE_ATTR_SM2_KEP_CONFIRMATION_OUT, the attribute structure maintains a pointer 4422
back to the caller-supplied buffer. It is the responsibility of the TA author to ensure that buffer is correctly sized 4423
and that the buffer pointed to remains valid until the attributes array is no longer in use. 4424

Parameters 4425

• operation: Handle on the operation, which SHALL have been suitably set up with an operation key 4426

• params, paramCount: Operation parameters 4427

• derivedKey: Handle on an uninitialized transient object to be filled with the derived key 4428

TEE Internal Core API Specification – Public Review v1.2.1.31 231 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: 10 Function Number: 0x1201 4429

Panic Reasons 4430

• If operation is not a valid operation handle of class TEE_OPERATION_KEY_DERIVATION. 4431

• If the object derivedKey is too small for the generated value. 4432

• If no key is programmed in the operation. 4433

• If a mandatory parameter is missing. 4434

• If the operation mode is not TEE_MODE_DERIVE. 4435

• Hardware or cryptographic algorithm failure 4436

• If an optional algorithm which is not supported by the Trusted OS is passed in 4437
TEE_OperationHandle. 4438

• If attribute TEE_ATTR_SM2_KEP_CONFIRMATION_OUT is present and is too small. 4439

• If the implementation detects any other error. 4440

Backward Compatibility 4441

Versions of TEE_DeriveKey prior to TEE Internal Core API v1.2 used a different parameter annotation for 4442
TEE_Attribute. 4443

Backward compatibility with a previous version of the Internal Core API can be selected at compile time (see 4444
section 3.5.1). 4445

void TEE_DeriveKey(4446
 TEE_OperationHandle operation, 4447
 [in] TEE_Attribute* params, uint32_t paramCount, 4448
 TEE_ObjectHandle derivedKey); 4449

 4450

232 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.9 Random Data Generation Function 4451

6.9.1 TEE_GenerateRandom 4452

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4453

void TEE_GenerateRandom(4454
 [out] void* randomBuffer, 4455
 size_t randomBufferLen); 4456

Description 4457

The TEE_GenerateRandom function generates random data. 4458

Parameters 4459

• randomBuffer: Reference to generated random data 4460

• randomBufferLen: Byte length of requested random data 4461

Specification Number: 10 Function Number: 0x1301 4462

Panic Reasons 4463

• Hardware or cryptographic algorithm failure 4464

• If the implementation detects any other error. 4465

Backward Compatibility 4466

TEE Internal Core API v1.1 used a different type for randomBufferLen. 4467

TEE Internal Core API Specification – Public Review v1.2.1.31 233 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10 Cryptographic Algorithms Specification 4468

This section specifies the cryptographic algorithms, key types, and key parts supported in the Cryptographic 4469
Operations API. 4470

Note that for the “NOPAD” symmetric algorithms, it is the responsibility of the TA to do the padding. 4471

6.10.1 List of Algorithm Identifiers 4472

Table 6-11 provides an exhaustive list of all algorithm identifiers specified in the Cryptographic Operations 4473
API. Normative references for the algorithms may be found in Annex C. 4474

Implementations MAY define their own algorithms. Such algorithms SHALL have implementation-defined 4475
algorithm identifiers and these identifiers SHALL use 0xF0 as the most significant byte (i.e. they fall in the 4476
range 0xF0000000-0xF0FFFFFF). 4477

Note: Previous versions of this specification used bit-fields to construct the algorithm identifier values. 4478
Beginning with TEE Internal Core API v1.2, this is no longer the case and no special significance is given to 4479
the bit positions within algorithm identifier values. 4480

Table 6-11: List of Algorithm Identifiers 4481

Algorithm Identifier Value
TEE_ALG_AES_ECB_NOPAD 0x10000010

TEE_ALG_AES_CBC_NOPAD 0x10000110

TEE_ALG_AES_CTR 0x10000210

TEE_ALG_AES_CTS 0x10000310

TEE_ALG_AES_XTS 0x10000410

TEE_ALG_AES_CBC_MAC_NOPAD 0x30000110

TEE_ALG_AES_CBC_MAC_PKCS5 0x30000510

TEE_ALG_AES_CMAC 0x30000610

TEE_ALG_AES_CCM 0x40000710

TEE_ALG_AES_GCM 0x40000810

TEE_ALG_DES_ECB_NOPAD 0x10000011

TEE_ALG_DES_CBC_NOPAD 0x10000111

TEE_ALG_DES_CBC_MAC_NOPAD 0x30000111

TEE_ALG_DES_CBC_MAC_PKCS5 0x30000511

TEE_ALG_DES3_ECB_NOPAD 5 0x10000013

TEE_ALG_DES3_CBC_NOPAD 0x10000113

TEE_ALG_DES3_CBC_MAC_NOPAD 0x30000113

TEE_ALG_DES3_CBC_MAC_PKCS5 0x30000513

TEE_ALG_RSASSA_PKCS1_V1_5_MD5 0x70001830

5 Triple DES SHALL be understood as Encrypt-Decrypt-Encrypt mode with two or three keys.

234 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Identifier Value
TEE_ALG_RSASSA_PKCS1_V1_5_SHA1 0x70002830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224 0x70003830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA256 0x70004830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA384 0x70005830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA512 0x70006830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_224 0x70007830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_256 0x70008830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_384 0x70009830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_512 0x7000A830

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1 0x7020B930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224 0x70313930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256 0x70414930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384 0x70515930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512 0x70616930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_224 0x70818930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_256 0x70919930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_384 0x70A1A930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_512 0x70B1B930

TEE_ALG_RSAES_PKCS1_V1_5 0x60000130

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1 0x60210230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224 0x60310230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256 0x60410230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384 0x60510230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512 0x60610230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA3_224 0x60810230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA3_256 0x60910230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA3_384 0x60A10230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA3_512 0x60B10230

TEE_ALG_RSA_NOPAD 0x60000030

TEE_ALG_DSA_SHA1 0x70002131

TEE_ALG_DSA_SHA224 0x70003131

TEE_ALG_DSA_SHA256 0x70004131

TEE_ALG_DSA_SHA3_224 0x70008131

TEE_ALG_DSA_SHA3_256 0x70009131

TEE_ALG_DSA_SHA3_384 0x7000A131

TEE Internal Core API Specification – Public Review v1.2.1.31 235 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Identifier Value
TEE_ALG_DSA_SHA3_512 0x7000B131

TEE_ALG_DH_DERIVE_SHARED_SECRET 0x80000032

TEE_ALG_MD5 0x50000001

TEE_ALG_SHA1 0x50000002

TEE_ALG_SHA224 0x50000003

TEE_ALG_SHA256 0x50000004

TEE_ALG_SHA384 0x50000005

TEE_ALG_SHA512 0x50000006

TEE_ALG_SHA3_224 0x50000008

TEE_ALG_SHA3_256 0x50000009

TEE_ALG_SHA3_384 0x5000000A

TEE_ALG_SHA3_512 0x5000000B

TEE_ALG_HMAC_MD5 0x30000001

TEE_ALG_HMAC_SHA1 0x30000002

TEE_ALG_HMAC_SHA224 0x30000003

TEE_ALG_HMAC_SHA256 0x30000004

TEE_ALG_HMAC_SHA384 0x30000005

TEE_ALG_HMAC_SHA512 0x30000006

TEE_ALG_HMAC_SM3 * 0x30000007

TEE_ALG_HMAC_SHA3_224 0x30000008

TEE_ALG_HMAC_SHA3_256 0x30000009

TEE_ALG_HMAC_SHA3_384 0x3000000A

TEE_ALG_HMAC_SHA3_512 0x3000000B

TEE_ALG_ECDSA_SHA1 * 0x70001042

TEE_ALG_ECDSA_SHA224 * 0x70002042

TEE_ALG_ECDSA_SHA256 * 0x70003042

TEE_ALG_ECDSA_SHA384 * 0x70004042

TEE_ALG_ECDSA_SHA512 * 0x70005042

TEE_ALG_ECDSA_SHA3_224 * 0x70006042

TEE_ALG_ECDSA_SHA3_256 * 0x70007042

TEE_ALG_ECDSA_SHA3_384 * 0x70008042

TEE_ALG_ECDSA_SHA3_512 * 0x70009042

TEE_ALG_ED25519 * 0x70006043

TEE_ALG_ED448 * 0x70006044

TEE_ALG_ECDH_DERIVE_SHARED_SECRET * 0x80000042

236 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Identifier Value
TEE_ALG_X25519 * 0x80000044

TEE_ALG_X448 * 0x80000045

TEE_ALG_SM2_DSA_SM3 * 0x70006045

TEE_ALG_SM2_KEP * 0x60000045

TEE_ALG_SM2_PKE * 0x80000046

TEE_ALG_HKDF 0x80000047

TEE_ALG_SM3 * 0x50000007

TEE_ALG_SM4_ECB_NOPAD * 0x10000014

TEE_ALG_SM4_ECB_PKCS5 * 0x10000015

TEE_ALG_SM4_CBC_NOPAD * 0x10000114

TEE_ALG_SM4_CBC_PKCS5 * 0x10000115

TEE_ALG_SM4_CTR * 0x10000214

TEE_ALG_SHAKE128 0x50000101

TEE_ALG_SHAKE256 0x50000102

TEE_ALG_ILLEGAL_VALUE 0xEFFFFFFF

Reserved for implementation-defined algorithm identifiers 0xF0000000 – 0xF0FFFFFF

All other values are reserved.

 4482

Algorithms flagged “ * ” are required in limited circumstances, as discussed in Table 6-2. For all other 4483
algorithms listed in Table 6-11, support is mandatory. 4484

TEE_ALG_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined value 4485
when provided to a cryptographic operation function. 4486

 4487

Table 6-12: Structure of Algorithm Identifier or Object Type Identifier [obsolete] 4488

Bits Function Values

This table existed in previous versions of the specification and was removed in v1.2.

 4489

Table 6-12b: Algorithm Subtype Identifier [obsolete] 4490

Value Subtype

This table existed in previous versions of the specification and was removed in v1.2.

 4491

TEE Internal Core API Specification – Public Review v1.2.1.31 237 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10.2 Object Types 4492

Object handles are a special class of algorithm handle. 4493

Implementations MAY define their own object handles. Such handles SHALL have implementation-defined 4494
object type identifiers and these identifiers SHALL use 0xF0 as the most significant byte (i.e. they fall in the 4495
range 0xF0000000-0xF0FFFFFF). 4496

Note: Previous versions of this specification used bit-fields to construct the object type values. Beginning with 4497
TEE Internal Core API v1.2, this is no longer the case and no special significance is given to the bit positions 4498
within algorithm identifier values. 4499

Table 6-13: List of Object Types 4500

Name Identifier
TEE_TYPE_AES 0xA0000010

TEE_TYPE_DES 0xA0000011

TEE_TYPE_DES3 0xA0000013

TEE_TYPE_HMAC_MD5 0xA0000001

TEE_TYPE_HMAC_SHA1 0xA0000002

TEE_TYPE_HMAC_SHA224 0xA0000003

TEE_TYPE_HMAC_SHA256 0xA0000004

TEE_TYPE_HMAC_SHA384 0xA0000005

TEE_TYPE_HMAC_SHA512 0xA0000006

TEE_TYPE_HMAC_SM3 0xA0000007

TEE_TYPE_HMAC_SHA3_224 0xA0000020

TEE_TYPE_HMAC_SHA3_256 0xA0000021

TEE_TYPE_HMAC_SHA3_384 0xA0000022

TEE_TYPE_HMAC_SHA3_512 0xA0000023

TEE_TYPE_RSA_PUBLIC_KEY 0xA0000030

TEE_TYPE_RSA_KEYPAIR 0xA1000030

TEE_TYPE_DSA_PUBLIC_KEY 0xA0000031

TEE_TYPE_DSA_KEYPAIR 0xA1000031

TEE_TYPE_DH_KEYPAIR 0xA1000032

TEE_TYPE_ECDSA_PUBLIC_KEY 0xA0000041

TEE_TYPE_ECDSA_KEYPAIR 0xA1000041

TEE_TYPE_ECDH_PUBLIC_KEY 0xA0000042

TEE_TYPE_ECDH_KEYPAIR 0xA1000042

TEE_TYPE_ED25519_PUBLIC_KEY 0xA0000043

TEE_TYPE_ED25519_KEYPAIR 0xA1000043

TEE_TYPE_X25519_PUBLIC_KEY 0xA0000044

238 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Identifier
TEE_TYPE_X25519_KEYPAIR 0xA1000044

TEE_TYPE_ED448_PUBLIC_KEY 0xA0000048

TEE_TYPE_ED448_KEYPAIR 0xA1000048

TEE_TYPE_X448_PUBLIC_KEY 0xA0000049

TEE_TYPE_X448_KEYPAIR 0xA1000049

TEE_TYPE_SM2_DSA_PUBLIC_KEY 0xA0000045

TEE_TYPE_SM2_DSA_KEYPAIR 0xA1000045

TEE_TYPE_SM2_KEP_PUBLIC_KEY 0xA0000046

TEE_TYPE_SM2_KEP_KEYPAIR 0xA1000046

TEE_TYPE_SM2_PKE_PUBLIC_KEY 0xA0000047

TEE_TYPE_SM2_PKE_KEYPAIR 0xA1000047

TEE_TYPE_SM4 0xA0000014

TEE_TYPE_HKDF 0xA000004A

TEE_TYPE_GENERIC_SECRET 0xA0000000

TEE_TYPE_CORRUPTED_OBJECT (deprecated) 0xA00000BE

TEE_TYPE_DATA 0xA00000BF

TEE_TYPE_ILLEGAL_VALUE 0xEFFFFFFF

Reserved for implementation-defined object handles 0xF0000000-0xF0FFFFFF

Reserved All values not defined above.

 4501

Object types using implementation-specific algorithms are defined by the implementation. 4502

TEE_TYPE_CORRUPTED_OBJECT is used solely in the deprecated TEE_GetObjectInfo function to indicate 4503
that the object on which it is being invoked has been corrupted in some way. 4504

TEE_TYPE_DATA is used to represent objects which have no cryptographic attributes, just a data stream. 4505

TEE_TYPE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an undefined 4506
value when provided to a cryptographic operation function. 4507

 4508

TEE Internal Core API Specification – Public Review v1.2.1.31 239 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10.3 Optional Cryptographic Elements 4509

This specification defines support for optional cryptographic elements as follows: 4510

• NIST ECC curve definitions from [NIST Re Cur] 4511

• BSI ECC curve definitions from [BSI TR 03111] 4512

• Edwards ECC curve definitions from [X25519] 4513

• SM2 curve definition from [SM2] 4514

Identifiers that SHALL be used to identify optional cryptographic elements are listed in Table 6-14. 4515

TEE_CRYPTO_ELEMENT_NONE is a special identifier which can be used when a function requires a value from 4516
Table 6-14, but no specific cryptographic element needs to be provided. The size parameter is not applicable 4517
for TEE_CRYPTO_ELEMENT_NONE. 4518

For all elliptic curve elements, the size parameter represents the length, in bits, of the base field. 4519

In this version of the specification, a conforming implementation can support none, some, or all of the 4520
cryptographic elements listed in Table 6-14. The TEE_IsAlgorithmSupported function (see section 6.2.9) 4521
is provided to enable applications to determine whether a specific curve definition is supported. 4522

Table 6-14: List of Optional Cryptographic Elements 4523

Name Source Generic Identifier Size

TEE_CRYPTO_ELEMENT_NONE - Y 0x00000000 -

TEE_ECC_CURVE_NIST_P192 NIST Y 0x00000001 192 bits

TEE_ECC_CURVE_NIST_P224 NIST Y 0x00000002 224 bits

TEE_ECC_CURVE_NIST_P256 NIST Y 0x00000003 256 bits

TEE_ECC_CURVE_NIST_P384 NIST Y 0x00000004 384 bits

TEE_ECC_CURVE_NIST_P521 NIST Y 0x00000005 521 bits

Reserved for future NIST curves – 0x00000006 – 0x000000FF

TEE_ECC_CURVE_BSI_P160r1 BSI-R Y 0x00000101 160 bits

TEE_ECC_CURVE_BSI_P192r1 BSI-R Y 0x00000102 192 bits

TEE_ECC_CURVE_BSI_P224r1 BSI-R Y 0x00000103 224 bits

TEE_ECC_CURVE_BSI_P256r1 BSI-R Y 0x00000104 256 bits

TEE_ECC_CURVE_BSI_P320r1 BSI-R Y 0x00000105 320 bits

TEE_ECC_CURVE_BSI_P384r1 BSI-R Y 0x00000106 384 bits

TEE_ECC_CURVE_BSI_P512r1 BSI-R Y 0x00000107 512 bits

Reserved for future BSI (R) curves – 0x00000108 – 0x000001FF

TEE_ECC_CURVE_BSI_P160t1 BSI-T Y 0x00000201 160 bits

TEE_ECC_CURVE_BSI_P192t1 BSI-T Y 0x00000202 192 bits

TEE_ECC_CURVE_BSI_P224t1 BSI-T Y 0x00000203 224 bits

TEE_ECC_CURVE_BSI_P256t1 BSI-T Y 0x00000204 256 bits

TEE_ECC_CURVE_BSI_P320t1 BSI-T Y 0x00000205 320 bits

240 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Source Generic Identifier Size
TEE_ECC_CURVE_BSI_P384t1 BSI-T Y 0x00000206 384 bits

TEE_ECC_CURVE_BSI_P512t1 BSI-T Y 0x00000207 512 bits

Reserved for future BSI (T) curves – 0x00000208 – 0x000002FF

TEE_ECC_CURVE_25519 IETF N 0x00000300 256 bits

TEE_ECC_CURVE_448 IETF N 0x00000301 448 bits

Reserved for future IETF curves – 0x00000302 – 0x000003FF

TEE_ECC_CURVE_SM2 OCTA N 0x00000400 256 bits

Reserved for future curves defined
by OCTA

 – 0x00000401 – 0x000004FF

Reserved for future use – 0x00000500 – 0x7FFFFFFF

Implementation defined – 0x80000000 – 0xFFFFFFFF

 4524

Backward Compatibility 4525

If a Trusted OS supports all of the NIST curves defined in Table 6-14, the implementation SHALL return true 4526
to queries of the deprecated property gpd.tee.cryptography.ecc (see section B.4); otherwise it SHALL 4527
return false to such queries. 4528

In TEE Internal Core API v1.2 and v1.2.1, TEE_ECC_CURVE_25519 and TEE_ECC_CURVE_SM2 were 4529
incorrectly assigned the same identifier. 4530

 4531

TEE Internal Core API Specification – Public Review v1.2.1.31 241 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.11 Object or Operation Attributes 4532

Table 6-15: Object or Operation Attributes 4533

Name Value Protection Type Format
(Table 6-16)

Comment

TEE_ATTR_SECRET_VALUE 0xC0000000 Protected Ref binary Used for all
secret keys
for symmetric
ciphers,
MACs, and
HMACs

TEE_ATTR_RSA_MODULUS 0xD0000130 Public Ref bignum

TEE_ATTR_RSA_PUBLIC_EXPONENT 0xD0000230 Public Ref bignum

TEE_ATTR_RSA_PRIVATE_EXPONENT 0xC0000330 Protected Ref bignum

TEE_ATTR_RSA_PRIME1 0xC0000430 Protected Ref bignum Usually
referred to as
p.

TEE_ATTR_RSA_PRIME2 0xC0000530 Protected Ref bignum q

TEE_ATTR_RSA_EXPONENT1 0xC0000630 Protected Ref bignum dp

TEE_ATTR_RSA_EXPONENT2 0xC0000730 Protected Ref bignum dq

TEE_ATTR_RSA_COEFFICIENT 0xC0000830 Protected Ref bignum iq

TEE_ATTR_DSA_PRIME 0xD0001031 Public Ref bignum p

TEE_ATTR_DSA_SUBPRIME 0xD0001131 Public Ref bignum q

TEE_ATTR_DSA_BASE 0xD0001231 Public Ref bignum g

TEE_ATTR_DSA_PUBLIC_VALUE 0xD0000131 Public Ref bignum y

TEE_ATTR_DSA_PRIVATE_VALUE 0xC0000231 Protected Ref bignum x

TEE_ATTR_DH_PRIME 0xD0001032 Public Ref bignum p

TEE_ATTR_DH_SUBPRIME 0xD0001132 Public Ref bignum q

TEE_ATTR_DH_BASE 0xD0001232 Public Ref bignum g

TEE_ATTR_DH_X_BITS 0xF0001332 Public Value int l

TEE_ATTR_DH_PUBLIC_VALUE 0xD0000132 Public Ref bignum y

TEE_ATTR_DH_PRIVATE_VALUE 0xC0000232 Protected Ref bignum x

TEE_ATTR_RSA_OAEP_LABEL 0xD0000930 Public Ref binary

TEE_ATTR_RSA_PSS_SALT_LENGTH 0xF0000A30 Public Value int

TEE_ATTR_ECC_PUBLIC_VALUE_X 0xD0000141 Public Ref bignum

TEE_ATTR_ECC_PUBLIC_VALUE_Y 0xD0000241 Public Ref bignum

TEE_ATTR_ECC_PRIVATE_VALUE 0xC0000341 Protected Ref bignum d

TEE_ATTR_ECC_EPHEMERAL_PUBLIC
_VALUE_X

0xD0000146 Public Ref bignum

242 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Protection Type Format
(Table 6-16)

Comment

TEE_ATTR_ECC_EPHEMERAL_PUBLIC
_VALUE_Y

0xD0000246 Public Ref bignum

TEE_ATTR_ECC_CURVE 0xF0000441 Public Value int Identifier
value from
Table 6-14

Since: TEE Internal Core API v1.3 –
See Backward Compatibility note at
end of section.

TEE_ATTR_EDDSA_CTX

0xD0000643 Public Ref binary Octet string,
per algorithm
definition in
[Ed25519]

TEE_ATTR_ED25519_PUBLIC_VALUE 0xD0000743 Public Ref binary

TEE_ATTR_ED25519_PRIVATE_
VALUE

0xC0000843 Protected Ref binary

TEE_ATTR_X25519_PUBLIC_VALUE 0xD0000944 Public Ref binary Octet string,
per algorithm
definition in
[X25519]

TEE_ATTR_X25519_PRIVATE_VALUE 0xC0000A44 Protected Ref binary

TEE_ATTR_ED448_PUBLIC_VALUE 0xD0000002 Public Ref binary Octet string,
per algorithm
definition in
[Ed25519]

TEE_ATTR_ED448_PRIVATE_VALUE 0xC0000003 Protected Ref binary

TEE_ATTR_EDDSA_PREHASH 0xF0000004 Public Value int

TEE_ATTR_X448_PUBLIC_VALUE 0xD0000A45 Public Ref binary Octet string,
per algorithm
definition in
[X25519]

TEE_ATTR_X448_PRIVATE_VALUE 0xC0000A46 Protected Ref binary

TEE_ATTR_SM2_ID_INITIATOR 0xD0000446 Public Ref binary Octet string
containing
identifier of
initiator

TEE_ATTR_SM2_ID_RESPONDER 0xD0000546 Public Ref binary Octet string
containing
identifier of
responder

TEE_ATTR_SM2_KEP_USER 0xF0000646 Public value int zero means
initiator role,
non-zero
means
responder

TEE_ATTR_SM2_KEP_
CONFIRMATION_IN

0xD0000746 Public Ref binary Octet string
containing
value from
other peer

TEE Internal Core API Specification – Public Review v1.2.1.31 243 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Protection Type Format
(Table 6-16)

Comment

TEE_ATTR_SM2_KEP_
CONFIRMATION_OUT

0xD0000846 Public Ref binary Octet string
containing
value from
the caller

TEE_ATTR_HKDF_SALT 0xD0000946 Public Ref binary

TEE_ATTR_HKDF_INFO 0xD0000A46 Public Ref binary

TEE_ATTR_HKDF_HASH_ALGORITHM 0xF0000B46 Public Value int

TEE_ATTR_KDF_KEY_SIZE 0xF0000C46 Public Value int

Implementation defined protected
object or operation attribute

0xC0010000
-
0xC001FFFF

Protected Ref

Implementation defined public object
or operation attribute

0xD0010000
-
0xD001FFFF

Public Ref

Implementation defined value attribute 0xF0010000
-
0xF001FFFF

Public Value

TEE_ATTR_ILLEGAL_PRIVATE_REF 0xCEFFFFFF Protected Ref See note
following
table.

TEE_ATTR_ILLEGAL_PUBLIC_REF 0xDEFFFFFF Public Ref

TEE_ATTR_ILLEGAL_VALUE 0xFEFFFFFF Public Value

Reserved All values not
defined
above.

 4534

TEE_ATTR_ILLEGAL_PRIVATE_REF, TEE_ATTR_ILLEGAL_PUBLIC_REF, and TEE_ATTR_ILLEGAL_VALUE 4535
are reserved for testing and validation and each SHALL be treated as an undefined value when provided to a 4536
cryptographic operation function. 4537

 4538

Table 6-16: Attribute Format Definitions 4539

Format Description

binary An array of unsigned octets

bignum An unsigned bignum in big-endian binary format.
Leading zero bytes are allowed.

int Values attributes represented in a single integer returned/read from argument a.

 4540

Additional attributes may be defined for use with implementation defined algorithms. 4541

244 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Implementer’s Notes 4542

Selected bits of the attribute identifiers are explained in the following table. 4543

Table 6-17: Partial Structure of Attribute Identifier 4544

Bit Function Values

Bit [29] Defines whether the attribute is a buffer or value attribute 0: buffer attribute
1: value attribute

Bit [28] Defines whether the attribute is protected or public 0: protected attribute
1: public attribute

 4545

A protected attribute cannot be extracted unless the object has the TEE_USAGE_EXTRACTABLE flag. 4546

The following table defines constants that reflect setting bit [29] and bit [28], respectively, intended to help 4547
decode attribute identifiers. 4548

Table 6-18: Attribute Identifier Flags 4549

Name Value
TEE_ATTR_FLAG_VALUE 0x20000000

TEE_ATTR_FLAG_PUBLIC 0x10000000

 4550

Backward Compatibility 4551

TEE Internal Core API v1.3 deprecated redundant values that TEE Internal Core API v1.2 had assigned to 4552
selected attributes. 4553

The correct values of TEE_ATTR_ECC_PUBLIC_VALUE_X, TEE_ATTR_ECC_PUBLIC_VALUE_Y, and 4554
TEE_ATTR_ECC_PRIVATE_VALUE are shown in Table 6-15; the deprecated values are listed in Table B-4. 4555

TEE Internal Core API v1.3 deprecated TEE_ATTR_ED25519_PH. 4556

TEE Internal Core API v1.3 renamed TEE_ATTR_ED25519_CTX to TEE_ATTR_EDDSA_CTX. 4557

 4558

TEE Internal Core API Specification – Public Review v1.2.1.31 245 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7 Time API 4559

This API provides access to three sources of time: 4560

• System Time 4561

o The origin of this system time is arbitrary and implementation-dependent. Different TA instances 4562
may even have different system times. The only guarantee is that the system time is not reset or 4563
rolled back during the life of a given TA instance, so it can be used to compute time differences 4564
and operation deadlines, for example. The system time SHALL NOT be affected by transitions 4565
through low power states. 4566

o System time is related to the function TEE_Wait, which waits for a given timeout or cancellation. 4567

o The level of trust that a Trusted Application can put on the system time is implementation defined 4568
but can be discovered programmatically by querying the implementation property 4569
gpd.tee.systemTime.protectionLevel. Typically, an implementation may rely on the REE 4570
timer (protection level 100) or on a dedicated secure timer hardware (protection level 1000). 4571

o System time SHALL advance within plus or minus15% of the passage of real time in the outside 4572
world including while the device is in low power states, to ensure that appropriate security levels 4573
are maintained when, for example, system time is used to implement dictionary attack protection. 4574
This accuracy also applies to timeout values where they are specified in individual routines. 4575

• TA Persistent Time, a real-time source of time 4576

o The origin of this time is set individually by each Trusted Application and SHALL persist across 4577
reboots. 4578

o The level of trust on the TA Persistent Time can be queried through the property 4579
gpd.tee.TAPersistentTime.protectionLevel. 4580

• REE Time 4581

o This is as trusted as the REE itself and may also be tampered by the user. 4582

All time functions use a millisecond resolution and split the time in the two fields of the structure TEE_Time: 4583
one field for the seconds and one field for the milliseconds within this second. 4584

7.1 Data Types 4585

7.1.1 TEE_Time 4586

Since: TEE Internal API v1.0 4587

typedef struct 4588
{ 4589
 uint32_t seconds; 4590
 uint32_t millis; 4591
} TEE_Time; 4592

When used to return a time value, this structure can represent times up to 06:28:15 UTC on Sun, 7 February 4593
2106. 4594

246 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2 Time Functions 4595

7.2.1 TEE_GetSystemTime 4596

Since: TEE Internal API v1.0 4597

void TEE_GetSystemTime(4598
 [out] TEE_Time* time); 4599

Description 4600

The TEE_GetSystemTime function retrieves the current system time. 4601

The system time has an arbitrary implementation-defined origin that can vary across TA instances. The 4602
minimum guarantee is that the system time SHALL be monotonic for a given TA instance. 4603

Implementations are allowed to use the REE timers to implement this function but may also better protect the 4604
system time. A TA can discover the level of protection implementation by querying the implementation property 4605
gpd.tee.systemTime.protectionLevel. Possible values are listed in the following table. 4606

Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property 4607

Value Meaning
100 System time based on REE-controlled timers. Can be tampered by the REE.

The implementation SHALL still guarantee that the system time is monotonic, i.e. successive
calls to TEE_GetSystemTime SHALL return increasing values of the system time.

1000 System time based on a TEE-controlled secure timer.
The REE cannot interfere with the system time. It may still interfere with the scheduling of
TEE tasks, but is not able to hide delays from a TA calling TEE_GetSystemTime.

 4608

Parameters 4609

• time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC 4610

Specification Number: 10 Function Number: 0x1402 4611

Panic Reasons 4612

• If the implementation detects any error. 4613

TEE Internal Core API Specification – Public Review v1.2.1.31 247 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.2 TEE_Wait 4614

Since: TEE Internal API v1.0 4615

TEE_Result TEE_Wait(uint32_t timeout); 4616

Description 4617

The TEE_Wait function waits for the specified number of milliseconds or waits forever if timeout equals 4618
TEE_TIMEOUT_INFINITE (0xFFFFFFFF). 4619

When this function returns success, the implementation SHALL guarantee that the difference between two 4620
calls to TEE_GetSystemTime before and after the call to TEE_Wait is greater than or equal to the requested 4621
timeout. However, there may be additional implementation-dependent delays due to the scheduling of TEE 4622
tasks. 4623

This function is cancellable, i.e. if the current task’s cancelled flag is set and the TA has unmasked the effects 4624
of cancellation, then this function returns earlier than the requested timeout with the return code 4625
TEE_ERROR_CANCEL. See section 4.10 for more details about cancellations. 4626

Parameters 4627

• timeout: The number of milliseconds to wait, or TEE_TIMEOUT_INFINITE 4628

Specification Number: 10 Function Number: 0x1405 4629

Return Code 4630

• TEE_SUCCESS: On success. 4631

• TEE_ERROR_CANCEL: If the wait has been cancelled. 4632

Panic Reasons 4633

• If the implementation detects any error associated with this function that is not explicitly associated 4634
with a defined return code for this function. 4635

248 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.3 TEE_GetTAPersistentTime 4636

Since: TEE Internal API v1.0 4637

TEE_Result TEE_GetTAPersistentTime(4638
 [out] TEE_Time* time); 4639

Description 4640

The TEE_GetTAPersistentTime function retrieves the persistent time of the Trusted Application, expressed 4641
as a number of seconds and milliseconds since the arbitrary origin set by calling 4642
TEE_SetTAPersistentTime. 4643

This function can return the following statuses (as well as other status values discussed in “Return Code”): 4644

• TEE_SUCCESS means the persistent time is correctly set and has been retrieved into the parameter 4645
time. 4646

• TEE_ERROR_TIME_NOT_SET is the initial status and means the persistent time has not been set. The 4647
Trusted Application SHALL set its persistent time by calling the function 4648
TEE_SetTAPersistentTime. 4649

• TEE_ERROR_TIME_NEEDS_RESET means the persistent time has been set but may have been 4650
corrupted and SHALL no longer be trusted. In such a case it is recommended that the Trusted 4651
Application resynchronize the persistent time by calling the function TEE_SetTAPersistentTime. 4652
Until the persistent time has been reset, the status TEE_ERROR_TIME_NEEDS_RESET will always be 4653
returned. 4654

Initially the time status is TEE_ERROR_TIME_NOT_SET. Once a Trusted Application has synchronized its 4655
persistent time by calling TEE_SetTAPersistentTime, the status can be TEE_SUCCESS or 4656
TEE_ERROR_TIME_NEEDS_RESET. Once the status has become TEE_ERROR_TIME_NEEDS_RESET, it will 4657
keep this status until the persistent time is re-synchronized by calling TEE_SetTAPersistentTime. 4658

The following figure shows the state machine of the persistent time status. 4659

Figure 7-1: Persistent Time Status State Machine 4660

 4661
 4662

The meaning of the status TEE_ERROR_TIME_NEEDS_RESET depends on the protection level provided by 4663
the hardware implementation and the underlying real-time clock (RTC). This protection level can be queried 4664
by retrieving the implementation property gpd.tee.TAPersistentTime.protectionLevel, which can 4665
have one of the values listed in the following table. 4666

TEE Internal Core API Specification – Public Review v1.2.1.31 249 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property 4667

Value Meaning
100 Persistent time based on an REE-controlled real-time clock and on the TEE Trusted Storage

for the storage of origins.
The implementation SHALL guarantee that rollback of persistent time is detected to the fullest
extent allowed by the Trusted Storage.

1000 Persistent time based on a TEE-controlled real-time clock and the TEE Trusted Storage. The
real-time clock SHALL be out of reach of software attacks from the REE.
Users may still be able to provoke a reset of the real-time clock but this SHALL be detected
by the implementation.

 4668

The number of seconds in the TA Persistent Time may exceed the range of the uint32_t integer type. In 4669
this case, the function SHALL return the error TEE_ERROR_OVERFLOW, but still computes the TA Persistent 4670
Time as specified above, except that the number of seconds is truncated to 32 bits before being written to 4671
time->seconds. For example, if the Trusted Application sets its persistent time to 232-100 seconds, then 4672
after 100 seconds, the TA Persistent Time is 232, which is not representable with a uint32_t. In this case, 4673
the function TEE_GetTAPersistentTime SHALL return TEE_ERROR_OVERFLOW and set time->seconds 4674
to 0 (which is 232 truncated to 32 bits). 4675

Parameters 4676

• time: A pointer to the TEE_Time structure to be set to the current TA Persistent Time. If an error 4677
other than TEE_ERROR_OVERFLOW is returned, this structure is filled with zeroes. 4678

Specification Number: 10 Function Number: 0x1403 4679

Return Code 4680

• TEE_SUCCESS: In case of success. 4681

• TEE_ERROR_TIME_NOT_SET 4682

• TEE_ERROR_TIME_NEEDS_RESET 4683

• TEE_ERROR_OVERFLOW: The number of seconds in the TA Persistent Time overflows the range of a 4684
uint32_t. The field time->seconds is still set to the TA Persistent Time truncated to 32 bits 4685
(i.e. modulo 232). 4686

• TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation 4687

Panic Reasons 4688

• If the implementation detects any error associated with this function that is not explicitly associated 4689
with a defined return code for this function. 4690

250 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.4 TEE_SetTAPersistentTime 4691

Since: TEE Internal API v1.0 4692

TEE_Result TEE_SetTAPersistentTime(4693
 [in] TEE_Time* time); 4694

Description 4695

The TEE_SetTAPersistentTime function sets the persistent time of the current Trusted Application. 4696

Only the persistent time for the current Trusted Application is modified, not the persistent time of other Trusted 4697
Applications. This will affect all instances of the current Trusted Application. The modification is atomic and 4698
persistent across device reboots. 4699

Parameters 4700

• time: Filled with the persistent time of the current TA 4701

Specification Number: 10 Function Number: 0x1404 4702

Return Code 4703

• TEE_SUCCESS: In case of success. 4704

• TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation 4705

• TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to complete the operation 4706

Panic Reasons 4707

• If the implementation detects any error associated with this function that is not explicitly associated 4708
with a defined return code for this function. 4709

 4710

TEE Internal Core API Specification – Public Review v1.2.1.31 251 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.5 TEE_GetREETime 4711

Since: TEE Internal API v1.0 4712

void TEE_GetREETime(4713
 [out] TEE_Time* time); 4714

Description 4715

The TEE_GetREETime function retrieves the current REE system time. This function retrieves the current 4716
time as seen from the point of view of the REE, expressed in the number of seconds since midnight on 4717
January 1, 1970, UTC. 4718

In normal operation, the value returned SHOULD correspond to the real time, but it SHOULD NOT be 4719
considered as trusted, as it may be tampered by the user or the REE software. 4720

Parameters 4721

• time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC 4722

Specification Number: 10 Function Number: 0x1401 4723

Panic Reasons 4724

• If the implementation detects any error. 4725

 4726

252 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8 TEE Arithmetical API 4727

8.1 Introduction 4728

All asymmetric cryptographic functions are implemented by using arithmetical functions, where operands are 4729
typically elements of finite fields or in mathematical structures containing finite field elements. The 4730
Cryptographic Operations API hides the complexity of the mathematics that is behind these operations. A 4731
developer who needs some cryptographic service does not need to know anything about the internal 4732
implementation. 4733

However, in practice a developer may face the following difficulties: The API does not support the desired 4734
algorithm; or the API supports the algorithm, but with the wrong encodings, options, etc. The purpose of the 4735
TEE Arithmetical API is to provide building blocks so that the developer can implement missing asymmetric 4736
algorithms. In other words, the arithmetical API can be used to implement a plug-in into the Cryptographic 4737
Operations API. To ease the design of speed efficient algorithms, the arithmetical API also gives access to a 4738
Fast Modular Multiplication primitive, referred to as FMM. 4739

This specification mandates that all functions within the TEE Arithmetical API SHALL work when input and 4740
output TEE_BigInt values are within the interval [-2M + 1, 2M - 1] (limits included), where M is an 4741
implementation-defined number of bits. Every implementation SHALL ensure that M is at least 2048. The exact 4742
value of M can be retrieved as the implementation property gpd.tee.arith.maxBigIntSize. 4743

Throughout this chapter: 4744

• The notation “n-bit integer” refers to an integer that can take values in the range [-2n + 1, 2n - 1], 4745
including limits. 4746

• The notation “magnitude(src)” denotes the minimum number of required bits to represent the 4747
absolute value of the big integer src in a natural binary representation. The developer may query the 4748
magnitude of a big integer by using the function TEE_BigIntGetBitCount(src), as described in 4749
section 8.7.5. 4750

8.2 Error Handling and Parameter Checking 4751

This low level arithmetical API performs very few checks on the parameters given to the functions. Most 4752
functions will return undefined results when called inappropriately but will not generate any error return codes. 4753

Some functions in the API MAY work for inputs larger than indicated by the implementation property 4754
gpd.tee.arith.maxBigIntSize. This is however not guaranteed. When a function does not support a 4755
given bigInt size beyond this limit, it SHALL panic and not produce invalid results. 4756

TEE Internal Core API Specification – Public Review v1.2.1.31 253 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.3 Data Types 4757

This specification version has three data types for the arithmetical operations. These are TEE_BigInt, 4758
TEE_BigIntFMM, and TEE_BigIntFMMContext. Before using the arithmetic operations, the TA developer 4759
SHALL allocate and initialize the memory for the input and output operands This API provides entry points to 4760
determine the correct sizes of the needed memory allocations. 4761

8.3.1 TEE_BigInt 4762

The TEE_BigInt type is a placeholder for the memory structure of the TEE core internal representation of a 4763
large multi-precision integer. 4764

Since: TEE Internal API v1.0 4765

typedef uint32_t TEE_BigInt; 4766

The following constraints are put on the internal representation of the TEE_BigInt: 4767

1. The size of the representation SHALL be a multiple of 4 bytes. 4768

2. The extra memory within the representation to store metadata SHALL NOT exceed 8 bytes. 4769

3. The representation SHALL be stored 32-bit aligned in memory. 4770

Exactly how a multi-precision integer is represented internally is implementation-specific but it SHALL be 4771
stored within a structure of the maximum size given by the macro TEE_BigIntSizeInU32 (see 4772
section 8.4.1). 4773

By defining a TEE_BigInt as a uint32_t for the TA, we allow the TA developer to allocate static space 4774
for multiple occurrences of TEE_BigInt at compile time which obey constraints 1 and 3. The allocation can 4775
be done with code similar to this: 4776

uint32_t twoints[2 * TEE_BigIntSizeInU32(1024)]; 4777
TEE_BigInt* first = twoints; 4778
TEE_BigInt* second = twoints + TEE_BigIntSizeInU32(1024); 4779
 4780
/* Or if we do it dynamically */ 4781
TEE_BigInt* op1; 4782
op1 = TEE_Malloc(TEE_BigIntSizeInU32(1024) * sizeof(TEE_BigInt), 4783
 TEE_MALLOC_NO_FILL | TEE_MALLOC_NO_SHARE); 4784
/* use op1 */ 4785
TEE_Free(op1); 4786

Conversions from an external representation to the internal TEE_BigInt representation and vice versa can 4787
be done by using functions from section 8.6. 4788

Most functions in the TEE Arithmetical API take one or more TEE_BigInt pointers as parameters; for 4789
example, func(TEE_BigInt *op1, TEE_BigInt *op2). When describing the parameters and what the 4790
function does, this specification will refer to the integer represented in the structure to which the pointer op1 4791
points, by simply writing op1. It will be clear from the context when the pointer value is referred to and when 4792
the integer value is referred to. 4793

Since the internal representation of TEE_BigInt is implementation-specific, TA implementers SHALL pass 4794
the first address of a TEE_BigInt structure to functions that use them. A TEE_BigInt pointer that points 4795
to a location other than the start of a TEE_BigInt is a programmer error. 4796

254 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.3.2 TEE_BigIntFMMContext 4797

Usually, such a fast modular multiplication requires some additional data or derived numbers. That extra data 4798
is stored in a context that SHALL be passed to the fast modular multiplication function. The 4799
TEE_BigIntFMMContext is a placeholder for the TEE core internal representation of the context that is used 4800
in the fast modular multiplication operation. 4801

Since: TEE Internal API v1.0 4802

typedef uint32_t TEE_BigIntFMMContext; 4803

The following constraints are put on the internal representation of the TEE_BigIntFMMContext: 4804

1) The size of the representation SHALL be a multiple of 4 bytes. 4805

2) The representation SHALL be stored 32-bit aligned in memory. 4806

Exactly how this context is represented internally is implementation-specific but it SHALL be stored within a 4807
structure of the size given by the function TEE_BigIntFMMContextSizeInU32 (see section 8.4.2). 4808

Similarly to TEE_BigInt, we expose this type as a uint32_t to the TA, which helps TEE_Malloc to align 4809
the structure correctly when allocating space for a TEE_BigIntFMMContext*. 4810

 4811

8.3.3 TEE_BigIntFMM 4812

Some implementations may have support for faster modular multiplication algorithms such as Montgomery or 4813
Barrett multiplication for use in modular exponentiation. Typically, those algorithms require some 4814
transformation of the input before the multiplication can be carried out. The TEE_BigIntFMM is a placeholder 4815
for the memory structure that holds an integer in such a transformed representation. 4816

Since: TEE Internal API v1.0 4817

typedef uint32_t TEE_BigIntFMM; 4818

The following constraints are put on the internal representation of the TEE_BigIntFMM: 4819

1) The size of the representation SHALL be a multiple of 4 bytes. 4820

2) The representation SHALL be stored 32-bit aligned in memory. 4821

Exactly how this transformed representation is stored internally is implementation-specific but it SHALL be 4822
stored within a structure of the maximum size given by the function TEE_BigIntFMMSizeInU32 (see 4823
section 8.4.3). 4824

Similarly to TEE_BigInt, we expose this type as a uint32_t to the TA, which helps TEE_Malloc to align 4825
the structure correctly when allocating space for a TEE_BigIntFMM*. 4826

TEE Internal Core API Specification – Public Review v1.2.1.31 255 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.4 Memory Allocation and Size of Objects 4827

It is the responsibility of the Trusted Application to allocate and free memory for all TEE arithmetical objects, 4828
including all operation contexts, used in the Trusted Application. Once the arithmetical objects are allocated, 4829
the functions in the TEE Arithmetical API will never fail because of out-of-resources. 4830

TEE implementer’s note: Implementations of the TEE Arithmetical API SHOULD utilize memory from one or 4831
more pre-allocated pools to store intermediate results during computations to ensure that the functions do not 4832
fail because of lack of resources. All memory resources used internally SHALL be thread-safe. Such a pool of 4833
scratch memory could be: 4834

• Internal memory of a hardware accelerator module 4835

• Allocated from mutex protected system-wide memory 4836

• Allocated from the heap of the TA instance, i.e. by using TEE_Malloc or TEE_Realloc 4837

If the implementation uses a memory pool of temporary storage for intermediate results or if it uses hardware 4838
resources such as accelerators for some computations, the implementation SHALL either wait for the resource 4839
to become available or, for example in case of a busy hardware accelerator, resort to other means such as a 4840
software implementation. 4841

 4842

8.4.1 TEE_BigIntSizeInU32 4843

Since: TEE Internal API v1.0 4844

#define TEE_BigIntSizeInU32(n) ((((n)+31)/32)+2) 4845

Description 4846

The TEE_BigIntSizeInU32 macro calculates the size of the array of uint32_t values needed to represent 4847
an n-bit integer. This is defined as a macro (thereby mandating the maximum size of the internal 4848
representation) rather than as a function so that TA developers can use the macro in a static compile-time 4849
declaration of an array. Note that the implementation of the internal arithmetic functions assumes that memory 4850
pointed to by the TEE_BigInt* is 32-bit aligned. 4851

Parameters 4852

• n: maximum number of bits to be representable 4853

256 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.4.2 TEE_BigIntFMMContextSizeInU32 4854

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4855

size_t TEE_BigIntFMMContextSizeInU32(size_t modulusSizeInBits); 4856

Description 4857

The TEE_BigIntFMMContextSizeInU32 function returns the size of the array of uint32_t values needed 4858
to represent a fast modular context using a given modulus size. This function SHALL never fail. 4859

Parameters 4860

• modulusSizeInBits: Size of modulus in bits 4861

Specification Number: 10 Function Number: 0x1502 4862

Return Value 4863

Number of bytes needed to store a TEE_BigIntFMMContext given a modulus of length 4864
modulusSizeInBits. 4865

Panic Reasons 4866

• If the implementation detects any error. 4867

Backward Compatibility 4868

TEE Internal Core API v1.1 used a different type for modulusSizeInBits. 4869

 4870

TEE Internal Core API Specification – Public Review v1.2.1.31 257 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.4.3 TEE_BigIntFMMSizeInU32 4871

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4872

size_t TEE_BigIntFMMSizeInU32(size_t modulusSizeInBits); 4873

Description 4874

The TEE_BigIntFMMSizeInU32 function returns the size of the array of uint32_t values needed to 4875
represent an integer in the fast modular multiplication representation, given the size of the modulus in bits. 4876
This function SHALL never fail. 4877

Normally from a mathematical point of view, this function would have needed the context to compute the exact 4878
required size. However, it is beneficial to have a function that does not take an initialized context as a parameter 4879
and thus the implementation may overstate the required memory size. It is nevertheless likely that a given 4880
implementation of the fast modular multiplication can calculate a very reasonable upper-bound estimate based 4881
on the modulus size. 4882

Parameters 4883

• modulusSizeInBits: Size of modulus in bits 4884

Specification Number: 10 Function Number: 0x1501 4885

Return Value 4886

Number of bytes needed to store a TEE_BigIntFMM given a modulus of length modulusSizeInBits. 4887

Panic Reasons 4888

• If the implementation detects any error. 4889

Backward Compatibility 4890

TEE Internal Core API v1.1 used a different type for modulusSizeInBits. 4891

 4892

258 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5 Initialization Functions 4893

These functions initialize the arithmetical objects after the TA has allocated the memory to store them. The 4894
Trusted Application SHALL call the corresponding initialization function after it has allocated the memory for 4895
the arithmetical object. 4896

8.5.1 TEE_BigIntInit 4897

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4898

void TEE_BigIntInit(4899
 [out] TEE_BigInt *bigInt, 4900
 size_t len); 4901

Description 4902

The TEE_BigIntInit function initializes bigInt and sets its represented value to zero. This function 4903
assumes that bigInt points to a memory area of len uint32_t. This can be done for example with the 4904
following memory allocation: 4905

TEE_BigInt *a; 4906
size_t len; 4907
len = (size_t) TEE_BigIntSizeInU32(bitSize); 4908
a = (TEE_BigInt*)TEE_Malloc(len*sizeof(TEE_BigInt), TEE_MALLOC_NO_FILL|TEE_MALLOC_NO_SHARE); 4909
TEE_BigIntInit(a, len); 4910

Parameters 4911

• bigInt: A pointer to the TEE_BigInt to be initialized 4912

• len: The size in uint32_t of the memory pointed to by bigInt 4913

Specification Number: 10 Function Number: 0x1601 4914

Panic Reasons 4915

• If the implementation detects any error. 4916

• If the provided value of len is larger than the number of bytes needed to represent 4917
gpd.tee.arith.maxBigIntSize. 4918

Backward Compatibility 4919

TEE Internal Core API v1.1 used a different type for len. 4920

Versions prior to TEE Internal Core API v1.2 might not panic for large values of len. 4921

TEE Internal Core API Specification – Public Review v1.2.1.31 259 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5.2 TEE_BigIntInitFMMContext1 4922

Since: TEE Internal Core API v1.2 4923

TEE_Result TEE_BigIntInitFMMContext1(4924
 [out] TEE_BigIntFMMContext *context, 4925
 size_t len, 4926
 [in] TEE_BigInt *modulus); 4927

Description 4928

This function replaces the TEE_BigIntInitFMMContext function, whose use is deprecated. 4929

The TEE_BigIntInitFMMContext1 function calculates the necessary prerequisites for the fast modular 4930
multiplication and stores them in a context. This function assumes that context points to a memory area of 4931
len uint32_t. This can be done for example with the following memory allocation: 4932

TEE_BigIntFMMContext* ctx; 4933
size_t len = (size_t) TEE_BigIntFMMContextSizeInU32(bitsize); 4934
ctx=(TEE_BigIntFMMContext *)TEE_Malloc(len * sizeof(TEE_BigIntFFMContext), 4935
 TEE_MALLOC_NO_FILL | TEE_MALLOC_NO_SHARE); 4936
/*Code for initializing modulus*/ 4937
… 4938
TEE_BigIntInitFMMContext1(ctx, len, modulus); 4939

Even though a fast multiplication might be mathematically defined for any modulus, normally there are 4940
restrictions in order for it to be fast on a computer. This specification mandates that all implementations SHALL 4941
work for all odd moduli larger than 2 and less than 2 to the power of the implementation defined property 4942
gpd.tee.arith.maxBigIntSize. 4943

It is not required that even moduli be supported. Common usage of this function will not make use of even 4944
moduli and so for performance reasons a technique without full even moduli support MAY be used. For this 4945
reason, partial or complete even moduli support are optional, and if an implementation will not be able to 4946
provide a result for a specific case of even moduli then it shall return TEE_ERROR_NOT_SUPPORTED. 4947

Parameters 4948

• context: A pointer to the TEE_BigIntFMMContext to be initialized 4949

• len: The size in uint32_t of the memory pointed to by context 4950

• modulus: The modulus, an odd integer larger than 2 and less than 2 to the power of 4951
gpd.tee.arith.maxBigIntSize 4952

Specification Number: 10 Function Number: 0x1604 4953

Return Code 4954

• TEE_SUCCESS: In case of success. 4955

• TEE_ERROR_NOT_SUPPORTED: The underlying implementation is unable to perform the operation on a 4956
particular modulus value. This may only be returned for even moduli inside the valid range, outside 4957
that range the described PANIC will occur. 4958

Panic Reasons 4959

• If the implementation detects any error. 4960

• If the provided value of modulus is either less than two, or larger than or equal to 2^ 4961
gpd.tee.arith.maxBigIntSize. 4962

260 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5.3 TEE_BigIntInitFMM 4963

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 4964

void TEE_BigIntInitFMM(4965
 [in] TEE_BigIntFMM *bigIntFMM, 4966
 size_t len); 4967

Description 4968

The TEE_BigIntInitFMM function initializes bigIntFMM and sets its represented value to zero. This 4969
function assumes that bigIntFMM points to a memory area of len uint32_t. This can be done for example 4970
with the following memory allocation: 4971

TEE_BigIntFMM *a; 4972
size_t len; 4973
len = (size_t) TEE_BigIntFMMSizeInU32(modulusSizeinBits); 4974
a = (TEE_BigIntFMM *)TEE_Malloc(len * sizeof(TEE_BigIntFMM), 4975
 TEE_MALLOC_NO_FILL | TEE_MALLOC_NO_SHARE); 4976
TEE_BigIntInitFMM(a, len); 4977

Parameters 4978

• bigIntFMM: A pointer to the TEE_BigIntFMM to be initialized 4979

• len: The size in uint32_t of the memory pointed to by bigIntFMM 4980

Specification Number: 10 Function Number: 0x1602 4981

Panic Reasons 4982

• If the implementation detects any error. 4983

• If the provided value of len is larger than the number of bytes needed to represent 4984
gpd.tee.arith.maxBigIntSize. 4985

Backward Compatibility 4986

TEE Internal Core API v1.1 used a different type for len. 4987

Versions prior to TEE Internal Core API v1.2 might not panic for large values of len. 4988

TEE Internal Core API Specification – Public Review v1.2.1.31 261 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6 Converter Functions 4989

TEE_BigInt contains the internal representation of a multi-precision integer. However, in many use cases 4990
some integer data comes from external sources or integers; for example, a local device gets an ephemeral 4991
Diffie-Hellman public key during a key agreement procedure. In this case the ephemeral key is expected to be 4992
in octet string format, which is a big-endian radix 256 representation for unsigned numbers. For example 4993
0x123456789abcdef has the following octet string representation: 4994

 {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef} 4995

This section provides functions to convert to and from such alternative representations. 4996

 4997

8.6.1 TEE_BigIntConvertFromOctetString 4998

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 4999

TEE_Result TEE_BigIntConvertFromOctetString(5000
 [out] TEE_BigInt *dest, 5001
 [inbuf] uint8_t *buffer, size_t bufferLen, 5002
 int32_t sign); 5003

Description 5004

The TEE_BigIntConvertFromOctetString function converts a bufferLen byte octet string buffer into 5005
a TEE_BigInt format. The octet string is in most significant byte first representation. The input parameter 5006
sign will set the sign of dest. It will be set to negative if sign < 0 and to positive if sign >= 0. 5007

Parameters 5008

• dest: Pointer to a TEE_BigInt to hold the result 5009

• buffer: Pointer to the buffer containing the octet string representation of the integer 5010

• bufferLen: The length of *buffer in bytes 5011

• sign: The sign of dest is set to the sign of sign. 5012

Specification Number: 10 Function Number: 0x1701 5013

Return Code 5014

• TEE_SUCCESS: In case of success. 5015

• TEE_ERROR_OVERFLOW: If memory allocation for the dest is too small 5016

Panic Reasons 5017

• If the implementation detects any error associated with this function that is not explicitly associated 5018
with a defined return code for this function. 5019

Backward Compatibility 5020

TEE Internal Core API v1.1 used a different type for bufferLen. 5021

262 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6.2 TEE_BigIntConvertToOctetString 5022

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 5023

TEE_Result TEE_BigIntConvertToOctetString(5024
 [outbuf] void* buffer, size_t *bufferLen, 5025
 [in] TEE_BigInt *bigInt); 5026

Description 5027

The TEE_BigIntConvertToOctetString function converts the absolute value of an integer in 5028
TEE_BigInt format into an octet string. The octet string is written in a most significant byte first representation. 5029

Parameters 5030

• buffer, bufferLen: Output buffer where converted octet string representation of the integer is 5031
written 5032

• bigInt: Pointer to the integer that will be converted to an octet string 5033

Specification Number: 10 Function Number: 0x1703 5034

Return Code 5035

• TEE_SUCCESS: In case of success. 5036

• TEE_ERROR_SHORT_BUFFER: If the output buffer is too small to contain the octet string 5037

Panic Reasons 5038

• If the Implementation detects any error associated with this function that is not explicitly associated 5039
with a defined return code for this function. 5040

Backward Compatibility 5041

TEE Internal Core API v1.1 used a different type for bufferLen. 5042

TEE Internal Core API Specification – Public Review v1.2.1.31 263 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6.3 TEE_BigIntConvertFromS32 5043

Since: TEE Internal Core API v1.2 – See Backward Compatibility statement below. 5044

void TEE_BigIntConvertFromS32(5045
 [out] TEE_BigInt *dest, 5046
 int32_t shortVal); 5047

Description 5048

The TEE_BigIntConvertFromS32 function sets *dest to the value shortVal. 5049

Parameters 5050

• dest: Pointer to the start of an array reference by TEE_BigInt * into which the result is stored. 5051

• shortVal: Input value 5052

Specification Number: 10 Function Number: 0x1702 5053

Result Size 5054

The result SHALL point to a memory allocation which is at least large enough for holding a 32-bit signed value 5055
in a TEE_BigInt structure. 5056

Panic Reasons 5057

• If the memory pointed to by dest has not been initialized as a TEE_BigInt capable of holding at least 5058
a 32-bit value. 5059

• If the implementation detects any error. 5060

Backward Compatibility 5061

Versions prior to TEE Internal Core API v1.2 did not include the clarification of panic due to an uninitialized 5062
dest pointer. 5063

264 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6.4 TEE_BigIntConvertToS32 5064

Since: TEE Internal API v1.0 5065

TEE_Result TEE_BigIntConvertToS32(5066
 [out] int32_t *dest, 5067
 [in] TEE_BigInt *src); 5068

Description 5069

The TEE_BigIntConvertToS32 function sets *dest to the value of src, including the sign of src. If src 5070
does not fit within an int32_t, the value of *dest is undefined. 5071

Parameters 5072

• dest: Pointer to an int32_t to store the result 5073

• src: Pointer to the input value 5074

Specification Number: 10 Function Number: 0x1704 5075

Return Code 5076

• TEE_SUCCESS: In case of success. 5077

• TEE_ERROR_OVERFLOW: If src does not fit within an int32_t 5078

Panic Reasons 5079

• If the implementation detects any error associated with this function that is not explicitly associated 5080
with a defined return code for this function. 5081

TEE Internal Core API Specification – Public Review v1.2.1.31 265 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7 Logical Operations 5082

8.7.1 TEE_BigIntCmp 5083

Since: TEE Internal API v1.0 5084

int32_t TEE_BigIntCmp(5085
 [in] TEE_BigInt *op1, 5086
 [in] TEE_BigInt *op2); 5087

Description 5088

The TEE_BigIntCmp function checks whether op1 > op2, op1 == op2, or op1 < op2. 5089

Parameters 5090

• op1: Pointer to the first operand 5091

• op2: Pointer to the second operand 5092

Specification Number: 10 Function Number: 0x1801 5093

Return Value 5094

A negative number if op1 < op2; 0 if op1 == op2; and a positive number if op1 > op2. 5095

Panic Reasons 5096

• If the implementation detects any error. 5097

8.7.2 TEE_BigIntCmpS32 5098

Since: TEE Internal API v1.0 5099

int32_t TEE_BigIntCmpS32(5100
 [in] TEE_BigInt *op, 5101
 int32_t shortVal); 5102

Description 5103

The TEE_BigIntCmpS32 function checks whether op > shortVal, op == shortVal, or op < shortVal. 5104

Parameters 5105

• op: Pointer to the first operand 5106

• shortVal: Pointer to the second operand 5107

Specification Number: 10 Function Number: 0x1802 5108

Return Value 5109

A negative number if op < shortVal; 0 if op == shortVal; and a positive number if op > shortVal. 5110

Panic Reasons 5111

• If the implementation detects any error. 5112

266 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.3 TEE_BigIntShiftRight 5113

Since: TEE Internal Core API v1.1.1 – See Backward Compatibility note below. 5114

void TEE_BigIntShiftRight(5115
 [out] TEE_BigInt *dest, 5116
 [in] TEE_BigInt *op 5117
 size_t bits); 5118

Description 5119

The TEE_BigIntShiftRight function computes |dest| = |op| >> bits and dest will have the same 5120
sign as op.6 If bits is greater than the bit length of op then the result is zero. dest and op MAY point to 5121
the same memory region but SHALL point to the start address of a TEE_BigInt. 5122

Parameters 5123

• dest: Pointer to TEE_BigInt to hold the shifted result 5124

• op: Pointer to the operand to be shifted 5125

• bits: Number of bits to shift 5126

Specification Number: 10 Function Number: 0x1805 5127

Panic Reasons 5128

• If the implementation detects any error. 5129

Backward Compatibility 5130

TEE Internal Core API v1.1 used a different type for bits. 5131

6 The notation |x| means the absolute value of x.

TEE Internal Core API Specification – Public Review v1.2.1.31 267 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.4 TEE_BigIntGetBit 5132

Since: TEE Internal API v1.0 5133

bool TEE_BigIntGetBit(5134
 [in] TEE_BigInt *src, 5135
 uint32_t bitIndex); 5136

Description 5137

The TEE_BigIntGetBit function returns the bitIndexth bit of the natural binary representation of |src|. 5138
A true return value indicates a “1” and a false return value indicates a “0” in the bitIndexth position. 5139
If bitIndex is larger than the number of bits in op, the return value is false, thus indicating a “0”. 5140

Parameters 5141

• src: Pointer to the integer 5142

• bitIndex: The offset of the bit to be read, starting at offset 0 for the least significant bit 5143

Specification Number: 10 Function Number: 0x1803 5144

Return Value 5145

The Boolean value of the bitIndexth bit in |src|. True represents a “1” and false represents a “0”. 5146

Panic Reasons 5147

• If the implementation detects any error. 5148

 5149

8.7.5 TEE_BigIntGetBitCount 5150

Since: TEE Internal API v1.0 5151

uint32_t TEE_BigIntGetBitCount(5152
 [in] TEE_BigInt *src); 5153

Description 5154

The TEE_BigIntGetBitCount function returns the number of bits in the natural binary representation of 5155
|src|; that is, the magnitude of src. 5156

Parameters 5157

• src: Pointer to the integer 5158

Specification Number: 10 Function Number: 0x1804 5159

Return Value 5160

The number of bits in the natural binary representation of |src|. If src equals zero, it will return 0. 5161

Panic Reasons 5162

• If the implementation detects any error. 5163

268 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.6 TEE_BigIntSetBit 5164

Since: TEE Internal Core API v1.2 5165

TEE_Result TEE_BigIntSetBit(5166
 [inout] TEE_BigInt *op, 5167
 uint32_t bitIndex, 5168
 bool value); 5169

Description 5170

The TEE_BigIntSetBit function sets the bitIndexth bit of the natural binary representation of |op| to 5171
1 or 0, depending on the parameter value. If value is true the bit will be set, and if value is false 5172
the bit will be cleared. If bitIndex is larger than the number of bits in op, the function will return an overflow 5173
error. 5174

Parameters 5175

• op: Pointer to the integer 5176

• bitIndex: The offset of the bit to be set, starting at offset 0 for the least significant bit. 5177

• value: The bit value to set where true represents a “1” and false represents a “0”. 5178

Specification Number: 10 Function Number: 0x1806 5179

Return Code 5180

• TEE_SUCCESS: In case of success. 5181

• TEE_ERROR_OVERFLOW: If the bitIndexth bit is larger than allocated bit length of op 5182

Panic Reasons 5183

• If the implementation detects any error associated with this function that is not explicitly associated 5184
with a defined return code for this function. 5185

TEE Internal Core API Specification – Public Review v1.2.1.31 269 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.7 TEE_BigIntAssign 5186

Since: TEE Internal Core API v1.2 5187

TEE_Result TEE_BigIntAssign(5188
 [out] TEE_BigInt *dest, 5189
 [in] TEE_BigInt *src); 5190

Description 5191

The TEE_BigIntAssign function assigns the value of src to dest. The parameters src and dest 5192
MAY point within the same memory region but SHALL point to the start address of a TEE_BigInt. 5193

Parameters 5194

• dest: Pointer to TEE_BigInt to be assigned. 5195

• src: Pointer to the source operand. 5196

Specification Number: 10 Function Number: 0x1807 5197

Return Code 5198

• TEE_SUCCESS: In case of success. 5199

• TEE_ERROR_OVERFLOW: In case the dest operand cannot hold the value of src 5200

Panic Reasons 5201

• If the implementation detects any error associated with this function that is not explicitly associated 5202
with a defined return code for this function. 5203

270 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.8 TEE_BigIntAbs 5204

Since: TEE Internal Core API v1.2 5205

TEE_Result TEE_BigIntAbs(5206
 [out] TEE_BigInt *dest, 5207
 [in] TEE_BigInt *src); 5208

Description 5209

The TEE_BigIntAbs function assigns the value of |src| to dest. The parameters src and dest MAY 5210
point within the same memory region but SHALL point to the start address of a TEE_BigInt. 5211

Parameters 5212

• dest: Pointer to TEE_BigInt to be assigned. 5213

• src: Pointer to the source operand. 5214

Specification Number: 10 Function Number: 0x1808 5215

Return Code 5216

• TEE_SUCCESS: In case of success. 5217

• TEE_ERROR_OVERFLOW: In case the dest operand cannot hold the value of |src| 5218

Panic Reasons 5219

• If the implementation detects any error associated with this function that is not explicitly associated 5220
with a defined return code for this function. 5221

 5222

TEE Internal Core API Specification – Public Review v1.2.1.31 271 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8 Basic Arithmetic Operations 5223

This section describes basic arithmetical operations addition, subtraction, negation, multiplication, squaring, 5224
and division. 5225

8.8.1 TEE_BigIntAdd 5226

Since: TEE Internal API v1.0 5227

void TEE_BigIntAdd(5228
 [out] TEE_BigInt *dest, 5229
 [in] TEE_BigInt *op1, 5230
 [in] TEE_BigInt *op2); 5231

Description 5232

The TEE_BigIntAdd function computes dest = op1 + op2. All or some of dest, op1, and op2 MAY point 5233
to the same memory region but SHALL point to the start address of a TEE_BigInt. 5234

Parameters 5235

• dest: Pointer to TEE_BigInt to store the result op1 + op2 5236

• op1: Pointer to the first operand 5237

• op2: Pointer to the second operand 5238

Specification Number: 10 Function Number: 0x1901 5239

Result Size 5240

Depending on the sign of op1 and op2, the result may be larger or smaller than op1 and op2. For the 5241
worst case, dest SHALL have memory allocation for holding max(magnitude(op1), 5242
magnitude(op2)) + 1 bits.7 5243

Panic Reasons 5244

• If the implementation detects any error. 5245

7 The magnitude function is defined in section 8.7.5.

272 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.2 TEE_BigIntSub 5246

Since: TEE Internal API v1.0 5247

void TEE_BigIntSub(5248
 [out] TEE_BigInt *dest, 5249
 [in] TEE_BigInt *op1, 5250
 [in] TEE_BigInt *op2); 5251

Description 5252

The TEE_BigIntSub function computes dest = op1 – op2. All or some of dest, op1, and op2 MAY point 5253
to the same memory region but SHALL point to the start address of a TEE_BigInt. 5254

Parameters 5255

• dest: Pointer to TEE_BigInt to store the result op1 – op2 5256

• op1: Pointer to the first operand 5257

• op2: Pointer to the second operand 5258

Specification Number: 10 Function Number: 0x1906 5259

Result Size 5260

Depending on the sign of op1 and op2, the result may be larger or smaller than op1 and op2. For the 5261
worst case, the result SHALL have memory allocation for holding max(magnitude(op1), 5262
magnitude(op2)) + 1 bits. 5263

Panic Reasons 5264

• If the implementation detects any error. 5265

 5266

TEE Internal Core API Specification – Public Review v1.2.1.31 273 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.3 TEE_BigIntNeg 5267

Since: TEE Internal API v1.0 5268

void TEE_BigIntNeg(5269
 [out] TEE_BigInt *dest, 5270
 [in] TEE_BigInt *op); 5271

Description 5272

The TEE_BigIntNeg function negates an operand: dest = -op. dest and op MAY point to the same 5273
memory region but SHALL point to the start address of a TEE_BigInt. 5274

Parameters 5275

• dest: Pointer to TEE_BigInt to store the result -op 5276

• op: Pointer to the operand to be negated 5277

Specification Number: 10 Function Number: 0x1904 5278

Result Size 5279

The result SHALL have memory allocation for magnitude(op) bits. 5280

Panic Reasons 5281

• If the implementation detects any error. 5282

274 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.4 TEE_BigIntMul 5283

Since: TEE Internal API v1.0 5284

void TEE_BigIntMul(5285
 [out] TEE_BigInt *dest, 5286
 [in] TEE_BigInt *op1, 5287
 [in] TEE_BigInt *op2); 5288

Description 5289

The TEE_BigIntMul function computes dest = op1 * op2. All or some of dest, op1, and op2 MAY 5290
point to the same memory region but SHALL point to the start address of a TEE_BigInt. 5291

Parameters 5292

• dest: Pointer to TEE_BigInt to store the result op1 * op2 5293

• op1: Pointer to the first operand 5294

• op2: Pointer to the second operand 5295

Specification Number: 10 Function Number: 0x1903 5296

Result Size 5297

The result SHALL have memory allocation for (magnitude(op1) + magnitude(op2)) bits. 5298

Panic Reasons 5299

• If the implementation detects any error. 5300

 5301

TEE Internal Core API Specification – Public Review v1.2.1.31 275 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.5 TEE_BigIntSquare 5302

Since: TEE Internal API v1.0 5303

void TEE_BigIntSquare(5304
 [out] TEE_BigInt *dest, 5305
 [in] TEE_BigInt *op); 5306

Description 5307

The TEE_BigIntSquare function computes dest = op * op. dest and op MAY point to the same 5308
memory region but SHALL point to the start address of a TEE_BigInt. 5309

Parameters 5310

• dest: Pointer to TEE_BigInt to store the result op * op 5311

• op: Pointer to the operand to be squared 5312

Specification Number: 10 Function Number: 0x1905 5313

Result Size 5314

The result SHALL have memory allocation for 2*magnitude(op) bits. 5315

Panic Reasons 5316

• If the implementation detects any error. 5317

276 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.6 TEE_BigIntDiv 5318

Since: TEE Internal API v1.0 5319

void TEE_BigIntDiv(5320
 [out] TEE_BigInt *dest_q, 5321
 [out] TEE_BigInt *dest_r, 5322
 [in] TEE_BigInt *op1, 5323
 [in] TEE_BigInt *op2); 5324

Description 5325

The TEE_BigIntDiv function computes dest_r and dest_q such that op1 = dest_q * op2 + dest_r. 5326
It will round dest_q towards zero and dest_r will have the same sign as op1. Example: 5327

op1 op2 dest_q dest_r Expression

 53 7 7 4 53 = 7*7 + 4

 -53 7 -7 -4 -53 = (-7)*7 + (-4)

 53 -7 -7 +4 53 = (-7)*(-7) + 4

 -53 -7 7 -4 -53 = 7*(-7) + (-4)

 5328

To call TEE_BigIntDiv with op2 equal to zero is considered a programming error and will cause the 5329
Trusted Application to panic. 5330

The memory pointed to by dest_q and dest_r SHALL NOT overlap. However, it is possible that 5331
dest_q == op1, dest_q == op2, dest_r == op1, dest_r == op2, when dest_q and dest_r do not 5332
overlap. If a NULL pointer is passed for either dest_q or dest_r, the implementation MAY take advantage 5333
of the fact that it is only required to calculate either dest_q or dest_r. 5334

Parameters 5335

• dest_q: Pointer to a TEE_BigInt to store the quotient. dest_q can be NULL. 5336

• dest_r: Pointer to a TEE_BigInt to store the remainder. dest_r can be NULL. 5337

• op1: Pointer to the first operand, the dividend 5338

• op2: Pointer to the second operand, the divisor 5339

Specification Number: 10 Function Number: 0x1902 5340

Result Sizes 5341

The quotient, dest_q, SHALL have memory allocation sufficient to hold a TEE_BigInt with magnitude: 5342

• 0 if |op1| <= |op2| and 5343

• magnitude(op1) – magnitude(op2) if |op1| > |op2|. 5344

The remainder dest_r SHALL have memory allocation sufficient to hold a TEE_BigInt with 5345
magnitude(op2) bits. 5346

Panic Reasons 5347

• If op2 == 0 5348

• If the implementation detects any other error. 5349

TEE Internal Core API Specification – Public Review v1.2.1.31 277 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9 Modular Arithmetic Operations 5350

To reduce the number of tests the modular functions needs to perform on entrance and to speed up the 5351
performance, all modular functions (except TEE_BigIntMod) assume that input operands are normalized, i.e. 5352
non-negative and smaller than the modulus, and the modulus SHALL be greater than one, otherwise it is a 5353
Programmer Error and the behavior of these functions are undefined. This normalization can be done by using 5354
the reduction function in section 8.9.1. 5355

8.9.1 TEE_BigIntMod 5356

Since: TEE Internal API v1.0 5357

void TEE_BigIntMod(5358
 [out] TEE_BigInt *dest, 5359
 [in] TEE_BigInt *op, 5360
 [in] TEE_BigInt *n); 5361

Description 5362

The TEE_BigIntMod function computes dest = op (mod n) such that 0 <= dest < n. dest and op 5363
MAY point to the same memory region but SHALL point to the start address of a TEE_BigInt. The value n 5364
SHALL point to a unique memory region. For negative op the function follows the normal convention 5365
that -1 = (n-1) mod n. 5366

Parameters 5367

• dest: Pointer to TEE_BigInt to hold the result op (mod n). The result dest will be in the 5368
interval [0, n-1]. 5369

• op: Pointer to the operand to be reduced mod n 5370

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5371

Specification Number: 10 Function Number: 0x1A03 5372

Result Size 5373

The result dest SHALL have memory allocation for magnitude(n) bits.8 5374

Panic Reasons 5375

• If n < 2 5376

• If the implementation detects any other error. 5377

8 The magnitude function is defined in section 8.7.5.

278 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.2 TEE_BigIntAddMod 5378

Since: TEE Internal API v1.0 5379

void TEE_BigIntAddMod(5380
 [out] TEE_BigInt *dest, 5381
 [in] TEE_BigInt *op1, 5382
 [in] TEE_BigInt *op2, 5383
 [in] TEE_BigInt *n); 5384

Description 5385

The TEE_BigIntAddMod function computes dest = (op1 + op2) (mod n). All or some of dest, op1, 5386
and op2 MAY point to the same memory region but SHALL point to the start address of a TEE_BigInt. The 5387
value n SHALL point to a unique memory region. 5388

Parameters 5389

• dest: Pointer to TEE_BigInt to hold the result (op1 + op2) (mod n) 5390

• op1: Pointer to the first operand. Operand SHALL be in the interval [0,n-1]. 5391

• op2: Pointer to the second operand. Operand SHALL be in the interval [0,n-1]. 5392

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5393

Specification Number: 10 Function Number: 0x1A01 5394

Result Size 5395

The result dest SHALL have memory allocation for magnitude(n) bits. 5396

Panic Reasons 5397

• If n < 2 5398

• If the implementation detects any other error. 5399

TEE Internal Core API Specification – Public Review v1.2.1.31 279 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.3 TEE_BigIntSubMod 5400

Since: TEE Internal API v1.0 5401

void TEE_BigIntSubMod(5402
 [out] TEE_BigInt *dest, 5403
 [in] TEE_BigInt *op1, 5404
 [in] TEE_BigInt *op2, 5405
 [in] TEE_BigInt *n); 5406

Description 5407

The TEE_BigIntSubMod function computes dest = (op1 - op2) (mod n). All or some of dest, op1, 5408
and op2 MAY point to the same memory region but SHALL point to the start address of a TEE_BigInt. The 5409
value n SHALL point to a unique memory region. 5410

Parameters 5411

• dest: Pointer to TEE_BigInt to hold the result (op1 - op2) (mod n) 5412

• op1: Pointer to the first operand. Operand SHALL be in the interval [0,n-1]. 5413

• op2: Pointer to the second operand. Operand SHALL be in the interval [0,n-1]. 5414

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5415

Specification Number: 10 Function Number: 0x1A06 5416

Result Size 5417

The result dest SHALL have memory allocation for magnitude(n) bits. 5418

Panic Reasons 5419

• If n < 2 5420

• If the implementation detects any other error. 5421

280 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.4 TEE_BigIntMulMod 5422

Since: TEE Internal API v1.0 5423

void TEE_BigIntMulMod(5424
 [out] TEE_BigInt *dest, 5425
 [in] TEE_BigInt *op1, 5426
 [in] TEE_BigInt *op2, 5427
 [in] TEE_BigInt *n); 5428

Description 5429

The TEE_BigIntMulMod function computes dest = (op1 * op2) (mod n). All or some of dest, op1, 5430
and op2 MAY point to the same memory region but SHALL point to the start address of a TEE_BigInt. The 5431
value n SHALL point to a unique memory region. 5432

Parameters 5433

• dest: Pointer to TEE_BigInt to hold the result (op1 * op2) (mod n) 5434

• op1: Pointer to the first operand. Operand SHALL be in the interval [0,n-1]. 5435

• op2: Pointer to the second operand. Operand SHALL be in the interval [0,n-1]. 5436

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5437

Specification Number: 10 Function Number: 0x1A04 5438

Result Size 5439

The result dest SHALL have memory allocation for magnitude(n) bits. 5440

Panic Reasons 5441

• If n < 2 5442

• If the implementation detects any other error. 5443

TEE Internal Core API Specification – Public Review v1.2.1.31 281 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.5 TEE_BigIntSquareMod 5444

Since: TEE Internal API v1.0 5445

void TEE_BigIntSquareMod(5446
 [out] TEE_BigInt *dest, 5447
 [in] TEE_BigInt *op, 5448
 [in] TEE_BigInt *n); 5449

Description 5450

The TEE_BigIntSquareMod function computes dest = (op * op) (mod n). dest and op1 MAY 5451
point to the same memory region but SHALL point to the start address of a TEE_BigInt. The value n SHALL 5452
point to a unique memory region. 5453

Parameters 5454

• dest: Pointer to TEE_BigInt to hold the result (op * op) (mod n) 5455

• op: Pointer to the operand. Operand SHALL be in the interval [0,n-1]. 5456

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5457

Specification Number: 10 Function Number: 0x1A05 5458

Result Size 5459

The result dest SHALL have memory allocation for magnitude(n) bits. 5460

Panic Reasons 5461

• If n < 2 5462

• If the implementation detects any other error. 5463

282 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.6 TEE_BigIntInvMod 5464

Since: TEE Internal API v1.0 5465

void TEE_BigIntInvMod(5466
 [out] TEE_BigInt *dest, 5467
 [in] TEE_BigInt *op, 5468
 [in] TEE_BigInt *n); 5469

Description 5470

The TEE_BigIntInvMod function computes dest such that dest * op = 1 (mod n). dest and op MAY 5471
point to the same memory region but SHALL point to the start address of a TEE_BigInt. This function 5472
assumes that gcd(op,n) is equal to 1, which can be checked by using the function in section 8.10.1. If 5473
gcd(op,n) is greater than 1, then the result is unreliable. 5474

Parameters 5475

• dest: Pointer to TEE_BigInt to hold the result (op^-1) (mod n) 5476

• op: Pointer to the operand. Operand SHALL be in the interval [1,n-1]. 5477

• n: Pointer to the modulus. Modulus SHALL be larger than 1. 5478

Specification Number: 10 Function Number: 0x1A02 5479

Result Size 5480

The result dest SHALL have memory allocation for magnitude(n) bits. 5481

Panic Reasons 5482

• If n < 2 5483

• If op = 0 5484

• If the implementation detects any other error. 5485

TEE Internal Core API Specification – Public Review v1.2.1.31 283 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.7 TEE_BigIntExpMod 5486

Since: TEE Internal Core API v1.2 5487

TEE_Result TEE_BigIntExpMod(5488
 [out] TEE_BigInt *dest, 5489
 [in] TEE_BigInt *op1, 5490
 [in] TEE_BigInt *op2, 5491
 [in] TEE_BigInt *n, 5492
 [in] TEE_BigIntFMMContext *context); 5493

Description 5494

The TEE_BigIntExpMod function computes dest = (op1 ^ op2) (mod n). All or some of dest, op1, 5495
and op2 MAY point to the same memory region but SHALL point to the start address of a TEE_BigInt. The 5496
value n SHALL point to a unique memory region. In order to utilize the FMM capabilities, a pre-computed 5497
TEE_BigIntFMMContext1 MAY be supplied. The context parameter MAY be NULL. If it is not NULL, the 5498
context SHALL be initialized using the same modulus n as provided as parameter. 5499

Even though a fast multiplication might be mathematically defined for any modulus, normally there are 5500
restrictions in order for it to be fast on a computer. This specification mandates that all implementations SHALL 5501
work for all odd moduli larger than 2 and less than 2 to the power of the implementation defined property 5502
gpd.tee.arith.maxBigIntSize. 5503

It is not required that even moduli be supported. Common usage of this function will not make use of even 5504
moduli and so for performance reasons a technique without full even moduli support MAY be used. For this 5505
reason, partial or complete even moduli support are optional, and if an implementation will not be able to 5506
provide a result for a specific case of even moduli then it shall return TEE_ERROR_NOT_SUPPORTED. 5507

Parameters 5508

• dest: Pointer to TEE_BigInt to hold the result (op1 ^ op2) (mod n) 5509

• op1: Pointer to the first operand. Operand SHALL be in the interval [0,n-1]. 5510

• op2: Pointer to the second operand. Operand SHALL be non-negative. 5511

• n: Pointer to the modulus. Modulus SHALL be an odd integer larger than 2 and less than 2 to the 5512
power of gpd.tee.arith.maxBigIntSize. 5513

• context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext1, or NULL. 5514

Specification Number: 10 Function Number: 0x1A07 5515

Return Code 5516

• TEE_SUCCESS if the value of n is supported for this operation. 5517

• TEE_ERROR_NOT_SUPPORTED if the value of n is not supported. 5518

Result Size 5519

The result dest SHALL have memory allocation for magnitude(n) bits. 5520

Panic Reasons 5521

• If n <= 2 5522

• If the implementation detects any other error. 5523

284 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10 Other Arithmetic Operations 5524

8.10.1 TEE_BigIntRelativePrime 5525

Since: TEE Internal API v1.0 5526

bool TEE_BigIntRelativePrime(5527
 [in] TEE_BigInt *op1, 5528
 [in] TEE_BigInt *op2); 5529

Description 5530

The TEE_BigIntRelativePrime function determines whether gcd(op1, op2) == 1. op1 and op2 MAY 5531
point to the same memory region but SHALL point to the start address of a TEE_BigInt. 5532

Parameters 5533

• op1: Pointer to the first operand 5534

• op2: Pointer to the second operand 5535

Specification Number: 10 Function Number: 0x1B03 5536

Return Value 5537

• true if gcd(op1, op2) == 1 5538

• false otherwise 5539

TEE Internal Core API Specification – Public Review v1.2.1.31 285 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10.2 TEE_BigIntComputeExtendedGcd 5540

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 5541

void TEE_BigIntComputeExtendedGcd(5542
 [out] TEE_BigInt *gcd, 5543
 [out] TEE_BigInt *u, 5544
 [out] TEE_BigInt *v, 5545
 [in] TEE_BigInt *op1, 5546
 [in] TEE_BigInt *op2); 5547

Description 5548

The TEE_BigIntComputeExtendedGcd function computes the greatest common divisor of the input 5549
parameters op1 and op2. op1 and op2 SHALL NOT both be zero. Furthermore it computes coefficients 5550
u and v such that u * op1 + v * op2 == gcd. op1 and op2 MAY point to the same memory region but 5551
SHALL point to the start address of a TEE_BigInt. u, v, or both can be NULL. If both are NULL, then the 5552
function only computes the gcd of op1 and op2. 5553

Parameters 5554

• gcd: Pointer to TEE_BigInt to hold the greatest common divisor of op1 and op2 5555

• u: Pointer to TEE_BigInt to hold the first coefficient 5556

• v: Pointer to TEE_BigInt to hold the second coefficient 5557

• op1: Pointer to the first operand 5558

• op2: Pointer to the second operand 5559

Specification Number: 10 Function Number: 0x1B01 5560

Result Sizes 5561

• The gcd result SHALL be able to hold max(magnitude(op1), magnitude(op2)) bits.9 5562

• If op1 != 0 and op2 != 0, then |u| < |op2/gcd| and |v| < |op1/gcd|.10 5563

• If op1 != 0 and op2 = 0, then v = 0. 5564

• If op2 != 0 and op1 = 0, then u = 0. 5565

Panic Reasons 5566

• If op1 and op2 are both zero. 5567

• If the implementation detects any other error. 5568

Backward Compatibility 5569

Versions prior to TEE Internal Core API v1.2 did not make it explicit that setting both op1 and op2 to zero 5570
is illegal. Behavior of older versions in this case is therefore undefined. 5571

9 The magnitude function is defined in section 8.7.5.

10 The notation |x| means the absolute value of x.

286 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10.3 TEE_BigIntIsProbablePrime 5572

Since: TEE Internal API v1.0 5573

int32_t TEE_BigIntIsProbablePrime(5574
 [in] TEE_BigInt *op, 5575
 uint32_t confidenceLevel); 5576

Description 5577

The TEE_BigIntIsProbablePrime function performs a probabilistic primality test on op. The parameter 5578
confidenceLevel is used to specify the probability of a non-conclusive answer. If the function cannot 5579
guarantee that op is prime or composite, it SHALL iterate the test until the probability that op is composite 5580
is less than 2^(-confidenceLevel). Values smaller than 80 for confidenceLevel will not be recognized 5581
and will default to 80. The maximum honored value of confidenceLevel is implementation-specific, but 5582
SHALL be at least 80. 5583

The algorithm for performing the primality test is implementation-specific, but its correctness and efficiency 5584
SHALL be equal to or better than the Miller-Rabin test. 5585

Parameters 5586

• op: Candidate number that is tested for primality 5587

• confidenceLevel: The desired confidence level for a non-conclusive test. This parameter (usually) 5588
maps to the number of iterations and thus to the running time of the test. Values smaller than 80 will 5589
be treated as 80. 5590

Specification Number: 10 Function Number: 0x1B02 5591

Return Value 5592

• 0: If op is a composite number 5593

• 1: If op is guaranteed to be prime 5594

• -1: If the test is non-conclusive but the probability that op is composite is less than 5595
2^(-confidenceLevel) 5596

Panic Reasons 5597

• If the implementation detects any error. 5598

TEE Internal Core API Specification – Public Review v1.2.1.31 287 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11 Fast Modular Multiplication Operations 5599

This part of the API allows the implementer of the TEE Internal Core API to give the TA developer access to 5600
faster modular multiplication routines, possibly hardware accelerated. These functions MAY be implemented 5601
using Montgomery or Barrett or any other suitable technique for fast modular multiplication. If no such support 5602
is possible the functions in this section MAY be implemented using regular multiplication and modular 5603
reduction. The data type TEE_BigIntFMM is used to represent the integers during repeated multiplications 5604
such as when calculating a modular exponentiation. The internal representation of the TEE_BigIntFMM is 5605
implementation-specific. 5606

8.11.1 TEE_BigIntConvertToFMM 5607

Since: TEE Internal API v1.0 5608

void TEE_BigIntConvertToFMM(5609
 [out] TEE_BigIntFMM *dest, 5610
 [in] TEE_BigInt *src, 5611
 [in] TEE_BigInt *n, 5612
 [in] TEE_BigIntFMMContext *context); 5613

Description 5614

The TEE_BigIntConvertToFMM function converts src into a representation suitable for doing fast modular 5615
multiplication. If the operation is successful, the result will be written in implementation-specific format into the 5616
buffer dest, which SHALL have been allocated by the TA and initialized using TEE_BigIntInitFMM. 5617

Parameters 5618

• dest: Pointer to an initialized TEE_BigIntFMM memory area 5619

• src: Pointer to the TEE_BigInt to convert 5620

• n: Pointer to the modulus 5621

• context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext1 5622

Specification Number: 10 Function Number: 0x1C03 5623

Panic Reasons 5624

• If the implementation detects any error. 5625

288 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11.2 TEE_BigIntConvertFromFMM 5626

Since: TEE Internal API v1.0 5627

void TEE_BigIntConvertFromFMM(5628
 [out] TEE_BigInt *dest, 5629
 [in] TEE_BigIntFMM *src, 5630
 [in] TEE_BigInt *n, 5631
 [in] TEE_BigIntFMMContext *context); 5632

Description 5633

The TEE_BigIntConvertFromFMM function converts src in the fast modular multiplication representation 5634
back to a TEE_BigInt representation. 5635

Parameters 5636

• dest: Pointer to an initialized TEE_BigInt memory area to hold the converted result 5637

• src: Pointer to a TEE_BigIntFMM holding the value in the fast modular multiplication representation 5638

• n: Pointer to the modulus 5639

• context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext1 5640

Specification Number: 10 Function Number: 0x1C02 5641

Panic Reasons 5642

• If the implementation detects any error. 5643

TEE Internal Core API Specification – Public Review v1.2.1.31 289 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11.3 TEE_BigIntComputeFMM 5644

Since: TEE Internal API v1.0 5645

void TEE_BigIntComputeFMM(5646
 [out] TEE_BigIntFMM *dest, 5647
 [in] TEE_BigIntFMM *op1, 5648
 [in] TEE_BigIntFMM *op2, 5649
 [in] TEE_BigInt *n, 5650
 [in] TEE_BigIntFMMContext *context); 5651

Description 5652

The TEE_BigIntComputeFMM function calculates dest = op1 * op2 in the fast modular multiplication 5653
representation. The pointers dest, op1, and op2 SHALL each point to a TEE_BigIntFMM which has been 5654
previously initialized with the same modulus and context as used in this function call; otherwise the result is 5655
undefined. All or some of dest, op1, and op2 MAY point to the same memory region but SHALL point to 5656
the start address of a TEE_BigIntFMM. 5657

Parameters 5658

• dest: Pointer to TEE_BigIntFMM to hold the result op1 * op2 in the fast modular multiplication 5659
representation 5660

• op1: Pointer to the first operand 5661

• op2: Pointer to the second operand 5662

• n: Pointer to the modulus 5663

• context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext1 5664

Specification Number: 10 Function Number: 0x1C01 5665

Panic Reasons 5666

• If the implementation detects any error. 5667

 5668

290 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9 Peripheral and Event APIs 5669

Since: TEE Internal Core API v1.2 5670

Note: The Peripheral and Event APIs were originally introduced in [TEE TUI Low] v1.0. They are 5671
incorporated in this document as of TEE Internal Core API v1.2. This document supersedes the text in 5672
[TEE TUI Low] v1.0 and in the event of any discrepancy, this document prevails. 5673

The Peripheral and Event APIs, where provided by a Trusted OS, enable interaction between Trusted 5674
Applications and peripherals. 5675

The Peripheral and Event APIs are optional, but if one is implemented the other is also required. A sentinel 5676
TEE_CORE_API_EVENT, defined in section 3.1.3, is set on implementations where they are supported. 5677

9.1 Introduction 5678

9.1.1 Peripherals 5679

A peripheral is an ancillary component used to interact with a system, with the software interface between 5680
peripheral and system being provided by a device driver. On a typical device that includes a TEE, there may 5681
be many peripherals. The TEE is not expected to have software drivers for interacting with every peripheral 5682
attached to the device. 5683

There are several classes of peripheral: 5684

• Peripherals that are temporarily or permanently isolated from non-TEE entities, managed by the TEE, 5685
and fully usable by a TA through the APIs the TEE offers. These devices are described as TEE 5686
ownable. 5687

• Peripherals that are under the total control of the REE or other entity outside the TEE and are not 5688
usable by the TEE. 5689

• Peripherals where the TEE cannot interpret events – because it does not have the required driver – 5690
but where the TEE can control the flow of events, for example by routing flow through the TEE or by 5691
controlling the clock on a bus. These devices are described as TEE controllable. 5692

• Peripherals for which a TEE can parse and forward events, even though the TEE does not fully control 5693
that source; e.g. a sockets interface to the REE. As the interface is hosted by the REE, it is REE 5694
controlled, but TEE parseable. 5695

TA and TEE implementers should be aware of potential side channel attacks and provide and/or control 5696
appropriate interfaces to restrict those attacks. For example, a TEE could be configured to stop access by 5697
entities outside the TEE to specific peripherals such as accelerometers to prevent indirect interpretation of 5698
touch screen use while the user is interacting with a TA using a TUI. 5699

The TEE_Peripheral_GetPeripherals function enables the TA to discover which peripherals the TEE 5700
knows about, and their characteristics, while other functions support low-level interaction with peripherals. 5701

When a data source (or sink) is handed back to the REE, or transferred between TA instances, any state 5702
specific to previous TA activity or TA/user interaction SHALL be removed to prevent information leakage. 5703

 5704

TEE Internal Core API Specification – Public Review v1.2.1.31 291 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.1.1.1 Access to Peripherals from a TA 5705

Peripherals which are under the full or partial control of the TEE (i.e. peripherals which are TEE ownable, TEE 5706
parseable, or TEE controllable) MAY support exclusive access by no more than one TA at any one time. 5707

A Trusted OS MAY provide additional access control mechanisms which are out of scope of this specification, 5708
either because they are described in separate GlobalPlatform specifications or because they are 5709
implementation-specific. An (informative) example is a Trusted OS that limits access to a peripheral to those 5710
TAs that reside in specific security domains. 5711

The Trusted OS SHALL recover ownership of all peripherals with open handles from a TA in the following 5712
scenarios: 5713

• The TA Panics. 5714

• TA_DestroyEntryPoint is called for the TA owning the peripheral. 5715

9.1.1.1.1 Multiple Access to Peripherals (informative) 5716

Some peripherals offer multiple channels, addressing capability, or other mechanisms which have the potential 5717
to allow access to multiple endpoints. It may be convenient in some scenarios to assign different logical 5718
endpoints to different TAs, while supporting a model of exclusive access to the peripheral per TA. 5719

One approach, shown in the following figure, is to implement a separate driver interface for each of the multiple 5720
endpoints. For example, a driver for an I2C interface may support separate endpoints for each I2C address, 5721
while itself being the exclusive owner of the I2C peripheral. Such drivers SHOULD ensure that information 5722
leakage between clients of the different endpoints is prevented. 5723

Figure 9-1: Example of Multiple Access to Bus-oriented Peripheral (Informative) 5724

 5725

292 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.1.2 Event Loop 5726

The event loop is a mechanism by which a TA can enquire for and then process messages from types of 5727
peripherals including pseudo-peripherals. The event loop can simplify TA programming in scenarios where 5728
peripheral interaction occurs asynchronously with respect to TEE operation. 5729

Events are polymorphic, with the ability to transport device-specific payloads. 5730

The underlying implementation of the event loop is implementation-dependent; however, the Trusted OS 5731
SHALL ensure that: 5732

• A TA can only successfully obtain an event source for a peripheral for which it already has an open 5733
handle. This ensures that if a peripheral supports exclusive access by a single TA, sensitive 5734
information coming from a peripheral can be consumed by only that TA, preventing opportunities for 5735
information leakage. 5736

• Events submitted to the event queue for a given peripheral are submitted in the order in which they 5737
occur. No guarantee is made of the ordering of events from different peripherals. 5738

• An error scenario in the Event API which results in a Panic SHALL NOT cause a Panic in TAs which 5739
are blocked waiting on synchronous operations. It will either be attributed to a TEE level problem (e.g. 5740
a corrupt library) or will occur in the TEE_Event_Wait function. 5741

9.1.3 Peripheral State 5742

The peripheral state API provides an abstracted interface to some of the hardware features of the underlying 5743
device. It can be desirable to enable a TA to read and/or configure the hardware in a specific way, for example 5744
it may be necessary to set data transmission rates on a serial peripheral, or to discover the manufacturer of a 5745
biometric sensor 5746

The Peripheral API provides a mechanism by which TAs can discover information about the peripherals they 5747
use, and by which modifiable parameters can be identified and updated. It is intended to ensure that 5748
peripherals for which GlobalPlatform specifies interfaces can be used in a portable manner by TAs. 5749

It is expected that other GlobalPlatform specifications may define state items for peripherals. 5750

9.1.4 Overview of Peripheral and Event APIs 5751

Figure 9-2 shows how the functions and structures of the Peripheral API are related. The notation is an 5752
adaptation of UML in which: 5753

• “F” denotes a function call. 5754

• “S” denotes a C struct. 5755

• “E” denotes an enumeration: A constrained set of values of type uint32_t. 5756

• “H” denotes a handle type, which may be an opaque pointer or some other integer type used as a 5757
unique identifier. 5758

• Arrows are used to denote whether a value is returned from a function call or is a parameter to a 5759
function call. 5760

• Dashed lines indicate other types of useful relationship. 5761

Figure 9-3 shows the Event API in a similar format. Structures that are common to the Peripheral and Event 5762
APIs are shown in both diagrams to make the relation between the API sets explicit. 5763

TEE Internal Core API Specification – Public Review v1.2.1.31 293 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 9-2: Peripheral API Overview 5764

 5765
 5766

 5767

TEE Internal Core API Specification – Public Review v1.2.1.31 294 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Figure 9-3: Event API Overview 5768

 5769
 5770

TEE Internal Core API Specification – Public Review v1.2.1.31 295 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.2 Constants 5771

9.2.1 Handles 5772

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5773

The value TEE_INVALID_HANDLE is used by the peripheral subsystem to denote an invalid handle. 5774

#define TEE_INVALID_HANDLE ((TEE_EventQueueHandle) (0)) 5775

 5776

9.2.2 Maximum Sizes 5777

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 5778

Table 9-1 defines the maximum size of structure payloads. 5779

If another specification supported by a given Trusted OS requires a larger payload to support events, these 5780
SHALL be implemented using pointers or handles to other structures that fit within the defined maximum 5781
structure payloads. 5782

Table 9-1: Maximum Sizes of Structure Payloads 5783

Constant Name Value
TEE_MAX_EVENT_PAYLOAD_SIZE 32 bytes

 5784

Backward Compatibility 5785

[TEE TUI Low] v1.0 offered the option of supporting larger payloads. This option is no longer supported. 5786

 5787

9.2.3 TEE_EVENT_TYPE 5788

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5789

TEE_EVENT_TYPE is a value indicating the source of an event. 5790

#if defined(TEE_CORE_API_EVENT) 5791
 typedef uint32_t TEE_EVENT_TYPE; 5792
#endif 5793

To distinguish the event types defined in various specifications: 5794

• GlobalPlatform event types SHALL have nibble 8 (the high nibble) = 0, and SHALL include the 5795
specification number as a 3-digit BCD (Binary Coded Decimal) value in nibbles 7 through 5. 5796

For example, GPD_SPE_123 may define specification unique event type codes 0x01230000 to 5797
0x0123ffff. 5798

All event types defined in this specification have the high word set to 0x0010. 5799

• Event types created by external bodies SHALL have nibble 8 = 1. 5800

• Implementation defined event types SHALL have nibble 8 = 2. 5801

Table 9-2 lists event types defined to date. 5802

296 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Implementations may not support all event types; however, it is recommended that TA developers define event 5803
handlers for all of the events defined on the peripherals they support. To determine which event types are 5804
supported by a particular peripheral, the developer can consult the documentation for that peripheral. 5805

Table 9-2: TEE_EVENT_TYPE Values 5806

Constant Name Value

Reserved for future use 0x00000000 – 0x0000ffff

Reserved for GlobalPlatform TEE specifications numbered 001 - 009 0x00010000 – 0x0009ffff

TEE_EVENT_TYPE_ALL 0x00100000

TEE_EVENT_TYPE_CORE_CLIENT_CANCEL 0x00100001

TEE_EVENT_TYPE_CORE_TIMER 0x00100002

TEE_EVENT_TYPE_ACCESS_CHANGE 0x00100003

Reserved for future versions of this specification 0x00100004 – 0x0010fffe

TEE_EVENT_TYPE_ILLEGAL_VALUE 0x0010ffff

Reserved for GlobalPlatform TEE specifications numbered 011 - 041 0x00110000 – 0x0041ffff

TEE_EVENT_TYPE_BIO
Defined in [TEE TUI Bio]; if the Biometrics API is not implemented,
reserved.

0x00420000

Reserved for [TEE TUI Bio] 0x00420001 – 0x0042ffff

Reserved for GlobalPlatform TEE specifications numbered 043 – 054 0x00430000 – 0x0054ffff

TEE_EVENT_TYPE_TUI_ALL 0x00550000

TEE_EVENT_TYPE_TUI_BUTTON 0x00550001

TEE_EVENT_TYPE_TUI_KEYBOARD 0x00550002

TEE_EVENT_TYPE_TUI_REE 0x00550003

TEE_EVENT_TYPE_TUI_TOUCH 0x00550004

Reserved for [TEE TUI Low] 0x00550005 – 0x0055ffff

Reserved for GlobalPlatform TEE specifications numbered 056 – 999 0x00560000 – 0x0999ffff

Reserved for future use 0x099a0000 – 0x0fffffff

Reserved for external bodies; number space managed by
GlobalPlatform

0x10000000 – 0x1fffffff

Implementation defined 0x20000000 – 0x2fffffff

Reserved for future use 0x30000000 – 0xffffffff

 5807

TEE_EVENT_TYPE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 5808
undefined value when set in the TEE_Event structure. 5809

TEE Internal Core API Specification – Public Review v1.2.1.31 297 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.2.4 TEE_PERIPHERAL_TYPE 5810

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5811

TEE_PERIPHERAL_TYPE is a value used to identify a peripheral attached to the device. 5812

#if defined(TEE_CORE_API_EVENT) 5813
 typedef uint32_t TEE_PERIPHERAL_TYPE; 5814
#endif 5815

The TEE_Peripheral_GetPeripherals function lists all the peripherals known to the TEE. 5816

Table 9-3: TEE_PERIPHERAL_TYPE Values 5817

Constant Name Value

Reserved 0x00000000

TEE_PERIPHERAL_OS 0x00000001

TEE_PERIPHERAL_CAMERA 0x00000002

TEE_PERIPHERAL_MICROPHONE 0x00000003

TEE_PERIPHERAL_ACCELEROMETER 0x00000004

TEE_PERIPHERAL_NFC 0x00000005

TEE_PERIPHERAL_BLUETOOTH 0x00000006

TEE_PERIPHERAL_USB 0x00000007

TEE_PERIPHERAL_FINGERPRINT 0x00000008

TEE_PERIPHERAL_KEYBOARD 0x00000009

TEE_PERIPHERAL_TOUCH 0x0000000A

TEE_PERIPHERAL_BIO 0x0000000B

Reserved for GlobalPlatform specifications 0x0000000C – 0x3fffffff

Reserved for other Specification Development
Organizations (SDOs) under Liaison Statement (LS)

0x40000000 – 0x7ffffffe

TEE_PERIPHERAL_ILLEGAL_VALUE 0x7fffffff

Implementation defined 0x80000000 – 0xffffffff

 5818

TEE_PERIPHERAL_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 5819
undefined value when returned by the TEE_Peripheral_GetPeripherals function. 5820

 5821

298 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.2.5 TEE_PERIPHERAL_FLAGS 5822

Table 9-4: TEE_PERIPHERAL_FLAGS Values 5823

Constant Name Value Meaning
TEE_PERIPHERAL_FLAG_REE_CONTROLLED 0x00000000 The Trusted OS does not control this

peripheral. All events can be
processed by the REE.

TEE_PERIPHERAL_FLAG_TEE_CONTROLLABLE 0x00000001 The Trusted OS can control this
peripheral.
Events SHALL NOT be passed to the
REE.

TEE_PERIPHERAL_FLAG_EVENT_SOURCE 0x00000002 The TEE can parse the events
generated by this peripheral.
The peripheral can be attached to an
event queue.

TEE_PERIPHERAL_FLAG_LOCKED 0x00000004 This peripheral has been locked for
access by a TA or the REE.

TEE_PERIPHERAL_FLAG_OWNED 0x00000008 This peripheral has been locked for
access by this TA instance.

Set bits reserved for use by GlobalPlatform 0x007FFFF0

TEE_PERIPHERAL_FLAG_ILLEGAL_VALUE 0x00800000

Set bits reserved for implementation defined
flags

0xFF000000

 5824

TEE_PERIPHERAL_FLAG_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as an 5825
undefined value when it is set in TEE_PERIPHERAL_STATE_FLAGS. 5826

The flags TEE_PERIPHERAL_FLAG_REE_CONTROLLED and TEE_PERIPHERAL_FLAG_TEE_CONTROLLABLE 5827
are mutually exclusive. 5828

If an event source has the TEE_PERIPHERAL_FLAG_TEE_CONTROLLABLE flag but not the 5829
TEE_PERIPHERAL_FLAG_EVENT_SOURCE flag, the TEE can control the source, but not understand it. Any 5830
events generated while the TEE has control of the source SHALL be dropped. 5831

 5832

TEE Internal Core API Specification – Public Review v1.2.1.31 299 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.2.6 TEE_PeripheralStateId Values 5833

TEE_PeripheralState instances are used to provide information about peripherals to a TA. The following 5834
field values, which represent legal values of type TEE_PeripheralStateId which can be used to identify 5835
specific peripheral state items, are defined in this specification. Other specifications may define additional 5836
values for TEE_PeripheralStateId. 5837

Table 9-5: TEE_PeripheralStateId Values 5838

Constant Name Value

Reserved 0x00000000

TEE_PERIPHERAL_STATE_NAME 0x00000001

TEE_PERIPHERAL_STATE_FW_INFO 0x00000002

TEE_PERIPHERAL_STATE_MANUFACTURER 0x00000003

TEE_PERIPHERAL_STATE_FLAGS 0x00000004

Reserved for GlobalPlatform specifications 0x00000005 – 0x3fffffff

Reserved for other SDOs under LS 0x40000000 – 0x7ffffffe

TEE_PERIPHERAL_STATE_ILLEGAL_VALUE 0x7fffffff

Implementation defined 0x80000000 – 0xffffffff

 5839

TEE_PERIPHERAL_STATE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as 5840
an undefined value when set in the TEE_PeripheralState structure. 5841

 5842

300 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.3 Peripheral State Table 5843

Every peripheral instance has a table of associated state information. A TA can obtain this table by calling 5844
TEE_Peripheral_GetStateTable. Each item in the state table is of TEE_PeripheralState type. 5845

The peripheral state table can be used to retrieve standardized, and peripheral specific, information about the 5846
peripheral. It also contains identifiers that can then be used for direct get/put control of specific aspects of the 5847
peripheral. 5848

For example, a serial interface peripheral may expose interfaces to its control registers to provide direct access 5849
to readable parity error counters and writable baud rate settings. 5850

The state table returned by TEE_Peripheral_GetStateTable is a read-only snapshot of peripheral state 5851
at function call time. Some of the values in the table may support modification by the caller using the 5852
TEE_Peripheral_SetState function – this is indicated by the value of the ro field. 5853

The following sections define the state table items which could be present in the peripheral state table. Other 5854
specifications may define additional items. 5855

9.3.1 Peripheral Name 5856

Peripherals SHALL provide a state table entry that defines a printable name for the peripheral. 5857

Table 9-6: TEE_PERIPHERAL_STATE_NAME Values 5858

TEE_PeripheralValueType Field Value

tag TEE_PERIPHERAL_VALUE_STRING

id TEE_PERIPHERAL_STATE_NAME

ro true

u.stringVal Pointer to a NULL-terminated printable string which contains a
printable peripheral name; SHALL be unique among the
peripherals that are presented to a given TA.
Note: In [TEE TUI Low] v1.0, uniqueness was recommended but
not required.

 5859

9.3.2 Firmware Information 5860

Peripherals MAY provide a state table entry that identifies the firmware version executing on the peripheral. 5861
This entry is only relevant to peripherals which contain a processor. 5862

Table 9-7: TEE_PERIPHERAL_STATE_FW_INFO Values 5863

TEE_PeripheralValueType Field Value

tag TEE_PERIPHERAL_VALUE_STRING

id TEE_PERIPHERAL_STATE_FW_INFO

ro true

u.stringVal Pointer to a NULL-terminated printable string which contains
information about the firmware running in the peripheral

 5864

TEE Internal Core API Specification – Public Review v1.2.1.31 301 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.3.3 Manufacturer 5865

Peripherals MAY provide a state table entry that identifies the manufacturer of the peripheral. 5866

Table 9-8: TEE_PERIPHERAL_STATE_MANUFACTURER Values 5867

TEE_PeripheralValueType Field Value

tag TEE_PERIPHERAL_VALUE_STRING

id TEE_PERIPHERAL_STATE_MANUFACTURER

ro true

u.stringVal Pointer to a NULL-terminated printable string which contains
information about the manufacturer of the peripheral

 5868

9.3.4 Flags 5869

Peripherals SHALL provide a state table entry that provides information about the way in which the Trusted 5870
OS can manage the input and output from this peripheral from the calling TA using one or more of the values 5871
defined for TEE_PERIPHERAL_FLAGS – these may be combined in a bitwise manner. 5872

Table 9-9: TEE_PERIPHERAL_STATE_FLAGS Values 5873

TEE_PeripheralValueType Field Value

tag TEE_PERIPHERAL_VALUE_UINT32

id TEE_PERIPHERAL_STATE_FLAGS

ro true

u.uint32Val A combination of zero or more of the TEE_PERIPHERAL_FLAGS
values defined in section 9.2.5

 5874

9.3.5 Exclusive Access 5875

Peripherals SHALL provide a state table entry that identifies whether the peripheral supports exclusive access. 5876

Table 9-10: TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS Values 5877

TEE_PeripheralValueType Field Value

tag TEE_PERIPHERAL_VALUE_BOOL

id TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS

ro true

u.boolVal Set to true if this peripheral can be opened for exclusive
access.

 5878

The value of the TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS field SHALL be set to the same value on 5879
all TAs running on a given TEE which have access to that peripheral. 5880

 5881

302 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.4 Operating System Pseudo-peripheral 5882

The Operating System pseudo-peripheral provides a mechanism by which events originating in the Trusted 5883
OS or the REE can be provided to a Trusted Application. 5884

A single instance of the Operating System pseudo-peripheral is provided by a Trusted OS supporting the 5885
Peripheral and Event APIs. It has TEE_PERIPHERAL_TYPE set to TEE_PERIPHERAL_OS. 5886

A Trusted Application can determine the source of an Event generated by the Operating System pseudo-5887
peripheral by looking at the event type. This information about the event source is trustworthy because it is 5888
generated within the Trusted OS. Events originating outside the Trusted OS may be less trustworthy than 5889
those originating from within the Trusted OS, and Trusted Application developers should take account of this 5890
in their designs. 5891

The Operating System pseudo-peripheral SHALL NOT expose a TEE_PeripheralHandle, as it supports 5892
neither the polled Peripheral API nor writeable state. It SHALL expose a TEE_EventSourceHandle. 5893

The Operating System pseudo-peripheral SHALL NOT be lockable for exclusive access and SHALL be 5894
exposed to all TA instances. Any TA in the Trusted OS can subscribe to its event queue if it wishes to do so. 5895

9.4.1 State Table 5896

The peripheral state table for the Operating System pseudo-peripheral SHALL contain the values listed in the 5897
following table. 5898

Table 9-11: TEE_PERIPHERAL_OS State Table Values 5899

TEE_PeripheralValueType.id TEE_PeripheralValueType.u

TEE_PERIPHERAL_STATE_NAME "TEE"

TEE_PERIPHERAL_STATE_FLAGS TEE_PERIPHERAL_FLAG_EVENT_SOURCE

TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS false

 5900

9.4.2 Events 5901

The Operating System pseudo-peripheral, when opened, SHALL return a TEE_PeripheralDescriptor 5902
which SHALL contain a valid TEE_EventSourceHandle and an invalid TEE_PeripheralHandle because 5903
it acts only as an event source. 5904

The Operating System pseudo-peripheral can act as a source for the event types listed in section 9.6.9. 5905

 5906

TEE Internal Core API Specification – Public Review v1.2.1.31 303 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.5 Session Pseudo-peripheral 5907

The Session pseudo-peripheral provides a mechanism by which the events private to a specific TA session 5908
may be provided to a Trusted Application. 5909

An instance of the Session pseudo-peripheral is provided by a Trusted OS to each open TA session, it has 5910
TEE_PERIPHERAL_TYPE set to TEE_PERIPHERAL_SESSION. 5911

The Session pseudo-peripheral SHALL NOT expose a TEE_PeripheralHandle, as it supports neither the 5912
polled Peripheral API nor writeable state. It SHALL expose a TEE_EventSourceHandle. 5913

The Session pseudo-peripheral SHALL be exposed only the specific session of an executing TA instance. 5914

9.5.1 State Table 5915

The peripheral state table for the Operating System pseudo-peripheral SHALL contain the values listed in the 5916
following table. 5917

Table 9-12: TEE_PERIPHERAL_SESSION State Table Values 5918

TEE_PeripheralValueType.id TEE_PeripheralValueType.u

TEE_PERIPHERAL_STATE_NAME "Session"

TEE_PERIPHERAL_STATE_FLAGS TEE_PERIPHERAL_FLAG_EVENT_SOURCE

TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS true

 5919

9.5.2 Events 5920

The Session pseudo-peripheral, when opened, SHALL return a TEE_PeripheralDescriptor which SHALL 5921
contain a valid TEE_EventSourceHandle and an invalid TEE_PeripheralHandle because it acts only 5922
as an event source. 5923

The Session pseudo-peripheral can act as a source for the following event types: 5924

• TEE_Event_ClientCancel (see section 9.6.9.2) 5925

• TEE_Event_Timer (see section 9.6.9.3) 5926

304 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6 Data Structures 5927

Several data structures defined in this specification are versioned. This allows a TA written against an earlier 5928
version of this API than that implemented by a TEE to request the version of the structure it understands. 5929

9.6.1 TEE_Peripheral 5930

TEE_Peripheral is a structure used to provide information about a single peripheral to a TA. 5931

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5932

#if defined(TEE_CORE_API_EVENT) 5933
 typedef struct 5934
 { 5935
 uint32_t version; 5936
 union { 5937
 TEE_Peripheral_V1 v1; 5938
 } u; 5939
 } TEE_Peripheral; 5940
 5941
 typedef struct 5942
 { 5943
 TEE_PERIPHERAL_TYPE periphType; 5944
 TEE_PeripheralId id; 5945
 } TEE_Peripheral_V1; 5946
#endif 5947

The structure fields have the following meanings: 5948

• version: The version of the structure – currently always 1. 5949

• periphType: The type of the peripheral. 5950

• id: A unique identifier for a given peripheral on a TEE. 5951

A TEE may have more than one peripheral of the same TEE_PERIPHERAL_TYPE. The id parameter provides 5952
a TEE-unique identifier for a specific peripheral, and the implementation SHOULD provide further information 5953
about the specific peripheral instance in the TEE_PERIPHERAL_STATE_NAME field described in section 9.3.1. 5954

The id parameter for a given peripheral SHOULD NOT change between Trusted OS version updates on a 5955
device. The id parameter is not necessarily consistent between different examples of the same device. 5956

TEE Internal Core API Specification – Public Review v1.2.1.31 305 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.2 TEE_PeripheralDescriptor 5957

TEE_PeripheralDescriptor is a structure collecting the information required to access a peripheral. 5958

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5959

#if defined(TEE_CORE_API_EVENT) 5960
 typedef struct 5961
 { 5962
 uint32_t version; 5963
 union { 5964
 TEE_PeripheralDescriptor_V1 v1; 5965
 } u; 5966
 } TEE_PeripheralDescriptor 5967
 5968
 typedef struct 5969
 { 5970
 TEE_PeripheralId id; 5971
 TEE_PeripheralHandle peripheralHandle; 5972
 TEE_EventSourceHandle eventSourceHandle; 5973
 } TEE_PeripheralDescriptor_V1; 5974
#endif 5975

The structure fields have the following meanings: 5976

• The version field identifies the version of the TEE_PeripheralDescriptor structure. In this 5977
version of the specification it SHALL be set to 1. 5978

• The id field contains a unique identifier for the peripheral with which this 5979
TEE_PeripheralDescriptor instance is associated. 5980

• The peripheralHandle field contains a TEE_PeripheralHandle which, if valid, enables an 5981
owning TA to perform API calls which might alter peripheral state. 5982

• The eventSourceHandle field contains a TEE_EventSourceHandle which can be used to attach 5983
events generated by the peripheral to an event queue. 5984

 5985

9.6.3 TEE_PeripheralHandle 5986

A TEE_PeripheralHandle is an opaque handle used to manage direct access to a peripheral. 5987

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5988

#if defined(TEE_CORE_API_EVENT) 5989
 typedef struct __TEE_PeripheralHandle* TEE_PeripheralHandle; 5990
#endif 5991

TA implementations SHOULD NOT assume that the same TEE_PeripheralHandle will be returned for 5992
different sessions. 5993

The value TEE_INVALID_HANDLE is used to indicate an invalid TEE_PeripheralHandle. All other values 5994
returned by the Trusted OS denote a valid TEE_PeripheralHandle. 5995

 5996

306 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.4 TEE_PeripheralId 5997

A TEE_PeripheralId is a uint32_t, used as a unique identifier for a peripheral on a given TEE. 5998

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 5999

#if defined(TEE_CORE_API_EVENT) 6000
 typedef uint32_t TEE_PeripheralId; 6001
#endif 6002

TEE_PeripheralId SHALL be unique on a given TEE, and SHALL be constant for a given peripheral 6003
between TEE reboots. If a peripheral is removed and reinserted, the same value of TEE_PeripheralId 6004
SHALL be associated with it. 6005

 6006

TEE Internal Core API Specification – Public Review v1.2.1.31 307 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.5 TEE_PeripheralState 6007

TEE_PeripheralState is a structure containing the current value of an individual peripheral state value on 6008
a given TEE. 6009

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6010

#if defined(TEE_CORE_API_EVENT) 6011
 typedef struct 6012
 { 6013
 uint32_t version; 6014
 TEE_PeripheralValueType tag; 6015
 TEE_PeripheralStateId id; 6016
 bool ro; 6017
 union { 6018
 uint64_t uint64Val; 6019
 uint32_t uint32Val; 6020
 uint16_t uint16Val; 6021
 uint8_t uint8Val; 6022
 bool boolVal; 6023
 const char* stringVal; 6024
 } u; 6025
 } TEE_PeripheralState; 6026
#endif 6027

The structure fields have the following meanings: 6028

• The version field identifies the version of the TEE_PeripheralState structure. In this version of 6029
the specification it SHALL be set to 1. 6030

• The tag field is a TEE_PeripheralStateValueType instance indicating which field in the union, 6031
u, should be accessed to obtain the correct configuration value. 6032

• The id field is a unique identifier for this node in the peripheral configuration tree. It can be used in 6033
the set/get API calls to select a peripheral configuration value directly. 6034

• The ro field is true if this configuration value cannot be updated by the calling TA. A TA 6035
SHOULD NOT call TEE_PeripheralSetState with a given TEE_PeripheralStateId if the ro 6036
field of the corresponding TEE_PeripheralState is true. An implementation MAY generate an 6037
error if this is not respected. 6038

• The union field, u, contains fields representing the different data types which can be used to store 6039
peripheral configuration information. 6040

A Trusted OS MAY indicate different TEE_PeripheralState information to different TAs on the system. 6041
Therefore a TA SHOULD NOT pass TEE_PeripheralState to another TA as the information it contains 6042
may not be valid for the other TA. 6043

 6044

308 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.6 TEE_PeripheralStateId 6045

A TEE_PeripheralStateId is an identifier for a peripheral state entry on a given TEE. 6046

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6047

#if defined(TEE_CORE_API_EVENT) 6048
 typedef uint32_t TEE_PeripheralStateId; 6049
#endif 6050

Legal values in this specification for TEE_PeripheralStateId are listed in section 9.2.6. Further values 6051
may be defined in other specifications. 6052

 6053

9.6.7 TEE_PeripheralValueType 6054

TEE_PeripheralValueType indicates which of several types has been used to store the configuration 6055
information in a TEE_PeripheralState.tag field. 6056

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6057

#if defined(TEE_CORE_API_EVENT) 6058
 typedef uint32_t TEE_PeripheralValueType; 6059
#endif 6060

Table 9-13: TEE_PeripheralValueType Values 6061

Constant Name Value
TEE_PERIPHERAL_VALUE_UINT64 0x00000000

TEE_PERIPHERAL_VALUE_UINT32 0x00000001

TEE_PERIPHERAL_VALUE_UINT16 0x00000002

TEE_PERIPHERAL_VALUE_UINT8 0x00000003

TEE_PERIPHERAL_VALUE_BOOL 0x00000004

TEE_PERIPHERAL_VALUE_STRING 0x00000005

Reserved 0x00000006 – 0x7FFFFFFE

TEE_PERIPHERAL_VALUE_ILLEGAL_VALUE 0x7FFFFFFF

Implementation defined 0x80000000 – 0xFFFFFFFF

 6062

TEE_PERIPHERAL_VALUE_ILLEGAL_VALUE is reserved for testing and validation and SHALL be treated as 6063
an undefined value when provided to the TEE_Peripheral_SetState function. 6064

 6065

TEE Internal Core API Specification – Public Review v1.2.1.31 309 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.8 TEE_Event 6066

TEE_Event is a container for events in the event loop. 6067

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6068

#if defined(TEE_CORE_API_EVENT) 6069
 typedef struct { 6070
 uint32_t version; 6071
 union { 6072
 TEE_Event_V1 v1; 6073
 } u; 6074
 } TEE_Event; 6075
 6076
 typedef struct { 6077
 TEE_EVENT_TYPE eventType; 6078
 uint64_t timestamp; 6079
 TEE_EventSourceHandle eventSourceHandle; 6080
 uint8_t payload[TEE_MAX_EVENT_PAYLOAD_SIZE]; 6081
 } TEE_Event_V1; 6082
#endif 6083

The TEE_Event structure holds an individual event; the payload holds an array of bytes whose contents are 6084
interpreted according to the type of the event: 6085

• version: The version of the structure – currently always 1. 6086

• eventType: A value identifying the type of event. 6087

• timestamp: The time the event occurred given as milliseconds since the TEE was started. The value 6088
of timestamp is guaranteed to increase monotonically so that the ordering of events in time is 6089
guaranteed. A Trusted OS SHOULD use the same underlying source of time information as used for 6090
TEE_GetSystemTime, described in section 7.2.1. 6091

• eventSourceHandle: The handle of the specific event source that created this event. 6092

• payload: A block of TEE_MAX_EVENT_PAYLOAD_SIZE bytes. The content of payload, while 6093
defined for TEE_PERIPHERAL_OS, is not generally defined in this specification. Payloads specific to 6094
particular APIs may be defined in other specifications. Any unused trailing bytes SHALL be zero. 6095

 6096
In general, if an event cannot be sufficiently described within the constraints of the payload field of 6097
TEE_MAX_EVENT_PAYLOAD_SIZE, the contents of the field may be data structure containing handles or 6098
pointers to further structures that together fully describe the event. 6099

 6100

310 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.9 Generic Payloads 6101

This section describes a generic payload field of the TEE_Event structure. Each TEE_Event structure 6102
that the implementation can return has a version field and a union of the different versions, thereby permitting 6103
a TA to specify the version of the returned structure in the invoking command. When a command requests a 6104
particular version, the TEE can return any of the following: 6105

• A structure of the requested version 6106

• A structure of an earlier version 6107

• An error indicating that it cannot support the request 6108

The following table from [TEE TUI Low] v1.0.1 is duplicated here for convenience. 6109

Table 9-14: Value of version in payload Structures 6110

Structure Value of version in payload Structure
TEE_Event 1

TEE_Event_TUI_Button 1

TEE_Event_TUI_Keyboard 1

TEE_Event_TUI_REE 1

TEE_Event_TUI_TEE 1

TEE_Event_TUI_Touch 1

TEE_Peripheral 1

TEE_PeripheralDescriptor 1

TEE_TUIDisplayInfo 1

TEE_TUISurfaceBuffer 1

TEE_TUISurfaceInfo 1

 6111

The rules associated with TEE_Event structure versioning are defined in [TEE TUI Low] section 3.11. 6112

TEE Internal Core API Specification – Public Review v1.2.1.31 311 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.9.1 TEE_Event_AccessChange 6113

This event is generated if the accessibility of a peripheral to this TA changes. 6114

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6115

#if defined(TEE_CORE_API_EVENT) 6116
 typedef struct { 6117
 uint32_t version; 6118
 TEE_PeripheralId id; 6119
 uint32_t flags; 6120
 } TEE_Event_AccessChange; 6121
#endif 6122

The structure fields have the following meanings: 6123

• version: The version of the structure – currently always 1. 6124

• id: The TEE_PeripheralId for the peripheral for which the access change event was generated. 6125
This uniquely identifies the peripheral for which the access status has changed. 6126

• flags: The new state of TEE_PERIPHERAL_STATE_FLAGS. For details of the legal values for this 6127
field, see the description of the u.uint32Val field in section 9.3.4. 6128

This event SHALL be sent to all TAs which have registered to the TEE_PERIPHERAL_OS event queue when 6129
an access permission change occurs – including the TA which initiated the change. 6130

A consequence of TEE_Event_AccessChange is that some of the peripheral state table information may 6131
change. As such, each TA instance SHOULD call TEE_Peripheral_GetStateTable to obtain fresh 6132
information when it receives this event. 6133

 6134

9.6.9.2 TEE_Event_ClientCancel 6135

When a TEE_Event_V1 with eventType of TEE_EVENT_TYPE_CORE_CLIENT_CANCEL is received, the 6136
TEE_Event_V1 payload has type TEE_Event_ClientCancel. 6137

Since: TEE Internal Core API v1.2 6138

#if defined(TEE_CORE_API_EVENT) 6139
 typedef struct { 6140
 uint32_t version; 6141
 } TEE_Event_ClientCancel; 6142
#endif 6143

The structure fields have the following meanings: 6144

• version: The version of the structure – currently always 1. 6145

This event SHALL be sent only to the TA session for which cancellation was requested on the appropriate 6146
TEE_PERIPHERAL_SESSION event queue when cancellation was requested. 6147

312 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.6.9.3 TEE_Event_Timer 6148

When a TEE_Event_V1 with eventType of TEE_EVENT_TYPE_CORE_CLIENT_TIMER is received in a given 6149
TA session context, the TEE_Event_V1 payload has type TEE_Event_Timer. 6150

Since: TEE Internal Core API v1.2 6151

#if defined(TEE_CORE_API_EVENT) 6152
 typedef struct { 6153
 uint8_t payload[TEE_MAX_EVENT_PAYLOAD_SIZE]; 6154
 } TEE_Event_Timer; 6155
#endif 6156

The structure fields have the following meanings: 6157

• payload: A byte array containing a payload whose contents are defined by the TA when the timer is 6158
created. 6159

This event SHALL be sent only to the TA session for which timer event was requested on the appropriate 6160
TEE_PERIPHERAL_SESSION event queue when cancellation was requested. 6161

 6162

9.6.10 TEE_EventQueueHandle 6163

A TEE_EventQueueHandle is an opaque handle for an event queue. 6164

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6165

#if defined(TEE_CORE_API_EVENT) 6166
 typedef struct __TEE_EventQueueHandle* TEE_EventQueueHandle; 6167
#endif 6168

A Trusted OS SHOULD ensure that the value of TEE_EventQueueHandle returned to a TA is not predictable 6169
and SHALL ensure that it does contain all or part of a machine address. 6170

The value TEE_INVALID_HANDLE is used to indicate an invalid TEE_EventQueueHandle. All other values 6171
returned by the Trusted OS denote a valid TEE_EventQueueHandle. 6172

 6173

9.6.11 TEE_EventSourceHandle 6174

A TEE_EventSourceHandle is an opaque handle for a specific source of events, for example a biometric 6175
sensor. 6176

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6177

#if defined(TEE_CORE_API_EVENT) 6178
 typedef struct __TEE_EventSourceHandle* TEE_EventSourceHandle; 6179
#endif 6180

The value TEE_INVALID_HANDLE is used to indicate an invalid TEE_EventSourceHandle. All other values 6181
returned by the Trusted OS denote a valid TEE_EventSourceHandle. 6182

 6183

TEE Internal Core API Specification – Public Review v1.2.1.31 313 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7 Peripheral API Functions 6184

9.7.1 TEE_Peripheral_Close 6185

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6186

#if defined(TEE_CORE_API_EVENT) 6187
 TEE_Result TEE_Peripheral_Close(6188
 TEE_PeripheralDescriptor *peripheralDescriptor 6189
); 6190
#endif 6191

Description 6192

The TEE_Peripheral_Close function is used by a TA to release a single peripheral. On successful return, 6193
the peripheralHandle and eventSourceHandle values pointed to by peripheral SHALL be 6194
TEE_INVALID_HANDLE. 6195

Specification Number: 10 Function Number: 0x2001 6196

Parameters 6197

• peripheralDescriptor: A pointer to a TEE_PeripheralDescriptor structure. 6198

Return Code 6199

• TEE_SUCCESS: In case of success. At least one of peripheralHandle and eventSourceHandle 6200
points to a valid handle. 6201

• TEE_ERROR_BAD_STATE: The calling TA does not have a valid open handle to the peripheral. 6202

• TEE_ERROR_BAD_PARAMETERS: peripheral is NULL. 6203

Panic Reasons 6204

TEE_Peripheral_Close SHALL NOT panic. 6205

 6206

314 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.2 TEE_Peripheral_CloseMultiple 6207

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6208

#if defined(TEE_CORE_API_EVENT) 6209
 TEE_Result TEE_Peripheral_CloseMultiple(6210
 const uint32_t numPeripherals, 6211
 [inout] TEE_PeripheralDescriptor *peripheralDescriptors 6212
); 6213
#endif 6214

Description 6215

TEE_Peripheral_CloseMultiple is a convenience function which closes all the peripherals identified in 6216
the buffer pointed to by peripherals. In contrast to TEE_Peripheral_OpenMultiple, there is no guarantee 6217
of atomicity; the function simply attempts to close all the requested peripherals. 6218

Specification Number: 10 Function Number: 0x2002 6219

Parameters 6220

• numPeripherals: The number of entries in the TEE_PeripheralDescriptor buffer pointed to by 6221
peripherals. 6222

• peripheralDescriptors: A pointer to a buffer of numPeripherals instances of 6223
TEE_PeripheralDescriptor. The interpretation and treatment of each individual entry in the buffer 6224
of descriptors is as described for TEE_Peripheral_Close in section 9.7.1. 6225

Return Code 6226

• TEE_SUCCESS: In case of success, which is defined as all the requested 6227
TEE_PeripheralDescriptor instances having been successfully closed. 6228

• TEE_ERROR_BAD_STATE: The calling TA does not have a valid open handle to at least one of the 6229
peripherals. 6230

• TEE_ERROR_BAD_PARAMETERS: peripherals is NULL and/or numPeripherals is 0. 6231

Panic Reasons 6232

TEE_Peripheral_CloseMultiple SHALL NOT panic. 6233

 6234

TEE Internal Core API Specification – Public Review v1.2.1.31 315 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.3 TEE_Peripheral_GetPeripherals 6235

Since: TEE Internal Core API v1.3 – See Backward Compatibility statement below. 6236

#if defined(TEE_CORE_API_EVENT) 6237
 TEE_Result TEE_Peripheral_GetPeripherals(6238
 [inout] uint32_t* version, 6239
 [outbuf] TEE_Peripheral* peripherals, size_t* size 6240
); 6241
#endif 6242

Description 6243

The TEE_Peripheral_GetPeripherals function returns information about the peripherals known to the 6244
TEE. This function MAY list all peripherals attached to the implementation and SHALL list all peripherals visible 6245
to the calling TA. The TEE may not be able to control all the peripherals. Of those that the TEE can control, it 6246
may not be able to parse the events generated, so not all can be used as event sources. 6247

Specification Number: 10 Function Number: 0x2003 6248

Parameters 6249

• version: 6250

o On entry, the highest version of the TEE_Peripheral structure understood by the calling 6251
program. 6252

o On return, the actual version returned, which may be lower than the value requested. 6253

• peripherals: A pointer to an array of TEE_Peripheral structures. This will be populated with 6254
information about the available sources on return. Each structure in the array returns information 6255
about one peripheral. 6256

• size: 6257

o On entry, the size of peripherals in bytes. 6258

o On return, the actual size of the buffer containing the TEE_Peripheral structures in bytes. The 6259
combination of peripherals and size complies with the [outbuf] behavior specified in 6260
section 3.4.4. 6261

Return Code 6262

• TEE_SUCCESS: In case of success. 6263

• TEE_ERROR_UNSUPPORTED_VERSION: If the version of the TEE_Peripheral structure requested is 6264
not supported. 6265

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6266

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold all the sources. 6267

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6268
occurred in the REE while the function was in progress. 6269

Panic Reasons 6270

• If version is NULL. 6271

• If peripherals is NULL and/or *size is not zero. 6272

316 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• See section 3.4.4 for reasons for [outbuf] generated panic. 6273

• If the implementation detects any error associated with the execution of this function that is not 6274
explicitly associated with a defined return code for this function. 6275

Backward Compatibility 6276

Prior to TEE Internal Core API v1.3, TEE_ERROR_OLD_VERSION was returned if the version of the 6277
TEE_Peripheral structure requested is not supported. This return code has been renamed 6278
TEE_ERROR_UNSUPPORTED_VERSION; however, the value remains unchanged. 6279

TEE Internal Core API Specification – Public Review v1.2.1.31 317 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.4 TEE_Peripheral_GetState 6280

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6281

#if defined(TEE_CORE_API_EVENT) 6282
 TEE_Result TEE_Peripheral_GetState(6283
 const TEE_PeripheralId id, 6284
 const TEE_PeripheralStateId stateId, 6285
 [out] TEE_PeripheralValueType* periphType, 6286
 [out] void* value 6287
); 6288
#endif 6289

Description 6290

The TEE_Peripheral_GetState function enables a TA which knows the state ID of a peripheral state item 6291
to fetch the value of this directly. A TA does not need to have an open handle to a peripheral to obtain 6292
information about its state – this allows a TA to discover information about peripherals available to it before 6293
opening a handle. 6294

Specification Number: 10 Function Number: 0x2004 6295

Parameters 6296

• id: The unique peripheral identifier for the peripheral in which we are interested. 6297

• stateID: The identifier for the state item for which the value is requested. 6298

• periphType: On return, contains a value of TEE_PeripheralValueType which determines how 6299
the data pointed to by value should be interpreted. 6300

• value: On return, points to the value of the requested state item. 6301

The caller SHALL ensure that the buffer pointed to by value is large enough to accommodate whichever is 6302
the larger of uint64_t and char* on a given TEE platform. 6303

Return Code 6304

• TEE_SUCCESS: State information has been fetched. 6305

• TEE_ERROR_BAD_PARAMETERS: The value of one or both of id or stateId are not valid for this 6306
TA; periphType or value is NULL. 6307

Panic Reasons 6308

TEE_Peripheral_GetState SHALL NOT panic. 6309

 6310

318 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.5 TEE_Peripheral_GetStateTable 6311

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6312

#if defined(TEE_CORE_API_EVENT) 6313
 TEE_Result TEE_Peripheral_GetStateTable(6314
 [in] TEE_PeripheralId id, 6315
 [outbuf] TEE_PeripheralState* stateTable, size_t* bufSize 6316
); 6317
#endif 6318

Description 6319

The TEE_Peripheral_GetStateTable function fetches a buffer containing zero or more instances of 6320
TEE_PeripheralState. These provide a snapshot of the state of a peripheral. 6321

Specification Number: 10 Function Number: 0x2005 6322

Parameters 6323

• id: The TEE_PeripheralId for the peripheral from which the TA wishes to read data 6324

• stateTable: A buffer of at least bufSize bytes that on successful return is overwritten with an 6325
array of TEE_PeripheralState structures. 6326

• bufSize: 6327

o On entry, the size of stateTable in bytes. 6328

o On return, the actual number of bytes in the array. The combination of stateTable and 6329
bufSize complies with the [outbuf] behavior specified in section 3.4.4. 6330

Return Code 6331

• TEE_SUCCESS: Data has been written to the peripheral. 6332

• TEE_ERROR_BAD_PARAMETERS: The value of id or stateTable is NULL and/or bufSize is 0. 6333

Panic Reasons 6334

• See section 3.4.4 for reasons for [outbuf] generated panic. 6335

• If the implementation detects any error associated with the execution of this function that is not 6336
explicitly associated with a defined return code for this function. 6337

 6338

TEE Internal Core API Specification – Public Review v1.2.1.31 319 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.6 TEE_Peripheral_Open 6339

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6340

#if defined(TEE_CORE_API_EVENT) 6341
 TEE_Result TEE_Peripheral_Open(6342
 [inout] TEE_PeripheralDescriptor *peripheralDescriptor 6343
); 6344
#endif 6345

Description 6346

The TEE_Peripheral_Open function is used by a TA to obtain descriptor(s) enabling access to a single 6347
peripheral. If the TA needs to open more than one peripheral for related activities, it MAY use 6348
TEE_Peripheral_OpenMultiple. 6349

If this function executes successfully and if TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS indicates that 6350
exclusive access is supported, then the Trusted OS guarantees that neither the REE, nor any other TA, has 6351
access to the peripheral. If TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS indicates that exclusive access 6352
is not supported, the calling TA SHOULD assume that it does not have exclusive access to the peripheral. 6353

The Trusted OS returns handles which can be used by the TA to manage interactions with the peripheral. If 6354
TEE_Peripheral_Open succeeds, at least one of peripheralHandle and eventSourceHandle is set 6355
to a valid handle value. 6356

It is an error to call TEE_Peripheral_Open for a peripheral which is already owned by the calling TA 6357
instance. 6358

Specification Number: 10 Function Number: 0x2006 6359

Parameters 6360

• peripheralDescriptor: A pointer to a TEE_PeripheralDescriptor structure. The fields of the 6361
structure pointed to are used as follows: 6362

o id: This is the unique identifier for a specific peripheral, as returned by 6363
TEE_Peripheral_GetPeripherals. This field SHALL be set on entry, and SHALL be 6364
unchanged on return. 6365

o peripheralHandle: On entry, the value is ignored and will be overwritten. On return, the value is 6366
set as follows: 6367

 TEE_INVALID_HANDLE: This peripheral does not support the Peripheral API. 6368

 Other value: An opaque handle which can be used with the Peripheral API functions. 6369

o eventSourceHandle: On entry, the value is ignored and will be overwritten. On return, the value 6370
is set as follows: 6371

 TEE_INVALID_HANDLE: This peripheral does not support the Event API. 6372

 Other value: An opaque handle which can be used with the Event API functions. 6373

Return Code 6374

• TEE_SUCCESS: In case of success. At least one of peripheralHandle and eventSourceHandle 6375
points to a valid handle. 6376

• TEE_ERROR_BAD_PARAMETERS: peripheral is NULL. 6377

320 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• TEE_ERROR_ACCESS_DENIED: If the system was unable to acquire exclusive access to a peripheral 6378
for which TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS indicates exclusive access is possible. 6379

Panic Reasons 6380

• If peripheral->id is not known to the system. 6381

• If peripheral->id is already owned by the calling TA instance. 6382

• If the implementation detects any error associated with the execution of this function that is not 6383
explicitly associated with a defined return code for this function. 6384

 6385

TEE Internal Core API Specification – Public Review v1.2.1.31 321 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.7 TEE_Peripheral_OpenMultiple 6386

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6387

#if defined(TEE_CORE_API_EVENT) 6388
 TEE_Result TEE_Peripheral_OpenMultiple(6389
 const uint32_t numPeripherals, 6390
 [inout] TEE_PeripheralDescriptor *peripheralDescriptors 6391
); 6392
#endif 6393

Description 6394

The TEE_Peripheral_OpenMultiple function is used by a TA to atomically obtain access to multiple 6395
peripherals. 6396

TEE_Peripheral_OpenMultiple behaves as though a call to TEE_Peripheral_Open is made to each 6397
TEE_PeripheralDescriptor in peripherals in turn, but ensures that all or none of the peripherals have 6398
open descriptors on return. This function should be used where a TA needs simultaneous control of multiple 6399
peripherals to operate correctly. 6400

If this function executes successfully, the Trusted OS guarantees that neither the REE, nor any other TA, has 6401
access to any requested peripheral for which exclusive access is supported (as indicated by 6402
TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS). If an error is returned, the Trusted OS guarantees that no 6403
handle is open for any of the requested peripherals. 6404

The Trusted OS returns handles which can be used by the TA to manage interactions with the peripheral. If 6405
TEE_Peripheral_OpenMultiple succeeds, at least one of peripheralHandle and 6406
eventSourceHandle fields in each descriptor is set to a valid handle value. If an error is returned, all the 6407
peripheralHandle and eventSourceHandle fields in each descriptor SHALL contain 6408
TEE_INVALID_HANDLE. 6409

Specification Number: 10 Function Number: 0x2007 6410

Parameters 6411

• numPeripherals: The number of entries in the TEE_PeripheralDescriptor buffer pointed to by 6412
peripherals. 6413

• peripheralDescriptors: A pointer to a buffer of numPeripherals instances of 6414
TEE_PeripheralDescriptor. The interpretation and treatment of each individual entry in the buffer 6415
of descriptors is as described for TEE_Peripheral_Open in section 9.7.6. 6416

Return Code 6417

• TEE_SUCCESS: In case of success. At least one of peripheralHandle and eventSourceHandle 6418
points to a valid handle in every entry in peripherals. 6419

• TEE_ERROR_BAD_PARAMETERS: peripherals is NULL and/or numPeripherals is 0. 6420

• TEE_ERROR_ACCESS_DENIED: If the system was unable to acquire exclusive access to all the 6421
requested peripherals. 6422

Panic Reasons 6423

• If peripheralDescriptors[x].id for any instance, x, of TEE_PeripheralDescriptor is not 6424
known to the system. 6425

322 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If peripheralDescriptors[x].id for any instance, x, of TEE_PeripheralDescriptor is 6426
already owned by the calling TA. 6427

• If the implementation detects any error associated with the execution of this function that is not 6428
explicitly associated with a defined return code for this function. 6429

 6430

TEE Internal Core API Specification – Public Review v1.2.1.31 323 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.8 TEE_Peripheral_Read 6431

Since: TEE Internal Core API v1.2 – See Backward Compatibility note below. 6432

#if defined(TEE_CORE_API_EVENT) 6433
 TEE_Result TEE_Peripheral_Read(6434
 [in] TEE_PeripheralHandle peripheralHandle, 6435
 [outbuf] void *buf, size_t *bufSize 6436
); 6437
#endif 6438

Description 6439

The TEE_Peripheral_Read function provides a low-level API to read data from the peripheral denoted by 6440
peripheralHandle. The peripheralHandle field of the peripheral descriptor must be a valid handle for 6441
this function to succeed. 6442

The calling TA allocates a buffer of bufSize bytes before calling. On return, this will contain as much data 6443
as is available from the peripheral, up to the limit of bufSize. The bufSize parameter will be updated with 6444
the actual number of bytes placed into buf. 6445

TEE_Peripheral_Read is designed to allow a TA to implement polled communication with peripherals. The 6446
function SHALL NOT wait on any hardware signal and SHALL retrieve only the data which is available at the 6447
time of calling. 6448

While some peripherals may support both the event queue and the polling interface, it is recommended that 6449
TA implementers do not attempt to use both polling and the event queue to read data from the same peripheral. 6450
Peripheral behavior if both APIs are used on the same peripheral is undefined. 6451

Note: Depending on the use case, polled interfaces can result in undesirable power consumption profiles. 6452

Specification Number: 10 Function Number: 0x2008 6453

Parameters 6454

• peripheralHandle: A valid TEE_PeripheralHandle for the peripheral from which the TA wishes 6455
to read data. 6456

• buf: A buffer of at least bufSize bytes which, on successful return, will be overwritten with data 6457
read back from the peripheral. 6458

• bufSize: 6459

o On entry, the size of buf in bytes. 6460

o On return, the actual number of bytes read from the peripheral. The combination of buf and 6461
bufSize complies with the [outbuf] behavior specified in section 3.4.4. 6462

Return Code 6463

• TEE_SUCCESS: Data has been read from the peripheral. The value of bufSize indicates the number 6464
of bytes read. 6465

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold all the sources. 6466

• TEE_ERROR_EXCESS_DATA: Data was read successfully, but the peripheral has more data available 6467
to read. In this case, bufSize is the same value as was indicated when the function was called. It is 6468
recommended that the TA read back the remaining data from the peripheral before continuing. 6469

324 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• TEE_ERROR_BAD_PARAMETERS: The value of peripheralHandle is TEE_INVALID_HANDLE; or 6470
buf is NULL and bufSize is not zero. 6471

Panic Reasons 6472

• If the calling TA does not provide a valid peripheralHandle. 6473

• See section 3.4.4 for reasons for [outbuf] generated panic. 6474

• If the implementation detects any error associated with the execution of this function that is not 6475
explicitly associated with a defined return code for this function. 6476

Backward Compatibility 6477

[TEE TUI Low] v1.0 did not include the TEE_ERROR_SHORT_BUFFER return value. 6478

 6479

TEE Internal Core API Specification – Public Review v1.2.1.31 325 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.9 TEE_Peripheral_SetState 6480

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6481

#if defined(TEE_CORE_API_EVENT) 6482
 TEE_Result TEE_Peripheral_SetState(6483
 const TEE_PeripheralHandle handle, 6484
 const TEE_PeripheralStateId stateId, 6485
 const TEE_PeripheralValueType periphType, 6486
 const void* value 6487
); 6488
#endif 6489

Description 6490

The TEE_Peripheral_SetState function enables a TA to set the value of a writeable peripheral state item. 6491
Items are only writeable if the ro field of the TEE_PeripheralState for the state item is false. The value 6492
of the ro field can change between a call to TEE_Peripheral_GetState and a subsequent call to 6493
TEE_Peripheral_SetState. 6494

TAs SHOULD call TEE_Peripheral_GetStateTable for the peripheral id in question to determine which 6495
state items are writeable by the TA. 6496

Note that any previous snapshot of peripheral state will not be updated after a call to 6497
TEE_Peripheral_SetState. 6498

Specification Number: 10 Function Number: 0x2009 6499

Parameters 6500

• handle: A valid open handle for the peripheral whose state is to be updated. 6501

• stateId: The identifier for the state item for which the value is requested. 6502

• periphType: A value of TEE_PeripheralValueType which determines how the data pointed to by 6503
value should be interpreted. 6504

• value: The address of the value to be written to the state item. 6505

Return Code 6506

• TEE_SUCCESS: State information has been updated. 6507

• TEE_ERROR_BAD_PARAMETERS: The value of one or both of handle or stateId are not valid for 6508
this TA; or periphType is not a value defined in TEE_PeripheralValueType; or value is NULL; 6509
or the value which is being written is read-only. 6510

Panic Reasons 6511

TEE_Peripheral_SetState SHALL NOT panic. 6512

 6513

326 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.7.10 TEE_Peripheral_Write 6514

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6515

#if defined(TEE_CORE_API_EVENT) 6516
 TEE_Result TEE_Peripheral_Write(6517
 [in] TEE_PeripheralHandle peripheralHandle, 6518
 [inbuf] void *buf, size_t bufSize 6519
); 6520
#endif 6521

Description 6522

The TEE_Peripheral_Write function provides a low-level API to write data to the peripheral denoted by 6523
peripheralHandle. The peripheralHandle field of the peripheral descriptor must be a valid handle for 6524
this function to succeed. 6525

The calling TA allocates a buffer of bufSize bytes before calling and fills it with the data to be written. 6526

Specification Number: 10 Function Number: 0x200A 6527

Parameters 6528

• peripheralHandle: A valid TEE_PeripheralHandle for the peripheral from which the TA wishes 6529
to read data. 6530

• buf: A buffer of at least bufSize bytes containing data which has, on successful return, been 6531
written to the peripheral. 6532

• bufSize: The size of buf in bytes. 6533

Return Code 6534

• TEE_SUCCESS: Data has been written to the peripheral. 6535

• TEE_ERROR_BAD_PARAMETERS: buf is NULL and/or bufSize is 0. 6536

Panic Reasons 6537

• If peripheralHandle is not a valid open handle to a peripheral. 6538

• If the implementation detects any error associated with the execution of this function that is not 6539
explicitly associated with a defined return code for this function. 6540

TEE Internal Core API Specification – Public Review v1.2.1.31 327 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8 Event API Functions 6541

9.8.1 TEE_Event_AddSources 6542

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6543

#if defined(TEE_CORE_API_EVENT) 6544
 TEE_Result TEE_Event_AddSources(6545
 uint32_t numSources, 6546
 [in] TEE_EventSourceHandle *sources, 6547
 [in] TEE_EventQueueHandle *handle 6548
); 6549
#endif 6550

Description 6551

The TEE_Event_AddSources function atomically adds new event sources to an existing queue acquired by 6552
a call to TEE_Event_OpenQueue. If the function succeeds, events from this source are exclusively available 6553
to this queue. 6554

If the function fails, the queue is still valid. The queue SHALL contain events from the original sources and 6555
MAY contain some of the requested sources. In case of error, the caller should use 6556
TEE_Event_ListSources to determine the current state of the queue. 6557

It is not an error to add an event source to a queue to which it is already attached. 6558

Specification Number: 10 Function Number: 0x2101 6559

Parameters 6560

• numSources: Defines how many sources are provided. 6561

• sources: An array of TEE_EventSourceHandle that the TA wants to add to the queue. 6562

• handle: The handle for the queue. 6563

Return Code 6564

• TEE_SUCCESS: In case of success. 6565

• TEE_ERROR_BAD_STATE: If the handle does not represent a currently open queue. 6566

• TEE_ERROR_BUSY: If any requested resource cannot be reserved. 6567

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6568
occurred in the REE while the function was in progress. 6569

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6570

Panic Reasons 6571

• If handle is invalid. 6572

• If the sources array does not contain numSources elements. 6573

• If any pointer in sources is NULL. 6574

• If the implementation detects any error associated with the execution of this function that is not 6575
explicitly associated with a defined return code for this function. 6576

 6577

328 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.2 TEE_Event_CancelSources 6578

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6579

#if defined(TEE_CORE_API_EVENT) 6580
 TEE_Result TEE_Event_CancelSources(6581
 uint32_t numSources, 6582
 [in] TEE_EventSourceHandle *sources, 6583
 [in] TEE_EventQueueHandle *handle 6584
); 6585
#endif 6586

Description 6587

The TEE_Event_CancelSources function drops all existing events from a set of sources from a queue 6588
previously acquired by a call to TEE_Event_OpenQueue. 6589

New events from these sources will continue to be added to the queue, unless the TA has released the sources 6590
using TEE_Event_DropSources or TEE_Event_CloseQueue. 6591

It is not an error to cancel an event source that is not currently attached to the queue. 6592

Specification Number: 10 Function Number: 0x2102 6593

Parameters 6594

• numSources: Defines how many sources are provided. 6595

• sources: An array of TEE_EventSourceHandle. Events from these sources are cleared from the 6596
queue. 6597

• handle: The handle for the queue. 6598

Return Code 6599

• TEE_SUCCESS: In case of success. 6600

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6601

• TEE_ERROR_BAD_STATE: If the handle does not represent a currently open queue. 6602

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6603
occurred in the REE while the function was in progress. 6604

Panic Reasons 6605

• If handle is invalid. 6606

• If the sources array does not contain numSources elements. 6607

• If any pointer in sources is NULL. 6608

• If the implementation detects any error associated with the execution of this function that is not 6609
explicitly associated with a defined return code for this function. 6610

 6611

TEE Internal Core API Specification – Public Review v1.2.1.31 329 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.3 TEE_Event_CloseQueue 6612

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6613

#if defined(TEE_CORE_API_EVENT) 6614
 TEE_Result TEE_Event_CloseQueue([in] TEE_EventQueueHandle *handle); 6615
#endif 6616

Description 6617

The TEE_Event_CloseQueue function releases resources previously acquired by a call to 6618
TEE_Event_OpenQueue. 6619

All outstanding events on the queue will be invalidated. 6620

Specification Number: 10 Function Number: 0x2103 6621

Parameters 6622

• handle: The handle to the TEE_EventQueueHandle to close. 6623

Return Code 6624

• TEE_SUCCESS: In case of success. 6625

• TEE_ERROR_BAD_STATE: If the handle does not represent a currently open queue. 6626

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6627
occurred in the REE while the function was in progress. 6628

Panic Reasons 6629

• If handle is invalid. 6630

• If the implementation detects any error associated with the execution of this function that is not 6631
explicitly associated with a defined return code for this function. 6632

330 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.4 TEE_Event_DropSources 6633

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6634

#if defined(TEE_CORE_API_EVENT) 6635
 TEE_Result TEE_Event_DropSources(6636
 uint32_t numSources, 6637
 [in] TEE_EventSourceHandle *sources, 6638
 [in] TEE_EventQueueHandle *handle 6639
); 6640
#endif 6641

Description 6642

The TEE_Event_DropSources function removes one or more event sources from an existing queue 6643
previously acquired by a call to TEE_Event_OpenQueue. No more events from these sources are added to 6644
the queue. Events from these sources will be available to the REE, until they are reserved by this or another 6645
TA using TEE_Event_AddSources or TEE_Event_OpenQueue. 6646

Events from other event sources will continue to be added to the queue. It is permissible to have a queue with 6647
no current event sources attached to it. 6648

It is not an error to drop an event source that is not currently attached to the queue. 6649

Specification Number: 10 Function Number: 0x2104 6650

Parameters 6651

• numSources: Defines how many sources are provided. 6652

• sources: An array of TEE_EventSourceHandle. Events from these sources are cleared from the 6653
queue. 6654

• handle: The handle for the queue. 6655

Return Code 6656

• TEE_SUCCESS: In case of success. 6657

• TEE_ERROR_BAD_STATE: If the handle does not represent a currently open queue. 6658

• TEE_ERROR_ITEM_NOT_FOUND: If one or more sources was not attached to the queue. All other 6659
sources are dropped. 6660

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6661
occurred in the REE while the function was in progress. 6662

Panic Reasons 6663

• If handle is invalid. 6664

• If the sources array does not contain numSources elements. 6665

• If any pointer in sources is NULL. 6666

• If the implementation detects any error associated with the execution of this function that is not 6667
explicitly associated with a defined return code for this function. 6668

 6669

TEE Internal Core API Specification – Public Review v1.2.1.31 331 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.5 TEE_Event_ListSources 6670

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6671

#if defined(TEE_CORE_API_EVENT) 6672
 TEE_Result TEE_Event_ListSources(6673
 [in] TEE_EventQueueHandle *handle, 6674
 [outbuf] TEE_EventSourceHandle *sources, size_t* bufSize 6675
); 6676
#endif 6677

Description 6678

The TEE_Event_ListSources function returns information about sources currently attached to a queue. 6679

Specification Number: 10 Function Number: 0x2105 6680

Parameters 6681

• handle: The handle for the queue. 6682

• sources: A buffer of at least bufSize bytes that on successful return is overwritten with an array of 6683
TEE_EventSourceHandle structures. 6684

• bufSize: 6685

o On entry, the size of sources in bytes. 6686

o On return, the actual number of bytes in the array. The combination of sources and bufSize 6687
complies with the [outbuf] behavior specified in section 3.4.4. 6688

Return Code 6689

• TEE_SUCCESS: In case of success. 6690

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6691

• TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold all the sources. 6692

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6693
occurred in the REE while the function was in progress. 6694

Panic Reasons 6695

• If handle is invalid. 6696

• If bufSize is NULL. 6697

• If sources is NULL. 6698

• See section 3.4.4 for reasons for [outbuf] generated panic. 6699

• If the implementation detects any error associated with the execution of this function that is not 6700
explicitly associated with a defined return code for this function. 6701

332 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.6 TEE_Event_OpenQueue 6702

Since: TEE Internal Core API v1.3 – See Backward Compatibility statement below. 6703

#if defined(TEE_CORE_API_EVENT) 6704
 TEE_Result TEE_Event_OpenQueue(6705
 [inout] uint32_t *version, 6706
 uint32_t numSources, 6707
 uint32_t timeout, 6708
 [in] TEE_EventSourceHandle *sources, 6709
 [out] TEE_EventQueueHandle *handle 6710
); 6711
#endif 6712

Description 6713

The TEE_Event_OpenQueue function claims an exclusive access to resources for the current TA instance. 6714

This function allows for multiple event sources to be reserved. 6715

It is possible for multiple TAs to open queues at the same time provided they do not try to reserve any of the 6716
same resources. 6717

An individual TA SHALL NOT open multiple queues; instead, the TA SHOULD use TEE_Event_AddSources 6718
and TEE_Event_DropSources to add and remove event sources from the queue. 6719

The TEE_EventQueue will be closed automatically if no calls to TEE_Event_Wait are made for timeout 6720
milliseconds. This has the same guarantees as the TEE_Wait function. 6721

Specification Number: 10 Function Number: 0x2106 6722

Parameters 6723

• version: 6724

o On entry, the highest version of the TEE_Event structure understood by the calling program. 6725

o On return, the actual version of the TEE_Event structure that will be added to the queue, which 6726
may be lower than the value requested. 6727

• numSources: Defines how many sources are provided. 6728

• timeout: The timeout for this function in milliseconds. 6729

• sources: An array of TEE_EventSourceHandle, as returned from TEE_Event_ListSources. 6730

• handle: The handle for this queue. This value SHOULD be zero on entry. It is set if this function 6731
successfully claims an exclusive access to the resources for the current TA instance and 6732
numSources is not zero. 6733

Return Code 6734

• TEE_SUCCESS: In case of success. 6735

• TEE_ERROR_BUSY: If any requested resource cannot be reserved. 6736

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6737
occurred in the REE while the function was in progress. 6738

• TEE_ERROR_UNSUPPORTED_VERSION: If the version of the TEE_Event structure requested is not 6739
supported. 6740

TEE Internal Core API Specification – Public Review v1.2.1.31 333 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6741

Panic Reasons 6742

• If version is invalid. 6743

• If handle is NULL. 6744

• If the sources array does not contain numSources elements. 6745

• If any pointer in sources is NULL. 6746

• If the implementation detects any error associated with the execution of this function that is not 6747
explicitly associated with a defined return code for this function. 6748

Backward Compatibility 6749

Prior to TEE Internal Core API v1.3, TEE_ERROR_OLD_VERSION was returned if the version of the TEE_Event 6750
structure requested is not supported. This return code has been renamed 6751
TEE_ERROR_UNSUPPORTED_VERSION; however, the value remains unchanged. 6752

 6753

334 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.7 TEE_Event_TimerCreate 6754

Since: TEE Internal Core API v1.2 6755

#if defined(TEE_CORE_API_EVENT) 6756
 TEE_Result TEE_Event_TimerCreate(6757
 [in] TEE_EventQueueHandle *handle, 6758
 [in] uint64_t period, 6759
 [in] uint8_t payload[TEE_MAX_EVENT_PAYLOAD_SIZE] 6760
); 6761
#endif 6762

Description 6763

The TEE_Event_TimerCreate function creates a one-shot timer which, on expiry, will cause 6764
TEE_Event_Timer to be placed onto the event queue designated by handle. 6765

Although the accuracy of period cannot be guaranteed, events are timestamped if the TA requires an 6766
accurate measure of the time between events. 6767

Specification Number: 10 Function Number: 0x2108 6768

Parameters 6769

• handle: The handle for the queue. 6770

• period: The minimum timer period in milliseconds. The accuracy of the timer period is subject to the 6771
constraints of TEE_Wait (see section 7.2.2). 6772

• payload: A payload chosen by the TA which is returned in the TEE_Event_Timer payload when the 6773
timer expires. 6774

Return Code 6775

• TEE_SUCCESS: In case of success. 6776

• TEE_ERROR_BUSY: If any requested resource cannot be reserved. 6777

• TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources. 6778

Panic Reasons 6779

• If handle is invalid. 6780

TEE Internal Core API Specification – Public Review v1.2.1.31 335 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

9.8.8 TEE_Event_Wait 6781

Since: TEE Internal Core API v1.2 (originally defined identically in [TEE TUI Low] v1.0) 6782

#if defined(TEE_CORE_API_EVENT) 6783
 TEE_Result TEE_Event_Wait(6784
 [in] TEE_EventQueue *handle, 6785
 uint32_t timeout, 6786
 [inout] TEE_Event *events, 6787
 [inout] uint32_t *numEvents, 6788
 [out] uint32_t *dropped 6789
); 6790
#endif 6791

Description 6792

The TEE_Event_Wait function fetches events that have been returned from a peripheral reserved by 6793
TEE_Event_OpenQueue. Events are not guaranteed to be delivered as the event queue has a finite size. If 6794
the event queue is full, the oldest event(s) SHALL be dropped first, and the dropped event count SHALL be 6795
updated with the number of dropped events. Events MAY also be dropped out of order for reasons outside the 6796
scope of this specification, but the dropped event count SHOULD reflect this. 6797

The API allows one or more events to be obtained at a time to minimize any context switching overhead, and 6798
to allow a TA to process bursts of events en masse. 6799

Obtaining events has a timeout, allowing a TA with more responsibilities than just user interaction to attend to 6800
these periodically without needing to use multi-threading. 6801

The TEE_Event_Wait function opens the input event stream. If the stream is not available for exclusive 6802
access within the specified timeout, an error is returned. A zero timeout means this function returns 6803
immediately. This has the same guarantees as the TEE_Wait function. 6804

Events are returned in order of decreasing age: events[0] is the oldest available event, events[1] the 6805
next oldest, etc. 6806

On entry, *numEvents contains the number of events pointed to by events. 6807

*numEvents can be 0 on entry, which allows the TA to query whether input is available. If timeout == 0, the 6808
function should return TEE_SUCCESS if there are pending events and TEE_ERROR_TIMEOUT if there is no 6809
pending event. 6810

On return, *numEvents contains the actual number of events written to events. 6811

If the function returns with any status other than TEE_SUCCESS, *numEvents = 0. 6812

If there are no events available in the given timeout, *numEvents is set to zero and this function returns an 6813
error. 6814

If any events occur, the function returns as soon as possible, and does not wait until *numEvents events 6815
have occurred. 6816

If dropped is non-NULL, the current count of dropped events is written to this location. 6817

This function is cancellable. If the cancelled flag of the current instance is set and the TA has unmasked the 6818
effects of cancellation, then this function returns earlier than the requested timeout. 6819

• If the operation was cancelled by the client, TEE_ERROR_CANCEL is returned. See section 4.10 for 6820
more details about cancellations. 6821

• If the cancellation was not sourced by the client, the TEE SHOULD cancel the function and 6822
TEE_ERROR_EXTERNAL_CANCEL is returned. 6823

336 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: 10 Function Number: 0x2107 6824

Parameters 6825

• handle: The handle for the queue 6826

• timeout: The timeout in milliseconds 6827

• events: A pointer to an array of TEE_Event structures 6828

• numEvents: 6829

o On entry, the maximum number of events to return 6830

o On return, the actual number of events returned 6831

• dropped: A pointer to a count of dropped events 6832

Return Code 6833

• TEE_SUCCESS: In case of success. 6834

• TEE_ERROR_BAD_STATE: If handle does not represent a currently open queue. 6835

• TEE_ERROR_TIMEOUT: If there is no event to return within the timeout. 6836

• TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which 6837
occurred in the REE while the function was in progress. 6838

• TEE_ERROR_CANCEL: If the operation was cancelled by anything other than an event in the REE. 6839

Panic Reasons 6840

• If handle is invalid. 6841

• If events is NULL. 6842

• If numEvents is NULL. 6843

• If dropped is NULL. 6844

• If the implementation detects any error associated with the execution of this function that is not 6845
explicitly associated with a defined return code for this function. 6846

 6847

TEE Internal Core API Specification – Public Review v1.2.1.31 337 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex A Panicked Function Identification 6848

If this specification is used in conjunction with [TEE TA Debug], then the specification number is 10 and the 6849
values listed in the following table SHALL be associated with the function declared. 6850

Table A-1: Function Identification Values 6851

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

TA Interface TA_CloseSessionEntryPoint 0x101 257
 TA_CreateEntryPoint 0x102 258
 TA_DestroyEntryPoint 0x103 259
 TA_InvokeCommandEntryPoint 0x104 260
 TA_OpenSessionEntryPoint 0x105 261

Property Access TEE_AllocatePropertyEnumerator 0x201 513
 TEE_FreePropertyEnumerator 0x202 514
 TEE_GetNextProperty 0x203 515
 TEE_GetPropertyAsBinaryBlock 0x204 516
 TEE_GetPropertyAsBool 0x205 517
 TEE_GetPropertyAsIdentity 0x206 518
 TEE_GetPropertyAsString 0x207 519
 TEE_GetPropertyAsU32 0x208 520
 TEE_GetPropertyAsUUID 0x209 521
 TEE_GetPropertyName 0x20A 522
 TEE_ResetPropertyEnumerator 0x20B 523
 TEE_StartPropertyEnumerator 0x20C 524
 TEE_GetPropertyAsU64 0x20D 525

Panic Function TEE_Panic 0x301 769

Internal Client API TEE_CloseTASession 0x401 1025
 TEE_InvokeTACommand 0x402 1026
 TEE_OpenTASession 0x403 1027

Cancellation TEE_GetCancellationFlag 0x501 1281
 TEE_MaskCancellation 0x502 1282
 TEE_UnmaskCancellation 0x503 1283

338 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Memory Management TEE_CheckMemoryAccessRights 0x601 1537
 TEE_Free 0x602 1538
 TEE_GetInstanceData 0x603 1539
 TEE_Malloc 0x604 1540
 TEE_MemCompare 0x605 1541
 TEE_MemFill 0x606 1542
 TEE_MemMove 0x607 1543
 TEE_Realloc 0x608 1544
 TEE_SetInstanceData 0x609 1545

Generic Object TEE_CloseObject 0x701 1793
 TEE_GetObjectBufferAttribute 0x702 1794
 TEE_GetObjectInfo (deprecated) 0x703 1795
 TEE_GetObjectValueAttribute 0x704 1796
 TEE_RestrictObjectUsage (deprecated) 0x705 1797
 TEE_GetObjectInfo1 0x706 1798

TEE_RestrictObjectUsage1 0x707 1799

Transient Object TEE_AllocateTransientObject 0x801 2049
 TEE_CopyObjectAttributes (deprecated) 0x802 2050
 TEE_FreeTransientObject 0x803 2051
 TEE_GenerateKey 0x804 2052
 TEE_InitRefAttribute 0x805 2053
 TEE_InitValueAttribute 0x806 2054
 TEE_PopulateTransientObject 0x807 2055
 TEE_ResetTransientObject 0x808 2056
 TEE_CopyObjectAttributes1 0x809 2057

Persistent Object TEE_CloseAndDeletePersistentObject
(deprecated)

0x901 2305

 TEE_CreatePersistentObject 0x902 2306
 TEE_OpenPersistentObject 0x903 2307
 TEE_RenamePersistentObject 0x904 2308
 TEE_CloseAndDeletePersistentObject1 0x905 2309

TEE Internal Core API Specification – Public Review v1.2.1.31 339 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Persistent Object
Enumeration

TEE_AllocatePersistentObjectEnumerator 0xA01 2561

TEE_FreePersistentObjectEnumerator 0xA02 2562
 TEE_GetNextPersistentObject 0xA03 2563
 TEE_ResetPersistentObjectEnumerator 0xA04 2564
 TEE_StartPersistentObjectEnumerator 0xA05 2565

Data Stream Access TEE_ReadObjectData 0xB01 2817
 TEE_SeekObjectData 0xB02 2818
 TEE_TruncateObjectData 0xB03 2819
 TEE_WriteObjectData 0xB04 2820

Generic Operation TEE_AllocateOperation 0xC01 3073
 TEE_CopyOperation 0xC02 3074
 TEE_FreeOperation 0xC03 3075
 TEE_GetOperationInfo 0xC04 3076
 TEE_ResetOperation 0xC05 3077
 TEE_SetOperationKey 0xC06 3078
 TEE_SetOperationKey2 0xC07 3079
 TEE_GetOperationInfoMultiple 0xC08 3080
 TEE_IsAlgorithmSupported 0xC09 3081

Message Digest TEE_DigestDoFinal 0xD01 3329
 TEE_DigestUpdate 0xD02 3330
 TEE_DigestExtract 0xD03 3331

Symmetric Cipher TEE_CipherDoFinal 0xE01 3585
 TEE_CipherInit 0xE02 3586
 TEE_CipherUpdate 0xE03 3587

MAC TEE_MACCompareFinal 0xF01 3841
 TEE_MACComputeFinal 0xF02 3842
 TEE_MACInit 0xF03 3843
 TEE_MACUpdate 0xF04 3844

Authenticated
Encryption

TEE_AEDecryptFinal 0x1001 4097

TEE_AEEncryptFinal 0x1002 4098
 TEE_AEInit 0x1003 4099
 TEE_AEUpdate 0x1004 4100
 TEE_AEUpdateAAD 0x1005 4101

340 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Asymmetric TEE_AsymmetricDecrypt 0x1101 4353
 TEE_AsymmetricEncrypt 0x1102 4354
 TEE_AsymmetricSignDigest 0x1103 4355
 TEE_AsymmetricVerifyDigest 0x1104 4356

Key Derivation TEE_DeriveKey 0x1201 4609

Random Data
Generation

TEE_GenerateRandom 0x1301 4865

Time TEE_GetREETime 0x1401 5121
 TEE_GetSystemTime 0x1402 5122
 TEE_GetTAPersistentTime 0x1403 5123
 TEE_SetTAPersistentTime 0x1404 5124
 TEE_Wait 0x1405 5125

Memory Allocation
and Size of Objects

TEE_BigIntFMMSizeInU32 0x1501 5377

TEE_BigIntFMMContextSizeInU32 0x1502 5378

Initialization TEE_BigIntInit 0x1601 5633
 TEE_BigIntInitFMM 0x1602 5634
 TEE_BigIntInitFMMContext (deprecated) 0x1603 5635
 TEE_BigIntInitFMMContext1 0x1604 5636

Converter TEE_BigIntConvertFromOctetString 0x1701 5889
 TEE_BigIntConvertFromS32 0x1702 5890
 TEE_BigIntConvertToOctetString 0x1703 5891
 TEE_BigIntConvertToS32 0x1704 5892

Logical Operation TEE_BigIntCmp 0x1801 6145
 TEE_BigIntCmpS32 0x1802 6146
 TEE_BigIntGetBit 0x1803 6147
 TEE_BigIntGetBitCount 0x1804 6148
 TEE_BigIntShiftRight 0x1805 6149
 TEE_BigIntSetBit 0x1806 6150
 TEE_BigIntAssign 0x1807 6151

 TEE_BigIntAbs 0x1808 6152

TEE Internal Core API Specification – Public Review v1.2.1.31 341 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Basic Arithmetic TEE_BigIntAdd 0x1901 6401
 TEE_BigIntDiv 0x1902 6402
 TEE_BigIntMul 0x1903 6403
 TEE_BigIntNeg 0x1904 6404
 TEE_BigIntSquare 0x1905 6405
 TEE_BigIntSub 0x1906 6406

Modular Arithmetic TEE_BigIntAddMod 0x1A01 6657
 TEE_BigIntInvMod 0x1A02 6658
 TEE_BigIntMod 0x1A03 6659
 TEE_BigIntMulMod 0x1A04 6660
 TEE_BigIntSquareMod 0x1A05 6661
 TEE_BigIntSubMod 0x1A06 6662
 TEE_BigIntExpMod 0x1A07 6663

Other Arithmetic TEE_BigIntComputeExtendedGcd 0x1B01 6913
 TEE_BigIntIsProbablePrime 0x1B02 6914
 TEE_BigIntRelativePrime 0x1B03 6915

Fast Modular
Multiplication

TEE_BigIntComputeFMM 0x1C01 7169

TEE_BigIntConvertFromFMM 0x1C02 7170
 TEE_BigIntConvertToFMM 0x1C03 7171

Peripherals TEE_Peripheral_Close 0x2001 8193
 TEE_Peripheral_CloseMultiple 0x2002 8194
 TEE_Peripheral_GetPeripherals 0x2003 8195
 TEE_Peripheral_GetState 0x2004 8196
 TEE_Peripheral_GetStateTable 0x2005 8197
 TEE_Peripheral_Open 0x2006 8198
 TEE_Peripheral_OpenMultiple 0x2007 8199
 TEE_Peripheral_Read 0x2008 8200
 TEE_Peripheral_SetState 0x2009 8201
 TEE_Peripheral_Write 0x200A 8202

342 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Events TEE_Event_AddSources 0x2101 8449
 TEE_Event_CancelSources 0x2102 8450
 TEE_Event_CloseQueue 0x2103 8451
 TEE_Event_DropSources 0x2104 8452
 TEE_Event_ListSources 0x2105 8453
 TEE_Event_OpenQueue 0x2106 8454
 TEE_Event_Wait 0x2107 8455
 TEE_Event_TimerCreate 0x2108 8456

 6852

TEE Internal Core API Specification – Public Review v1.2.1.31 343 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex B Deprecated Functions, Identifiers, 6853

Properties, and Attributes 6854

B.1 Deprecated Functions 6855

The functions in this section are deprecated and have been replaced by new functions as noted in their 6856
descriptions. These functions will be removed at some future major revision of this specification. 6857

Backward Compatibility 6858

While new TA code SHOULD use the new functions, the old functions SHALL be present in an implementation 6859
until removed from the specification. 6860

B.1.1 TEE_GetObjectInfo – Deprecated 6861

void TEE_GetObjectInfo(6862
 TEE_ObjectHandle object, 6863
 [out] TEE_ObjectInfo* objectInfo); 6864

Description 6865

Since: TEE Internal API v1.0; deprecated in TEE Internal Core API v1.1 6866

Use of this function is deprecated – new code SHOULD use the TEE_GetObjectInfo1 function instead. 6867

The TEE_GetObjectInfo function returns the characteristics of an object. It fills in the following fields in the 6868
structure TEE_ObjectInfo: 6869

• objectType: The parameter objectType passed when the object was created. If the object is 6870
corrupt then this field is set to TEE_TYPE_CORRUPTED_OBJECT and the rest of the fields are set to 0. 6871

• objectSize: Set to 0 for an uninitialized object 6872

• maxObjectSize 6873

o For a persistent object, set to keySize 6874

o For a transient object, set to the parameter maxKeySize passed to 6875
TEE_AllocateTransientObject 6876

• objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4. Initially set to 6877
0xFFFFFFFF. 6878

• dataSize 6879

o For a persistent object, set to the current size of the data associated with the object 6880

o For a transient object, always set to 0 6881

• dataPosition 6882

o For a persistent object, set to the current position in the data for this handle. Data positions for 6883
different handles on the same object may differ. 6884

o For a transient object, set to 0 6885

• handleFlags: A bit vector containing one or more of the following flags: 6886

o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object 6887

o TEE_HANDLE_FLAG_INITIALIZED 6888

344 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 For a persistent object, always set 6889

 For a transient object, initially cleared, then set when the object becomes initialized 6890

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object 6891

Parameters 6892

• object: Handle of the object 6893

• objectInfo: Pointer to a structure filled with the object information 6894

Specification Number: 10 Function Number: 0x703 6895

Panic Reasons 6896

• If object is not a valid opened object handle. 6897

• If the implementation detects any other error. 6898

TEE Internal Core API Specification – Public Review v1.2.1.31 345 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.2 TEE_RestrictObjectUsage – Deprecated 6899

void TEE_RestrictObjectUsage(6900
 TEE_ObjectHandle object, 6901
 uint32_t objectUsage); 6902

Description 6903

Since: TEE Internal API v1.0; deprecated in TEE Internal Core API v1.1 6904

Use of this function is deprecated – new code SHOULD use the TEE_RestrictObjectUsage1 function 6905
instead. 6906

The TEE_RestrictObjectUsage function restricts the object usage flags of an object handle to contain at 6907
most the flags passed in the objectUsage parameter. 6908

For each bit in the parameter objectUsage: 6909

• If the bit is set to 1, the corresponding usage flag in the object is left unchanged. 6910

• If the bit is set to 0, the corresponding usage flag in the object is cleared. 6911

For example, if the usage flags of the object are set to TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and 6912
if objectUsage is set to TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining 6913
usage flag in the object after calling the function TEE_RestrictObjectUsage is TEE_USAGE_ENCRYPT. 6914

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent 6915
object. 6916

A transient object’s object usage flags are reset using the TEE_ResetTransientObject function. For a 6917
transient object, resetting the object also clears all the key material stored in the container. 6918

For a persistent object, setting the object usage SHALL be an atomic operation. 6919

If the supplied object is persistent and corruption is detected then this function does nothing and returns. The 6920
object handle is not closed since the next use of the handle will return the corruption and delete it. 6921

Parameters 6922

• object: Handle on an object 6923

• objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_XXX 6924
constants defined in Table 5-4 6925

Specification Number: 10 Function Number: 0x705 6926

Panic Reasons 6927

• If object is not a valid opened object handle. 6928

• If the implementation detects any other error. 6929

346 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.3 TEE_CopyObjectAttributes – Deprecated 6930

void TEE_CopyObjectAttributes(6931
 TEE_ObjectHandle destObject, 6932
 TEE_ObjectHandle srcObject); 6933

Description 6934

Since: TEE Internal API v1.0; deprecated in TEE Internal Core API v1.1 6935

Use of this function is deprecated – new code SHOULD use the TEE_CopyObjectAttributes1 function 6936
instead. 6937

The TEE_CopyObjectAttributes function populates an uninitialized object handle with the attributes of 6938
another object handle; that is, it populates the attributes of destObject with the attributes of srcObject. 6939
It is most useful in the following situations: 6940

• To extract the public key attributes from a key-pair object 6941

• To copy the attributes from a persistent object into a transient object 6942

destObject SHALL refer to an uninitialized object handle and SHALL therefore be a transient object. 6943

The source and destination objects SHALL have compatible types and sizes in the following sense: 6944

• The type of destObject SHALL be a subtype of srcObject, i.e. one of the conditions listed in 6945
Table 5-11 SHALL be true. 6946

• The size of srcObject SHALL be less than or equal to the maximum size of destObject. 6947

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject 6948
except that the attributes are taken from srcObject instead of from parameters. 6949

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and 6950
the object usage of srcObject. 6951

If the source object is corrupt then this function copies no attributes and leaves the target object uninitialized. 6952

Parameters 6953

• destObject: Handle on an uninitialized transient object 6954

• srcObject: Handle on an initialized object 6955

Specification Number: 10 Function Number: 0x802 6956

Panic Reasons 6957

• If srcObject is not initialized. 6958

• If destObject is initialized. 6959

• If the type and size of srcObject and destObject are not compatible. 6960

• If the implementation detects any other error. 6961

B.1.4 TEE_CloseAndDeletePersistentObject – Deprecated 6962

void TEE_CloseAndDeletePersistentObject(TEE_ObjectHandle object); 6963

TEE Internal Core API Specification – Public Review v1.2.1.31 347 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Description 6964

Since: TEE Internal API v1.0; deprecated in TEE Internal Core API v1.1 6965

Use of this function is deprecated – new code SHOULD use the TEE_CloseAndDeletePersistentObject1 6966
function instead. 6967

The TEE_CloseAndDeletePersistentObject function marks an object for deletion and closes the object 6968
handle. 6969

The object handle SHALL have been opened with the write-meta access right, which means access to the 6970
object is exclusive. 6971

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open 6972
handles for the object exist. This SHALL be the case even if the object or the storage containing it have become 6973
corrupted. 6974

If the storage containing the object is unavailable then this routine SHALL panic. 6975

If object is TEE_HANDLE_NULL, the function does nothing. 6976

Parameters 6977

• object: The object handle 6978

Specification Number: 10 Function Number: 0x901 6979

Panic Reasons 6980

• If object is not a valid handle on a persistent object opened with the write-meta access right. 6981

• If the storage containing the object is now inaccessible 6982

• If the implementation detects any other error. 6983

348 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.5 TEE_BigIntInitFMMContext – Deprecated 6984

void TEE_BigIntInitFMMContext(6985
 [out] TEE_BigIntFMMContext *context, 6986
 size_t len, 6987
 [in] TEE_BigInt *modulus); 6988

Description 6989

Since: TEE Internal Core API v1.1.1; deprecated in TEE Internal Core API v1.2 – See Backward 6990
Compatibility note below. 6991

Use of this function is deprecated – new code SHOULD use the TEE_BigIntInitFMMContext1 function 6992
instead. 6993

The TEE_BigIntInitFMMContext function calculates the necessary prerequisites for the fast modular 6994
multiplication and stores them in a context. This function assumes that context points to a memory area of 6995
len uint32_t. This can be done for example with the following memory allocation: 6996

TEE_BigIntFMMContext* ctx; 6997
uint_t len = TEE_BigIntFMMContextSizeInU32(bitsize); 6998
ctx=(TEE_BigIntFMMContext *) TEE_Malloc(len * sizeof(TEE_BigIntFFMContext), 0); 6999
/*Code for initializing modulus*/ 7000
… 7001
TEE_BigIntInitFMMContext(ctx, len, modulus); 7002

Even though a fast multiplication might be mathematically defined for any modulus, normally there are 7003
restrictions in order for it to be fast on a computer. This specification mandates that all implementations SHALL 7004
work for all odd moduli larger than 2 and less than 2 to the power of the implementation defined property 7005
gpd.tee.arith.maxBigIntSize. 7006

Parameters 7007

• context: A pointer to the TEE_BigIntFMMContext to be initialized 7008

• len: The size in uint32_t of the memory pointed to by context 7009

• modulus: The modulus, an odd integer larger than 2 and less than 2 to the power of 7010
gpd.tee.arith.maxBigIntSize 7011

Specification Number: 10 Function Number: 0x1603 7012

Panic Reasons 7013

• If the implementation detects any error. 7014

Backward Compatibility 7015

TEE Internal Core API v1.1 used a different type for len. 7016

 7017

 7018

TEE Internal Core API Specification – Public Review v1.2.1.31 349 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

B.2 Deprecated Object Identifiers 7019

Table B-1 lists deprecated object identifiers and their replacements. The deprecated identifiers will be removed at some future major revision of this specification. 7020

Backward Compatibility 7021

While new TA code SHOULD use the new identifiers, the old identifiers SHALL be recognized in an implementation until removed from the specification. 7022

Table B-1: Deprecated Object Identifiers 7023

Identifier in v1.1 History Replacement Identifier
TEE_TYPE_CORRUPTED * Since: TEE Internal Core API v1.1

Deprecated in TEE Internal Core API v1.1.1

TEE_TYPE_CORRUPTED_OBJECT

TEE_TYPE_CORRUPTED_OBJECT Since: TEE Internal Core API v1.1

Deprecated in TEE Internal Core API v1.1.1

None (had been used only in a now deprecated function)

 7024
* As the value of the deprecated identifier TEE_TYPE_CORRUPTED was not previously formally defined, that value SHOULD be the same as the value of the 7025

Replacement Identifier. This value can be found in Table 6-13. 7026

 7027

TEE Internal Core API Specification – Public Review v1.2.1.31 350 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

B.3 Deprecated Algorithm Identifiers 7028

Table B-2 lists deprecated algorithm identifiers and their replacements. The deprecated identifiers will be removed at some future major revision of this 7029
specification. 7030

Backward Compatibility 7031

While new TA code SHOULD use the new identifiers, the old identifiers SHALL be recognized in an implementation until removed from the specification. 7032

Table B-2: Deprecated Algorithm Identifiers 7033

Identifier in v1.1 Replacement Identifier

DSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE_ALG_DSA_2048_SHA224* TEE_ALG_DSA_SHA224

TEE_ALG_DSA_2048_SHA256* TEE_ALG_DSA_SHA256

TEE_ALG_DSA_3072_SHA256* TEE_ALG_DSA_SHA256

In some cases an incomplete identifier was used for DSA algorithms.

ALG_DSA_SHA1* TEE_ALG_DSA_SHA1

ALG_DSA_SHA224* TEE_ALG_DSA_SHA224

ALG_DSA_SHA256* TEE_ALG_DSA_SHA256

In some cases the ECDSA algorithm was not sufficiently defined and did not indicate digest size.

TEE_ALG_ECDSA* TEE_ALG_ECDSA_SHA512

ECDSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE_ALG_ECDSA_P192* TEE_ALG_ECDSA_SHA1

TEE_ALG_ECDSA_P224* TEE_ALG_ECDSA_SHA224

TEE_ALG_ECDSA_P256* TEE_ALG_ECDSA_SHA256

TEE_ALG_ECDSA_P384* TEE_ALG_ECDSA_SHA384

TEE_ALG_ECDSA_P521* TEE_ALG_ECDSA_SHA512

TEE Internal Core API Specification – Public Review v1.2.1.31 351 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Identifier in v1.1 Replacement Identifier

A number of algorithm identifier declarations mistakenly included “_NIST” and/or the curve type. The curve type can be found in the key material.

TEE_ALG_ECDH_NIST_P192_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P224_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P256_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P384_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P521_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P192 TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P224 TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P256 TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P384 TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P521 TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P192_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P224_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P256_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P384_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P521_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

 7034

* As the values of the deprecated algorithm identifiers were not previously formally defined, those values SHOULD be the same as the values of the 7035
Replacement Identifier. In each case, this value can be found in Table 6-11. 7036

+ As the values of the deprecated algorithm identifiers were not previously formally defined. those values SHOULD be the same as the values of the 7037
deprecated TEE_ALG_ECDH_Pxxx equivalent. In each case, the particular value can be found in Table 6-11. 7038

TEE Internal Core API Specification – Public Review v1.2.1.31 352 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

B.4 Deprecated Properties 7039

Table B-3: Deprecated Properties 7040

Property History Replacement
gpd.tee.apiversion Since: TEE Internal API v1.0

Deprecated in TEE Internal Core API v1.1.2

Deprecated in favor of gpd.tee.internalCore.version.

gpd.tee.cryptography.ecc Since: TEE Internal Core API v1.1

Deprecated in TEE Internal Core API v1.2

No direct replacement. The function
TEE_IsAlgorithmSupported can be used to determine which,
if any, ECC curves are supported.

gpd.tee.trustedStorage.
antiRollback.
protectionLevel

Since: TEE Internal Core API v1.2

Deprecated in TEE Internal Core API v1.3

Deprecated in favor of a rollback protection property for each
Trusted Storage Space.
gpd.tee.trustedStorage.perso.rollbackProtection
gpd.tee.trustedStorage.private.rollbackProtection
gpd.tee.trustedStorage.protected.rollbackProtection

gpd.tee.trustedStorage.
rollbackDetection.
protectionLevel

Since: TEE Internal Core API v1.1

Deprecated in TEE Internal Core API v1.3

 7041

B.5 Deprecated Object or Operation Attributes 7042

Table B-4: Deprecated Object or Operation Attributes 7043

Attribute Value History Replacement
TEE_ATTR_ECC_PUBLIC_VALUE_X 0xD0000146 Since: TEE Internal Core API v1.2

Renamed in TEE Internal Core API v1.3

TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y 0xD0000246 Since: TEE Internal Core API v1.2

Renamed in TEE Internal Core API v1.3

TEE_ATTR_ECC_EPHEMERAL_PUBLIC_VALUE_Y

TEE_ATTR_ECC_PRIVATE_VALUE 0xD0000346 Since: TEE Internal Core API v1.2

Deprecated in TEE Internal Core API v1.3

Redundant value.
The correct value for this Attribute is
0xC0000341.

TEE Internal Core API Specification – Public Review v1.2.1.31 353 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Attribute Value History Replacement
TEE_ATTR_ED25519_CTX 0xD0000643 Since: TEE Internal Core API v1.2

Deprecated in TEE Internal Core API v1.3

TEE_ATTR_EDDSA_CTX

TEE_ATTR_ED25519_PH 0xF0000543 Since: TEE Internal Core API v1.2

Deprecated in TEE Internal Core API v1.3

None.

 7044

B.6 Deprecated API Return Codes 7045

Table B-5 lists deprecated return codes and their replacements. The deprecated return codes will be removed at some future major revision of this specification. 7046

Backward Compatibility 7047

While new TA code SHOULD use the new return codes, the old return codes SHALL be recognized in an implementation until removed from the specification. 7048

Table B-5: Deprecated Return Codes 7049

Return Code History Replacement Return Code
TEE_ERROR_OLD_VERSION Since: TEE Internal Core API v1.2

Deprecated in TEE Internal Core API v1.3

TEE_ERROR_UNSUPPORTED_VERSION

 7050

TEE Internal Core API Specification – Public Review v1.2.1.31 354 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Annex C Normative References for Algorithms 7051

This annex provides normative references for the algorithms discussed earlier in this document. 7052

Table C-1: Normative References for Algorithms 7053

Name References URL
TEE_ALG_AES_ECB_NOPAD
TEE_ALG_AES_CBC_NOPAD
TEE_ALG_AES_CTR

FIPS 197 (AES)
NIST SP800-38A (ECB,
CBC, CTR)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

TEE_ALG_AES_CTS FIPS 197 (AES)
NIST SP800-38A
Addendum (CTS =
CBC-CS3)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-
nist_sp800-38A.pdf

TEE_ALG_AES_XTS IEEE Std 1619-2007 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431

TEE_ALG_AES_CCM FIPS 197 (AES)
RFC 3610 (CCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3610

TEE_ALG_AES_GCM FIPS 197 (AES)
NIST 800-38D (GCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

TEE_ALG_DES_ECB_NOPAD
TEE_ALG_DES_CBC_NOPAD
TEE_ALG_DES3_ECB_NOPAD
TEE_ALG_DES3_CBC_NOPAD

FIPS 46 (DES, 3DES)
FIPS 81 (ECB, CBC)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm

TEE_ALG_AES_CBC_MAC_NOPAD
TEE_ALG_AES_CBC_MAC_PKCS5
TEE_ALG_DES_CBC_MAC_NOPAD
TEE_ALG_DES_CBC_MAC_PKCS5
TEE_ALG_DES3_CBC_MAC_NOPAD
TEE_ALG_DES3_CBC_MAC_PKCS5

FIPS 46 (DES, 3DES)
FIPS 197 (AES)
RFC 1423 (PKCS5 Pad)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc1423

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3610
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc1423

TEE Internal Core API Specification – Public Review v1.2.1.31 355 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL
TEE_ALG_AES_CMAC FIPS 197 (AES)

NIST SP800-38B (CMAC)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

TEE_ALG_RSASSA_PKCS1_V1_5_MD5
TEE_ALG_RSASSA_PKCS1_V1_5_SHA1
TEE_ALG_RSASSA_PKCS1_V1_5_SHA224
TEE_ALG_RSASSA_PKCS1_V1_5_SHA256
TEE_ALG_RSASSA_PKCS1_V1_5_SHA384
TEE_ALG_RSASSA_PKCS1_V1_5_SHA512
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_224
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_256
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_384
TEE_ALG_RSASSA_PKCS1_V1_5_SHA3_512
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA3_512

PKCS #1 (RSA,
PKCS1 v1.5, PSS)
RFC 1321 (MD5)
FIPS 180-4 (SHA-1,
SHA-2)
FIPS 202 (SHA-3)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

TEE_ALG_DSA_SHA1
TEE_ALG_DSA_SHA224
TEE_ALG_DSA_SHA256
TEE_ALG_DSA_SHA256
TEE_ALG_DSA_SHA3_224
TEE_ALG_DSA_SHA3_256
TEE_ALG_DSA_SHA3_384
TEE_ALG_DSA_SHA3_512

FIPS 180-4 (SHA-1)
FIPS 186-2 (DSA) *
FIPS 202 (SHA-3)

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

TEE Internal Core API Specification – Public Review v1.2.1.31 356 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL
TEE_ALG_RSAES_PKCS1_V1_5
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

PKCS #1 (RSA,
PKCS1 v1.5, OAEP)
FIPS 180-4 (SHA-1,
SHA-2)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_RSA_NOPAD PKCS #1 (RSA primitive) ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

TEE_ALG_DH_DERIVE_SHARED_SECRET PKCS #3 ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps

TEE_ALG_MD5 RFC 1321 http://tools.ietf.org/html/rfc1321

TEE_ALG_SHA1
TEE_ALG_SHA224
TEE_ALG_SHA256
TEE_ALG_SHA384
TEE_ALG_SHA512

FIPS 180-4 http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_HMAC_MD5
TEE_ALG_HMAC_SHA1

RFC 2202 http://tools.ietf.org/html/rfc2202

TEE_ALG_HMAC_SHA224
TEE_ALG_HMAC_SHA256
TEE_ALG_HMAC_SHA384
TEE_ALG_HMAC_SHA512

RFC 4231 http://tools.ietf.org/html/rfc4231

TEE_ALG_HMAC_SHA3_224
TEE_ALG_HMAC_SHA3_256
TEE_ALG_HMAC_SHA3_384
TEE_ALG_HMAC_SHA3_512

RFC 2104 (HMAC)
FIPS 202 (SHA-3)

https://www.ietf.org/rfc/rfc2104.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps
http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc2202
http://tools.ietf.org/html/rfc4231
https://www.ietf.org/rfc/rfc2104.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

TEE Internal Core API Specification – Public Review v1.2.1.31 357 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL
TEE_ALG_ECDSA_SHA1
TEE_ALG_ECDSA_SHA224
TEE_ALG_ECDSA_SHA256
TEE_ALG_ECDSA_SHA384
TEE_ALG_ECDSA_SHA512
TEE_ALG_ECDSA_SHA3_224
TEE_ALG_ECDSA_SHA3_256
TEE_ALG_ECDSA_SHA3_384
TEE_ALG_ECDSA_SHA3_512

FIPS 186-4 *
ANSI X9.62

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

TEE_ALG_ECDH_DERIVE_SHARED_SECRET NIST SP800-56A,
Cofactor Static Unified
Model
FIPS 186-4 * (curve
definitions)

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

TEE_ALG_ED25519
TEE_ALG_ED448

RFC 8032 http://tools.ietf.org/html/rfc8032

TEE_ALG_X25519
TEE_ALG_X448

RFC 7748 http://tools.ietf.org/html/rfc7748

TEE_ALG_SM2_DSA_SM3 OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SM2_KEP OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SM2_PKE OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SM3 OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_HMAC_SM3 OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://tools.ietf.org/html/rfc8032
http://tools.ietf.org/html/rfc7748
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE Internal Core API Specification – Public Review v1.2.1.31 358 / 366

 Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL
TEE_ALG_SM4_ECB_NOPAD
TEE_ALG_SM4_ECB_PKCS5

OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SM4_CBC_NOPAD
TEE_ALG_SM4_CBC_PKCS5

OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SM4_CTR OCTA http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71

TEE_ALG_SHA3_224
TEE_ALG_SHA3_256
TEE_ALG_SHA3_384
TEE_ALG_SHA3_512
TEE_ALG_SHAKE128
TEE_ALG_SHAKE256

FIPS 202
NIST SP800-185, SHA-3
Derived Functions

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
185.pdf

TEE_ALG_HKDF RFC5869 https://tools.ietf.org/html/rfc5869

* This specification follows a superset of both FIPS 186-2 and FIPS 186-4. Available key sizes are
defined in this specification and so no key size exclusions in FIPS 186-2 or FIPS 186-4 apply to this
specification. Otherwise, when applied to this specification, if FIPS 186-4 conflicts with FIPS 186-2,
then FIPS 186-4 is taken as definitive.

 7054

 7055

http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
http://www.sca.gov.cn/app-zxfw/zxfw/bzgfcx.jsp
http://www.scctc.org.cn/templates/Download/index.aspx?nodeid=71
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://tools.ietf.org/html/rfc5869

TEE Internal Core API Specification – Public Review v1.2.1.31 359 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex D Peripheral API Usage (Informative) 7056

The following example code is informative, and is intended to provide basic usage information on the Peripheral 7057
API. Error handling is deliberately extremely simplistic and does not represent production quality code. No 7058
guarantee is made as to the quality and correctness of this code sample. 7059

 7060

#include "tee_internal_api.h" 7061
 7062
#if (TEE_CORE_API_MAJOR_VERSION != 1) && (TEE_CORE_API_MINOR_VERSION < 2) 7063
#error "TEE Peripheral API not supported on TEE Internal Core API < 1.2" 7064
#endif 7065
 7066
#if !defined(TEE_CORE_API_EVENT) 7067
#error "TEE Peripheral API not supported on this platform" 7068
#endif 7069
 7070
 7071
#define MAX_BUFFER (256) 7072
 7073
// Define a proprietary serial peripheral (as no peripheral supporting the 7074
// polled Peripheral API is defined in this document). This is purely to 7075
// illustrate how the API is used where such a peripheral is invented. 7076
#define PROP_PERIPHERAL_UART (0x80000001) 7077
 7078
// The state below has tag=TEE_PERIPHERAL_VALUE_UINT32, ro=false 7079
#define PROP_PERIPHERAL_STATE_BAUDRATE (0x80000001) 7080
#define PROP_PERIPHERAL_UART_BAUD9600 (0x80) 7081
 7082
 7083
// Trivial error handling 7084
#define ta_assert(cond, val) if (!(cond)) TEE_Panic(val) 7085
#define TA_GETPERIPHERALS (1) 7086
#define TA_VERSIONFAIL (2) 7087
#define TA_GETSTATETABLE (3) 7088
#define TA_FAILBAUDRATE (4) 7089
#define TA_FAILOPEN (5) 7090
#define TA_FAILWRITE (6) 7091
 7092
static TEE_Peripheral* peripherals; 7093
static TEE_PeripheralState* peripheral_state; 7094
 7095

360 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 7096

void TestPeripherals() 7097
{ 7098
 uint32_t ver; 7099
 TEE_Result res; 7100
 size_t size; 7101
 uint32_t max; 7102
 TEE_PeripheralId tee_id; 7103
 TEE_EventSourceHandle tee_e_handle; 7104
 TEE_PeripheralDescriptor uart_descriptor; 7105
 TEE_PeripheralId uart_id; 7106
 TEE_PeripheralHandle uart_p_handle; 7107
 uint32_t uart_baud; 7108
 bool supports_exclusive; 7109
 bool supports_baudrate_change; 7110
 uint8_t buf[MAX_BUFFER]; 7111
 7112
 // Get TEE peripherals table. Catch errors, but assert rather than handle. 7113
 // First call with NULL fetches the size of the peripherals table 7114
 res = TEE_Peripheral_GetPeripherals(&ver, NULL, &size); 7115
 peripherals = (TEE_Peripheral*) TEE_Malloc(size); 7116
 7117
 res = TEE_Peripheral_GetPeripherals(&ver, peripherals, &size); 7118
 7119
 ta_assert((res == TEE_SUCCESS) && (size <= sizeof(peripherals)), 7120
 TA_GETPERIPHERALS); 7121
 7122
 //** 7123
 // Find Peripheral ID for OS pseudo-peripheral (there is only one) 7124
 // and for the proprietary UART (there is also only one, for simplicity) 7125
 //** 7126
 7127
 max = size / sizeof(TEE_Peripheral); 7128
 for (uint32_t i = 0; i < max; i++) { 7129
 ta_assert(peripherals[i].version == 1, TA_VERSIONFAIL); 7130
 if (peripherals[i].periphType == TEE_PERIPHERAL_TEE) { 7131
 tee_id = peripherals[i].id; 7132
 tee_e_handle = peripherals[i].e_handle; 7133
 } else if (peripherals[i].periphType == PROP_PERIPHERAL_UART) { 7134
 uart_id = peripherals[i].id; 7135
 uart_p_handle = peripherals[i].p_handle; 7136
 } 7137
 } 7138
 7139
 // Get state of the OS pseudo-peripheral. 7140
 // Catch errors, but assert rather than recover. 7141
 size = sizeof(peripheral_state); 7142
 res = TEE_Peripheral_GetStateTable(tee_id, peripheral_state, &size); 7143
 7144
 ta_assert((res == TEE_SUCCESS) && (size <= sizeof(peripheral_state)), 7145
 TA_GETSTATETABLE); 7146
 7147

TEE Internal Core API Specification – Public Review v1.2.1.31 361 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 7148

 // Check if exclusive access is supported by OS pseudo-peripheral 7149
 supports_exclusive = false; 7150
 max = size / sizeof(TEE_PeripheralState); 7151
 for (uint32_t i = 0; i < max; i++) { 7152
 if (peripheral_state[i].id == TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS) { 7153
 supports_exclusive = peripheral_state[i].u.boolVal; 7154
 break; 7155
 } 7156
 } 7157
 7158
 //** 7159
 // Set the baud rate on the proprietary UART pseudo-peripheral. 7160
 //** 7161
 7162
 // Fetch the state table for the UART 7163
 size = sizeof(peripheral_state); 7164
 res = TEE_Peripheral_GetStateTable(uart_id, peripheral_state, &size); 7165
 7166
 ta_assert((res == TEE_SUCCESS) && (size <= sizeof(peripheral_state)), 7167
 TA_GETSTATETABLE); 7168
 7169
 // Find the state information and check it is writeable 7170
 max = size / sizeof(TEE_PeripheralState); 7171
 supports_baudrate_change = false; 7172
 uint32_t baudrate = PROP_PERIPHERAL_UART_BAUD9600; 7173
 for (uint32_t i = 0; i < max; i++) { 7174
 if (peripheral_state[i].id == PROP_PERIPHERAL_STATE_BAUDRATE) { 7175
 supports_baudrate_change = peripheral_state[i].u.boolVal; 7176
 break; 7177
 } 7178
 } 7179
 7180
 // If so, change the baud rate. 7181
 if (supports_baudrate_change) { 7182
 res = TEE_PeripheralSetState(uart_id, 7183
 PROP_PERIPHERAL_STATE_BAUDRATE, 7184
 TEE_PERIPHERAL_VALUE_UINT32, 7185
 baudrate); 7186
 ta_assert(res == TEE_SUCCESS, TA_FAILBAUDRATE); 7187
 } 7188
 7189
 // Open the UART 7190
 uart_descriptor.id = uart_id; 7191
 uart_descriptor.p_handle = TEE_INVALID_HANDLE; 7192
 uart_descriptor_e_handle = TEE_INVALID_HANDLE; 7193
 7194
 res = TEE_Peripheral_Open(&uart_descriptor); 7195
 7196
 ta_assert((res == TEE_SUCCESS) && 7197
 (uart_descriptor.p_handle != TEE_INVALID_HANDLE), 7198
 TA_FAILOPEN); 7199

362 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 7200

 7201
 // Write to the UART. 7202
 for (uint32_t i = 0; i < MAX_BUFFER; i++) 7203
 buf[i] = i; 7204
 7205
 res = TEE_Peripheral_Write(uart_descriptor.p_handle, buf, MAX_BUFFER); 7206
 7207
 ta_assert((res == TEE_SUCCESS), TA_FAILWRITE); 7208
} 7209

 7210

TEE Internal Core API Specification – Public Review v1.2.1.31 363 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Functions

TA_CloseSessionEntryPoint, 63
TA_CreateEntryPoint, 60
TA_DestroyEntryPoint, 60
TA_InvokeCommandEntryPoint, 64
TA_OpenSessionEntryPoint, 61
TEE_AEDecryptFinal, 219
TEE_AEEncryptFinal, 218
TEE_AEInit, 214
TEE_AEUpdate, 217
TEE_AEUpdateAAD, 216
TEE_AllocateOperation, 181
TEE_AllocatePersistentObjectEnumerator, 164
TEE_AllocatePropertyEnumerator, 78
TEE_AllocateTransientObject, 137
TEE_AsymmetricDecrypt, 221
TEE_AsymmetricEncrypt, 221
TEE_AsymmetricSignDigest, 223
TEE_AsymmetricVerifyDigest, 226
TEE_BigIntAbs, 270
TEE_BigIntAdd, 271
TEE_BigIntAddMod, 278
TEE_BigIntAssign, 269
TEE_BigIntCmp, 265
TEE_BigIntCmpS32, 265
TEE_BigIntComputeExtendedGcd, 285
TEE_BigIntComputeFMM, 289
TEE_BigIntConvertFromFMM, 288
TEE_BigIntConvertFromOctetString, 261
TEE_BigIntConvertFromS32, 263
TEE_BigIntConvertToFMM, 287
TEE_BigIntConvertToOctetString, 262
TEE_BigIntConvertToS32, 264
TEE_BigIntDiv, 276
TEE_BigIntExpMod, 283
TEE_BigIntFMMContextSizeInU32, 256
TEE_BigIntFMMSizeInU32, 257
TEE_BigIntGetBit, 267
TEE_BigIntGetBitCount, 267
TEE_BigIntInit, 258
TEE_BigIntInitFMM, 260
TEE_BigIntInitFMMContext, 259
TEE_BigIntInitFMMContext (deprecated), 348
TEE_BigIntInvMod, 282
TEE_BigIntIsProbablePrime, 286
TEE_BigIntMod, 277
TEE_BigIntMul, 274
TEE_BigIntMulMod, 280

TEE_BigIntNeg, 273
TEE_BigIntRelativePrime, 284
TEE_BigIntSetBit, 268
TEE_BigIntShiftRight, 266
TEE_BigIntSizeInU32 (macro), 255
TEE_BigIntSquare, 275
TEE_BigIntSquareMod, 281
TEE_BigIntSub, 272
TEE_BigIntSubMod, 279
TEE_CheckMemoryAccessRights, 106
TEE_CipherDoFinal, 207
TEE_CipherInit, 204
TEE_CipherUpdate, 206
TEE_CloseAndDeletePersistentObject

(deprecated), 347
TEE_CloseAndDeletePersistentObject1, 162
TEE_CloseObject, 136
TEE_CloseTASession, 98
TEE_CopyObjectAttributes (deprecated), 346
TEE_CopyObjectAttributes1, 149
TEE_CopyOperation, 197
TEE_CreatePersistentObject, 157
TEE_DeriveKey, 228
TEE_DigestDoFinal, 201
TEE_DigestExtract, 202
TEE_DigestUpdate, 200
TEE_Event_AddSources, 327
TEE_Event_CancelSources, 328
TEE_Event_CloseQueue, 329
TEE_Event_DropSources, 330
TEE_Event_ListSources, 331
TEE_Event_OpenQueue, 332
TEE_Event_TimerCreate, 334
TEE_Event_Wait, 335
TEE_Free, 115
TEE_FreeOperation, 186
TEE_FreePersistentObjectEnumerator, 164
TEE_FreePropertyEnumerator, 78
TEE_FreeTransientObject, 141
TEE_GenerateKey, 151
TEE_GenerateRandom, 232
TEE_GetCancellationFlag, 104
TEE_GetInstanceData, 110
TEE_GetNextPersistentObject, 167
TEE_GetNextProperty, 81
TEE_GetObjectBufferAttribute, 133
TEE_GetObjectInfo (deprecated), 343

364 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE_GetObjectInfo1, 130
TEE_GetObjectValueAttribute, 135
TEE_GetOperationInfo, 187
TEE_GetOperationInfoMultiple, 189
TEE_GetPropertyAsBinaryBlock, 75
TEE_GetPropertyAsBool, 72
TEE_GetPropertyAsIdentity, 77
TEE_GetPropertyAsString, 71
TEE_GetPropertyAsU32, 73
TEE_GetPropertyAsU64, 74
TEE_GetPropertyAsUUID, 76
TEE_GetPropertyName, 80
TEE_GetREETime, 251
TEE_GetSystemTime, 246
TEE_GetTAPersistentTime, 248
TEE_InitRefAttribute, 147
TEE_InitValueAttribute, 147
TEE_InvokeTACommand, 99
TEE_IsAlgorithmSupported, 198
TEE_MACCompareFinal, 212
TEE_MACComputeFinal, 211
TEE_MACInit, 209
TEE_MACUpdate, 210
TEE_Malloc, 111
TEE_MaskCancellation, 105
TEE_MemCompare, 117
TEE_MemFill, 118
TEE_MemMove, 116
TEE_OpenPersistentObject, 155
TEE_OpenTASession, 96
TEE_Panic, 95

TEE_Peripheral_Close, 313
TEE_Peripheral_CloseMultiple, 314
TEE_Peripheral_GetPeripherals, 315
TEE_Peripheral_GetState, 317
TEE_Peripheral_GetStateTable, 318
TEE_Peripheral_Open, 319
TEE_Peripheral_OpenMultiple, 321
TEE_Peripheral_Read, 323
TEE_Peripheral_SetState, 325
TEE_Peripheral_Write, 326
TEE_PopulateTransientObject, 142
TEE_ReadObjectData, 169
TEE_Realloc, 113
TEE_RenamePersistentObject, 163
TEE_ResetOperation, 191
TEE_ResetPersistentObjectEnumerator, 165
TEE_ResetPropertyEnumerator, 79
TEE_ResetTransientObject, 141
TEE_RestrictObjectUsage (deprecated), 345
TEE_RestrictObjectUsage1, 132
TEE_SeekObjectData, 174
TEE_SetInstanceData, 109
TEE_SetOperationKey, 192
TEE_SetOperationKey2, 195
TEE_SetTAPersistentTime, 250
TEE_StartPersistentObjectEnumerator, 166
TEE_StartPropertyEnumerator, 79
TEE_TruncateObjectData, 173
TEE_UnmaskCancellation, 105
TEE_Wait, 247
TEE_WriteObjectData, 171

TEE Internal Core API Specification – Public Review v1.2.1.31 365 / 366

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Functions by Category

Asymmetric
TEE_AsymmetricDecrypt, 221
TEE_AsymmetricEncrypt, 221
TEE_AsymmetricSignDigest, 223
TEE_AsymmetricVerifyDigest, 226

Authenticated Encryption
TEE_AEDecryptFinal, 219
TEE_AEEncryptFinal, 218
TEE_AEInit, 214
TEE_AEUpdate, 217
TEE_AEUpdateAAD, 216

Basic Arithmetic
TEE_BigIntAdd, 271
TEE_BigIntDiv, 276
TEE_BigIntMul, 274
TEE_BigIntNeg, 273
TEE_BigIntSquare, 275
TEE_BigIntSub, 272

Cancellation
TEE_GetCancellationFlag, 104
TEE_MaskCancellation, 105
TEE_UnmaskCancellation, 105

Converter
TEE_BigIntConvertFromOctetString, 261
TEE_BigIntConvertFromS32, 263
TEE_BigIntConvertToOctetString, 262
TEE_BigIntConvertToS32, 264

Data Stream Access
TEE_ReadObjectData, 169
TEE_SeekObjectData, 174
TEE_TruncateObjectData, 173
TEE_WriteObjectData, 171

Deprecated
TEE_BigIntInitFMMContext, 348
TEE_CloseAndDeletePersistentObject, 347
TEE_CopyObjectAttributes, 346
TEE_GetObjectInfo, 343
TEE_RestrictObjectUsage, 345

Events
TEE_Event_AddSources, 327
TEE_Event_CancelSources, 328
TEE_Event_CloseQueue, 329
TEE_Event_DropSources, 330
TEE_Event_ListSources, 331
TEE_Event_OpenQueue, 332
TEE_Event_TimerCreate, 334
TEE_Event_Wait, 335

Fast Modular Multiplication
TEE_BigIntComputeFMM, 289
TEE_BigIntConvertFromFMM, 288
TEE_BigIntConvertToFMM, 287

Generic Object

TEE_CloseObject, 136
TEE_GetObjectBufferAttribute, 133
TEE_GetObjectInfo (deprecated), 343
TEE_GetObjectInfo1, 130
TEE_GetObjectValueAttribute, 135
TEE_RestrictObjectUsage (deprecated), 345
TEE_RestrictObjectUsage1, 132

Generic Operation
TEE_AllocateOperation, 181
TEE_CopyOperation, 197
TEE_FreeOperation, 186
TEE_GetOperationInfo, 187
TEE_GetOperationInfoMultiple, 189
TEE_IsAlgorithmSupported, 198
TEE_ResetOperation, 191
TEE_SetOperationKey, 192
TEE_SetOperationKey2, 195

Initialization
TEE_BigIntInit, 258
TEE_BigIntInitFMM, 260
TEE_BigIntInitFMMContext, 259
TEE_BigIntInitFMMContext (deprecated), 348

Internal Client API
TEE_CloseTASession, 98
TEE_InvokeTACommand, 99
TEE_OpenTASession, 96

Key Derivation
TEE_DeriveKey, 228

Logical Operation
TEE_BigIntAbs, 270
TEE_BigIntAssign, 269
TEE_BigIntCmp, 265
TEE_BigIntCmpS32, 265
TEE_BigIntGetBit, 267
TEE_BigIntGetBitCount, 267
TEE_BigIntSetBit, 268
TEE_BigIntShiftRight, 266

MAC
TEE_MACCompareFinal, 212
TEE_MACComputeFinal, 211
TEE_MACInit, 209
TEE_MACUpdate, 210

Memory Allocation and Size of Objects
TEE_BigIntFMMContextSizeInU32, 256
TEE_BigIntFMMSizeInU32, 257
TEE_BigIntSizeInU32 (macro), 255

Memory Management
TEE_CheckMemoryAccessRights, 106
TEE_Free, 115
TEE_GetInstanceData, 110
TEE_Malloc, 111
TEE_MemCompare, 117

366 / 366 TEE Internal Core API Specification – Public Review v1.2.1.31

Copyright  2011-2020 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE_MemFill, 118
TEE_MemMove, 116
TEE_Realloc, 113
TEE_SetInstanceData, 109

Message Digest
TEE_DigestDoFinal, 201
TEE_DigestExtract, 202
TEE_DigestUpdate, 200

Modular Arithmetic
TEE_BigIntAddMod, 278
TEE_BigIntExpMod, 283
TEE_BigIntInvMod, 282
TEE_BigIntMod, 277
TEE_BigIntMulMod, 280
TEE_BigIntSquareMod, 281
TEE_BigIntSubMod, 279

Other Arithmetic
TEE_BigIntComputeExtendedGcd, 285
TEE_BigIntIsProbablePrime, 286
TEE_BigIntRelativePrime, 284

Panic Function
TEE_Panic, 95

Peripherals
TEE_Peripheral_Close, 313
TEE_Peripheral_CloseMultiple, 314
TEE_Peripheral_GetPeripherals, 315
TEE_Peripheral_GetState, 317
TEE_Peripheral_GetStateTable, 318
TEE_Peripheral_Open, 319
TEE_Peripheral_OpenMultiple, 321
TEE_Peripheral_Read, 323
TEE_Peripheral_SetState, 325
TEE_Peripheral_Write, 326

Persistent Object
TEE_CloseAndDeletePersistentObject

(deprecated), 347
TEE_CloseAndDeletePersistentObject1, 162
TEE_CreatePersistentObject, 157
TEE_OpenPersistentObject, 155
TEE_RenamePersistentObject, 163

Persistent Object Enumeration
TEE_AllocatePersistentObjectEnumerator, 164
TEE_FreePersistentObjectEnumerator, 164
TEE_GetNextPersistentObject, 167

TEE_ResetPersistentObjectEnumerator, 165
TEE_StartPersistentObjectEnumerator, 166

Property Access
TEE_AllocatePropertyEnumerator, 78
TEE_FreePropertyEnumerator, 78
TEE_GetNextProperty, 81
TEE_GetPropertyAsBinaryBlock, 75
TEE_GetPropertyAsBool, 72
TEE_GetPropertyAsIdentity, 77
TEE_GetPropertyAsString, 71
TEE_GetPropertyAsU32, 73
TEE_GetPropertyAsU64, 74
TEE_GetPropertyAsUUID, 76
TEE_GetPropertyName, 80
TEE_ResetPropertyEnumerator, 79
TEE_StartPropertyEnumerator, 79

Random Data Generation
TEE_GenerateRandom, 232

Symmetric Cipher
TEE_CipherDoFinal, 207
TEE_CipherInit, 204
TEE_CipherUpdate, 206

TA Interface
TA_CloseSessionEntryPoint, 63
TA_CreateEntryPoint, 60
TA_DestroyEntryPoint, 60
TA_InvokeCommandEntryPoint, 64
TA_OpenSessionEntryPoint, 61

Time
TEE_GetREETime, 251
TEE_GetSystemTime, 246
TEE_GetTAPersistentTime, 248
TEE_SetTAPersistentTime, 250
TEE_Wait, 247

Transient Object
TEE_AllocateTransientObject, 137
TEE_CopyObjectAttributes (deprecated), 346
TEE_CopyObjectAttributes1, 149
TEE_FreeTransientObject, 141
TEE_GenerateKey, 151
TEE_InitRefAttribute, 147
TEE_InitValueAttribute, 147
TEE_PopulateTransientObject, 142
TEE_ResetTransientObject, 141

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Overview of the TEE Internal Core API Specification
	2.1 Trusted Applications
	2.1.1 TA Interface
	2.1.2 Instances, Sessions, Tasks, and Commands
	2.1.3 Sequential Execution of Entry Points
	2.1.4 Cancellations
	2.1.5 Unexpected Client Termination
	2.1.6 Instance Types
	2.1.7 Configuration, Development, and Management

	2.2 TEE Internal Core APIs
	2.2.1 Trusted Core Framework API
	2.2.2 Trusted Storage API for Data and Keys
	2.2.3 Cryptographic Operations API
	2.2.4 Time API
	2.2.5 TEE Arithmetical API
	2.2.6 Peripheral and Event APIs

	2.3 Error Handling
	2.3.1 Normal Errors
	2.3.2 Programmer Errors
	2.3.3 Panics

	2.4 Opaque Handles
	2.5 Properties
	2.6 Peripheral Support

	3 Common Definitions
	3.1 Header File
	3.1.1 API Version
	3.1.2 Target and Version Optimization
	3.1.3 Support for Optional Capabilities

	3.2 Data Types
	3.2.1 Basic Types
	3.2.2 Bit Numbering
	3.2.3 TEE_Result, TEEC_Result
	3.2.4 TEE_UUID, TEEC_UUID

	3.3 Constants
	3.3.1 Return Code Ranges and Format
	3.3.2 Return Codes

	3.4 Parameter Annotations
	3.4.1 [in], [out], and [inout]
	3.4.2 [outopt]
	3.4.3 [inbuf] and [inoutbuf]
	3.4.4 [outbuf]
	3.4.5 [outbufopt]
	3.4.6 [instring] and [instringopt]
	3.4.7 [outstring] and [outstringopt]
	3.4.8 [ctx]

	3.5 Backward Compatibility
	3.5.1 Version Compatibility Definitions

	4 Trusted Core Framework API
	4.1 Data Types
	4.1.1 TEE_Identity
	4.1.2 TEE_Param
	4.1.3 TEE_TASessionHandle
	4.1.4 TEE_PropSetHandle

	4.2 Constants
	4.2.1 Parameter Types
	4.2.2 Login Types
	4.2.3 Origin Codes
	4.2.4 Property Set Pseudo-Handles
	4.2.5 Memory Access Rights

	4.3 TA Interface
	4.3.1 TA_CreateEntryPoint
	4.3.2 TA_DestroyEntryPoint
	4.3.3 TA_OpenSessionEntryPoint
	4.3.4 TA_CloseSessionEntryPoint
	4.3.5 TA_InvokeCommandEntryPoint
	4.3.6 Operation Parameters in the TA Interface
	4.3.6.1 Content of paramTypes Argument
	4.3.6.2 Initial Content of params Argument
	4.3.6.3 Behavior of the Framework when the Trusted Application Returns
	4.3.6.4 Memory Reference and Memory Synchronization

	4.4 Property Access Functions
	4.4.1 TEE_GetPropertyAsString
	4.4.2 TEE_GetPropertyAsBool
	4.4.3 TEE_GetPropertyAsUnn
	4.4.3.1 TEE_GetPropertyAsU32
	4.4.3.2 TEE_GetPropertyAsU64

	4.4.4 TEE_GetPropertyAsBinaryBlock
	4.4.5 TEE_GetPropertyAsUUID
	4.4.6 TEE_GetPropertyAsIdentity
	4.4.7 TEE_AllocatePropertyEnumerator
	4.4.8 TEE_FreePropertyEnumerator
	4.4.9 TEE_StartPropertyEnumerator
	4.4.10 TEE_ResetPropertyEnumerator
	4.4.11 TEE_GetPropertyName
	4.4.12 TEE_GetNextProperty

	4.5 Trusted Application Configuration Properties
	4.6 Client Properties
	4.7 Implementation Properties
	4.7.1 Specification Version Number Property

	4.8 Panics
	4.8.1 TEE_Panic

	4.9 Internal Client API
	4.9.1 TEE_OpenTASession
	4.9.2 TEE_CloseTASession
	4.9.3 TEE_InvokeTACommand
	4.9.4 Operation Parameters in the Internal Client API

	4.10 Cancellation Functions
	4.10.1 TEE_GetCancellationFlag
	4.10.2 TEE_UnmaskCancellation
	4.10.3 TEE_MaskCancellation

	4.11 Memory Management Functions
	4.11.1 TEE_CheckMemoryAccessRights
	4.11.2 TEE_SetInstanceData
	4.11.3 TEE_GetInstanceData
	4.11.4 TEE_Malloc
	4.11.5 TEE_Realloc
	4.11.6 TEE_Free
	4.11.7 TEE_MemMove
	4.11.8 TEE_MemCompare
	4.11.9 TEE_MemFill

	5 Trusted Storage API for Data and Keys
	5.1 Summary of Features and Design
	5.2 Trusted Storage and Rollback Protection
	5.3 Data Types
	5.3.1 TEE_Attribute
	5.3.2 TEE_ObjectInfo
	5.3.3 TEE_Whence
	5.3.4 TEE_ObjectHandle
	5.3.5 TEE_ObjectEnumHandle

	5.4 Constants
	5.4.1 Constants Used in Trusted Storage API for Data and Keys
	5.4.2 Constants Used in Cryptographic Operations API

	5.5 Generic Object Functions
	5.5.1 TEE_GetObjectInfo1
	5.5.2 TEE_RestrictObjectUsage1
	5.5.3 TEE_GetObjectBufferAttribute
	5.5.4 TEE_GetObjectValueAttribute
	5.5.5 TEE_CloseObject

	5.6 Transient Object Functions
	5.6.1 TEE_AllocateTransientObject
	5.6.2 TEE_FreeTransientObject
	5.6.3 TEE_ResetTransientObject
	5.6.4 TEE_PopulateTransientObject
	5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute
	5.6.6 TEE_CopyObjectAttributes1
	5.6.7 TEE_GenerateKey

	5.7 Persistent Object Functions
	5.7.1 TEE_OpenPersistentObject
	5.7.2 TEE_CreatePersistentObject
	5.7.3 Persistent Object Sharing Rules
	5.7.4 TEE_CloseAndDeletePersistentObject1
	5.7.5 TEE_RenamePersistentObject

	5.8 Persistent Object Enumeration Functions
	5.8.1 TEE_AllocatePersistentObjectEnumerator
	5.8.2 TEE_FreePersistentObjectEnumerator
	5.8.3 TEE_ResetPersistentObjectEnumerator
	5.8.4 TEE_StartPersistentObjectEnumerator
	5.8.5 TEE_GetNextPersistentObject

	5.9 Data Stream Access Functions
	5.9.1 TEE_ReadObjectData
	5.9.2 TEE_WriteObjectData
	5.9.3 TEE_TruncateObjectData
	5.9.4 TEE_SeekObjectData

	6 Cryptographic Operations API
	6.1 Data Types
	6.1.1 TEE_OperationMode
	6.1.2 TEE_OperationInfo
	6.1.3 TEE_OperationInfoMultiple
	6.1.4 TEE_OperationHandle

	6.2 Generic Operation Functions
	6.2.1 TEE_AllocateOperation
	6.2.2 TEE_FreeOperation
	6.2.3 TEE_GetOperationInfo
	6.2.4 TEE_GetOperationInfoMultiple
	6.2.5 TEE_ResetOperation
	6.2.6 TEE_SetOperationKey
	6.2.7 TEE_SetOperationKey2
	6.2.8 TEE_CopyOperation
	6.2.9 TEE_IsAlgorithmSupported

	6.3 Message Digest Functions
	6.3.1 TEE_DigestUpdate
	6.3.2 TEE_DigestDoFinal
	6.3.3 TEE_DigestExtract

	6.4 Symmetric Cipher Functions
	6.4.1 TEE_CipherInit
	6.4.2 TEE_CipherUpdate
	6.4.3 TEE_CipherDoFinal

	6.5 MAC Functions
	6.5.1 TEE_MACInit
	6.5.2 TEE_MACUpdate
	6.5.3 TEE_MACComputeFinal
	6.5.4 TEE_MACCompareFinal

	6.6 Authenticated Encryption Functions
	6.6.1 TEE_AEInit
	6.6.2 TEE_AEUpdateAAD
	6.6.3 TEE_AEUpdate
	6.6.4 TEE_AEEncryptFinal
	6.6.5 TEE_AEDecryptFinal

	6.7 Asymmetric Functions
	6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt
	6.7.2 TEE_AsymmetricSignDigest
	6.7.3 TEE_AsymmetricVerifyDigest

	6.8 Key Derivation Functions
	6.8.1 TEE_DeriveKey

	6.9 Random Data Generation Function
	6.9.1 TEE_GenerateRandom

	6.10 Cryptographic Algorithms Specification
	6.10.1 List of Algorithm Identifiers
	6.10.2 Object Types
	6.10.3 Optional Cryptographic Elements

	6.11 Object or Operation Attributes

	7 Time API
	7.1 Data Types
	7.1.1 TEE_Time

	7.2 Time Functions
	7.2.1 TEE_GetSystemTime
	7.2.2 TEE_Wait
	7.2.3 TEE_GetTAPersistentTime
	7.2.4 TEE_SetTAPersistentTime
	7.2.5 TEE_GetREETime

	8 TEE Arithmetical API
	8.1 Introduction
	8.2 Error Handling and Parameter Checking
	8.3 Data Types
	8.3.1 TEE_BigInt
	8.3.2 TEE_BigIntFMMContext
	8.3.3 TEE_BigIntFMM

	8.4 Memory Allocation and Size of Objects
	8.4.1 TEE_BigIntSizeInU32
	8.4.2 TEE_BigIntFMMContextSizeInU32
	8.4.3 TEE_BigIntFMMSizeInU32

	8.5 Initialization Functions
	8.5.1 TEE_BigIntInit
	8.5.2 TEE_BigIntInitFMMContext1
	8.5.3 TEE_BigIntInitFMM

	8.6 Converter Functions
	8.6.1 TEE_BigIntConvertFromOctetString
	8.6.2 TEE_BigIntConvertToOctetString
	8.6.3 TEE_BigIntConvertFromS32
	8.6.4 TEE_BigIntConvertToS32

	8.7 Logical Operations
	8.7.1 TEE_BigIntCmp
	8.7.2 TEE_BigIntCmpS32
	8.7.3 TEE_BigIntShiftRight
	8.7.4 TEE_BigIntGetBit
	8.7.5 TEE_BigIntGetBitCount
	8.7.6 TEE_BigIntSetBit
	8.7.7 TEE_BigIntAssign
	8.7.8 TEE_BigIntAbs

	8.8 Basic Arithmetic Operations
	8.8.1 TEE_BigIntAdd
	8.8.2 TEE_BigIntSub
	8.8.3 TEE_BigIntNeg
	8.8.4 TEE_BigIntMul
	8.8.5 TEE_BigIntSquare
	8.8.6 TEE_BigIntDiv

	8.9 Modular Arithmetic Operations
	8.9.1 TEE_BigIntMod
	8.9.2 TEE_BigIntAddMod
	8.9.3 TEE_BigIntSubMod
	8.9.4 TEE_BigIntMulMod
	8.9.5 TEE_BigIntSquareMod
	8.9.6 TEE_BigIntInvMod
	8.9.7 TEE_BigIntExpMod

	8.10 Other Arithmetic Operations
	8.10.1 TEE_BigIntRelativePrime
	8.10.2 TEE_BigIntComputeExtendedGcd
	8.10.3 TEE_BigIntIsProbablePrime

	8.11 Fast Modular Multiplication Operations
	8.11.1 TEE_BigIntConvertToFMM
	8.11.2 TEE_BigIntConvertFromFMM
	8.11.3 TEE_BigIntComputeFMM

	9 Peripheral and Event APIs
	9.1 Introduction
	9.1.1 Peripherals
	9.1.1.1 Access to Peripherals from a TA
	9.1.1.1.1 Multiple Access to Peripherals (informative)

	9.1.2 Event Loop
	9.1.3 Peripheral State
	9.1.4 Overview of Peripheral and Event APIs

	9.2 Constants
	9.2.1 Handles
	9.2.2 Maximum Sizes
	9.2.3 TEE_EVENT_TYPE
	9.2.4 TEE_PERIPHERAL_TYPE
	9.2.5 TEE_PERIPHERAL_FLAGS
	9.2.6 TEE_PeripheralStateId Values

	9.3 Peripheral State Table
	9.3.1 Peripheral Name
	9.3.2 Firmware Information
	9.3.3 Manufacturer
	9.3.4 Flags
	9.3.5 Exclusive Access

	9.4 Operating System Pseudo-peripheral
	9.4.1 State Table
	9.4.2 Events

	9.5 Session Pseudo-peripheral
	9.5.1 State Table
	9.5.2 Events

	9.6 Data Structures
	9.6.1 TEE_Peripheral
	9.6.2 TEE_PeripheralDescriptor
	9.6.3 TEE_PeripheralHandle
	9.6.4 TEE_PeripheralId
	9.6.5 TEE_PeripheralState
	9.6.6 TEE_PeripheralStateId
	9.6.7 TEE_PeripheralValueType
	9.6.8 TEE_Event
	9.6.9 Generic Payloads
	9.6.9.1 TEE_Event_AccessChange
	9.6.9.2 TEE_Event_ClientCancel
	9.6.9.3 TEE_Event_Timer

	9.6.10 TEE_EventQueueHandle
	9.6.11 TEE_EventSourceHandle

	9.7 Peripheral API Functions
	9.7.1 TEE_Peripheral_Close
	9.7.2 TEE_Peripheral_CloseMultiple
	9.7.3 TEE_Peripheral_GetPeripherals
	9.7.4 TEE_Peripheral_GetState
	9.7.5 TEE_Peripheral_GetStateTable
	9.7.6 TEE_Peripheral_Open
	9.7.7 TEE_Peripheral_OpenMultiple
	9.7.8 TEE_Peripheral_Read
	9.7.9 TEE_Peripheral_SetState
	9.7.10 TEE_Peripheral_Write

	9.8 Event API Functions
	9.8.1 TEE_Event_AddSources
	9.8.2 TEE_Event_CancelSources
	9.8.3 TEE_Event_CloseQueue
	9.8.4 TEE_Event_DropSources
	9.8.5 TEE_Event_ListSources
	9.8.6 TEE_Event_OpenQueue
	9.8.7 TEE_Event_TimerCreate
	9.8.8 TEE_Event_Wait

	Annex A Panicked Function Identification
	Annex B Deprecated Functions, Identifiers, Properties, and Attributes
	B.1 Deprecated Functions
	B.1.1 TEE_GetObjectInfo – Deprecated
	B.1.2 TEE_RestrictObjectUsage – Deprecated
	B.1.3 TEE_CopyObjectAttributes – Deprecated
	B.1.4 TEE_CloseAndDeletePersistentObject – Deprecated
	B.1.5 TEE_BigIntInitFMMContext – Deprecated

	B.2 Deprecated Object Identifiers
	B.3 Deprecated Algorithm Identifiers
	B.4 Deprecated Properties
	B.5 Deprecated Object or Operation Attributes
	B.6 Deprecated API Return Codes

	Annex C Normative References for Algorithms
	Annex D Peripheral API Usage (Informative)
	Functions
	Functions by Category

