

Copyright  2011-2018, GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents
or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. This document is currently in draft form, and the
technology provided or described herein may be subject to updates, revisions, extensions, review, and
enhancement by GlobalPlatform or its Committees or Working Groups. Prior to publication of this
document by GlobalPlatform, neither Members nor third parties have any right to use this document for
anything other than review and study purposes. Use of this information is governed by the GlobalPlatform
license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Technology
TEE System Architecture
Version 1.1.0.10 (Target v1.2)

Public Review
September 2018
Document Reference: GPD_SPE_009

 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 3 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 5
1.1 Audience ... 5
1.2 IPR Disclaimer... 6
1.3 References .. 6
1.4 Terminology and Definitions .. 8
1.5 Abbreviations and Notations ... 11
1.6 Revision History .. 13

2 TEE Device Architecture Overview ... 14
2.1 Typical Chipset Architecture ... 15
2.2 Hardware Architecture .. 16

2.2.1 TEE High Level Security Requirements ... 16
2.2.2 Roots of Trust and TEE .. 17
2.2.3 TEE Resources .. 17
2.2.4 REE and TEE Resource Sharing ... 19

3 TEE Software Interfaces... 21
3.1 The TEE Software Architecture... 22
3.2 Components of a GPD TEE .. 24

3.2.1 REE Interfaces to the TEE ... 24
3.2.2 Trusted OS Components ... 24
3.2.3 Trusted Applications (TAs) ... 25
3.2.4 Shared Memory .. 26
3.2.5 TA to TA Communication ... 26

3.3 Relationship between TEE APIs ... 27
3.4 The TEE Client API Architecture ... 28
3.5 The TEE Internal API Architecture .. 29

3.5.1 The TEE Internal Core API .. 29
3.5.1.1 Peripheral and Event Access .. 30

3.5.2 The TEE Sockets API .. 31
3.5.3 The TEE TA Debug API ... 32
3.5.4 The TEE Secure Element API .. 33
3.5.5 The TEE Trusted User Interface API ... 34
3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API ... 35

3.6 Variations of TEE Architecture Found on Real Devices ... 37
3.6.1 A GPD TEE Can Have Proprietary Extensions .. 37
3.6.2 A Device Can Have Many TEEs .. 38
3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant .. 40

4 TEE Management.. 41

5 TEE Implementation Considerations .. 45
5.1 Device States .. 45
5.2 Boot Time Environment ... 46

5.2.1 Typical Boot Sequence .. 46
5.3 Run-Time Environment ... 50

5.3.1 TEE Functionality Availability ... 50

4 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures
Figure 2-1: Chipset Architecture .. 15

Figure 2-2: Hardware Architectural View of REE and TEE ... 19

Figure 2-3: Example Hardware Realizations of TEE ... 20

Figure 3-1: TEE Software Architecture .. 22

Figure 3-2: TEE APIs ... 27

Figure 3-3: Example of Multiple Access to Bus-oriented Peripheral (informative) .. 30

Figure 3-4: Example TEE Sockets API Architecture ... 31

Figure 3-5: Typical Device with Multiple SE Readers ... 33

Figure 3-6: TEE with TUI Architecture ... 34

Figure 3-7: Architecture Overview – Multiple Biometrics ... 35

Figure 3-8: Architecture Overview – Biometrics .. 36

Figure 3-9: Compliant GPD TEE with Proprietary Extensions .. 37

Figure 3-10: Example of System Hardware with Multiple TEEs .. 38

Figure 3-11: Multiple GPD TEEs in One Device ... 39

Figure 3-12: GPD TEE alongside Unknown TEE .. 40

Figure 4-1: TEE Management Framework Structure .. 42

Figure 4-2: Security Domain Management Relationships ... 43

Figure 5-1: Boot Sequence: Trusted OS Early Boot .. 47

Figure 5-2: Boot Sequence: ROM-based Trusted OS .. 48

Figure 5-3: Boot Sequence: Trusted OS On-demand Boot .. 49

Tables
Table 1-1: Normative References .. 6

Table 1-2: Informative References .. 7

Table 1-3: Terminology and Definitions ... 8

Table 1-4: Abbreviations and Notations .. 11

Table 1-5: Revision History ... 13

Table 3-1: APIs within TEE Internal Core API ... 29

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 5 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction 1

Devices, from smartphones to servers, offer a Rich Execution Environment (REE), providing a hugely 2
extensible and versatile operating environment. This brings flexibility and capability, but leaves the device 3
vulnerable to a wide range of security threats. The Trusted Execution Environment (TEE) is designed to reside 4
alongside the REE and provide a safe area of the device to protect assets and execute trusted code. 5

This document explains the hardware and software architectures behind the TEE. It introduces TEE 6
management and explains concepts relevant to TEE functional availability in a device. 7

At the highest level, a Trusted Execution Environment (TEE) that meets the TEE Protection Profile ([TEE PP]) 8
is an environment where the following are true: 9

• All code executing inside the TEE has been authenticated. 10

• Unless explicitly shared with entities outside the TEE: 11

o The ongoing integrity of all TEE assets is assured through isolation, cryptography, or other 12
mechanisms. 13

o The ongoing confidentiality of the contents of all TEE data assets is assured through isolation or 14
other mechanisms such as cryptography. Data assets include keys. 15

• TEE capabilities such as isolation or cryptography, can be used to provide confidentiality of the TA 16
code asset. 17

• The TEE resists known remote and software attacks, and a set of external hardware attacks. 18

• Both code and other assets are protected from unauthorized tracing and control through debug and 19
test features. 20

Note: The architectural concepts and principles in this document do not and should not dictate any particular 21
hardware or software implementation and are broad enough to cover many possible implementations as long 22
as the security principles are adhered to. Hence, any hardware or software architectural diagram in this 23
document is provided as an example and for reference only. 24

This version of the TEE System Architecture has been extended to include the second phase of TEE 25
standardization, which introduced new APIs for supporting tasks such as Trusted User interface, SE and 26
Sockets communications, and remote management for Trusted Applications. Further extensions of the TEE 27
System Architecture are expected in subsequent phases, as described in the TEE White Paper 28
([TEE White Paper]); e.g. a more flexible Trusted User Interface API, biometrics fingerprint API, and secure 29
video content. 30

Since release of the first version of this document, many of the requirements to fulfil the goal of being a GPD 31
TEE have become available in specific specification documents. It is not the role of this high level architecture 32
document to duplicate those detailed requirements, and so many of the statements of this document are 33
intentionally reduced from normative language to informative language. 34

1.1 Audience 35

This document is intended primarily for the use of developers of: 36

• Trusted Execution Environments 37

• Trusted Applications that make use of Trusted Execution Environments 38

• Client Applications that use the services of Trusted Applications by means of the TEE Client API 39
([TEE Client API]) 40

6 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.2 IPR Disclaimer 41

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work 42
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For 43
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please 44
visit https://globalplatform.org/specifications/ip-disclaimers/. GlobalPlatform shall not be held responsible for 45
identifying any or all such IPR, and takes no position concerning the possible existence or the evidence, 46
validity, or scope of any such IPR. 47

1.3 References 48

Table 1-1: Normative References 49

Standard / Specification Description Ref

TEE White Paper The Trusted Execution Environment: Delivering
Enhanced Security at a Lower Cost to the Mobile
Market, June 2015

[TEE White Paper]

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification v1.1

[TEE Core API]

GPD_SPE_007 GlobalPlatform Technology
TEE Client API Specification v1.0

[TEE Client API]

GPD_SPE_021 GlobalPlatform Technology
TEE Protection Profile v1.2

[TEE PP]

GPD_SPE_025 GlobalPlatform Technology
TEE TA Debug Specification v1.0

[TEE TA Debug]

GPD_SPE_024 GlobalPlatform Technology
TEE Secure Element API Specification v1.1

[TEE SE API]

GPD_SPE_020 GlobalPlatform Technology
TEE Trusted User Interface API Specification v1.0

[TEE TUI API]

GPD_SPE_055 GlobalPlatform Technology
TEE Trusted User Interface Low-level API v1.0

[TEE TUI Low]

GPD_SPE_027 GlobalPlatform Technology
TEE Management Framework Specification v1.0

[TEE Mgmt]

GPD_SPE_100 GlobalPlatform Technology
TEE Sockets API Specification v1.0

[TEE Sockets]

GPD_GUI_069 GlobalPlatform Technology
TEE Initial Configuration v1.1

[TEE Init Config]

GPD_SPE_075 GlobalPlatform Technology
Open Mobile API Specification

[Open Mobile]

GP_REQ_025 GlobalPlatform Technology
Root of Trust Definitions and Requirements v1.0.1

[RoT Req]

https://globalplatform.org/specifications/ip-disclaimers/
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 7 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
OMTP ATE TR1 Open Mobile Terminal Platform (OMTP) Advanced

Trusted Environment TR1 v1.1
[OMTP ATE TR1]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

TCG Trusted Computing Group Glossary,
https://trustedcomputinggroup.org/wp-
content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf,
visited 2 August 2018.

[TCG]

 50

Table 1-2: Informative References 51

Standard / Specification Description Ref

GPD_SPE_042 GlobalPlatform Technology
TEE TUI Extension: Biometrics API v1.0

[TEE TUI Bio]

BSI-CC-PP-0084 Common Criteria Protection Profile
Security IC Platform Protection Profile with
Augmentation Packages

[PP-0084]

 52

https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf

8 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.4 Terminology and Definitions 53

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and 54
MAY in this document (refer to [RFC 2119]): 55

• SHALL indicates an absolute requirement, as does MUST. 56

• SHALL NOT indicates an absolute prohibition, as does MUST NOT. 57

• SHOULD and SHOULD NOT indicate recommendations. 58

• MAY indicates an option. 59

Table 1-3: Terminology and Definitions 60

Term Definition

Application Programming
Interface (API)

A set of rules that software programs can follow to communicate with each
other.

Biometrics API This extension of the TEE Trusted User Interface Low-level API supports
the discovery and identification of all biometric capabilities and the use of
biometric functionality supported by hardware, entirely protected inside the
TEE.

Client Application (CA) An application running outside of the Trusted Execution Environment
making use of the TEE Client API to access facilities provided by Trusted
Applications inside the Trusted Execution Environment.
Contrast Trusted Application.

Core Migration The transfer of the task of execution of code from one CPU core to
another.

Enhanced Root of Trust
(eRoT)

A Root of Trust whose integrity is verified by another Root of Trust at any
point during the life cycle of the platform, with no inference of that
verification measurement available from an ancestor entity.

Execution Environment (EE) An Execution Environment, as defined in [OMTP ATE TR1], is a set of
hardware and software components providing facilities necessary to
support running of applications. An EE typically consists of the following
elements:
• A hardware processing unit
• A set of connections between the processing unit and other hardware

resources
• Physical volatile memory
• Physical non-volatile memory
• Peripheral interfaces

GPD TEE A TEE that is compliant with a GlobalPlatform TEE functionality
configuration and certified according to the GlobalPlatform TEE Protection
Profile ([TEE PP]).

Hardware isolation In this document, unless stated otherwise for particular assets, hardware
isolation of security related assets is considered to include isolation by
electronic access control through the TEE system hardware, that can be
configured by TEE resident boot or run-time software.

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 9 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Initial Root of Trust (iRoT) A Root of Trust that a platform manufacturer provisions and initializes

during the manufacturing process and that is the first executed on the
platform.

In-package There exist a number of physical boundaries relating to the presence of
resources used by the TEE. One of those boundaries is defined by the
Integrated Circuit package that contains one or more components of the
TEE. While one hardware boundary is often described as on-SoC, in
reality it is the SoC packaging material that often forms the boundary. It is
important to make this distinction between SoC and Package because it
enables the use of more than one chip die inside a package, and hence to
place more facilities inside that hardware boundary. These extra facilities
would not be considered “on-SoC” but are considered “in-package”.

One Time Programmable
(OTP)

A form of memory that can be read many times, but only written once. On
a typical SoC implementing a TEE, this can be a very limited resource in
the order of a few thousand bits at most. An example of this form of
memory is e-fuse.

Platform An execution environment inside a device. SE, TEE, and REE are
examples of platforms.

REE Communication Agent A Rich OS driver that enables communication between REE and TEE.
Contrast TEE Communication Agent.

Rich Execution Environment
(REE)

An execution environment comprising at least one Rich OS and all other
components of the device (SoCs, other discrete components, firmware,
and software) which execute, host, and support the Rich OS (excluding
any TEEs and SEs included in the device).

WARNING: In a previous version of this document the REE was
considered to be everything outside of the TEE under consideration.
In the new definition other entities are acknowledged.

Contrast Trusted Execution Environment.

Rich OS Typically an OS providing a much wider variety of features than that of the
OS running inside the TEE. It is very open in its ability to accept
applications. It will have been developed with functionality and
performance as key goals, rather than security. Due to the size and needs
of the Rich OS it will run in an execution environment outside of the TEE
hardware (often called an REE – Rich Execution Environment) with much
lower physical security boundaries. From the TEE viewpoint, everything in
the REE has to be considered untrusted, though from the Rich OS point of
view there can be internal trust structures.
Contrast Trusted OS.

Root of Trust (RoT) A computing engine, code, and possibly data, all co-located on the same
platform; provides security services.
No ancestor entity is able to provide a trustable attestation (in Digest or
other form) for the initial code and data state of the Root of Trust.

10 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Secure Element (SE) A tamper-resistant secure hardware component which is used in a device

to provide the security, confidentiality, and multiple application
environment required to support various business models. May exist in
any form factor, such as embedded or integrated SE, SIM/UICC,
smart card, smart microSD, etc.

Security Domain (SD) An on-device representative of an Authority in the TEE Management
Framework security model. Security Domains are responsible for the
control of administration operations. Security Domains are used to perform
the provisioning of the TEE properties and manage the life cycle of TAs
and SDs associated with them.

Service Provider The owner or vendor of a combination of CA and/or TA software.

System-on-Chip (SoC) An electronic system all of whose components are included in a single
integrated circuit.
Contrast In-package.

Tamper-resistant secure
hardware

Hardware designed to isolate and protect embedded software and data by
implementing appropriate security measures. The hardware and
embedded software meet the requirements of the latest Security IC
Platform Protection Profile ([PP-0084]) including resistance to physical
tampering scenarios described in that Protection Profile.

TEE Client API The API defined in GlobalPlatform TEE Client API Specification
([TEE Client API]); a communications API for connecting Client
Applications running in an REE with Trusted Applications running inside a
TEE.

TEE Communication Agent Trusted OS driver that enables communication between REE and TEE.
Contrast REE Communication Agent.

TEE Internal APIs A general series of APIs that provide a common implementation for
functionality often required by Trusted Applications.
Figure 3-2 illustrates currently included APIs.

TEE Internal Core API A specific set of APIs providing functionality to the Trusted Application,
defined in GlobalPlatform TEE Internal Core API Specification
([TEE Core API]).
Figure 3-2 illustrates currently included APIs.

TEE Secure Element API The API defined in GlobalPlatform TEE Secure Element API Specification
([TEE SE API]); specifies an enabling thin layer to support communication
to Secure Elements connected to the device within which the TEE is
implemented.

TEE Service Library A software library that includes all security related drivers.

TEE Sockets API The API defined in GlobalPlatform TEE Sockets API Specification
([TEE Sockets]), including annexes published separately; specifies a
generic C interface used by a TA to establish and utilize network
communications using a socket style approach.

TEE TA Debug API The API defined in GlobalPlatform TEE TA Debug Specification
([TEE TA Debug]); specifies a set of API to support TA development
and/or compliance testing of the TEE Internal APIs.

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 11 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
TEE Trusted User Interface
API

The API defined in GlobalPlatform TEE Trusted User Interface API
Specification ([TEE TUI API]).

TEE Trusted User Interface
Low-level API

The API defined in GlobalPlatform TEE Trusted User Interface Low-level
API ([TEE TUI Low]).

Trusted Application (TA) An application running inside the Trusted Execution Environment (TEE)
that provides security related functionality to Client Applications outside of
the TEE or to other Trusted Applications inside the TEE.
Contrast Client Application.

Trusted Device Driver A software package, resident in the TEE, that allows communication
(directly or indirectly) between a TA and TEE resident hardware.

Trusted Execution
Environment (TEE)

An execution environment that runs alongside but isolated from an REE. A
TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets from general software attacks,
defines rigid safeguards as to data and functions that a program can
access, and resists a set of defined threats. There are multiple
technologies that can be used to implement a TEE, and the level of
security achieved varies accordingly. (For more information on security
requirements, see the GlobalPlatform TEE Protection Profile ([TEE PP])
and [OMTP ATE TR1].)
Contrast Rich Execution Environment.

Trusted OS The operating system running in the TEE. It has been designed primarily
to enable the TEE using security based design techniques. It provides the
TEE Internal APIs to Trusted Applications and a proprietary method to
enable the TEE Client API software interface from other EE. A TEE can
host one and only one Trusted OS.
Contrast Rich OS.

Trusted storage In GlobalPlatform TEE documents, trusted storage indicates storage that
is protected to at least the robustness level defined for OMTP Secure
storage (in [OMTP ATE TR1] section 5) or relevant parts of the
GlobalPlatform TEE Protection Profile ([TEE PP]). It is protected either by
the hardware of the TEE, or cryptographically by keys held in the TEE. If
keys are used they are at least of the strength used to instantiate the TEE.
A GlobalPlatform TEE trusted storage is not considered hardware tamper
resistant to the levels achieved by Secure Elements, but it is bound to the
host device.

 61

1.5 Abbreviations and Notations 62

Table 1-4: Abbreviations and Notations 63

Abbreviation / Notation Meaning

API Application Programming Interface

BIOS Basic Input/Output System

CA Client Application

12 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation / Notation Meaning
DLM Debug Log Message

DRAM Dynamic Random Access Memory

DRM Digital Rights Management

EE Execution Environment

eRoT Enhanced Root of Trust

GPD TEE See definition in Table 1-3.

I/O Input/Output

IC Integrated Circuit

IoT Internet of Things

IP Internet Protocol

IPR Intellectual Property Rights

iRoT Initial Root of Trust

OEM Original Equipment Manufacturer

OMTP Open Mobile Terminal Platform

OS Operating System

OTP One Time Programmable

PCB Printed Circuit Board

PMR Post Mortem Reporting

RAM Random Access Memory

REE Rich Execution Environment

ROM Read Only Memory

RoT Root of Trust

rSD root Security Domain

SD Security Domain

SE Secure Element

SoC System-on-Chip

TA Trusted Application

TCG Trusted Computing Group

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLS Transport Security Layer

TPM Trusted Platform Module

TUI Trusted User Interface

UDP User Datagram Protocol

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 13 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation / Notation Meaning
UEFI Unified Extensible Firmware Interface

 64

1.6 Revision History 65

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are 66
minor releases where changes typically introduce supplementary items that do not impact backward 67
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance 68
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks. 69

Table 1-5: Revision History 70

Date Version Description

December 2011 1.0 Initial Public Release

January 2017 1.1 Public Release

April 2018 1.1.0.4 Committee Review

June 2018 1.1.0.7 Member Review

September 2018 1.1.0.10 Public Review

TBD 1.2 Discuss new TEE APIs:
• TEE Trusted User Interface Low-level API
• Biometrics API (an extension of TEE TUI Low-level API)
• Peripheral API and Event API (initially published in TEE TUI

Low-level API; subsequently to be published in TEE Internal Core
API)

Discuss GlobalPlatform Root of Trust Definitions and Requirements in
the context of TEE processing.
Expand high-level security requirements discussion to include the
required security assurance level and the activities of the
GlobalPlatform TEE Security Evaluation Secretariat.
Clarify minimum memory requirements of GlobalPlatform compliant
TEEs.

 71

14 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 TEE Device Architecture Overview 72

A TEE is an execution environment providing security features such as isolated execution, integrity of Trusted 73
Applications (TAs), and integrity and confidentiality of TA assets. 74

A GPD TEE is defined as one that meets both the following criteria: 75

• GlobalPlatform security certification 76

o The TEE SHALL meet the security standard defined by the GlobalPlatform TEE Protection Profile 77
([TEE PP]). 78

o If the TEE is claimed to fully support other GlobalPlatform TEE specifications, it SHALL do so in a 79
security certified manner. 80

o Note that the TEE SHALL provide separation from other environments in the device (including 81
other TEEs). Anything that is not so separated SHALL be considered part of the TEE. 82

 83
• GlobalPlatform functional qualification 84

o The TEE SHALL support at least the initial TEE configuration ([TEE Init Config]), which currently 85
consists of being compliant with: 86

GlobalPlatform TEE Client API Specification ([TEE Client API]) 87

GlobalPlatform TEE Internal Core API Specification ([TEE Core API]) 88

o If the TEE is claimed to fully support other GlobalPlatform TEE specifications, it SHALL do so in a 89
functionally compliant manner. 90

 91

For a particular device, proof of meeting the above criteria is obtained from relevant and approved certification 92
and compliance laboratories. More information on this can be found on the GlobalPlatform website. 93

Note: 94

• The presence of a GPD TEE on a device does not restrict the presence of other Trusted Execution 95
Environments that are not GlobalPlatform compliant. 96

• A GPD TEE can have better security and/or more capabilities than those required by GlobalPlatform. 97

The remainder of this chapter describes the general device architecture associated with the TEE and provides 98
a high level overview of the security requirements of a TEE. 99

There is no mandated implementation architecture for the described components and they are used here only 100
as logical constructions within this document. 101

 102

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 15 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1 Typical Chipset Architecture 103

Figure 2-1 depicts the board level chipset architecture of a typical mobile device. The chipset hardware 104
consists of a Printed Circuit Board (PCB) that connects a number of components such as SoC processing 105
units, RAM, flash, etc. 106

Figure 2-1: Chipset Architecture 107

PCB

Non-Volatile
Memory
(Flash)

Video Keyboard Other

System-on-Chip

Power Control IC Volatile
Memory
(RAM)

Off-SoC
Security

Processor

Internal
Resources

Embedded
Secure
Element

Internal
Resources

Other
Security
Assets

RTC

Removable
Secure Element

Internal
Resources

Key

Potential TEE hosting component

Other system components

Optional components

Internal Resources

Hardware components internal to
a SoC such as internal RAM,
ROM, or eFuse.

Internal resources:

I/O Interfaces

 108

16 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2 Hardware Architecture 109

Both the REE and the TEE utilize a number of resources such as processing core(s), RAM, ROM, 110
cryptographic accelerators, etc. Figure 2-1 provides a simplified example of the resources that can exist at a 111
device level. Figure 2-2 on page 19 provides an example of the resources that can be associated with a TEE 112
hosting package such as the System-on-Chip (SoC) in Figure 2-1. 113

At any given time, resources are controlled by the REE or a TEE. Control of part or all of some resources can 114
be transferable between the two environment types. When resources are controlled by a specific TEE they are 115
isolated from the REE and other TEEs unless access is explicitly authorized by that controlling TEE. 116
A controlling TEE considers any of its own TEE resources that it does not share to be trusted resources. These 117
trusted resources are accessible only by other trusted resources and thereby make up a closed system that is 118
protected from the REE and other TEEs. 119

Some resources accessible by the REE can be designed to also be accessible by the TEE without specific 120
permission, whereas the opposite SHALL NOT hold. The REE SHALL only access TEE resources with specific 121
permission. 122

In general terms, the TEE offers an execution space that provides a higher level of security than a Rich OS; 123
although the TEE is not as secure as an SE, the security it offers is sufficient for most applications. 124

 125

2.2.1 TEE High Level Security Requirements 126

The high level security requirements of a TEE can be stated as follows: 127

• The primary purpose of a TEE is to protect its assets from the REE and other environments. 128

o This is achieved through hardware mechanisms that those other environments cannot control. 129

• This protection always includes protection against other execution environments. 130

• The TEE is protected against some physical attacks (see [TEE PP]). 131

o Typically, this protection will be at a lower level than that provided to dedicated tamper resistant 132
technology. 133

o Intrusive attacks that physically break the IC package boundary are normally out of scope of TEE 134
protection. 135

o With regard to particular modes of attack such as side channel resistance, etc., see [TEE PP] 136
Annex A. 137

• System components (such as debug interfaces) capable of accessing assets in a TEE are disabled or 138
are controlled by an element that is itself a protected asset of that TEE. 139

o This requirement places no restrictions on system components (such as those enabling debug of 140
the REE) that cannot access unshared assets of the TEE. 141

• The Trusted OS run time environment is instantiated from a RoT inside the TEE through a secure boot 142
process using assets bound to the TEE and isolated from the REE. 143

o The integrity and authenticity gained through secure boot: 144

Extends throughout the lifetime of the TEE. 145

Is retained through any state transitions in the system such as power transitions or core migration. 146

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 17 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• The TEE provides Trusted Storage of data and keys. 147

o The Trusted Storage is bound to a particular TEE on a particular device, such that no unauthorized 148
internal or external attacker can access, copy, or modify the data contained. 149

The strength of this protection is at least equal to that of the TEE environment. 150

o The Trusted Storage provides a minimum level of protection against rollback attacks. 151

The protection levels required against rollback attacks are defined in the Internal Core API 152
([TEE Core API] section 5.2). 153

It is accepted that the actual physical storage can be in the REE and so is vulnerable to actions 154
from outside of the TEE. 155

• Software outside the TEE is not able to call directly to functionality exposed by the TEE Internal APIs 156
or the Trusted Core Framework. 157

o The non-TEE software goes through protocols such that the Trusted OS or Trusted Application 158
verifies the acceptability of the TEE operation that the REE software has requested. 159

The GlobalPlatform TEE Protection Profile ([TEE PP]) specifies the typical threats the hardware and software 160
of the TEE needs to withstand. It also details the security objectives that are to be met in order to counter these 161
threats and the security functional requirements that a TEE SHOULD comply with. A security assurance level 162
of EAL2+ has been selected; the focus is on vulnerabilities that are subject to widespread, software-based 163
exploitation. 164

The GlobalPlatform TEE Security Evaluation Secretariat manages the GlobalPlatform TEE Certification 165
Scheme. Under this scheme, providers of TEE products are able to submit their products to this GlobalPlatform 166
Secretariat for independent evaluation of their conformance to the organization’s TEE Protection Profile. 167

2.2.2 Roots of Trust and TEE 168

The TEE MAY offer at least four different types of RoT services on a device: 169

• RoT Security Services used during initialization of a Trusted OS 170

• RoT Security Services offered to Trusted Application on the TEE platform 171

o E.g. Secure storage offered to TAs by the TEE 172

• RoT Security Services offered to remote entities (off device) by the TEE platform 173

o E.g. GlobalPlatform Trusted Management Framework 174

• RoT Security Services that are built on Trusted Applications alongside initial boot REE software 175

o E.g. firmware TPM as defined in [TCG] running in the TEE providing services to the REE boot 176

Section 5.2 clarifies RoT services used by a TEE during different potential initialization sequences. 177

For more detail about Roots of Trust and their use in the TEE context, see GlobalPlatform Root of Trust 178
Definitions and Requirements ([RoT Req]). 179

2.2.3 TEE Resources 180

A TEE uses three classes of resources. 181

In-package resource 182

These resources are implemented in-package and so are protected from a range of physical attacks. 183
In-package communication channels between these resources do not need to be encrypted as they are 184
considered physically secure. 185

18 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Off-package, cryptographically protected resource 186

These off-package resources include trusted replay-protected external non-volatile memory areas, and 187
trusted volatile memory areas. For these memory areas, the security is fulfilled by using proven 188
cryptographic methods (see [TEE PP]). Only the TEE SHALL be able to decrypt the plaintext from the 189
encrypted content stored in these locations. These resources are not protected by being in the same 190
package as the SoC, and so the ciphertext can be intercepted while transiting the device PCB. 191

Exposed or partially exposed resources 192

TEE controlled trusted areas of device components external to the package can contain data not guarded 193
by a proven cryptographic method (see [TEE PP]). This is needed to: 194

• Enable trusted DRAM-based buffers where the data is in the clear but is protected from attack by 195
unauthorized software while being manipulated (e.g. to protect TLS or DRM stream buffers). 196

• Provide space for a trusted screen frame store. 197

Neither of the above use cases necessarily requires encrypted RAM storage, just isolation from the 198
REE and other environments. 199

• Use keyboards and other I/O that are not accessible to the REE but are not guarded from physical 200
attack. 201

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 19 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.4 REE and TEE Resource Sharing 202

The following discussion is simplified to consider the presence of only one TEE and the REE. A TEE is similarly 203
isolated in component ownership and resource sharing from other environments such as SEs and other TEEs. 204

The REE has access to the untrusted resources, which can be implemented on-chip or off-chip in other 205
components on the PCB. The REE cannot access the trusted resources. This access control is enforced 206
through physical isolation, hardware logic based isolation, or cryptographic isolation methods. The only way 207
for the REE to get access to trusted resources is via any API entry points or services exposed by the TEE and 208
accessed through, for example, the TEE Client API. This does not preclude the capability of the REE passing 209
buffers to the TEE (and vice versa) in a controlled and protected manner. 210

Figure 2-2: Hardware Architectural View of REE and TEE 211

Public
Processing

Core(s)

Public
RAM

Protected
Area

External
Volatile
Memory

Replay
Protected Area

External
Non-Volatile

Memory

Trusted
Processing

Core(s)

Trusted
RAM

Trusted
Crypto

Accelerators

Trusted ROM Trusted
Peripherals

Trusted OTP
Cryptographic AssetsPublic OTP Fields

Public
Crypto

Accelerators

Public
PeripheralsPublic ROM

REE TEE

 212

20 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that the architectural view of TEE and REE illustrated in Figure 2-2 does not dictate any specific physical 213
implementation. Possible implementations include and are not limited to those illustrated in Figure 2-3. Some 214
capabilities MAY not be supportable by all implementations. For example, PCB A in Figure 2-3 cannot support 215
the Trusted User Interface. 216

Figure 2-3: Example Hardware Realizations of TEE 217

PCB C eSE

On-SoC

On-Chip
Security

Subsystem

µProcessing
Core(s)

Peripherals

OTP Fields

RAM Crypto
Accelerators

ROM

Key

SE Component

REE Component

Shared Component

PCB B
PCB A

On-SoC

Crypto
Accelerators

ROM

On-SoC

External
Memories

External
Security SoC

µProcessing
Core(s)

Peripherals

OTP Fields

RAM Crypto
Accelerators

ROM

µProcessing
Core(s)

RAM

External
Memories

OTP Fields

Peripherals

External
Memories

eSE

eSE

TEE Component

 218

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 21 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 TEE Software Interfaces 219

The TEE is a separate execution environment that runs alongside the REE and other environments and 220
provides security services to those other environments and to applications running inside those environments. 221
The TEE exposes sets of APIs to enable communication from the REE and other APIs to enable Trusted 222
Application software functionality within the TEE. 223

This chapter describes the general software architecture associated with the TEE, the interfaces defined by 224
GlobalPlatform, and the relationship between the critical components found in the software system. 225

 226

There is no mandated implementation architecture for these components and they are used here only as 227
logical constructions within this document. 228

22 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1 The TEE Software Architecture 229

Figure 3-1 outlines the relationship between the major software systems components. 230

Figure 3-1: TEE Software Architecture 231

Client
Application(s)

Rich OS Components

GPD TEE Client API

REE GPD TEE

Normal REE
Application(s)

REE
Communication

Agent

Public Device
Drivers

Platform Hardware

Shared
Memory

GPD TEE
Protocol
Specs

Trusted PeripheralsPublic Peripherals

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

Trusted OS Components

Trusted
Core

Framework

Trusted Kernel

TEE
Communication

Agent
Trusted
Device
Drivers

GPD TEE Internal Core API and
other GPD TEE Internal API specs

Shared Trusted Peripherals

Key

Fixed Isolation boundary

Transferable Isolation – Some peripherals
may be shared. Such sharing must be under
the control of other hardware under
permanent control of the TEE.

TEE Isolation Boundary (Defined by TEE PP)

Application interfaces

Low level message routing

Shared, or synchronized, Memory Image

Messages

Trusted
Application

Trusted
Application

Shared
Memory

View

 232

The goal of the TEE Software Architecture is to enable Trusted Applications (TA) to provide isolated and 233
trustworthy capabilities, which can then be used through intermediary Client Applications (CA). 234

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 23 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Please note: 235

• Just as there are many hardware solutions to implementing a TEE (see Figure 2-3) there can also be 236
many software configurations of a TEE (or even TEEs) in a device. The following sections discuss 237
some possible configurations. 238

• For simplicity, subsequent graphics show only the fixed isolation boundary discussed in Figure 3-1. 239
However, shared trusted peripherals (as illustrated and described in Figure 3-1) are possible in all 240
configurations. 241

24 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2 Components of a GPD TEE 242

3.2.1 REE Interfaces to the TEE 243

Within the REE, the architecture identifies an optional protocol specification layer, an API, and a supporting 244
communication agent. 245

• The REE Communication Agent provides REE support for messaging between the Client Application 246
and the Trusted Application. 247

• The TEE Client API is a low level communication interface designed to enable a Client Application 248
running in the Rich OS to access and exchange data with a Trusted Application running inside a 249
Trusted Execution Environment. 250

• The TEE Protocol Specifications layer exposed in the REE offers Client Applications a set of higher 251
level APIs to access some TEE services. TEE TA Debug API ([TEE TA Debug]) and TEE 252
Management Framework Specification ([TEE Mgmt]) currently use this stack layer. TA developers can 253
develop additional proprietary TEE APIs at the TEE Protocol Specifications layer. 254

3.2.2 Trusted OS Components 255

Within the TEE, the architecture identifies two distinct classes of software: the hosting code provided by 256
Trusted OS Components, and the Trusted Applications, which run on top of that code. 257

Trusted OS Components consist of: 258

• The Trusted Core Framework which provides OS functionality to Trusted Applications. 259

o The Trusted Core Framework is part of the TEE Internal Core API, discussed in section 3.5.1. 260

• Trusted Device Drivers which provide a communications interface to trusted peripherals that are 261
dedicated to the TEE. 262

Both the Trusted Applications and Trusted Core Framework make use of scheduling and other OS 263
management functions provided by the Trusted Kernel. The Trusted Device Drivers can be an integral part of 264
the Trusted Kernel or can be modular components, depending on the architecture of the Trusted Kernel. 265

• The TEE Communication Agent is a special case of a Trusted OS component. It works with its peer, 266
the REE Communication Agent, to safely transfer messages between CA and TA. 267

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 25 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.3 Trusted Applications (TAs) 268

The Trusted Applications communicate with the rest of the system via APIs exposed by Trusted OS 269
components. 270

• The TEE Internal APIs define the fundamental software capabilities of a TEE. 271

• Other non-GlobalPlatform internal APIs can be defined to support interfaces to further proprietary 272
functionality. 273

When a Client Application creates a session with a Trusted Application, it connects to an instance of that 274
Trusted Application. A Trusted Application instance has physical memory address space which is separated 275
from the physical memory address space of all other Trusted Application instances. 276

A session is used to logically connect multiple commands invoked in a Trusted Application. Each session has 277
its own state, which typically contains the session context and the context(s) of the Task(s) executing the 278
session. 279

It is up to the Trusted Application to define the combinations of commands and their parameters that are valid 280
to execute. 281

TAs can start execution only in response to an external command. They make their own choice as to when to 282
return from that command. Typical TAs follow a short command response life cycle, but complex TAs can 283
iterate for long periods while processing input and output events such as TUI. 284

GlobalPlatform compliant TEEs validated against one GlobalPlatform configuration (such as [TEE Init Config]) 285
require a minimum amount of memory to enable testing of that TEE. As such, a TEE that has passed 286
GlobalPlatform compliance has at least this minimum memory capability. As each TEE implementation can 287
use different build systems, and TAs are defined in terms of source code, that amount of memory is target 288
dependent but as general guidance it is possible to state the following: 289

• A compliant TEE SHALL be able to host TAs that use up to: 290

o Heap per TA: 5 Kbytes 291

o Stack per TA: 336 Bytes 292

o Binary TA code: 65 Kbytes ELF format file for one TA 293

• A compliant TEE SHALL be able to host two TAs at the same time to pass some tests: 294

o Binary TA code: 57 Kbytes ELF format file for TA 1 295

o Binary TA code: 44 Kbytes ELF format file for TA 2 296

As a reference, a stub TA with no calls to TEE functionality, using the same build method as applied above: 297

• Binary TA code: 22 Kbytes ELF format file 298

This information is provided to give the reader an indication of memory resources a minimal TEE system 299
SHALL provide. In reality, these are minimums and GlobalPlatform compliant TEEs are usually capable of 300
hosting far larger TAs and providing far larger stack and heap space. Contact your TEE implementers for 301
details. 302

 303

26 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.4 Shared Memory 304

One feature of a TEE is its ability to enable the CA and TA to communicate large amounts of data quickly and 305
efficiently via access to a memory area accessible to both the TEE and the REE. The API design allows this 306
feature to be implemented by the Communication Agents (Figure 3-1) either as memory copies or as directly 307
shared memory. The protocols for how to make use of this ability are defined by the TA designer, and enabled 308
by the TEE Client API and TEE Internal Core API. 309

Care has to be taken with the security aspects of using shared memory, as there is a potential for a Client 310
Application or Trusted Application to modify the memory contents asynchronously with the other parties acting 311
on that memory. 312

3.2.5 TA to TA Communication 313

A TA can communicate to another TA. This uses the same process used by the CA to communicate to the TA, 314
but a trustworthy indicator allows the receiving TA to be assured that communication has not been exposed 315
outside the TEE. This simplifies the matter of determining whether to trust the communication content and also 316
the metadata associated with the content, such as the identity of the calling TA. Because of this trust 317
relationship, a TA in another TEE in the same device is treated as though it is an REE-based CA, because the 318
receiving TA’s TEE has no reason to trust the calling TA’s TEE. 319

 320

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 27 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3 Relationship between TEE APIs 321

Figure 3-2 outlines the relationships between the various APIs and released specification documents. 322

Figure 3-2: TEE APIs 323

TEE Client APIs

TEE Client API

TEE Trusted User Interface API

TEE Internal Core API

TEE Sockets API

TEE TA Debug API

TEE Secure Element API

TA Post Mortem Reporting
Protocol

Trusted Core Framework API

Trusted Storage API for Data and Keys

TEE Internal APIs

Debug Log Message
Protocol

TEE Secure Element API (v1.0+)

Debug Log Message API

TEE_iSocket API

TEE_tcpSocket API (Annex A)

TEE_udpSocket API (Annex B)

TEE_tlsSocket API (Annex C)

Cryptographic Operations API

Time API

TEE Arithmetical API

TEE Debug General Extensions

Discovery API (v1.1)

Secure Channel API (v1.1)

Per ipheral API

Event API

TEE Trusted User Interface Low-level API

extension: Biometrics API

 324
 325

28 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4 The TEE Client API Architecture 326

GlobalPlatform specifies the TEE Client API in the GlobalPlatform TEE Client API Specification 327
([TEE Client API]). The TEE Client API concentrates on the interface to enable efficient communications 328
between a Client Application and a Trusted Application. 329

Higher level standards and protocol layers (known as TEE Protocol Specifications and functional APIs) can be 330
built on top of the foundation provided by the TEE Client API – for example, to support common tasks such as 331
trusted storage, cryptography, and run-time installation of new Trusted Applications. 332

Within the REE, this architecture identifies three distinct classes of component: 333

• The Client Applications, which make use of the TEE Client API 334

• The TEE Client API library implementation 335

• The REE Communication Agent, which is shared amongst all Client Applications, and which handles 336
communications between the REE and the TEE 337

The REE implementer can choose to expose the TEE Client API to the user layer, the privileged layer, or both. 338
If exposed in the privileged layer, then drivers or any other privileged components can be considered to take 339
the place of Client Applications. The API is typically blocking on a per thread basis, but can be called 340
asynchronously from multiple threads. 341

A typical application will use the TEE Client API to establish communications with the TEE, establish a session 342
with a trusted application, set up shared memory, send trusted application specific commands to invoke a 343
trusted service, and then cleanly shut down communications. 344

More information on the TEE Client API can be found in [TEE Client API]. 345

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 29 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5 The TEE Internal API Architecture 346

GlobalPlatform specifies a series of APIs to provide a common implementation for functionality typically 347
required by many Trusted Applications. The TEE Internal Core API is specified in the GlobalPlatform TEE 348
Internal Core API Specification ([TEE Core API]). The TEE Internal Core API concentrates on the various 349
interfaces to enable a Trusted Application to make best use of the standard TEE capabilities. Additional 350
low-level functionality is provided by TEE Internal APIs such as the TEE Secure Element API, TEE Sockets 351
API, and TEE TA Debug API. 352

Higher level standards and protocol layers can be built on top of the foundation provided by the TEE Internal 353
APIs – for example, to support common tasks such as creating a trusted password entry screen for the user, 354
confidential data management, financial services, and Digital Rights Management. 355

Within the TEE, this architecture currently identifies three distinct classes of component: 356

• The Trusted Applications, which make use of TEE Internal APIs 357

• The TEE Internal API library implementations 358

• The Trusted OS Components, which are shared amongst all Trusted Applications, and which provide 359
the system level functionality required by the Trusted Applications 360

3.5.1 The TEE Internal Core API 361

The TEE Internal Core API provides a number of different subsets of functionality to the Trusted Application. 362

Table 3-1: APIs within TEE Internal Core API 363

API Name Description

Trusted Core Framework API This API provides integration, scheduling, communication, memory
management, and system information retrieval interfaces.

Trusted Storage API for Data
and Keys

This API provides Trusted Storage for keys and general data.

Cryptographic Operations API This API provides cryptographic capabilities.

Time API This API provides support for various time-based functionality to
support tasks such as token expiry and authentication attempt
throttling.

TEE Arithmetical API This API provides arithmetical primitives to create cryptographic
functions not found in the Cryptographic Operations API.

Peripheral API This API enables a Trusted Application to interact with peripherals via
the Trusted OS.
Initially defined in GlobalPlatform TEE Trusted User Interface
Low-level API ([TEE TUI Low]), then defined in [TEE Core API]
beginning with v1.2.

Event API This API supports the event loop, which enables a TA to enquire for
and then process messages from types of peripherals including
pseudo-peripherals.
Initially defined in [TEE TUI Low], then defined in [TEE Core API]
beginning with v1.2.

 364
More information on the TEE Internal Core API can be found in [TEE Core API]. 365

30 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.1.1 Peripheral and Event Access 366

With the addition of the Peripheral and Event APIs in [TEE Core API] v1.2, the TEE Internal Core API supports 367
asynchronous interfacing for a TA to TEE internal and external events, alongside a generic interface to 368
peripherals. 369

Some peripherals offer multiple channels, addressing capability, or other mechanisms which have the potential 370
to allow access to multiple endpoints. It can be convenient in some scenarios to assign different logical 371
endpoints to different TAs, while supporting a model of exclusive access to the peripheral per TA. 372

One approach, shown in Figure 3-3, is to implement a separate driver interface for each of the multiple 373
endpoints. For example, a driver for an I2C interface can support separate endpoints for each I2C address, 374
while itself being the exclusive owner of the I2C peripheral. Such drivers SHOULD ensure that information 375
leakage between clients of the different endpoints is prevented. 376

Figure 3-3: Example of Multiple Access to Bus-oriented Peripheral (informative) 377

 378
 379

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 31 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.2 The TEE Sockets API 380

The GlobalPlatform TEE Sockets API ([TEE Sockets]) provides a common modular interface for the TA to 381
communicate to other network nodes, acting as a network client. 382

• The TEE Sockets API is the general API for accessing and handling client sockets of various kinds. 383

• TEE Sockets API Annex A specifies the TEE_iSocket interface for Transmission Control Protocol 384
(TCP). 385

• TEE Sockets API Annex B specifies the TEE_iSocket interface for User Datagram Protocol (UDP). 386

• TEE Sockets API Annex C specifies the TEE_iSocket interface for Transport Layer Security (TLS). 387

Figure 3-4: Example TEE Sockets API Architecture 388

Trusted OS Components

Trusted Kernel

Rich OS
Components

REE TEE

Bridge
Component
(may or may
not be OS

component)

REE
Communication

Agent

GPD TEE Internal Core API

Trusted Application

TEE
Communication

Agent

Sockets API
Providing Sockets

Transport
(e.g. UDP/IP, TCP/IP)

Trusted
Core

Framework

Platform Hardware

IP-related HardwareIP-related Hardware

Trusted
Device
Drivers

GPD TEE Sockets API

Client Application

GPD TEE
Client API

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

Sockets Security
(e.g. TLS)

A B Sockets Transport
(e.g. UDP/IP, TCP/IP)

Drivers

 389

The above diagram shows two routing options (A) and (B) inside the TEE. These are options because only the 390
security layer has to reside inside the TEE. It is expected that a real implementation would need only one of 391
these options (A) or (B). Typically functionality such as UDP/IP and TCP/IP can be placed in the REE without 392
security risks, so placing Sockets Transport in the TEE is optional as well. 393

More information on the TEE Sockets API can be found in the GlobalPlatform TEE Sockets API Specification 394
([TEE Sockets]). 395

32 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.3 The TEE TA Debug API 396

The TEE TA Debug API provides services that are designed to support TA development and/or compliance 397
testing of the TEE Internal APIs. 398

The Post Mortem Reporting (PMR) service supports compliance testing and TA debug. This service provides 399
a method for a TEE to report to clients the termination status of TAs that enter the Panic state. Without this 400
capability it is not possible to certify correct functionality of the TEE internal APIs, as the Panic state is used to 401
report various error conditions that need to be tested. 402

The Debug Log Message (DLM) service is useful in a TA debug scenario. This service provides a method for 403
a TA to report simple debug information on authorized systems. It can report to client applications, off-device 404
hardware, or both. 405

More information about the TEE TA Debug API Architecture can be found in the GlobalPlatform TEE TA Debug 406
Specification ([TEE TA Debug]). 407

 408

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 33 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.4 The TEE Secure Element API 409

The TEE Secure Element API is an enabling thin layer that supports communication to Secure Elements (SEs) 410
connected to the device within which the TEE is implemented. This API defines a transport interface based on 411
the Open Mobile API specification ([Open Mobile]). 412

SEs can be connected in a shared way via the REE or exclusively to the TEE. 413

• An SE connected exclusively to the TEE is accessible by a TA without using any resources from the 414
REE. Thus the communication is considered trusted. 415

• An SE connected to the REE is accessible by a TA using resources lying in the REE. It is 416
recommended that the Secure Channel API be used to protect the communication between the TA 417
and the SE against attacks in the REE. 418

Figure 3-5: Typical Device with Multiple SE Readers 419

Platform
Hardware

Trusted OS Components
Rich OS

Components

REE TEE

GPD TEE Internal Core API

Trusted
Core

Framework

Client Application

TEE Client API

Trusted Kernel

eSE

TEE
Communication

Agent

REE
Communication

Agent

Bridge
component

Trusted ApplicationGeneral REE
Application

Trusted
Device
Drivers

SE driver(s)

Open Mobile API

Untrusted SE Readers

GPD TEE SE API

Trusted SE Readers

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

eSE

 420

More information about the TEE Secure Element API can be found in the GlobalPlatform TEE Secure Element 421
API Specification ([TEE SE API]). 422

34 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.5 The TEE Trusted User Interface API 423

The Trusted User Interface API permits the display of screens to the user while achieving three objectives: 424

• Secure display – Information displayed to the user cannot be accessed, modified, or obscured by any 425
software within the REE or by an unauthorized application in the TEE. 426

• Secure input – Information entered by the user cannot be derived or modified by any software within 427
the REE or by an unauthorized application in the TEE. 428

• Security indicator – The user can be confident that the screen displayed is actually a screen displayed 429
by a TA. 430

Figure 3-6: TEE with TUI Architecture 431

Platform Hardware

Touchscreen/
keyboard

peripherals

Display
peripheral

Other
trusted

peripherals

REE peripherals

REE

OS Components

GPD TEE Client API

OS
Application

OS Kernel

Trusted OS Components

TEE

GPD TEE
Internal Core API

Trusted Application

Trusted Kernel

GPD TEE
TUI API(s)

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

 432

Remote parties SHOULD NOT treat the user’s identification as a trustworthy identification by itself, but only in 433
combination with a factor only known to the TA in the TEE (such as a key). 434

Use of the TEE TUI also provides a third party the guarantee of non-interference. The remote party can have 435
confidence that what the user signs is what they actually saw, and not some information spoofed into the UI, 436
replacing the desired display information. 437

More information about the TEE Trusted User Interface can be found in the GlobalPlatform TEE Trusted User 438
Interface API Specification ([TEE TUI API]) and in the GlobalPlatform TEE Trusted User Interface Low-level 439
API ([TEE TUI Low]). 440

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 35 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API 441

Biometric capabilities and their functionality as present in the hardware of the TEE are made available to TAs 442
via the Biometrics API. The biometric capabilities are contained in the Biometric Sub-system, consisting of 443
Biometric Peripherals which use Biometric Sensors. 444

• A Biometric Sub-system is a component of the TEE, composed of all TEE Biometric Peripherals in the 445
device plus any supporting TEE or REE software and hardware. 446

• A Biometric Peripheral is a component of the Biometric Sub-system. 447

• A Biometric Sensor provides the Live Image and possibly other related services. 448

In general, it is an implementation choice as to whether particular functionality is implemented in the generic 449
Biometric Sub-system, the Biometric Peripheral, or the Biometric Sensor. Such decisions SHALL be 450
transparent to the calling TA. 451

When interacting with the Biometric Sub-system of the TEE, the first step is the discovery of the available 452
biometric capabilities present in the platform. This is performed using the standard discovery mechanisms in 453
the Peripheral API. 454

The relying TA interacts with the Biometric Peripheral; it SHALL NOT be possible to interact directly with the 455
Biometric Sensor. 456

Once the biometric capabilities are known, the TA can select a Biometric Peripheral and use its service, as 457
shown for the specific case of fingerprint biometrics in Figure 3-7. 458

Figure 3-7: Architecture Overview – Multiple Biometrics 459

Trusted OS Components

Other Biometric Peripherals

Biometric Sub-System

Peripheral Discovery

Specific Fingerprint Biometric
Peripheral(s)

GlobalPlatform Internal APIs

Relying TAs (RTAs)

Fingerprint
Sensor

Generic communications

Implementation defined
communications

Peripheral API Other GP APIEvent APIBiometrics API Extensions

Communications defined by this
GlobalPlatform specification

Other Biometric Peripherals
Other Biometric Peripherals

Enroll VerifyAssociate

Event
Management

 460
 461

36 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The Biometric Sub-system is integrated into the TEE and provides a service through the established interfaces. 462
It MAY utilize TEE secure storage, along with REE and SE capabilities as appropriate and available on any 463
specific platform. Figure 3-8 shows the general positioning of the Biometric Sub-system, the Biometric 464
Peripheral, and the Biometric Sensor in a conceptual TEE architecture. 465

Part or all of the Biometric Peripheral MAY optionally be implemented as TAs executing on the TEE, or in one 466
of the available SEs executing as “Match on Card”. In addition, some functionality that is not security-critical 467
MAY be handled by Biometric Sub-system components in the REE. Each variation provides different 468
advantages and limitations; the choice of architecture in this respect is left to the device manufacturer. 469

Regardless of where the Biometric Sub-system is placed, its execution and all data, whether long term stored 470
or run-time, SHALL be protected using the security criteria of the TEE for Trusted Storage. 471

Figure 3-8: Architecture Overview – Biometrics 472

GPD TEE Client API

REE GPD TEE

Normal REE
Application(s)

REE
Communication

Agent

Rich OS Components

GPD TEE Internal API and
other GPD TEE APIcs

TEE
Communication

Agent

Trusted OS Components

Relying CAs
(RCAs)

Relying TAs
(RTAs)

Biometric
Sub-System

Biometric
Sensor(s)

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

Platform Hardware

GPD TUI Extension:
TEE Biometrics API

Generic communications

RCA / RTA specific protocol

Communications defined by
this specification

REE based Enrollment
Support App (Optional)

Biometric
Peripheral(s)

Implementation defined
communications

Messages

 473
 474

 475

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 37 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6 Variations of TEE Architecture Found on Real Devices 476

Real devices contain extensions to the basic TEE architecture and can potentially house multiple TEEs. The 477
GlobalPlatform TEE Protection Profile ([TEE PP]) requires that a TEE, including its proprietary extensions, is 478
isolated from other environments including other TEEs. 479

3.6.1 A GPD TEE Can Have Proprietary Extensions 480

A compliant GPD TEE can offer additional APIs to Trusted Applications and can offer other access methods 481
to REE applications. This allows flexibility in implementation in special markets, and provides a route for growth 482
of the GlobalPlatform TEE specifications as new APIs are found to be useful and hence adopted by 483
GlobalPlatform as new TEE specifications. 484

Figure 3-9: Compliant GPD TEE with Proprietary Extensions 485

Trusted OS Components

Trusted Kernel

Rich OS Components

GPD TEE

GPD TEE
Internal API(s)

Extension
only

Trusted
Application

TEE
Communication

Agent

Trusted
Core

Framework

GlobalPlatform
only

Trusted
Application

Platform Hardware Trusted Peripherals

Trusted
Device
Drivers

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

GPD TEE
Client API

REE

Client
Application(s)

REE
Communication

Agent

GPD TEE
Protocol

Specifications

Other non-GP
Client API

Client
Application(s)

Shared
Memory

Other non-GP
TEE Protocol
Specifications

Proprietary
Extension API

Extension
aware

Trusted
Application

 486

Please note: 487

• This is one example configuration of a proprietary extension of a compliant GPD TEE, and other 488
configurations can exist. 489

• There is no specified limitation on the number of OSes in an REE or the number of TEEs in one 490
device. 491

• Shared trusted peripherals (as illustrated and described in Figure 3-1) are possible in the configuration 492
shown in Figure 3-9. 493

 494

38 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.2 A Device Can Have Many TEEs 495

There is no specified limitation on the number of TEEs in a device. The TEE Client API provides a methodology 496
for an REE application to communicate to a specified GPD TEE. 497

For example, a device can have hardware such as that shown in Figure 3-10. The illustrated device has three 498
TEEs, each created using a different example method. Each will have an independent set of innately trusted 499
components, and will be isolated from the other TEEs and the REE, at least to the level of the GlobalPlatform 500
TEE Protection Profile ([TEE PP]). 501

Figure 3-10: Example of System Hardware with Multiple TEEs 502

PCB

On-SoC

On-Chip
Security

Subsystem

External
Security SoC

Key

Component of TEE 1

Component of TEE 2

Component of TEE 3

REE Component

Shared Component

RAM Crypto
Accelerators

µProcessing
Core(s)

ROM Peripherals

OTP Fields

External
Memories

 503

Note that inside one GlobalPlatform TEE Protection Profile boundary there can only be one Trusted OS and 504
hence one set of TEE resources. 505

This does not prevent the GPD TEE from sharing resources with other TEEs in much the same way that it can 506
share with the REE. For example, a Trusted User Interface is typically owned in an untrusted mode by the 507
REE and only taken over by the TEE and put in a trusted state when needed. With multiple TEEs, such a 508
Trusted UI would potentially be shared between all TEEs and the REE, with only one having active ownership 509
at one time. 510

Communications between TEEs is treated by a Trusted Application on the initial supposition that the endpoint 511
is untrusted (in the same way that a TA is designed to treat anything outside its local TEE). 512

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 39 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-11 shows an example with two GPD TEEs (i.e. two TEEs that are compliant with a GPD TEE 513
functionality configuration and certified according to [TEE PP]). Each GPD TEE exists within its own isolation 514
boundary and does not trust components outside of the boundary. Therefore, from the viewpoint of 515
GPD TEE (a), GPD TEE (b) is assumed to be untrustworthy as it is not part of GPD TEE (a). Likewise, 516
GPD TEE (b) trusts neither the REE nor GPD TEE (a). 517

If any OS in the device wishes to use a GPD TEE based set of innately trusted components to secure its boot, 518
then it is up to the boot structure of that Rich OS (i.e. its BIOS, UEFI, etc.) to choose which GPD TEE it uses. 519
Potentially in a system with more than one Rich OS, each can choose to use a different TEE. 520

Figure 3-11: Multiple GPD TEEs in One Device 521

Trusted OS
Components

Rich OS
Components

GPD TEE (b)

GP only
Trusted

Application

GPD TEE APIs

Platform Hardware

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

GPD TEE Client API

REE

Client
Application(s)

using
GPD TEE (a)

REE
Communication

Agent

Client
Application(s)

using
GPD TEE (b)

TEE
Communication

Agent

Trusted OS
Components

GPD TEE (a)

GP only
Trusted

Application

GPD TEE APIs

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

TEE
Communication

Agent

 522

Please note: 523

• This is one example configuration of a system with two GPD TEEs, and other configurations can exist. 524

• There is no specified limitation on the number of TEEs and OSes in the REE in one device. 525

• Shared trusted peripherals (as illustrated and described in Figure 3-1) are possible in the configuration 526
shown in Figure 3-11. 527

40 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant 528

A device can even have environments that claim to be TEEs but are not GlobalPlatform compliant TEEs. 529

Clearly if such an environment does not meet GlobalPlatform specifications then GlobalPlatform cannot make 530
any assertions about that environment; however, the environment does not raise an issue because a compliant 531
GPD TEE SHALL be isolated from it as specified in the GlobalPlatform TEE Protection Profile ([TEE PP]). 532

Figure 3-12: GPD TEE alongside Unknown TEE 533

OS
Components

Rich OS
Components

Non-GPD TEE

 Application

APIs

Platform Hardware

Is
ol

at
io

n
de

fin
ed

 b
y

un
kn

ow
n

ru
le

s

GPD TEE
Client API

REE

Client
Application(s)

using
GPD TEE

REE
Communication

Agent

Client
Application(s)

using
non-GP TEE

TEE
Communication

Agent

Trusted OS
Components

GPD TEE

GP
Trusted

Application

GPD TEE APIs

Is
ol

at
io

n
de

fin
ed

 b
y

G
PD

 T
EE

 P
P

TEE
Communication

Agent

Non-GP TEE
Client API

 534

Please note: 535

• This is one example configuration of an unknown TEE alongside a GPD TEE, and other configurations 536
can exist. 537

• There is no specified limitation on the number of GPD TEEs, non-GlobalPlatform TEEs, and OSes in 538
the REE in one device. 539

• Shared trusted peripherals (as illustrated and described in Figure 3-1) are possible in the configuration 540
shown in Figure 3-12. 541

 542

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 41 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 TEE Management 543

Management of the TEE and Trusted Applications running in the TEE is described in the TEE Management 544
Framework specification ([TEE Mgmt]). The remote management life cycles of Trusted Applications, 545
GlobalPlatform style management Security Domains, and the TEE itself are also detailed in that specification. 546

Each GlobalPlatform style Security Domain (SD) has a nominal off-device “owner” with rights to control SDs 547
and TAs directly and indirectly below the given SD. The exception to this is when the child SD is a root SD 548
(rSD), because root SDs form a management isolation boundary which limits parental interference. 549

The TEE Management Framework provides means to securely manage Trusted Applications in a TEE. The 550
following three layers are described. 551

Administration operations 552

• Defines the set of supported operations to manage Trusted Applications and Security Domains, the 553
conditions of use and the detailed behavior of each operation. 554

Security model 555

• Defines who the actors are and how the different business relationships and responsibilities can be 556
mapped on the concept of Security Domains with privileges and associations. 557

• Defines the security mechanisms used to authenticate the entities establishing a communication 558
channel, to secure the communication, and to authorize the administration operations to be performed 559
by Security Domains. 560

• Defines schemes for key and data provisioning and describes the associated key management. 561

Protocols 562

• Defines the command set (over the TEE Client API) to be used to perform administration operations. 563

• Defines the command set to be used to establish a secure session with a Security Domain. 564

 565

42 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 4-1: TEE Management Framework Structure 566

pr
ot

oc
ol

(s
)

op
er

at
io

ns
se

cu
rit

y

SD

Envelope

Administered Device

Emits
authorizations

Performs
operations

TEEREE

Operates
service(s)

3
remote protocol

2

1

Administration
Server(s)

cmds

Verifies
authorizations

TEE
Communication

Agent

TEE Client
API

Authentication or Authorization Rights

Operation

Envelope

 567

 568

 569

The following diagram shows an example of possible management relationships between Security Domains 570
and between Security Domains and Trusted Applications enabled by the GlobalPlatform TEE Management 571
Framework specification ([TEE Mgmt]). 572

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 43 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 4-2: Security Domain Management Relationships 573

TA-211 TA-212

TA-111

TA-112

Factory
Installed
and TMF
Managed

TMF
Installed

and
Managed

TA-x

Root Security Domain – a GP
compliant domain over which
other domains have strictly
limited management abilities

Security Domain – a GP
compliant domain which may
have a set of management
abilities

Trusted Application – a GP
compliant TEE Application

General management control

Strictly limited management

Factory installed

In-Field installed

SD-x

rSD-x

rSD-2

SD-21 SD-22

SD-11TA-01

rSD-0 Audit
Pseudo-rSD

TA-11

rSD-1

 574
The above diagram is just an example of how a management structure can be developed on a platform. 575

 576

In Figure 4-2: 577

• rSD-1 is the direct parent of TA-11. 578

• rSD-1 is the indirect parent of TA-111. 579

• The owner of rSD-1 can potentially control any SD-1* or TA-1* but cannot control any of the other 580
current SDs on the example platform, due to rSD-2. 581

• The owner of rSD-1 can install rSD-2 but cannot interact with any of rSD-2’s direct or indirect children 582
and is strictly limited in the operations it can perform on rSD-2. 583

• From a remote entity point of view, all the rSDs can be considered Roots of Trust because there is no 584
entity which can vouch for their “boot” state but they can vouch for the existence of all their child SDs 585
and TAs. 586

 587

There are some exceptions to the above rules, such as with regard to factory reset. For more detail, see 588
[TEE Mgmt]. 589

 590

44 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

[TEE Mgmt] places no restriction on the number of SDs (including rSDs) or TAs that can be installed in the 591
factory, or in the field. Particular platform implementations have limits on available storage resources and these 592
limits affect the numbers of TAs and SDs that might be deployed on that platform. 593

[TEE Mgmt] defines various SD and TA management operations such as installation, removal, updating, 594
blocking, and personalization. Particular platforms can choose to restrict the availability of certain TEE 595
Management Framework management operations on that platform and similarly particular Security Domains 596
can choose to limit the operations available to their child Security Domains. 597

Future specifications from GlobalPlatform are expected to provide defined configurations for particular sorts of 598
devices (e.g. IoT and smartphone), enabling those interested in developing and managing TAs to understand 599
the minimum expectations on the sort of TA and SD management structures that might be created on those 600
devices. 601

 602

The GlobalPlatform definition of whether a module is a Root Of Trust depends upon whether other entities can 603
report a measurement of the module under consideration. Since every SD is capable of acting as an Audit SD, 604
they are all optionally capable of reporting the TEE properties gpd.tee.trustedos.implementation.binaryversion 605
and gpd.tee.firmware.implementation.binaryversion. These values MAY contain measurements of the Trusted 606
OS and other underlying firmware in the TEE. 607

• If the TEE does not report a measurement of its boot state through this interface, then the rSDs are 608
Roots of Trust for the [TEE Mgmt] services because they impose integrity requirements on other 609
security domains and the contents of those domains 610

• If the TEE does report this measurement, then the measuring boot code is the Root of Trust and the 611
[TEE Mgmt] services are considered provided by security modules vouched for by the RoT boot stage 612
that made that measurement. 613

 614

More information about TEE management can be found in [TEE Mgmt]. 615

 616

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 45 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 TEE Implementation Considerations 617

The TEE and its capabilities MAY be closely coupled to the capabilities of the REE and the state of the device 618
it resides in. It is therefore important for the developer of REE Client Applications, and even the Rich OS itself, 619
to understand the availability of the TEE capabilities, along with the general security states (and hence 620
vulnerabilities) that can be found in typical devices. Toward that end, this chapter lists some of the possible 621
device states and discusses the notions of Boot Time Environment and Run Time Environment. Some 622
clarifications are given regarding dependencies and the availability of TEE functionalities with respect to the 623
Rich OS. 624

5.1 Device States 625

Devices implementing a TEE can be found in a number of states that are not defined in GlobalPlatform 626
specifications, but that are still useful for the developer to understand. 627

Devices implementing the TEE provide trusted mechanisms to control the corresponding security 628
environments and transitions. 629

The specific implementations and characteristics of these and other similar states are up to the device 630
manufacturers and the OEMs. 631

Examples of some such states: 632

• Devices in manufacturing, which can offer neither security nor functional compliance at various stages 633
of their creation. 634

• Development devices, which might have reduced security but provide TEE compliant functionality. 635

• Production devices, which provide TEE compliant functionality and security. 636

• And finally, devices that have somehow failed, and which will still block access to TEE held user data, 637
while enabling various levels of debug access through secure mechanisms. 638

46 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2 Boot Time Environment 639

The term “boot time” refers to the time frame from the reset/power-up of the underlying hardware to the time 640
an operating system has completed its initialization and loading. Based on this definition, boot time software 641
also includes any firmware/ROM code that takes over the control of execution after the device is reset. 642

The integrity of the initial trusted boot code is intrinsically guaranteed. Furthermore, flexible trusted boot 643
requirements and OEM-dependent boot operations require that, during boot time, some services or operations 644
need to be performed in a trusted execution environment. Therefore, a minimal set of the TEE capabilities 645
exists during the device boot time. To enable some of these services, a Trusted OS (or some simplified version 646
thereof) can also exist. 647

A typical TEE secure boot is based on three key components: 648

• A fixed set of innately trusted components, which typically is the smallest distinguishable set of 649
hardware and/or software that is inherently trusted and tied to the logic/environment where trusted 650
actions are performed 651

• Immutable boot software that is stored, for example, in in-chip TEE ROM 652

• The isolated TEE where this security critical boot software is executed 653

 654

It is not the current intention of GlobalPlatform to define the boot time capabilities of a TEE; however, if a TEE 655
Trusted OS is required to function during boot then it is recommended for compatibility and ease of 656
development that it implements as much of a subset of the TEE Internal APIs as it is capable of providing. 657

5.2.1 Typical Boot Sequence 658

The figures that follow depict three simplified examples of secure boot of a TEE. Common to all solution 659
examples, the device boots from the TEE boot ROM code inside the SoC containing the TEE (which might not 660
be the SoC containing the REE). The TEE boot ROM can then load further firmware components and verify 661
them before execution. To verify them, code in the boot ROM uses the information found in the fixed set of 662
innately trusted hardware components (for example, information stored in the TEE boot ROM or one-time 663
programmable (OTP) fuses). The firmware components are typically stored in rewriteable non-volatile 664
memories such as flash storage but can also be part of the TEE ROM code. 665

Before exiting the secure boot process, the firmware or the TEE platform code loads and can verify REE boot 666
loader(s) before their execution. Typically, if any loaded software component verification fails up to this point, 667
the boot process halts and the device reboots with a possible error report/indication. In a successful case, the 668
REE boot loader starts the process of loading the Rich OS or further boot loader components. 669

OEMs can differentiate by implementing trusted firmware to be run early in the boot sequence. This gives the 670
OEM the flexibility to bring in its own keys, certificate format, signature schemes, etc. Figure 5-1 through 671
Figure 5-3 illustrate example boot sequences, and others can exist. 672

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 47 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-1: Boot Sequence: Trusted OS Early Boot 673

Immutable
ROM Code

Factory Only
Programmable

Storage

Device Reset
Event

TEE Boot Stages
“Firmware”
(Optional)

TEE Runtime Platform Code /
Trusted OS

TEE primary boot stage

TEE secondary boot stage(s)

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code / Rich OS
(optionally Certified/Verified)

Loads & Verifies

Loads & Verifies

Order of first execution

REE TEE

n

1

2

3

4

6

Key

TEE iR
oT

R
EE iR

O
T

TEE eR
oTs *

R
EE eR

O
T *

5

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

Loads & Verifies

Loads & Verifies

48 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-2: Boot Sequence: ROM-based Trusted OS 674

Factory Only
Programmable

Storage

Device Reset
Event

Immutable ROM Code /
TEE Platform Code / Trusted OS

1

2

REE TEE
TEE iR

oT

TEE primary boot stage

Order of first executionn

Key

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code / Rich OS
(optionally Certified/Verified)

4

R
EE iR

O
T

R
EE eR

O
T *

3 Loads & Measures

Loads & Measures

TEE System Architecture – Public Review v1.1.0.10 (Target v1.2) 49 / 50

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-3: Boot Sequence: Trusted OS On-demand Boot 675

Immutable
ROM Code

Factory Only
Programmable

Storage

Device Reset
Event

TEE Runtime
Platform Code / Trusted OS

Loads & Verifies

TEE boot stage fetches
signed code from file
system

TEE boot stage
verifies

next stage before
execution

1

2

3

6

7

REE TEE
TEE iR

oT

REE Boot Stages
(optionally Certified/

Verified)

REE Initial Boot Code

REE Platform Code /
Rich OS

(optionally Certified/
Verified)

5

R
EE iR

O
T

R
EE eR

O
T *

4

TEE eR
oT *

TEE Boot Stages
“Firmware”
(Optional)

TEE primary boot stage

TEE secondary boot stage(s)

Order of first executionn

Key

Each module is RoT if no earlier
stage can be made to attest to
that module’s boot state

*

Loads & Verifies

Loads & Verifies

 676

50 / 50 TEE System Architecture – Public Review v1.1.0.10 (Target v1.2)

Copyright  2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3 Run-Time Environment 677

The term “run-time” refers to a property of the overall execution environment where an operating system has 678
fully completed its initialization/boot operations and is fully operational, as opposed to the interval before the 679
operating system is fully operational, as discussed in section 5.2. 680

The dependencies between the Trusted OS and the Rich OS are implementation dependent. Current 681
GlobalPlatform specifications standardize the behavior of the system once the Rich OS is operational. This 682
does not mean that there are no capabilities when the Rich OS is not operational (see section 5.2). 683

5.3.1 TEE Functionality Availability 684

TEE functionality and availability can have dependencies on the REE. 685

The TEE functionality (i.e. providing GlobalPlatform compliant response to Client API or Internal API 686
commands) is guaranteed to be available whenever the REE is available for REE Client Applications. 687

The above guarantee of availability to Client Applications means that effects such as power state changes, 688
where the Client Applications are not aware of such a change, are not noticeable via their connection to Trusted 689
Applications unless a Trusted Application chooses to expose such information. 690

 691

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 TEE Device Architecture Overview
	2.1 Typical Chipset Architecture
	2.2 Hardware Architecture
	2.2.1 TEE High Level Security Requirements
	2.2.2 Roots of Trust and TEE
	2.2.3 TEE Resources
	2.2.4 REE and TEE Resource Sharing

	3 TEE Software Interfaces
	3.1 The TEE Software Architecture
	3.2 Components of a GPD TEE
	3.2.1 REE Interfaces to the TEE
	3.2.2 Trusted OS Components
	3.2.3 Trusted Applications (TAs)
	3.2.4 Shared Memory
	3.2.5 TA to TA Communication

	3.3 Relationship between TEE APIs
	3.4 The TEE Client API Architecture
	3.5 The TEE Internal API Architecture
	3.5.1 The TEE Internal Core API
	3.5.1.1 Peripheral and Event Access

	3.5.2 The TEE Sockets API
	3.5.3 The TEE TA Debug API
	3.5.4 The TEE Secure Element API
	3.5.5 The TEE Trusted User Interface API
	3.5.6 The Biometrics API – an Extension of TEE TUI Low-level API

	3.6 Variations of TEE Architecture Found on Real Devices
	3.6.1 A GPD TEE Can Have Proprietary Extensions
	3.6.2 A Device Can Have Many TEEs
	3.6.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant

	4 TEE Management
	5 TEE Implementation Considerations
	5.1 Device States
	5.2 Boot Time Environment
	5.2.1 Typical Boot Sequence

	5.3 Run-Time Environment
	5.3.1 TEE Functionality Availability

