

Copyright  2012-2016, GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual property rights
(collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of the specification or other work
product set forth in this document, and to provide supporting documentation. The technology provided or described herein is subject to updates,
revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent
with that agreement is strictly prohibited.

GlobalPlatform Device Technology
TEE Secure Element API
Version 1.1.1

Public Release
November 2016
Document Reference: GPD_SPE_024

 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE Secure Element API – Public Release v1.1.1 3 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Contents
1 Introduction .. 6
1.1 Audience ... 6
1.2 IPR Disclaimer... 6
1.3 References .. 6
1.4 Terminology and Definitions .. 7
1.5 Abbreviations and Notations ... 9
1.6 Revision History .. 11

2 Background .. 12
2.1 C Language vs. ISO 7816-4 Language Conventions [new section in v1.1.1] 13

3 Requirements for TEE Secure Element API .. 14
3.1 Assumptions and Scope ... 14

3.1.1 Error Handling .. 14
3.1.2 Implementations ... 14

4 API Overview .. 15

5 Transport Layer API ... 17
5.1 Header File .. 17

5.1.1 API Version [new section in v1.1.1].. 18
5.2 Constants .. 19

5.2.1 Return Codes ... 19
5.2.2 Secure Element Reader Properties ... 19
5.2.3 Secure Element Applet’s AID ... 19
5.2.4 Handles .. 19

5.3 API Levels and Classes .. 20
5.4 Specification Version Number Property .. 21
5.5 SEService Class ... 22

5.5.1 TEE_SEServiceOpen ... 22
5.5.2 TEE_SEServiceClose .. 23
5.5.3 TEE_SEServiceGetReaders .. 24

5.6 SEReader Class .. 25
5.6.1 TEE_SEReaderGetProperties ... 25
5.6.2 TEE_SEReaderGetName .. 26
5.6.3 TEE_SEReaderOpenSession .. 27
5.6.4 TEE_SEReaderCloseSessions .. 28

5.7 SESession Class ... 29
5.7.1 TEE_SESessionGetATR .. 29
5.7.2 TEE_SESessionIsClosed ... 30
5.7.3 TEE_SESessionClose ... 31
5.7.4 TEE_SESessionCloseChannels .. 31
5.7.5 TEE_SESessionOpenBasicChannel ... 32
5.7.6 TEE_SESessionOpenLogicalChannel ... 34

5.8 SEChannel Class .. 36
5.8.1 TEE_SEChannelClose ... 36
5.8.2 TEE_SEChannelSelectNext ... 37
5.8.3 TEE_SEChannelGetSelectResponse .. 38
5.8.4 TEE_SEChannelTransmit .. 39
5.8.5 TEE_SEChannelGetResponseLength ... 42

6 Service Layer APIs ... 43

4 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1 Discovery API .. 43
6.1.1 Property .. 43
6.1.2 Discovery Handle ... 43
6.1.3 TEE_SEDiscoveryByAIDInit ... 44
6.1.4 TEE_SEDiscoveryByHistoricalBytesInit ... 45
6.1.5 TEE_SEDiscoveryByATRInit ... 46
6.1.6 TEE_SEDiscoveryFirstMatch ... 47
6.1.7 TEE_SEDiscoveryNextMatch .. 48
6.1.8 TEE_SEDiscoveryIsDone .. 49
6.1.9 TEE_SEDiscoveryClose .. 49

6.2 Secure Channel API .. 50
6.2.1 Property .. 50
6.2.2 Secure Channel Parameters .. 50

6.2.2.1 TEE_SC_Params ... 50
6.2.2.2 TEE_SC_OID ... 50
6.2.2.3 TEE_SC_SecurityLevel ... 51
6.2.2.4 TEE_SC_CardKeyRef.. 51
6.2.2.5 TEE_SC_DeviceKeyRef .. 52
6.2.2.6 TEE_SC_KeyType ... 52
6.2.2.7 TEE_SC_KeySetRef .. 53

6.2.3 Secure Channel Protocol Support.. 54
6.2.4 Security Levels ... 55
6.2.5 TEE_SESecureChannelOpen .. 56
6.2.6 TEE_SESecureChannelGetSecurityLevel ... 58
6.2.7 TEE_SESecureChannelClose ... 60

Annex A Panicked Function Identification ... 61

TEE Secure Element API – Public Release v1.1.1 5 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Figures
Figure 4-1: Typical Device with Multiple SE Readers ... 15

Figure 6-1: Discovery Mechanism ... 43

Tables
Table 1-1: Normative References .. 6

Table 1-2: Informative References .. 7

Table 1-3: Terminology and Definitions ... 7

Table 1-4: Abbreviations and Notations .. 9

Table 1-5: Revision History ... 11

Table 2-1: Language Conventions: C Language and ISO 7816-4 ... 13

Table 5-1: API Return Codes .. 19

Table 5-2: API Levels and Classes ... 20

Table 5-3: Specification Version Number Property – 32-bit Integer Structure .. 21

Table 6-1: Secure Channel Protocol Type OIDs ... 54

Table 6-2: Secure Channel Type Constants ... 54

Table 6-3: Secure Channel Protocol Features .. 55

Table 6-4: Security Level Constants .. 55

Table 6-5: Security Level Coding .. 58

Table A-1: Function Identification Values .. 61

6 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

1 Introduction
This document specifies the syntax and semantics of the TEE Secure Element API.

1.1 Audience

This document is suitable for software developers implementing Trusted Applications running inside the
Trusted Execution Environment (TEE) which need to expose an externally visible interface to Client
Applications.

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework,
the TEE APIs, and the communications infrastructure required to access Trusted Applications.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please
visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

1.3 References
Table 1-1: Normative References

Standard / Specification Description Ref

GPD_SPE_007 GlobalPlatform Device Technology
TEE Client API Specification

[TEE Client API]

GPD_SPE_010 GlobalPlatform Device Technology
TEE Internal Core API Specification

[TEE Core API]

GPD_SPE_020 GlobalPlatform Device
Trusted User Interface API

[TEE TUI API]

GPD_SPE_025 GlobalPlatform Device Technology
TEE TA Debug Specification

[TEE Debug]

GPD_SPE_027 GlobalPlatform Device Technology
TEE Administration Framework

[TEE Admin]

GPC_SPE_034 GlobalPlatform Card Specification [GPCS]

GPC_SPE_014 GlobalPlatform Card Specification – Amendment D
Secure Channel Protocol '03'

[Amd D]

GPC_SPE_093 GlobalPlatform Card Specification – Amendment F
Secure Channel Protocol '11'

[Amd F]

Open Mobile API SIMalliance
Open Mobile API Specification

[Open Mobile]

https://www.globalplatform.org/specificationsipdisclaimers.asp

TEE Secure Element API – Public Release v1.1.1 7 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Standard / Specification Description Ref
ISO/IEC 7816-3 Identification cards – Integrated circuit cards – Part 4:

Organization, security and commands for interchange
[ISO 7816-3]

ISO/IEC 7816-4 Identification cards – Integrated circuit cards – Part 4:
Organization, security and commands for interchange

[ISO 7816-4]

Table 1-2: Informative References

Standard / Specification Description Ref

GPD_SPE_009 GlobalPlatform Device Technology
TEE System Architecture

[TEE Sys Arch]

GP_GUI_001 GlobalPlatform Technology
Document Management Guide

[Doc Mgmt]

PC/SC PC/SC Specification
http://www.pcscworkgroup.com/specifications/overview.php

[PC/SC]

RFC 2119 Key words for use in RFCs to Indicate Requirement Levels [RFC 2119]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and
MAY in this document (refer to [RFC 2119]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD and SHOULD NOT indicate recommendations.

• MAY indicates an option.

Table 1-3: Terminology and Definitions

Term Definition

Applet General term for Secure Element application: An application as described in
GlobalPlatform Card Specification [GPCS] which is installed in the SE and
runs within the SE.

Client Application An application running outside of the Trusted Execution Environment (TEE)
making use of the TEE Client API [TEE Client API] to access facilities
provided by Trusted Applications inside the TEE.
Contrast Trusted Application.

Device/Terminal/Mobile
application

An application which is installed in the mobile device and runs within the
mobile device.

Data Object An object containing a data stream but no key material.

Data Stream Data associated with a Persistent Object (excluding Object Attributes and
metadata).

http://www.pcscworkgroup.com/specifications/overview.php

8 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Term Definition
Historical Bytes The historical bytes describe operating characteristics (e.g. capabilities or

issuance data) of the Secure Element. The historical bytes may be optionally
included in the ATR as defined in [ISO 7816-3] in Chapter 8. Their structure
and content shall be as specified in [ISO 7816-4] in Chapter 8.

Initialized Object A Transient Object whose attributes have been populated.

Instance A particular execution of a Trusted Application, having physical memory
space that is separated from the physical memory space of all other TA
instances.

Object Attribute Small amounts of data used to store key material in a structured way.

Object Handle An opaque reference that identifies a particular object.

Object Identifier A variable-length binary buffer identifying a persistent object.

Operation Parameter A data item passed in a command, which can contain integer values or
references to client-owned shared memory blocks. Each command contains
(in addition to a Command Identifier), four Operation Parameters.

Panic An exception that kills a whole TA instance as a result of calling one of the
API functions.

Parameter Annotation Denotes the pattern of usage of a function parameter or pair of function
parameters.

Persistent Object An object identified by an Object Identifier and including a Data Stream.
Contrast Transient Object.

Property An immutable value identified by a name.

Property Set Any of the following:
• The configuration properties of a Trusted Application
• Properties associated with a Client Application by the Rich Execution

Environment
• Properties describing characteristics of a TEE implementation.

REE Time A time value that is as trusted as the REE.

Rich Execution
Environment (REE)

An environment that is provided and governed by a Rich OS, potentially in
conjunction with other supporting operating systems and hypervisors; it is
outside of the TEE. This environment and applications running on it are
considered un-trusted.
Contrast Trusted Execution Environment (TEE).

Rich OS Typically an OS providing a much wider variety of features than that of the OS
running inside the TEE. It is very open in its ability to accept applications. It
will have been developed with functionality and performance as key goals,
rather than security. Due to the size and needs of the Rich OS it will run in an
execution environment outside of the TEE hardware (often called an REE –
Rich Execution Environment) with much lower physical security boundaries.
From the TEE viewpoint, everything in the REE has to be considered
un-trusted, though from the Rich OS point of view there may be internal trust
structures.
Contrast Trusted OS.

TEE Secure Element API – Public Release v1.1.1 9 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Term Definition
Secure Element (SE) A tamper resistant component which is used in a device to provide the

security, confidentiality, and multiple application environment required to
support various business models. May exist in any form factor, such as
embedded SE, SIM, UICC, smartSD, smart microSD, etc.

Transient Object An object containing attributes but no data stream, which is reclaimed when
closed or when the TA instance is destroyed.
Contrast Persistent Object.

Trusted Application An application running inside the Trusted Execution Environment (TEE) that
provides security related functionality to Client Applications outside of the TEE
or to other Trusted Applications inside the TEE.
Contrast Client Application.

Trusted Core Framework
or “Framework”

The part of the Trusted OS responsible for implementing the Trusted Core
Framework API1 that provides OS-like facilities to Trusted Applications and a
way for the Trusted OS to interact with the Trusted Applications.

Trusted Execution
Environment (TEE)

An execution environment that runs alongside but isolated from an REE. A
TEE has security capabilities and meets certain security-related requirements:
It protects TEE assets from general software attacks, defines rigid safeguards
as to data and functions that a program can access, and resists a set of
defined threats. There are multiple technologies that can be used to
implement a TEE, and the level of security achieved varies accordingly.
Contrast Rich Execution Environment (REE).

Trusted OS An operating system running in the TEE providing the TEE Internal API
[TEE Core API] to Trusted Applications.

1.5 Abbreviations and Notations
Table 1-4: Abbreviations and Notations

Abbreviation / Notation Meaning

APDU Application Protocol Data Unit – Format for messages exchanged with SEs

AES Advanced Encryption Standard

API Application Programming Interface

ATR Answer To Reset (see [ISO 7816-3] in Chapter 8)

CA Client Application

CMAC Cipher-based MAC

DES Data Encryption Standard

DSA Digital Signature Algorithm

ETSI European Telecommunications Standards Institute

1 The Trusted Core Framework API is described in Chapter 4 of [TEE Core API].

10 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Abbreviation / Notation Meaning
HMAC Hash-based Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPR Intellectual Property Rights

ISO International Organization for Standardization

IV Initialization Vector

MAC Message Authentication Code

MD5 Message Digest 5

MGF Mask Generating Function

NIST National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

OS Operating System

PC/SC Personal Computer/Smart Card

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

REE Rich Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF

SC Secure Channel

SD Secure Digital

SE Secure Element

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SW1 Status Word One

SW2 Status Word Two

TA Trusted Application

TEE Trusted Execution Environment

TPDU Transport Protocol Data Unit

USB Universal Serial Bus

UTC Coordinated Universal Time

UTF Unicode Transformation Format

UUID Universally Unique Identifier

XTS XEX-based Tweaked Codebook mode with cipher text stealing (CTS)

TEE Secure Element API – Public Release v1.1.1 11 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is

governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

1.6 Revision History
Table 1-5: Revision History

Date Version Description

July 2013 1.0 Public Release

July 2015 1.1 Public Release
 Added Specification Version Number Property section
 Added Service Layer APIs chapter with Discovery API and Secure

Channel API.
 Added TEE_ERROR_CANCEL as a return value
 Added TEE_SESecureChannelOpen function

November 2016 1.1.1 Public Release showing all non-trivial changes since v1.1.
Significant changes include:
 Specification of version definitions in header file
 Correction of OIDs
 Correction of typos
 Clarification on service life cycle
 Clarification on basic channel management
 Precision on parameter usage on different functions
 Clarification on APDU buffer usage
 Clarification on response handling during a transmit operation
 SCP03 mode C_ENC_CR_MAC added
 Clarification on support of extended length
Minor differences since v1.1 that are not revision marked include
changes to punctuation and capitalization.

Note: Two new sections are boxed rather than revision marked.

12 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

2 Background
For a general understanding of the TEE Internal API interfaces, the reader is encouraged to review Chapter 2
of the TEE Internal Core API Specification [TEE Core API].

This document is based on the SIMalliance Open Mobile API Specification [Open Mobile].

Perceived relationships between the TEE and an SE are enhanced by the presence of a defined interface.

• Tamper resistance. While the TEE potentially provides high speed, high bandwidth cryptographic
processing with remote attack protections, it does not claim to have the tamper resistance security
capabilities of an SE. As such, the use of an SE in conjunction with a TEE can provide the best of both
worlds.

• The TEE may be implemented with a Trusted UI capability [TEE TUI API]. When this is in place then
the SE can have a relationship with a trustworthy interface to the user.

While it would be desirable, to enable the above use cases, for all SE access to be routed through the TEE, it
is clear that this is not the case in current devices. As such, the channel of communication between SE and
TEE may be direct (based on hardware connection that the REE cannot intercept by software but that is
exposed to hardware attacks) or indirect (where communications may be intercepted by the REE). To
communicate securely over either type of channel requires the use of a secure protocol.

TEE Secure Element API – Public Release v1.1.1 13 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

2.1 C Language vs. ISO 7816-4 Language Conventions [new section
in v1.1.1]

This document describes a TEE API that can be used to implement use cases involving both the TEE and
an SE.

In this document, C language API definitions use C language conventions.

Interactions with the SE use the conventions found in [ISO 7816-4]. The following conventions, in particular,
should be noted:

The use of 'xx' denotes a byte, represented as a pair of hexadecimal digits, where each x can take one
of the following values: ‘0’..‘9’ for the decimal values 0 to 9; ‘A’..‘F’ for the decimal values 10 to 15; ‘X’ for
any decimal value between 0 and 15.

To guarantee an unambiguous mapping to bytes, this syntax can only be used with an even number of
hexadecimal digits (e.g. 'A34' is illegal).

An unlimited number of bytes can be concatenated within a pair of straight single quotes.

The following table gives examples of the correspondence between C language and [ISO 7816-4].

Table 2-1: Language Conventions: C Language and ISO 7816-4

C Language ISO 7816-4 Meaning

0x2A '2A' A single byte with hexadecimal value 2A

0x4E2A '4E2A' Two bytes, the first with hexadecimal value 4E and the second with
hexadecimal value 2A

– '61XX' Two bytes, the first with hexadecimal value 61 and the second with
any legal value for a byte

Note: It is legal C99 to place a sequence of one or more characters between single quotes; such a literal
is of type int, and takes an implementation defined value. However, since it is almost certain that
0x42EA != '42EA', implementers are advised to translate [ISO 7816-4] literals into idiomatic C language
forms in their source code.

14 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

3 Requirements for TEE Secure Element API

3.1 Assumptions and Scope

The TEE Secure Element API is an enabling thin layer to support communication to Secure Elements (SE)
connected to the device within which the TEE is implemented. This API defines only a transport interface
based on [Open Mobile]. SE support services may be the subject of a future specification.

Any communication going through the REE shall be considered unsecure. The communication could be
intercepted or manipulated by an attacker. If a communication from a TEE TA to an SE passing through the
REE needs to be protected against those threats, it is up to the TEE TA and SE Applet implementers to put in
place security mechanisms such as a secure channel, for example.

This API does not specify the physical layers which are used to communicate with the SE. The use by the TEE
of an REE driver to access an SE may be excluded by the certification program.

3.1.1 Error Handling

This API follows the TEE Internal API philosophy that any programmer avoidable errors will result in a TA level
PANIC. See section 2.2 of [TEE Core API].

3.1.2 Implementations

The TEE Secure Element API defines the interface exposed to Trusted Applications using [TEE Core API]. It
makes no restrictions on the methods of implementation of the actual connections. For example, such
connections may be direct to drivers talking to hardware inside the TEE or indirect via facilities resident in the
REE.

TEE Secure Element API – Public Release v1.1.1 15 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

4 API Overview
Figure 4-1: Typical Device with Multiple SE Readers

REE TEE

TEE SE Interface API

TEE OSREE OS

General
Communication

SE Specific
Communication

Trusted
Application

REE General
Application

Each of the above SEs is optional on a particular device

Secure Elements (SEs) may be connected to the REE or exclusively to the TEE.

• An SE connected exclusively to the TEE is accessible by a TA without using any resources from the
REE. Thus the communication is considered trusted.

• An SE connected to the REE is accessible by a TA using resources lying in the REE. It is
recommended to use a secure channel (i.e. by using the Secure Channel API) to protect the
communication between the TA and the SE against attacks in the REE.

A TA can check whether an SE is exclusively connected to the TEE or not by using
TEE_SEReaderProperties of this specification which is described in section 5.2.2.

An SE is always located within a reader no matter whether it is permanently fixed to the device or is plugged
into a physical card reader (e.g. an SD card reader) or slot (e.g. a SIM socket). A device may support any
number of SEs and readers but only as many SEs at any one time as it has readers.

The set of readers associated with the device on which the TEE is executing is available to Trusted Applications
running within the TEE as a set of TEE_SEReaderHandle. Each TEE_SEReaderHandle is associated with
properties specified as a string (maximum length 64 characters without including the null-terminator ‘\0’) which
identifies the reader. Readers are present in this list even if there is no SE in the reader. It is possible that in
some systems the list of available readers may change when for example a USB SD card or smart card reader
is attached to the device.

16 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

The strings returned to identify the readers shall be unique within a device2 and shall be human readable, i.e.
they shall be suitable for use in prompts to select an SE to interact with.

Once a connection has been made to the reader it is possible to query the ATR of the contained SE and then
to make APDU based connections to the applications within the SE.

2 This string should not be the ATR or anything else specific to the SE within the reader since by the time the connection

is made to the reader the SE could have changed.

TEE Secure Element API – Public Release v1.1.1 17 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5 Transport Layer API
This chapter specifies the TEE Secure Element API header file, constants, and API.

Data types bool, uint8_t, and TEE_Result are as defined in [TEE Core API].

Parameter annotations [in], [inbuf], [inout], [out], [outbuf], and [outstring] are as defined in [TEE Core API].

5.1 Header File

The header file for the TEE SE API must have the name “tee_internal_se_api.h”.

#include "tee_internal_se_api.h"

18 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.1.1 API Version [new section in v1.1.1]

The header file SHALL contain version specific definitions to allow compilation options specific to this
version of the specification.

#define TEE_SE_API_MAJOR_VERSION ([Major version number])
#define TEE_SE_API_MINOR_VERSION ([Minor version number])
#define TEE_SE_API_MAINTENANCE_VERSION ([Maintenance version number])
#define TEE_SE_API_VERSION (TEE_SE_API_MAJOR_VERSION << 24) +

(TEE_SE_API_MINOR_VERSION << 16) +
(TEE_SE_API_MAINTENANCE_VERSION << 8)

TEE_SE_API_MAJOR_VERSION indicates the major version number of the TEE SE API. It SHALL be set to
the major version number of this specification.

TEE_SE_API_MINOR_VERSION indicates the minor version number of the TEE SE API. It SHALL be set to
the minor version number of this specification. If the minor version is zero, then one zero shall be present.

TEE_SE_API_MAINTENANCE_VERSION indicates the maintenance version number of the TEE SE API.
It SHALL be set to the maintenance version number of this specification. If the maintenance version is zero,
then one zero shall be present.

The definitions of “Major Version”, “Minor Version”, and “Maintenance Version” in the revision number of
this specification are determined as defined in [Doc Mgmt] section 4.3. In particular, the value of
TEE_SE_API_MAINTENANCE_VERSION SHALL be zero if it is not already defined as part of the revision
number of this document. The “Draft Revision” number SHALL NOT be provided as an API version
indication.

A compound value SHALL also be defined. If the Maintenance version number is 0, the compound value
SHALL be defined as:

#define TEE_SE_API_[Major version number]_[Minor version number]

If the Maintenance version number is not zero, the compound value SHALL be defined as:

#define TEE_SE_API_[Major version number]_[Minor version
number]_[Maintenance version number]

Some examples of version definitions:

For GlobalPlatform TEE SE API Specification v1.3, these would be:

#define TEE_SE_API_MAJOR_VERSION (1)
#define TEE_SE_API_MINOR_VERSION (3)
#define TEE_SE_API_MAINTENANCE_VERSION (0)
#define TEE_SE_API_1_3

And the value of TEE_SE_API_VERSION would be 0x01030000.

For a maintenance release of the specification as v2.14.7, these would be:

#define TEE_SE_API_MAJOR_VERSION (2)
#define TEE_SE_API_MINOR_VERSION (14)
#define TEE_SE_API_MAINTENANCE_VERSION (7)
#define TEE_SE_API_2_14_7

 And the value of TEE_SE_API_VERSION would be 0x020E0700.

TEE Secure Element API – Public Release v1.1.1 19 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.2 Constants

5.2.1 Return Codes

Return codes from [TEE Core API] are used. The following additional return codes are defined.

Table 5-1: API Return Codes

Constant Name Value

TEE_ERROR_61_SHORT_BUFFER 0xF0240001

TEE_ERROR_6C_SHORT_BUFFER 0xF0240002

TEE_SE_SESSION_OPEN 0x00240000

5.2.2 Secure Element Reader Properties

This type is used to return information about a Secure Element reader.

typedef struct __TEE_SEReaderProperties
{
 bool sePresent; // true if an SE is present in the reader
 bool teeOnly; // true if this reader is accessible
 // only via the TEE
 bool selectResponseEnable; // true if the response to a SELECT is
 // available in the TEE
} TEE_SEReaderProperties;

The teeOnly property is set internally in the TEE. Thus it is trustable.

If teeOnly is true the properties sePresent and selectResponseEnable are trustable, otherwise
these properties cannot be trusted.

5.2.3 Secure Element Applet’s AID

This type is used to pass the AID of the Applet that a TA wants to communicate with.

typedef struct __TEE_SEAID
{
 uint8_t *buffer; // the value of the applet’s AID
 uint32_t bufferLen; // length of the applet’s AID
} TEE_SEAID;

5.2.4 Handles

These handles are opaque handles on a Service, Reader, Session, or Channel. These handles are returned
by the open-like functions (see below).

typedef struct __TEE_SEServiceHandle* TEE_SEServiceHandle;
typedef struct __TEE_SEReaderHandle* TEE_SEReaderHandle;
typedef struct __TEE_SESessionHandle* TEE_SESessionHandle;
typedef struct __TEE_SEChannelHandle* TEE_SEChannelHandle;

20 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.3 API Levels and Classes

The functions defined by the API are grouped as described in Table 5-2.

Table 5-2: API Levels and Classes

Description of Level Modeled by: See section:

The service level is the entry point to the API, allowing one to
gain access to the TEE SE API.

SEService class 5.5

The reader level allows an application to choose a reader once
enumerated by the service level. Sessions are opened on a
Secure Element inserted in a reader.

SEReader class 5.6

The session level is used to retrieve the ATR and to open
channels to SE applications.

SESession class 5.7

The channel level is used by applications to exchange APDUs
with the SE application.

SEChannel class 5.8

Note: The service level and reader level have direct corresponding features in PC/SC [PC/SC] with
respectively SCardEstablishContext/SCardReleaseContext, combined with the reader enumeration
API, and with SCardConnect, SCardDisconnect, SCardReconnect. The session and channel levels do
not have any direct correspondence in PC/SC, although one can consider the channel level equivalent to the
PC/SC SCardTransmit method, mapped on a channel (basic or logical).

TEE Secure Element API – Public Release v1.1.1 21 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.4 Specification Version Number Property

This specification defines a TEE property containing the version number of the specification the implementation
conforms to. The property can be retrieved using the normal Property Access Functions defined in
[TEE Core API]. The property SHALL be named gpd.tee.tui.seapi.version and SHALL be of integer
type with the interpretation given below.

The specification version number property consists of four positions; major, minor, maintenance, and RFU.
These four bytes are combined into a 32-bit unsigned integer as follows:

• The major version number of the specification is placed in the most significant byte.

• The minor version number of the specification is placed in the second most significant byte.

• The maintenance version number of the specification is placed in the second least significant byte. If
the version is not a maintenance version, this SHALL be zero.

• The least significant byte is reserved for future use. Currently this byte SHALL be zero.

Table 5-3: Specification Version Number Property – 32-bit Integer Structure

Bits 24-31 (MSB) Bits 16-23 Bits 8-15 Bits 0-7 (LSB)

Major version number
of the specification

Minor version number
of the specification

Maintenance version
number of the
specification

Reserved for future use.
Currently SHALL be zero.

So for example:

• Specification version 1.1 will be held as 0x01010000 (16842752 in base 10)

• Specification version 1.2 will be held as 0x01020000 (16908288 in base 10)

• Specification version 1.2.3 will be held as 0x01020300 (16909056 in base 10)

• Specification version 12.13.14 will be held as 0x0C0D0E00 (202182144 in base 10)

• Specification version 212.213.214 will be held as 0xD4D5D600 (3570783744 in base 10)

This places the following requirement on the usage of the version numbering.

• No document can have a Major or Minor or Maintenance version number greater than 255.

This value shall be defined in the header file to allow compilation options specific to this version of specification:

#define TEE_SE_API_1_1

22 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.5 SEService Class

5.5.1 TEE_SEServiceOpen

TEE_Result TEE_SEServiceOpen(
 [out] TEE_SEServiceHandle *seServiceHandle,
);

Description

The TEE_SEServiceOpen function allocates a handle for a new connection that can be used to connect
to all the Secure Elements available to the TEE.

The function will block until a valid handle can be returned or an error state occurs.

An seServiceHandle gives access from a TA to all readers and Secure Elements available.

If this routine is called twice by a TA, then the TEE_SEServiceOpen function should return
TEE_ERROR_ACCESS_CONFLICT.

Parameters

• seServiceHandle: Reference to SEService handle

Specification Number: 24 Function Number: 0x0101

Return Value

• TEE_SUCCESS: If a valid handle has been returned

• TEE_ERROR_ACCESS_CONFLICT: If the TA already has an open handle

• TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seServiceHandle is not a valid reference (NULL included) on a TEE_SEServiceHandle.

TEE Secure Element API – Public Release v1.1.1 23 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.5.2 TEE_SEServiceClose

void TEE_SEServiceClose(
 TEE_SEServiceHandle seServiceHandle,
);

Description

The TEE_SEServiceClose function releases all Secure Elements resources allocated by this seService.

It is recommended that this function be called in the termination method of the calling application (or part
of this application) which is bound to this seService. No operation will be performed if the
seServiceHandle is already closed or invalid.

Parameters

• seServiceHandle: Reference to seService handle

Specification Number: 24 Function Number: 0x0102

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seServiceHandle is not a valid reference (NULL included) on a TEE_SEServiceHandle.

24 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.5.3 TEE_SEServiceGetReaders

TEE_Result TEE_SEServiceGetReaders(
 TEE_SEServiceHandle seServiceHandle,
 [out] TEE_SEReaderHandle* seReaderHandleList,
 [inout] uint32_t* seReaderHandleListLen
);

Description

The TEE_SEServiceGetReaders function returns the list of available Secure Element reader handles.
There must be no duplicated objects in the returned list.

This function always returns the same handle for the same logical reader during the service life cycle.

Parameters

• seServiceHandle: Reference to seService handle

• seReaderHandleList: Reference to seReader handle list

• seReaderHandleListLen: Length of the seReader handle list

Specification Number: 24 Function Number: 0x0103

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_ITEM_NOT_FOUND: If no reader is found

• TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation

• TEE_ERROR_SHORT_BUFFER: If *seReaderHandleListLen is too small to count all readers

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seServiceHandle is not a valid handle on a TEE_seServiceHandle.

• seReaderHandleListLen is not a valid reference (NULL included) on a uint32_t.

• *seReaderHandleListLen is 0.

TEE Secure Element API – Public Release v1.1.1 25 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.6 SEReader Class

5.6.1 TEE_SEReaderGetProperties

void TEE_SEReaderGetProperties(
 TEE_SEReaderHandle seReaderHandle,
 [out] TEE_SEReaderProperties* readerProperties
);

Description

The TEE_SEReaderGetProperties function returns the reader properties as defined in section 5.2.2.
The properties include the following information: whether an SE is present in the reader, whether the SE is
connected directly to the TEE, and whether the response to a SELECT is available in the TEE.

If the SE is not present then the ATR shall be the empty string.

Parameters

• seReaderHandle: Reference to seReader handle

• readerProperties: Reference to the reader properties as defined in section 5.2.2

Specification Number: 24 Function Number: 0x0201

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seReaderHandle is not a valid handle on a TEE_seReaderHandle.

• readerProperties is not a valid reference (NULL included) on a TEE_SEReaderProperties.

26 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.6.2 TEE_SEReaderGetName

TEE_Result TEE_SEReaderGetName(
 TEE_SEReaderHandle seReaderHandle,
 [outstring] char* readerName, uint32_t* readerNameLen
);

Description

The TEE_SEReaderGetName function returns the user-friendly name of this reader.

• If this reader is a SIM reader, then its name must start with the “SIM” prefix.

• If the reader is a SD or micro SD reader, then its name must start with the “SD” prefix.

• If the reader is an embedded SE reader, then its name must start with the “eSE” prefix.

Parameters

• seReaderHandle: Reference to seReader handle

• readerName, readerNameLen: Buffer with the reader name

Specification Number: 24 Function Number: 0x0202

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_SHORT_BUFFER: If readerName buffer is too small to hold the whole reader name

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seReaderHandle is not a valid handle on a TEE_seReaderHandle.

• readerName is not a valid reference (NULL included) on a char.

• readerNameLen is not a valid reference (NULL included) on a uint32_t.

• *readerNameLen is 0.

TEE Secure Element API – Public Release v1.1.1 27 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.6.3 TEE_SEReaderOpenSession

TEE_Result TEE_SEReaderOpenSession (
 TEE_SEReaderHandle seReaderHandle,
 [out] TEE_SESessionHandle* seSessionHandle
);

Description

The TEE_SEReaderOpenSession function connects to a Secure Element in this reader.

This method prepares (initializes) the Secure Element for communication before the Session object is
returned (i.e. powers the Secure Element if it’s not already on).

There might be multiple sessions opened at the same time on the same reader. The system ensures the
interleaving of APDUs between the respective sessions.

Parameters

• seReaderHandle: Reference to seReader handle

• seSessionHandle: Reference to seSession handle

Specification Number: 24 Function Number: 0x0203

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If seReader is not able to open a session with the SE because the
SE could not be prepared

• TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seReaderHandle is not a valid handle on a TEE_seReaderHandle.

• seSessionHandle is not a valid reference (NULL included) on a TEE_seSessionHandle.

28 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.6.4 TEE_SEReaderCloseSessions

void TEE_SEReaderCloseSessions (
 TEE_SEReaderHandle seReaderHandle
);

Description

The TEE_SEReaderCloseSessions function closes all the sessions opened on this reader. All the
channels opened by all these sessions will be closed.

Parameters

• seReaderHandle: Reference to seReader handle

Specification Number: 24 Function Number: 0x0204

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seReaderHandle is not a valid handle on a TEE_seReaderHandle.

TEE Secure Element API – Public Release v1.1.1 29 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.7 SESession Class

5.7.1 TEE_SESessionGetATR

TEE_Result TEE_SESessionGetATR(
 TEE_SESessionHandle seSessionHandle,
 [outbuf] void* atr, uint32_t* atrLen
);

Description

The TEE_SESessionGetATR function returns the ATR of this Secure Element.

The returned byte array can be NULL if the ATR for this Secure Element is not available.

Parameters

• seSessionHandle: Reference to seSession handle

• atr, atrLen: Output buffer containing the ATR as a byte array

Specification Number: 24 Function Number: 0x0301

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the ATR is not available or if there is an I/O error

• TEE_ERROR_SHORT_BUFFER: If atr buffer is too small to hold the whole session ATR

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

• atr is not a valid reference (NULL included) on a void.

• atrLen is not a valid reference (NULL included) on a uint32_t.

• *atrLen is 0 and no error is returned.

30 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.7.2 TEE_SESessionIsClosed

TEE_Result TEE_SESessionIsClosed(
 TEE_SESessionHandle seSessionHandle
);

Description

The TEE_SESessionIsClosed function returns with success if this session is closed, returns TEE_
SE_SESSION_OPEN if the session is open, and TEE_ERROR_COMMUNICATION if the state of the session is
closed or cannot be detected.

Parameters

• seSessionHandle: Reference to seSession handle

Specification Number: 24 Function Number: 0x0302

Return Value

• TEE_SUCCESS: If session is closed, or handle is invalid

• TEE_SE_SESSION_OPEN: If session is open

• TEE_ERROR_COMMUNICATION: If the SE is not present or the state cannot be detected (e.g. if
there is an I/O error)

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

TEE Secure Element API – Public Release v1.1.1 31 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.7.3 TEE_SESessionClose

void TEE_SESessionClose(
 TEE_SESessionHandle seSessionHandle
);

Description

The TEE_SESessionClose function closes any channel opened on this session and the session itself.
No operation will be performed if the session is already closed or invalid.

Parameters

• seSessionHandle: Reference to seSession handle

Specification Number: 24 Function Number: 0x0303

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

5.7.4 TEE_SESessionCloseChannels

void TEE_SESessionCloseChannels(
 TEE_SESessionHandle seSessionHandle
);

Description

The TEE_SESessionCloseChannels function closes any channels opened on this session.

The session itself is not closed.

Parameters

• seSessionHandle: Reference to seSession handle

Specification Number: 24 Function Number: 0x0304

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

32 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.7.5 TEE_SESessionOpenBasicChannel

TEE_Result TEE_SESessionOpenBasicChannel(
 TEE_SESessionHandle seSessionHandle,
 [in] TEE_SEAID *seAID,
 [out] TEE_SEChannelHandle *seChannelHandle
);

Description

The TEE_SESessionOpenBasicChannel function obtains access to the basic channel, as defined in
ISO/IEC 7816-4 ([ISO 7816-4]) (the channel that has number 0).

If the seAID->bufferLen is 0 or seAID is NULL, which means no SE application is to be selected on
this channel, the default SE application is used, else the corresponding SE application is selected.

Once this channel has been opened by a device application, it is considered “locked” by this device
application, and for other calls to this method will return set *seChannelHandle to NULL, until the channel
is closed. Some Secure Elements (such as the UICC) might always keep the basic channel locked (i.e.
return NULL to applications), to prevent access to the basic channel, while some others might return a
channel object implementing some kind of filtering on the commands, restricting the set of accepted
command to a smaller set.

The SELECT response data can be retrieved with TEE_SEChannelGetSelectResponse.

This method shall be based on a SELECT command as defined in GlobalPlatform Card Specification
[GPCS].

Parameters

• seSessionHandle: Reference to seSession handle

• seAID: Reference to the AID with which the channel is to be opened

• seChannelHandle: Reference to seChannel handle

Specification Number: 24 Function Number: 0x0305

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_BAD_PARAMETERS: If the seAID->bufferLen is not within 5 to 16 (inclusive) and is
not 0

• TEE_ERROR_NOT_SUPPORTED: If the Secure Element, or the AID on the Secure Element, is not
available or a logical or the basic channel is already open to a non-
multiselectable Applet in use

• TEE_ERROR_SECURITY: If the calling application cannot be granted access to this AID or
the default SE application on this session

• TEE_ERROR_CANCEL: If the command has been cancelled

TEE Secure Element API – Public Release v1.1.1 33 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

• seAID is not a valid reference (NULL not included) on a TEE_SEAID.

• seAID->buffer is not a valid reference (NULL included) on a uint8_t.

• seChannelHandle is not a valid reference (NULL included) on a TEE_seChannelHandle.

34 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.7.6 TEE_SESessionOpenLogicalChannel

TEE_Result TEE_SESessionOpenLogicalChannel(
 TEE_SESessionHandle seSessionHandle,
 [in] TEE_SEAID *seAID,
 [out] TEE_SEChannelHandle *seChannelHandle
);

Description

The TEE_SESessionOpenLogicalChannel function opens a logical channel with the Secure Element,
selecting the application represented by the given AID.

If the seAID->bufferLen is 0 or seAID is NULL, which means no application is to be selected on this
channel, the default application is used. The Secure Element chooses which logical channel will be used.

The SELECT response data can be retrieved with TEE_SEChannelGetSelectResponse.

This method shall be based on a SELECT command as defined in [GPCS].

Parameters

• seSessionHandle: Reference to seSession handle

• seAID: Reference to the AID with which the channel is to be opened

• seChannelHandle: Reference to seChannel handle

Specification Number: 24 Function Number: 0x0306

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_BAD_PARAMETERS: If the AID length is not within 5 to 16 (inclusive) and is not 0

• TEE_ERROR_NOT_SUPPORTED: If the Secure Element or the AID on the Secure Element is not
available or a logical channel is already open to a
non-multiselectable Applet or all logical channels are already
allocated

• TEE_ERROR_SECURITY: If the calling application cannot be granted access to this AID or
the default SE application on this session

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seSessionHandle is not a valid handle on a TEE_seSessionHandle.

• seAID is not a valid reference (NULL not included) on a TEE_SEAID.

• seAID->buffer is not a valid reference (NULL included) on a char.

TEE Secure Element API – Public Release v1.1.1 35 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

• seChannelHandle is not a valid reference (NULL included) on a TEE_seChannelHandle.

36 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.8 SEChannel Class

5.8.1 TEE_SEChannelClose

void TEE_SEChannelClose(
 TEE_SEChannelHandle seChannelHandle
);

Description

The TEE_SEChannelClose function closes this channel to the Secure Element. The channel will be in
closed state after the successful execution of this function. If the function is called when the channel is
already closed or not valid, the function call will be ignored.

The TEE_SEChannelClose function shall wait for completion of any pending TEE_SEChannelTransmit
before closing the channel.

Parameters

• seChannelHandle: Reference to seChannel handle

Specification Number: 24 Function Number: 0x0401

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

TEE Secure Element API – Public Release v1.1.1 37 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.8.2 TEE_SEChannelSelectNext

TEE_Result TEE_SEChannelSelectNext (
 TEE_SEChannelHandle seChannelHandle
);

Description

The TEE_SEChannelSelectNext function performs a selection of the next Applet on this channel. This
method can be used by a device application in order to iterate through all Applets matching to the same
partial AID.

A partial AID could match to several Applets residing in an SE. If a device application is using a partial AID
on TEE_SESessionOpenBasicChannel or TEE_SESessionOpenLogicalChannel in order to
establish a communication channel, then the first Applet in the SE matching to this partial AID will be
selected by the card manager on the SE (the order of selections might depend on the card manager
implementation). In order to select the next Applet matching to the partial AID, the function
TEE_SEChannelSelectNext() can be used. If TEE_SEChannelSelectNext() returns success a new
Applet was successfully selected on this channel. If no further Applet exists with matches to the partial AID
this method returns TEE_ERROR_ITEM_NOT_FOUND and the already selected Applet remains selected.

If a device application is using a full AID on TEE_SESessionOpenBasicChannel or
TEE_SESessionOpenLogicalChannel, this method should always return
TEE_ERROR_ITEM_NOT_FOUND. Note: Since the API cannot distinguish between a partial and full AID, the
API shall rely on the response of the Secure Element for the return value of this function.

The SELECT response data can be retrieved with TEE_SEChannelGetSelectResponse.

This function shall be based on a SELECT command as defined in [GPCS].

Parameters

• seChannelHandle: Reference to seChannel handle

Specification Number: 24 Function Number: 0x0402

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_ITEM_NOT_FOUND: If a next Applet is not available. The last selected Applet remains
selected.

• TEE_ERROR_NOT_SUPPORTED: If this function is not supported by the API implementation

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

38 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.8.3 TEE_SEChannelGetSelectResponse

TEE_Result TEE_SEChannelGetSelectResponse (
 TEE_SEChannelHandle seChannelHandle,
 [outbuf] void* response, uint32_t *responseLen
);

Description

The TEE_SEChannelGetSelectResponse function returns the response data and the hexadecimal
status word resulting from the SELECT command used to open the channel.

Three functional return cases are possible:

• The data as returned by the application SELECT command, including the status word

• Only the status word if the application SELECT command has no returned data

• TEE_ERROR_NO_DATA if an application SELECT command has not been performed or the selection
response cannot be retrieved by the reader implementation (i.e. the selectResponseEnable in the
reader properties is set to False)

The returned byte array contains the data bytes in the following order:

[<first data byte>,…, <last data byte>, <SW1>, <SW2>]

Parameters

• seChannelHandle: Reference to seChannel handle

• response, responseLen: Output buffer containing the SELECT response as a byte array

Specification Number: 24 Function Number: 0x0403

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_NO_DATA: If no data is available (see above)

• TEE_ERROR_SHORT_BUFFER: If response buffer is too small to hold the whole response of the
SELECT command.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

• response is not a valid reference (NULL included) on a void.

• responseLen is not a valid reference (NULL included) on a uint32_t.

• *responseLen is 0.

Please see [TEE Core API] section 3.4.4 with regard to handling TEE_ERROR_SHORT_BUFFER errors.

TEE Secure Element API – Public Release v1.1.1 39 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.8.4 TEE_SEChannelTransmit

TEE_Result TEE_SEChannelTransmit(
 TEE_SEChannelHandle seChannelHandle,
 [inbuf][inout(commandLen)] void* command,
 [in] uint32_t commandLen,
 [outbuf] void* response,
 [out] uint32_t* responseLen
);

Description

The TEE_SEChannelTransmit function transmits an APDU command (as per [ISO 7816-4]) to the
Secure Element. The underlying layers generate as many TPDUs as necessary to transport this APDU.
The transport part is invisible from the application. The generated response is the response of the APDU.

The system ensures synchronization between concurrent calls to this method, and that only one APDU will
be sent at a time, irrespective of the number of TPDUs that might be required to transport it to the SE.

The channel information in the class byte in the APDU will be ignored. The system will add any required
information to ensure that the APDU is transported on this channel.

There are restrictions on the set of commands that can be sent:

• MANAGE_CHANNEL commands are not allowed.

• SELECT by DF Name (P1='04') is not allowed. (See [ISO 7816-4] section 8.2)

• CLA bytes with channel numbers are de-masked.

In case of T=0 the GET RESPONSE APDU to be sent to the card when the card is indicating that it has
response data is handled within this API. The caller does not need to handle it.

This method shall be based on APDU commands as defined in [GPCS].

Note: If a secure messaging session is established for the seChannelHandle, then the command and
response buffers require additional space. For more details about the additional buffer size which is
required for secure messaging see section 6.2.5, TEE_SESecureChannelOpen.

Command APDU: If the provided command APDU defines a response length in the LE byte which does
not correlate to the actual response APDU length, the SE indicates the right length with the hexadecimal
status word '61XX' or '6CXX' (see [ISO 7816-4]). Depending on this status word, the response APDU has
be fetched either by re-issuing the command APDU with the correct LE byte (i.e. if the responseLen >=
XX from '6CXX' then the API needs to re-issue the C-APDU with the correct LE byte) or by using the GET
RESPONSE command (i.e. if the SE returns '61XX' then the API sends a GET RESPONSE which requests
XX bytes response data). The API performs this response handling automatically. However, if the provided
response buffer is too small this response handling has to be performed by the calling application itself.
In such a case this routine returns TEE_ERROR_61_SHORT_BUFFER or TEE_ERROR_6C_SHORT_BUFFER.
The correct response length from the status word can be obtained from
TEE_SEChannelGetResponseLength. However, in some cases this status word information is not
available (depending on the underlying drivers and controllers) and TEE_ERROR_SHORT_BUFFER is
returned without further information.

Response APDU: The caller of this routine has to take care that the provided response buffer has a
sufficient buffer size. If the response APDU is larger than the provided response buffer, this routine
returns TEE_ERROR_SHORT_BUFFER. It has to be considered that secure messaging requires additional
space.

40 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Note: If TEE_ERROR_SHORT_BUFFER is returned, the Command APDU has to be re-sent by the TA with
an appropriate buffer size. The parameters response, responseLen will not be modified in this case.

Note: If a security error occurred with the Secure Channel (e.g. MAC verification failed), then the Secure
Channel Session will be aborted and the function returns with TEE_ERROR_SECURITY. The security level
will be reset to NO_SECURITY_LEVEL.

Note: If the reader in use supports extended length APDUs, then the API implementation converts the
Command APDUs to extended length APDUs automatically.

Parameters

• seChannelHandle: Reference to seChannel handle

• command, commandLen: Input Buffer containing the command to send as a byte array;
needs to be big enough to allow secure messaging wrapping
inside the provided buffer

• response, responseLen: Output buffer containing the response as a byte array; needs to
be big enough to allow secure messaging unwrapping inside the
provided buffer

Specification Number: 24 Function Number: 0x0404

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_BAD_PARAMETERS: If commandLen is less than 4 bytes

• TEE_ERROR_BAD_PARAMETERS: If commandLen is not consistent with APDU length

• TEE_ERROR_SHORT_BUFFER: If response buffer is too small to hold the whole response
APDU

• TEE_ERROR_61_SHORT_BUFFER: If the SE returned the hexadecimal status word '61XX' is returned
by the SE

• TEE_ERROR_6C_SHORT_BUFFER: If the SE returned the hexadecimal status word '6CXX' is returned
by the SE

• TEE_ERROR_SECURITY: If a security error is found (e.g. the command is filtered out by the
restrictions described above or the secure channel session was
aborted)

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

TEE Secure Element API – Public Release v1.1.1 41 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

• command is not a valid reference (NULL included) on a void.

• commandLen is 0.

• response is not a valid reference (NULL included) on a void.

• responseLen is not a valid reference (NULL included) on a uint32_t.

• *responseLen is 0.

Please see [TEE Core API] section 3.4.4 with regard to handling TEE_ERROR_SHORT_BUFFER errors.

42 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

5.8.5 TEE_SEChannelGetResponseLength

TEE_Result TEE_SEChannelGetResponseLength (
 TEE_SEChannelHandle seChannelHandle,
 [outbuf] uint32_t *responseLen
);

Description

The TEE_SEChannelGetResponseLength function returns the actual length of response data as
indicated by the SE with the hexadecimal status word '61XX' or '6CXX' resulting from a transmit operation
performed with TEE_SEChannelTransmit.

This function does provide the length value gained from the status word '61XX' or '6CXX' (see [ISO 7816-4])
which is received during a transmit operation with TEE_SEChannelTransmit. This length value is
available only if the response buffer, defined as a parameter on TEE_SEChannelTransmit, was too
small to perform a response handling. In such a case the application has to implement the response
handling by itself. Depending on the status word '61XX' or '6CXX' a GET RESPONSE command has to be
used to fetch the response or the command has to be re-issued with the correct LE byte.

Note: In some cases the status word information ('61XX' or '6CXX') is not available (depending on the
underlying drivers and controllers) and this routine returns TEE_ERROR_NO_DATA. In such cases it is
recommended to try the transaction again, increasing the response buffer to an estimated size.

Parameters

• seChannelHandle: Reference to seChannel handle

• responseLen: The actual response length as indicated by the SE

Specification Number: 24 Function Number: 0x0405

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_BAD_STATE: If the seSession is closed

• TEE_ERROR_NO_DATA: If no response length information is available

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

• responseLen is not a valid reference (NULL included) on a uint32_t.

TEE Secure Element API – Public Release v1.1.1 43 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6 Service Layer APIs
The Service Layer APIs consist of a Discovery API and Secure Channel API and are both optional
supplementary APIs to the TEE Secure Element API. The availability can be checked by the presence and
values of associated properties. They provide high level functions for Secure Element based operations to
Trusted Applications in a TEE. The intention of these APIs is to simplify the development of Trusted
Applications using the Secure Element.

A Service API relies on functions as defined in Chapter 5 for performing the communication and transport layer
management to the Secure Element.

This Service API concept is inspired by [Open Mobile].

6.1 Discovery API

In order to simplify the selection of Secure Elements, the Discovery API provides a discovery mechanism
based on a search criterion (e.g. the AID of the SE Applet). A discovery engine performs a search through all
Secure Elements available to the TEE. All Secure Elements which match the defined search criterion are
offered to the TA. Then the TA can choose which of these SEs to use for selecting the SE Applet and
performing the operations.

The following figure outlines the concept of the Discovery API. During the initialization the TA can define a
search criterion. After the initialization the search can be performed with dedicated functions in a loop.

Figure 6-1: Discovery Mechanism

TEE_SEDiscoveryByXXXInit(h, <search criterion>)

TEE_SEDiscoveryFirstMatch(h, seReaderHandle)

TEE_SEDiscoveryNextMatch(h, seReaderHandle)

6.1.1 Property

The Discovery API is implemented only if the gpd.tee.seapi.service.discovery property (a Boolean)
is present and is set to True. If the property is missing or is set to False, then the Discovery API routines
are not implemented.

6.1.2 Discovery Handle

The Discovery API requires a handle which is needed to perform an iteration based search through different
Secure Elements.

typedef struct __TEE_SEDiscoveryHandle* TEE_SEDiscoveryHandle;

This handle is an opaque handle which is provided by the API after the discovery initialization (see below).

44 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.3 TEE_SEDiscoveryByAIDInit

TEE_Result TEE_SEDiscoveryByAIDInit (
 TEE_SEServiceHandle seServiceHandle,
 [out] TEE_SEDiscoveryHandle* seDiscoveryHandle,
 [in] TEE_SEAID *seAID
);

Description

The TEE_SEDiscoveryByAIDInit function initializes the discovery engine based on the AID as search
criterion. It returns an seDiscoveryHandle which can be used for the search.

Parameters

• seServiceHandle: Reference to seService handle

• seDiscoveryHandle: Reference to seDiscovery handle

• *seAID: The AID of the Applet to be searched for

Specification Number: 24 Function Number: 0x0501

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seServiceHandle is closed

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seServiceHandle is not a valid handle on a TEE_seServiceHandle.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

• seAID is not a valid reference (NULL not included) on a TEE_SEAID.

• seAID->buffer is not a valid reference (NULL included) on a char.

• seAID->length is 0.

TEE Secure Element API – Public Release v1.1.1 45 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.4 TEE_SEDiscoveryByHistoricalBytesInit

TEE_Result TEE_SEDiscoveryByHistoricalBytesInit (
 TEE_SEServiceHandle seServiceHandle,
 [out] TEE_SEDiscoveryHandle* seDiscoveryHandle,
 [inbuf] void* histBytes, uint32_t histBytesLen
);

Description

The TEE_SEDiscoveryByHistoricalBytesInit function initializes the discovery engine based on the
historical bytes (see Chapter 8 in [ISO 7816-4]) as search criterion. It returns an seDiscoveryHandle
which can be used for the search.

Parameters

• seServiceHandle: Reference to seService handle

• seDiscoveryHandle: Reference to seDiscovery handle

• *histBytes: The historical bytes to be searched for

• histBytesLen: The length of the historical bytes

Specification Number: 24 Function Number: 0x0502

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seServiceHandle is closed

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seServiceHandle is not a valid handle on a TEE_seServiceHandle.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

• histBytes is not a valid reference (NULL included) on a char.

• histBytesLen is 0.

46 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.5 TEE_SEDiscoveryByATRInit

TEE_Result TEE_SEDiscoveryByATRInit (
 TEE_SEServiceHandle seServiceHandle,
 [out] TEE_SEDiscoveryHandle* seDiscoveryHandle,
 [inbuf] void* atr, uint32_t atrLen,
 [inbuf] void* mask, uint32_t maskLen
);

Description

The TEE_SEDiscoveryByATRInit function initializes the discovery engine based on the ATR as search
criterion. The relevant ATR bytes for the match have to be defined with a mask. Only those bytes which are
set in the mask are used as search criterion. This means the mask is a byte array which has to be applied
with an AND-operation to the Secure Element ATR byte array values before comparison with the searched
value. The byte array of the mask and the ATR must have the same length. This function returns an
seDiscoveryHandle which can be used for the search.

Parameters

• seServiceHandle: Reference to seService handle

• seDiscoveryHandle: Reference to seDiscovery handle

• *atr: The ATR to be searched for

• atrLen: The length of the ATR

• *mask: The mask to be applied to the ATR

• maskLen: The length of the mask

Specification Number: 24 Function Number: 0x0503

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seServiceHandle is closed

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• seServiceHandle is not a valid handle on a TEE_seServiceHandle.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

• atr is not a valid reference (NULL included) on a char.

• atrLen is 0.

• mask is not a valid reference (NULL included) on a char.

• maskLen is 0.

TEE Secure Element API – Public Release v1.1.1 47 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.6 TEE_SEDiscoveryFirstMatch

TEE_Result TEE_SEDiscoveryFirstMatch (
 TEE_SEDiscoveryHandle seDiscoveryHandle,
 [out] TEE_SEReaderHandle* seReaderHandle
);

Description

The TEE_SEDiscoveryFirstMatch function locates the first Reader that contains a Secure Element
that matches the defined search criterion. It returns an seReaderHandle which is connected to the
identified Reader.

Parameters

• seDiscoveryHandle: Reference to seDiscovery handle

• seReaderHandle: Reference to the first Reader which matches the search criterion

Specification Number: 24 Function Number: 0x0504

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seServiceHandle used during initialization is closed

• TEE_ERROR_ITEM_NOT_FOUND: If a Reader couldn’t be found for this search criterion

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

48 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.7 TEE_SEDiscoveryNextMatch

TEE_Result TEE_SEDiscoveryNextMatch (
 TEE_SEDiscoveryHandle seDiscoveryHandle,
 [out] TEE_SEReaderHandle* seReaderHandle
);

Description

The TEE_SEDiscoveryNextMatch function locates the next Reader that contains a Secure Element that
matches the defined search criterion. It returns an seReaderHandle which is connected to the identified
Reader.

Parameters

• seDiscoveryHandle: Reference to seDiscovery handle

• seReaderHandle: Reference to the next Reader which matches the search criterion

Specification Number: 24 Function Number: 0x0505

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seServiceHandle used during initialization is closed

• TEE_ERROR_ITEM_NOT_FOUND: If a Reader couldn’t be found for this search criterion

• TEE_ERROR_CANCEL: If the command has been cancelled. See [TEE Core API]
section 2.1.4.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

TEE Secure Element API – Public Release v1.1.1 49 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.1.8 TEE_SEDiscoveryIsDone

bool TEE_SEDiscoveryIsDone (
 TEE_SEDiscoveryHandle seDiscoveryHandle
);

Description

The TEE_SEDiscoveryIsDone function indicates whether the discovery engine is able to provide further
Secure Elements which match to the defined search criterion. It returns TRUE if a further Secure Element
exists matching the defined search criterion. Otherwise it returns FALSE.

Parameters

• seDiscoveryHandle: Reference to seDiscovery handle

Specification Number: 24 Function Number: 0x0506

Return Value

• TRUE: The search is done. No further SEs match the criterion.

• FALSE: The search is not done. Further SEs match the criterion.

Panic Reasons

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

6.1.9 TEE_SEDiscoveryClose

void TEE_SEDiscoveryClose (
 TEE_SEDiscoveryHandle seDiscoveryHandle
);

Description

The TEE_SEDiscoveryClose function terminates the discovery engine. It closes all resources which are
allocated by the discovery engine and sets seDiscoveryHandle to TEE_HANDLE_NULL.

Parameters

• seDiscoveryHandle: Reference to seDiscovery handle

Specification Number: 24 Function Number: 0x0507

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seDiscoveryHandle is not a valid handle on a TEE_seDiscoveryHandle.

50 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2 Secure Channel API

The Secure Channel API provides functions for TAs which can be used to enable secure channel
communication between TEE and Secure Element. The secure channel session is performed by the TEE
and works completely transparently from a TA point of view. This means the usage of a secure channel does
not require changes in the design of a TA.

This specification considers the GlobalPlatform Secure Channel Protocols SCP02, SCP03, and SCP11 as
defined in [GPCS]; GPCS Amendment D, Secure Channel Protocol '03' [Amd D]; and GPCS Amendment F,
Secure Channel Protocol '11' [Amd F] for the secure channel communication. Further protocols may be
considered in future versions of this specification. The design of the Secure Channel API also allows the
usage of other secure channel protocols, even those which are not specified in GlobalPlatform.

A Secure Channel Protocol can be specified by an OID (by selecting an OID from a list of accepted OIDs).
The functions of the Secure Channel API are based on a generic concept which also allows the usage of
customized parameter structures needed for a specific secure channel protocol which are chosen to be
implemented by individual TEE vendors. However, the usage of these customized structures and protocols
beyond SCP02, SCP03, and SCP11 is out of scope of this document and is implementer dependent.

6.2.1 Property

The Secure Channel API is implemented only if the gpd.tee.seapi.service.securechannel property
(a Boolean) is present and is set to True. If the property is missing or is set to False, then the Secure
Channel API routines are not implemented.

6.2.2 Secure Channel Parameters

6.2.2.1 TEE_SC_Params

This type defines the parameters which are needed to set up a secure channel.

typedef struct __TEE_SC_Params
{
 uint8_t scType; // the SC type
 TEE_SC_OID scOID; // the SC type defined by OID
 TEE_SC_SecurityLevel scSecurityLevel; // the SC security level
 TEE_SC_CardKeyRef scCardKeyRef; // reference to SC card keys
 TEE_SC_DeviceKeyRef scDeviceKeyRef; // reference to SC device keys
} TEE_SC_Params;

The Secure Channel type can be specified either by defining an OID or by a constant. The constant scType
will apply only if scOID.buffer is set to NULL and scOID.bufferLen is set to 0.

6.2.2.2 TEE_SC_OID

This type defines the type of protocol which shall be used for the secure channel.

typedef struct __TEE_SC_OID
{
 uint8_t *buffer; // the value of the OID
 uint32_t bufferLen; // length of the SC OID
} TEE_SC_OID;

TEE Secure Element API – Public Release v1.1.1 51 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.2.3 TEE_SC_SecurityLevel

This enumeration lists the Security Levels which can be applied for a secure channel.

typedef enum
{
 TEE_SC_NO_SECURE_MESSAGING = 0x00, // Nothing will be applied
 TEE_SC_AUTHENTICATE = 0x80, // Command, Response APDU not be secured
 TEE_SC_C_MAC = 0x01, // Command APDU shall be MAC protected
 TEE_SC_R_MAC = 0x10, // Response APDU shall be MAC protected
 TEE_SC_CR_MAC = 0x11, // Command, Response APDU shall be MAC
 // protected
 TEE_SC_C_ENC_MAC = 0x03, // Command APDU shall be encrypted and
 // MAC protected
 TEE_SC_R_ENC_MAC = 0x30, // Response APDU encrypted, MAC protected
 TEE_SC_CR_ENC_MAC = 0x33, // Command, Response APDU encrypted and
 // MAC protected
 TEE_SC_C_ENC_CR_MAC = 0x13 // Command APDU encrypted;
 // Command, Response APDU MAC protected
} TEE_SC_SecurityLevel;

#define TEE_AUTHENTICATE (TEE_SC_AUTHENTICATE)
 // deprecated: Command, Response APDU not secured

Notes:

• TEE_SC_AUTHENTICATE shall be applied if only authentication between TEE and SE is expected. The
Command and Response APDUs transferred after this authentication are not secured.

• A Security Level with response encryption cannot be applied on SCP02. If this is attempted,
TEE_SESecureChannelOpen will respond with the error TEE_ERROR_BAD_PARAMETERS.

• SCP11 only allows the security levels TEE_SC_CR_MAC and TEE_SC_CR_ENC_MAC. All other options
will result in an error.

For more details about the Secure Channel security levels refer to [GPCS] (see the coding in section 10.6,
Table 10-1) or [Amd D] (see the coding in section 7.1.2, Table 7-3).

6.2.2.4 TEE_SC_CardKeyRef

This type defines the reference to the card keys which shall be used for the secure channel.

typedef struct __TEE_SC_CardKeyRef
{
 uint8_t scKeyID; // key identifier of the SC card key
 uint8_t scKeyVersion; // key version of the SC card key
} TEE_SC_CardKeyRef;

52 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.2.5 TEE_SC_DeviceKeyRef

This type defines the reference to the device keys which shall be used for the secure channel.

typedef struct __TEE_SC_DeviceKeyRef
{
 TEE_SC_KeyType scKeyType; // type of SC keys
 union
 {
 TEE_ObjectHandle scBaseKeyHandle; // SC base key (acc. to SCP02)
 TEE_SC_KeySetRef scKeySetRef; // Key-ENC, Key-MAC (acc. to
 // SCP02, SCP03)
 } __TEE_key
} TEE_SC_DeviceKeyRef;

Note: SCP02 and SCP03 require a set of static keys (Key-MAC and Key-ENC) from which session keys
(S-MAC and S-ENC) are derived during protocol initialization. The session keys are used for the secure
messaging session. As an alternative, SCP02 allows the usage of a single base key from which the session
keys S-MAC and S-ENC are derived during protocol initialization. SCP11b SCP11a requires an ECC key pair
SK.OCE.ECKA/PK.OCE.ECKA [Amd F] which shall be referenced by the base key object handle. SCP11a
SCP11b does not require any keys on the device side and scBaseKeyHandle shall be set to NULL.

Note: SCP11 requires passing CERT.OCE.ECKA and PK.CA-KLCC.ECDSA for the protocol execution. This
version of the API specification requires passing these parameters either by proprietary extensions or by API
internal implementations with an internal certificate store.

6.2.2.6 TEE_SC_KeyType

This enumeration lists the options for key types.

typedef enum
{
 TEE_SC_BASE_KEY = 0, // A base key acc. to SCP02
 TEE_SC_KEY_SET = 1 // A key set (key-ENC, key-MAC) acc. to SCP02,
 // SCP03
} TEE_SC_KeyType;

TEE Secure Element API – Public Release v1.1.1 53 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.2.7 TEE_SC_KeySetRef

This type can be used to define a key set with Key-MAC and Key-ENC according to SCP02 and SCP03.

typedef struct __TEE_SC_KeySetRef
{
 TEE_ObjectHandle scKeyEncHandle; // Key-ENC (static encryption key)
 TEE_ObjectHandle scKeyMacHandle; // Key-MAC (static MAC key)
} TEE_SC_KeySetRef;

The TA has to define object handles which refer to the secure channel keys stored in the TEE. The TA can
obtain these object handles from its private Trusted Storage or from a certain Security Domain. How a TA
obtains a key object handle is defined in [TEE Core API] and in TEE Administration Framework [TEE Admin].

Note:

• Secure channel keys can be transient objects. The usage of transient objects is described in
[TEE Core API].

• The specified Key-ENC and Key-MAC must have the same type and length. Otherwise the function
TEE_SESecureChannelOpen will respond with the error TEE_ERROR_BAD_PARAMETERS.

• SCP02 requires a double length DES key with 16 bytes as key value. SCP03 requires an AES key
which may have a length of 16, 24, or 32 bytes as key value. If the length of the specified key value is
inconsistent with the chosen protocol or the key cannot be applied on the cryptographic algorithm, the
function TEE_SESecureChannelOpen will respond with the error TEE_ERROR_BAD_PARAMETERS.

54 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.3 Secure Channel Protocol Support

The following protocol types are mandatory to support for the Secure Channel API.

Table 6-1: Secure Channel Protocol Type OIDs

Protocols OID Meaning

SCP02 { 0x06, 0x08, 0x2A, 0x86, 0x48, 0x86,
0xFC, 0x6B, 0x04, 0x02 }

SCP02 according to [GPCS]:
iso(1) member-body(2) us(840) gp(114283)
scp(04) v(2)

SCP03 { 0x06, 0x08, 0x2A, 0x86, 0x48, 0x86,
0xFC, 0x6B, 0x04, 0x03 }

SCP03 according to [Amd D]:
iso(1) member-body(2) us(840) gp(114283)
scp(04) v(3)

SCP11a { 0x06, 0x08, 0x09, 0x2A, 0x86, 0x48, 0x86,
0xFC, 0x6B, 0x04, 0x0B, 0x01 }

SCP11 according to [Amd F]:
iso(1) member-body(2) us(840) gp(114283)
scp(04) v(11) i(01)

SCP11b { 0x06, 0x08, 0x09, 0x2A, 0x86, 0x48, 0x86,
0xFC, 0x6B, 0x04, 0x0B, 0x02 }

SCP11 according to [Amd F]:
iso(1) member-body(2) us(840) gp(114283)
scp(04) v(11) i(02)

Table 6-2: Secure Channel Type Constants

Constant Name Value Meaning
TEE_SC_TYPE_SCP02 0x00 SCP02 according to [GPCS]

TEE_SC_TYPE_SCP03 0x01 SCP03 according to [Amd D]

TEE_SC_TYPE_SCP11a 0x02 SCP11a according to [Amd F]

TEE_SC_TYPE_SCP11b 0x03 SCP11b according to [Amd F]

 0x02–0x7F Reserved for future use

 0x80–0xFF Reserved for proprietary usage

TEE Secure Element API – Public Release v1.1.1 55 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

When the Secure Element API, when supporting supports section 6.2, then the interface shall implement at
least the following protocol features.

Table 6-3: Secure Channel Protocol Features

Protocols Features

SCP02 C_ENC, C_MAC, R_MAC for secure messaging
SC base key, SC key set (MAC-key, ENC-key)
ICV set to zero, ICV encryption for C-MAC session
Features not to be supported:

R_MAC switch on and off during secure channel session
Implicit Secure Channel

SCP03 R_ENC, C_ENC, C_MAC, R_MAC for secure messaging
AES-128, AES-192, AES-256 for Key-ENC, Key-MAC without secure
messaging
Features not to be supported:

R-MAC switch on and off during secure channel session

SCP11 SCP11a (providing mutual authentication)
SCP11b (providing authentication of the Secure Element only)
(C_ENC, R_ENC, C_MAC, R_MAC) and (C_MAC, R_MAC) for secure
messaging
AES-128, AES-192, AES-256 for Key-ENC, Key-MAC

6.2.4 Security Levels

The following constants can be used to check the current Security Level.

Table 6-4: Security Level Constants

Constant Name Value
TEE_SC_LEVEL_NO_SECURITY 0x00

TEE_SC_LEVEL_AUTHENTICATED 0x80

TEE_SC_LEVEL_C_MAC 0x01

TEE_SC_LEVEL_R_MAC 0x10

TEE_SC_LEVEL_CR_MAC 0x11

TEE_SC_LEVEL_C_ENC_MAC 0x03

TEE_SC_LEVEL_R_ENC_MAC 0x30

TEE_SC_LEVEL_CR_ENC_MAC 0x33

TEE_SC_LEVEL_C_ENC_CR_MAC 0x13

For more details about the Secure Channel security levels refer to [GPCS] (see the coding in section 10.6,
Table 10-1) or [Amd D] (see the coding in section 7.1.2, Table 7-3).

56 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.5 TEE_SESecureChannelOpen

TEE_Result TEE_SESecureChannelOpen(
 TEE_SEChannelHandle seChannelHandle,
 [in] TEE_SC_Params *scParams
);

Description

The TEE_SESecureChannelOpen function establishes a secure channel to the Secure Element. This
secure channel is established on the communication channel which is specified by the parameter
TEE_SEChannelHandle.

Once this function is called the API starts to set up the secure channel based on the specified protocol
parameters. If this function returns with success the secure channel is established for the defined
TEE_SEChannelHandle and subsequently all APDUs transmitted based on this handle with
TEE_SEChannelTransmit are automatically secured (encrypted and/or MAC protected), depending on
the secure channel parameter options defined on TEE_SESecureChannelOpen. The secure channel can
be terminated with TEE_SESecureChannelClose. Before a new secure channel session may be
established on the same Channel Handle, the TA needs to close the existing secure channel that is already
established on the Channel Handle. Otherwise the error TEE_ERROR_ACCESS_CONFLICT will be returned
by this function.

Note: Once a secure channel is established with TEE_SESecureChannelOpen, the command and
response buffers defined by TEE_SEChannelTransmit require additional space for performing secure
messaging. According to SCP02 and SCP03 the encryption of an APDU requires a padding of up to
16 bytes. The MAC code which is added to each message has a length of 8 bytes. Thus, an additional
buffer size of up 24 bytes is required.

Parameters

• seChannelHandle: Reference to seChannel handle

• scParams: Reference to parameters for the Secure Channel Protocol

Specification Number: 24 Function Number: 0x0601

Return Value

• TEE_SUCCESS: In case of success

• TEE_ERROR_COMMUNICATION: If the SE is not present or if there is an I/O error

• TEE_ERROR_BAD_STATE: If the seChannel is closed

• TEE_ERROR_BAD_PARAMETERS: If scParams includes wrongly encoded data

• TEE_ERROR_NOT_SUPPORTED: If the scParams is not supported

• TEE_ERROR_SECURITY: If the authentication failed or a higher Security Level is expected

• TEE_ERROR_CANCEL: If the command has been cancelled

• TEE_ERROR_ACCESS_CONFLICT: If a secure channel already exists on seChannel

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

TEE Secure Element API – Public Release v1.1.1 57 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

• seChannelHandle is not a valid reference (NULL included) on a TEE_seChannelHandle.

• scParams is not a valid reference (NULL not included) on a TEE_SC_Params.

• scParams->scSecurityLevel is not a valid reference (NULL included) on a
TEE_SC_SecurityLevel.

• scParams->scCardKeyRef is not a valid reference (NULL included) on a TEE_SC_CardKeyRef.

• scParams->scDeviceKeyRef is not a valid reference (NULL included) on a
TEE_SC_DeviceKeyRef.

58 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.6 TEE_SESecureChannelGetSecurityLevel

int TEE_SESecureChannelGetSecurityLevel(
 TEE_SEChannelHandle seChannelHandle
);

Description

The TEE_SESecureChannelGetSecurityLevel function returns the Security Level which is currently
established with the Secure Element on the defined seChannelHandle. If the function is called when no
Secure Channel is currently established, the function returns NO_SECURITY_LEVEL.

The following table lists possible values for the Security Level.

Table 6-5: Security Level Coding

Option Value Meaning

NO_SECURITY_LEVEL 0x00 Secure Channel Session is terminated or not yet fully initiated.

AUTHENTICATED 0x80 Successful authentication was processed during this session.

C_MAC 0x01 Command APDUs are MAC protected in the current session.

C_ENC 0x02 Command APDUs are encrypted in the current session.

R_MAC 0x10 Response APDUs are MAC protected in the current session.

R_ENC 0x20 Response APDUs are encrypted in the current session.

CR_MAC 0x11 Command and Response APDUs are MAC protected in the
current session.

C_ENC_MAC 0x03 Command APDUs are encrypted and MAC protected in the
current session.

R_ENC_MAC 0x30 Response APDUs are encrypted and MAC protected in the
current session.

CR_ENC_MAC 0x33 Command and Response APDUs are encrypted and MAC
protected in the current session.

C_ENC_CR_MAC 0x13 Command APDUs are encrypted and Command and Response
APDUs are MAC protected in the current session.

For more details about the Secure Channel security levels refer to [GPCS] (see the coding in section 10.6,
Table 10-1) or [Amd D] (see the coding in section 7.1.2, Table 7-3). The constants as defined in Table 6-4
can be used to check the current Security Level.

Note: The Security Level might change during the course of the session.

The Security Level returned by this function is a bit mask based on this coding. For more details about
these options and possible combinations refer to [GPCS] or [Amd D]. To check the Security Level value
returned by this function, the Security Level constants as defined in section 6.2.4 can be used.

Parameters

• seChannelHandle: Reference to seChannel handle

TEE Secure Element API – Public Release v1.1.1 59 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Specification Number: 24 Function Number: 0x0602

Return Value

• The Security Level encoded in an integer. See Table 6-5.

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

60 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6.2.7 TEE_SESecureChannelClose

void TEE_SESecureChannelClose(
 TEE_SEChannelHandle seChannelHandle
);

Description

The TEE_SESecureChannelClose function terminates the secure channel which is currently established
to the Secure Element. The channel itself is not closed and can be used for further unsecured
communication. If the function is called with an established unsecured channel, the function call will be
ignored. After executing this function, all APDUs transmitted with TEE_SEChannelTransmit on
seChannelHandle are not secured.

Note: [GPCS] does not define an explicit command for terminating a secure channel. Therefore this
function could use the command INITIALIZE UPDATE which effects a secure channel termination. After
executing the command INITIALIZE UPDATE the Secure Channel is terminated and the Security Level is
set to TEE_SC_LEVEL_NO_SECURITY.

The TEE_SESecureChannelClose function shall wait for completion of any pending
TEE_SEChannelTransmit before terminating the secure channel.

Parameters

• seChannelHandle: Reference to seChannel handle

Specification Number: 24 Function Number: 0x0603

Return Value

• None

Panic Reasons

• The Implementation detects any error which is not explicitly associated with a defined return code for
this function.

• seChannelHandle is not a valid handle on a TEE_seChannelHandle.

TEE Secure Element API – Public Release v1.1.1 61 / 62

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Annex A Panicked Function Identification
If this specification is used in conjunction with the TEE TA Debug Specification [TEE Debug] then the
specification number is 24 and the following values must be associated with the function declared.

Table A-1: Function Identification Values

Category Function
Function
Number

in hexadecimal

Function
Number

in decimal

SE Service

 TEE_SEServiceOpen 0x0101 257

 TEE_SEServiceClose 0x0102 258

 TEE_SEServiceGetReaders 0x0103 259

SE Reader

 TEE_SEReaderGetProperties 0x0201 513

 TEE_SEReaderGetName 0x0202 514

 TEE_SEReaderOpenSession 0x0203 515

 TEE_SEReaderCloseSessions 0x0204 516

SE Session

 TEE_SESessionGetATR 0x0301 769

 TEE_SESessionIsClosed 0x0302 770

 TEE_SESessionClose 0x0303 771

 TEE_SESessionCloseChannels 0x0304 772

 TEE_SESessionOpenBasicChannel 0x0305 773

 TEE_SESessionOpenLogicalChannel 0x0306 774

SE Channel

 TEE_SEChannelClose 0x0401 1025

 TEE_SEChannelSelectNext 0x0402 1026

 TEE_SEChannelGetSelectResponse 0x0403 1027

 TEE_SEChannelTransmit 0x0404 1028

 TEE_SEChannelGetResponseLength 0x0405 1029

62 / 62 TEE Secure Element API – Public Release v1.1.1

Copyright  2012-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Category Function
Function
Number

in hexadecimal

Function
Number

in decimal

SE Discovery

 TEE_SEDiscoveryByAIDInit 0x0501 1281

 TEE_SEDiscoveryByHistoricalBytesInit 0x0502 1282

 TEE_SEDiscoveryByATRInit 0x0503 1283

 TEE_SEDiscoveryFirstMatch 0x0504 1284

 TEE_SEDiscoveryNextMatch 0x0505 1285

 TEE_SEDiscoveryIsDone 0x0506 1286

 TEE_SEDiscoveryClose 0x0507 1287

SE Secure
Channel

 TEE_SESecureChannelOpen 0x0601 1537

 TEE_SESecureChannelGetSecurityLevel 0x0602 1538

 TEE_SESecureChannelClose 0x0603 1539

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Background
	2.1 C Language vs. ISO 7816-4 Language Conventions [new section in v1.1.1]

	3 Requirements for TEE Secure Element API
	3.1 Assumptions and Scope
	3.1.1 Error Handling
	3.1.2 Implementations

	4 API Overview
	5 Transport Layer API
	5.1 Header File
	5.1.1 API Version [new section in v1.1.1]

	5.2 Constants
	5.2.1 Return Codes
	5.2.2 Secure Element Reader Properties
	5.2.3 Secure Element Applet’s AID
	5.2.4 Handles

	5.3 API Levels and Classes
	5.4 Specification Version Number Property
	5.5 SEService Class
	5.5.1 TEE_SEServiceOpen
	5.5.2 TEE_SEServiceClose
	5.5.3 TEE_SEServiceGetReaders

	5.6 SEReader Class
	5.6.1 TEE_SEReaderGetProperties
	5.6.2 TEE_SEReaderGetName
	5.6.3 TEE_SEReaderOpenSession
	5.6.4 TEE_SEReaderCloseSessions

	5.7 SESession Class
	5.7.1 TEE_SESessionGetATR
	5.7.2 TEE_SESessionIsClosed
	5.7.3 TEE_SESessionClose
	5.7.4 TEE_SESessionCloseChannels
	5.7.5 TEE_SESessionOpenBasicChannel
	5.7.6 TEE_SESessionOpenLogicalChannel

	5.8 SEChannel Class
	5.8.1 TEE_SEChannelClose
	5.8.2 TEE_SEChannelSelectNext
	5.8.3 TEE_SEChannelGetSelectResponse
	5.8.4 TEE_SEChannelTransmit
	5.8.5 TEE_SEChannelGetResponseLength

	6 Service Layer APIs
	6.1 Discovery API
	6.1.1 Property
	6.1.2 Discovery Handle
	6.1.3 TEE_SEDiscoveryByAIDInit
	6.1.4 TEE_SEDiscoveryByHistoricalBytesInit
	6.1.5 TEE_SEDiscoveryByATRInit
	6.1.6 TEE_SEDiscoveryFirstMatch
	6.1.7 TEE_SEDiscoveryNextMatch
	6.1.8 TEE_SEDiscoveryIsDone
	6.1.9 TEE_SEDiscoveryClose

	6.2 Secure Channel API
	6.2.1 Property
	6.2.2 Secure Channel Parameters
	6.2.2.1 TEE_SC_Params
	6.2.2.2 TEE_SC_OID
	6.2.2.3 TEE_SC_SecurityLevel
	6.2.2.4 TEE_SC_CardKeyRef
	6.2.2.5 TEE_SC_DeviceKeyRef
	6.2.2.6 TEE_SC_KeyType
	6.2.2.7 TEE_SC_KeySetRef

	6.2.3 Secure Channel Protocol Support
	6.2.4 Security Levels
	6.2.5 TEE_SESecureChannelOpen
	6.2.6 TEE_SESecureChannelGetSecurityLevel
	6.2.7 TEE_SESecureChannelClose

	Annex A Panicked Function Identification

