OBALPLATFORM

THE STANDARD FOR SECURE DIGITAL SERVICES AND DEVICES

GlobalPlatform Technology
TEE Internal Core API Specification
Version 1.1.2.50 (Target v1.2)

Public Review
June 2018
Document Reference: GPD_SPE 010

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY

OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 3/341

Contents
3 1 1 4 o T LU o o T
11 F N o =g ot PR PPPRPRTRRP
1.2] S BTl = 11 1 = SO ORI
1.3 TSy (=] (= 1ot PP
1.4 Terminology and DefiNItIONS.oo it e e e et e e e e e e et e e e e e e e e e nnneeee
15 Abbreviations and NOLALIONSooiuiiiiiiei et e e e e e e e e e e e s e sabb e e e e e ae e e e e nnneeee
1.6 REVISION HISTOTY ...eeeeeiie ettt oottt e e e e e e e a bbb et e e e e e e e s bbb be e e e e e e e s annnnbeeeaaaaeaanns
2 Overview of the TEE Internal Core API Specificationccooooiiiiiiiiiiiii e
2.1 LI 0 1S3 =T I o] o] o= L1 1SR
P22 00 R 17 N 1 1 (=T o = Tt ST RTPRR
2.1.2 Instances, Sessions, Tasks, and COMMEANASeiiiiiiiiiiiiiiiiia e e e eeeas
2.1.3 Sequential Execution Of ENtry POINESooiiiiiiiiiii e
P I S O T (o] | =40 LS TR PR TR
2.1.5 Unexpected Client TeIrMINALIONcccuviiieire e e i ittt ie e e e e s st e e e e e e s s st reeee e e s s stnrereraeeessnnnrrneeeees
20 LG T [11 = o =T 1Y/ o1
2.1.7 Configuration, Development, and ManagemeENtcooiieceiiiereeeieiiiiieee e e e s s srereree e e e e s snnenaeeeees
2.2 TEE INEINAI COIE APIS ...ttt e e e e ettt e e e e e e s bbb b e e e e e e e s e sanbbeeeeaaeeeaannenees
2.2.1 Trusted Core FrameWOIrK APo ittt e e e e e s r e e e e e e e snnbereeeaeas
2.2.2 Trusted Storage API for Data and KEYS.........oo ittt ee s
2.2.3 CryptographiC OPEeratioNS APlccoiiiiiiieiee et e s st e e e e s s e e e e e e s s snta e e e e e e e s snnrrneeeees
2,24 TIME AP it e b e e b bt et b e e e n b bt e e e bae e e e anbae e e e nneee
2.25 TEE ArtRMELICAI APL....co ittt ettt e e sttt e e st e e e e e neee
2.2.6 Peripheral and EVENE AP ettt e e e e e s e bbb e e e e e e annbaaeea e s
2.3 [g fo] gl F=T g Lo |1 o [P PP OURPPPPPR
P2 I R (o1 0 = L = 1 o] £ TP TT PRI
P T (0o 1= 0 0] 41T g =t 0]
P2 T T = 1T PP
2.4 (0 o= Lo (U= o F= U To | LTSS
25 [0] 0= 4 (L= P PRTT R UOURUPRRPPR
2.6 PerIPREIal SUPPOIT ..ottt ettt e e e e e e ek bbbt et e e e e e s nbbbe e e e e e e e s annbnbeeeaaeaeaanns
3 COMMON DEFINITIONS ittt e aaeeaaeas
3.1 (L= To [T O PP
I 0 R AN B =T 7T o PR
3.1.2 Target and Version OPtiMIZAtION.cuiiiuuriiiieeeieiiiieer e e e e s s st e e e e e s st ee e e e e s s snsreareeeeeesaanneees
0 I B =TT o] g =T = SRS T U o] o Lo o A TP ERPT
3.2 D= U= B Y/ 01T ST PTPPPTRPRPRPRPRR
R T A -] o Y/ o1 TP RPPT
R T2 = Y1 o V1012 o =1 1o PR
3.2.3 TEE_ResUlt, TEEC RESUIL........cuiiiiiieeiiiiii e e e e e e e e e e e e e e s s s e e e e e e e e nnnneenes
3.24 TEE_UUID, TEEC _UUIDciiiiiiiie ittt ettt stk e et e e e s bt e e s snnnee e e eneee
3.3 (0] 11 £= 1 £ TP TRTRTRPRPRPRN
3.3.1 Return Code RaNges and FOMMAL........ooiiiuiiiiiiieeiaiie et e e e e e e
TR I S (< (1] 4 H @ o [PP RPPT
3.4 Parameter ANNOTALIONSo.uiiiiiiiiii ettt ettt e e st e e e sb bt e e sbee e e e sbb e e e e snbbeeeeanneeeas
2 A | R o104 = VT I 1T Lo o PR
G [0 11 (o] o [OSSR
70 e S |11 o 11§ TP RRPTP
0 S o1V 1 o]] PP PERPT P

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

3.5

4.1

4.2

4.3

4.4

4.5
4.6
4.7
4.8

4.9

T [0 o 0 o o PP 46
70 T 11 T3 1 g To] IE=Va o N 1 =)] o o] o1 d PSSR 46
G0 A (o101 &< i TaTo] =T To I Fo 101 51 1] o o] o1 d PSR 46
0 B (o1 o' TP PRRPTP 46
Backward CompPatiDilityoooiiioii e e e e e e e e 47
3.5.1 Version Compatibility DefinitioNS..........cooiuiiiiiiiieii e 47
Trusted Core Framework AP ... e 49
= L= T R/ 01T 50
0t R I8 =t = [[T o112 PP PT PR 50
o A I = R = 1 - o SRR 50
4.1.3 TEE _TASessionHaNdIe ... 50
4.1.4 TEE_PropSEtHANAIEooeiiiiieeiee ettt e e e e e et e e e e e e e e bbb beeeeaaeeaanns 51
L0011 =1 o £ TR PP PRRRT 52
N R = 1 =10 0= (=] gl 1Y o =2 52
N o o | T 1Y/ o -SSR 52
A B @ ¢ To 1o I @ o =S PR UUPUPPPRRUT 53
4.2.4 Property Set PSeUdO-HANAIES.oeiiiiiiiiiie et e e e e e e e e 53
4.25 MemOry ACCESS RIGNLSoeiiiiiiii et e e e e e s nbb e eeaaaeeaaaas 53
BN 01 (=T = Lol PSP R PR 55
4.3.1 TA CreateENIIYPOINTuiiiiiie e e e e e e s e e e e e e s s st eeeeeeesasnn e eeeeaeeeannnnnreereeeeeaanns 58
4.3.2 TA DESIOYENTIIYPOINT.uiiiiiiie e it e s e e e e e e s e e e e e e s s sn e e e e e e e sssnsteaeeeaeeeannnnnreneeaeesaanns 58
4.3.3 TA_OpenSesSiONENTIIYPOINT ... e e e e e e s ibe e e e e e e e e e aaas 59
4.3.4 TA _CloSeSESSIONENIIYPOINT ...ttt e e e et e e e e e e s abe e eeaaaeeaaaas 61
4.3.5 TA_INvokeCommaNAENTIYPOINT.........ooiiiiiiiiiiiiii et e e e e e e e e e s abe e eeaaaeeeaans 62
4.3.6 Operation Parameters in the TA INtEIfACEueviieiii i 63
4.3.6.1 Content of paramTypes AIrQUIMENTooiuuiiiiiiaa it e et e e e e e e e e e e e snbeeeeeaeas 63
4.3.6.2 Initial Content Of params ArQUMENT.........ouuiiiiieee e e e e eeeee s 64
4.3.6.3 Behavior of the Framework when the Trusted Application Returnscccccccceeveiiiiiineen. 65
4.3.6.4 Memory Reference and Memory Synchronization............cccccooiiiiiiiiiiiiiiiiiieeee e 66
Property ACCESS FUNCHOMNSuiiiiiiiiiiiiiiiee ettt e ettt e e e e e s e bbbt et e e e e e s e abbbe e e e e e e e e sannbnbeeeaaaaeaanns 67
441 TEE _GetPrOPEIrtYASSIIING ..eeeeeeeiiiietieieeee e et iittteeee e e e e s sstatereeeeesssnssrarereeeeesaanssreneeeaeeesnansnrenneaeessanns 69
4.4.2 TEE_GEtPropertyASBOOIcccoiiiiuiieiiiie ettt e st e e e s s s e e e e e e e s e s e e e ae e e annnnreeeeaeeeeann 70
4.4.3 TEE _GetPropertyASUNN ..o 71
4.4.3.1 TEE_GetPropertyAsSUS32 71
4.4.3.2 TEE_GEtPropertyASUBAo, 72
4.4.4 TEE_GetPropertyASBINAryBIOCK..........coui ittt e e e e e e ibebeeeeaaeeeaaas 73
4,45 TEE_GetPropertyASUUID ..o 74
4.4.6 TEE_GetPropertyASIAENTILY . .c.cciiiiiiiiiie ettt e s s s e e e e e e s s e e e e e e e s nnereeeeaeeeaanns 75
447 TEE_AllOCatePropertyENUMEIALOLceiiiieeiicttieeeeeeeeeseteier e e e e e s s snnrerereeeeesssaarenereaeeesnnnnnreeeeaeessanns 76
4.4.8 TEE_FreePropertyENUMErAtOr 77
4.4.9 TEE_StartPropertyENUMErator ... 77
4.4.10 TEE_ReSetPropertyENUMEIALOrcooii i 78
4,411 TEE_GetPropertyNAMEcccooiiii e 79
4,412 TEE _GeINEXIPIOPEITY ooieeiee e 80
Trusted Application Configuration PrOPErtieSeceiiiiciiiiiiie e e e e e e 81
(O 12T B e 0] 01T =2 PR UPUPPPRPR 84
IMPIEMENLALtION PrOPEITIESeeiiiii ittt e e e e e ettt e e e e e s e bt be e e e e e e e e sanbnbeeeaaeaeaanns 86
4.7.1 Specification Version NUMDEr PrOPertYc..uueeiiiaiiiiiiiiieie ettt e e e b e eeaae e 92
PAINICS ...ttt R et n e s e rn e e e 93
Tt I Y - o1 oSSR 93
INEEINAL CHENE AP ...t ettt s e nn et e s e e s e e e nnne e nreeennee e 94
4.9.1 TEE _OPENTASESSION . ..eitiiiieiee ettt e e e ettt e e e e e s bebe e e e e e e s e s aabeeeeeeaeasaaabsbeseeaaeesaaanbsbeeaaaaaaaanns 94

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 5/341

4.9.2 TEE _ClOSET ASESSION. .. .utiiiiiieiiiiitiitettee et e sittteeeteeesasstataeeeaaeessasstateeeeaeesasssstaaeeeeeessassnsraneeaeeesanns
4.9.3 TEE_INVOKETACOMMANG ...oviiiiiiiiiiieiee e e e sttt e e e e s et e e e e e s st e e e e e e s s snntnaneeaeeesensnnrnneeeaeesanns
4.9.4 Operation Parameters in the Internal ClIent APl........cc.viiiirii e
4.10 CanCEllAtioN FUNCLIONSciiiiiieei ettt ettt e e e e e s bbb e e e e e e e e e s anbbb e e e e e e e e e aannbnaeeeaaas
4.10.1 TEE_GetCanCellatiONFIag.coui ittt e e e e e e e e e e s nabbaeeaeaeeeanas
4.10.2 TEE _UnmaskCancellation ...
4.10.3 TEE_MaSKCANCEIIALIONceiiiiiiiiiiiiiiie e e ettt e e s e e e e e e e st e e e e e e s e sanbaaeeeaeeesennnnrnneeaaeeeanns
4.11 Memory ManagemeEnt FUNCHIONS.uuuiiiieee it ie e e e s s sttt e e e e e s e st e e e e e e s s snntneeeeaeessannnnnnneeeaeesanns
4.11.1 TEE_CheckMemOryACCESSRIGNLScciii ittt e e e e e e e s e e e e e e e e anns
4.11.2 TEE_SetINStAanCEDALA..........cceviiiiiiiii e e et e e e e e e e e a e e e raaa
4.11.3 TEE_GetINSIAnNCEDALAccevviiiiiiiiiiii e e e e et a e e e e e e e e et r e e e e e eeaaraan
o S I =y Y =V [Yo PRSPPSO
s I T I Y L= 1 oo S PRSPRR
A.11.6 TEE _Fre .
4.11.7 TEE_MEMMOVE... ..ottt e ettt s e e e e e e ettt e e e e e e e eetaaa e e e e e eeeeenbanns
4.11.8 TEE_MEMECOMPAIE ...
T I Y Y =T 4o | PRSPPSO
5 Trusted Storage API for Data and KEYScouuiuiiiiiiiiiice e e e eeaens
5.1 Summary of Features and DESIONcocuuiiiiieee it e e e s e e e e e s st r e e e e e s s te e e e e e e e e ennrraeeeeeas
5.2 Trusted Storage and RoIIDACK DELECHIONuviiiiieeiicciee e e s
5.3 D= L= T Y/ 01T
5.3 1 TEE AMIDULE ..o
LT I N | i @ o] =Tox 1 | {o SRR RPTPPPPRTRN
5.3.3 TEE WHhENCE ...,
LR S N | R @ o] = o3 1 =g o | USSR
5.3.5 TEE_ODbJeCtENUMHANGIE ...t e e e e e e e e e e e s s nan e e e e eeeeanns
5.4 (00] 0151 1= 0| £ ST PP PP P PP R TOPPPPPP
5.4.1 Constants Used in Trusted Storage API for Data and Keys ...
5.4.2 Constants Used in Cryptographic Operations APcooiiiiiiiiiiiiiia i
55 GENENIC ODJECT FUNCHONS. ...ttt e ettt e e e e e et b e e e e e e e e e sannbraeeaaeas
LT A I | R ©T=1 (@ o] [=Tox 1] o 1 USRS
5.5.2 TEE_ReStrCtODJECIUSAGELeviiiiiiiee ittt et e s s e e e e e e e s e e e e e e s s nnnrneeeeeeeeanns
5.5.3 TEE_GetObjeCtBUffErALIDULEevieii e e e e e
5.5.4 TEE_GetObjectValUBALIDULEooiiiiie e a e e
5.5.5 TEE_CIOSEODJECT. ettt e e e e e e ettt e e e e e e s e bbb be e e e e e e e e annbbbeeeaaaeeaanns
5.6 Transient ODJECT FUNCLIONSoiiiiiiii et e e e e et e e e e e e e e st e a e e e e e e e e annneees
5.6.1 TEE_AloCateTranSiENtOD]ECT.......uuuiiiieeiiiiiiiiee e s s e e e s e r e e e e e s s e e e e e e s aenaerneeeeeeeeanns
5.6.2 TEE_FreeTranSientODJECTccuiiiiiiiie ittt e e s s r e e e e e e s e e e e e e s s nnnrnneeeeeesanns
5.6.3 TEE_ReSEtTranSieNtOD]ECEuuiiiiiieeiiiiiie et s st e e s s e e e e e e s s e e e e e e s snnnnrneeeeeeenanns
5.6.4 TEE_PopulateTranSiE@NtODJECL.........ooii ittt e e e e e ebb e e e e e e e e e aaas
5.6.5 TEE_InitRefAttribute, TEE_ InitValueAttribute..................cc
5.6.6 TEE_COPYODJECIAIIDULESTttt ettt e e e e e e e e e s nbbbneeaaaeeeanas
5.6.7 TEE _GENEIAIEKEY ..o e
5.7 Persistent ObJECT FUNCLIONSccciiiiiiiiiie et e s e s e e e e e e s e san e e e e e e s snnnnaenneeeeeeanns
5.7.1 TEE_OpPenPersiSteNtOD]ECT.........uuuiiiiieeiiiiiie e s e e e e s s r e e e e s s s e e e e e e s sennrrneeeeeeeeanns
5.7.2 TEE_CreatePersiStENtOD]ECT.........uu it e e ebb e e e e e e e e
5.7.3 Persistent Object Sharing RUIEScooo e e e
5.7.4 TEE_CloseAndDeletePersiStentObJECTL..........ooiii i e
5.7.5 TEE_RenamePersiStENtODJECTccuiiiiiiiiiiiiiie et e e r e e e e s s e e e e e e s e ranereaeeeann
5.8 Persistent Object EnumMeration FUNCHONS............uuuiiiiiii it s e e e e e e nnaeee e e e e e
5.8.1 TEE_AllocatePersistentObjeCtENUMETALONccccciiiiiiiiiiiie e e e e e e e s e e e e e
5.8.2 TEE_FreePersistentObjeCtENUMETALONueiiiiiiiiiiiiiiie et a e

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

5.8.3 TEE_ResetPersistentObj@CIENUMEIALOrcviieiiiiiiiiiiiee e esiee e e e e e nae e e e e e 159
5.8.4 TEE_StartPersistentObJeCtENUMEIALOruuuiiiieiiiiiiiiieee e s eceer e e e e e e e snnar e e e e e e e 160
5.8.5 TEE_GetNextPersiSteNtODECT........uuuiiieiiiiiiiiee e e e s e e e e e e s e e e e e s snnan e e e e eeeeanns 161
5.9 Data Stream ACCESS FUNCLIONS ...ttt e e e e e e s ibb e eeaaaeeeaaas 162
5.9.1 TEE_REAUODJECIDALA. ... eeiiiieiiiiiiiiiii e ettt ettt et e e e et e e e e e e s e sbbbeeeeaaeeesanbbbeeeaaaaeaann 162
5.9.2 TEE_WIEODJECIDALAceiiiiiiiiiiiiiiiie ettt ettt ettt e e e e e s bbb e e e e e e e snbbbeeeaaaaeaanns 164
5.9.3 TEE_TrunCateODJECIDAAc.uviiiieiee e i e ettt e s e st e e e e e s s s e e e e e e s et e e e e e e s snnnnrneeeaaeeeanns 166
5.9.4 TEE_SEEKODJECIDALA ... uueiiieeiiiiitiiiiiie e e s e sititet et e e et s st e e ee e e s ssaabeeereaeessassastaeeeeeeessasnnrnneeaeeesanns 167
6 CryptographiC OPEerations AP e a e 168
6.1 D= U= T Y/ 01T TP 170
6.1.1 TEE_OPEratioNMOUEcooiiiiiiiiiiiie ittt ettt e e e e et e e e e e e e e e sanbbe e e e e e e e e s e nnenees 170
6.1.2 TEE_OPErationINfOcooiiiiiiiiiiiiii ettt et e e e e e e e e e e e e anaae s 171
6.1.3 TEE_OperationINfOMUIIPIEuueiiii et e e e s e e e e e e s nnnaees 171
6.1.4 TEE_OpPerationHANMIEcc.uviiiiiie et e e e s e e e e e s st e e e e e e s s s e e e e e e e snnnnnnees 172
6.2 Generic OPEeration FUNCHONSiiiie e s e e e e s s e e e e e s s e e e e e e e s srnbaaeereeeeeesnnnnaeneees 173
6.2.1 TEE_AlIOCAtEOPEIALION. ...ttt e ettt e ettt e e e e e ettt e e e e e e e snnbe e e e eae e s e annnbeeeeeeeeeaaannnnees 173
6.2.2 TEE_FIEEOPEIALIONeeiii ettt ettt e e e e ettt e e e e e e e sab bbb e e e e e e e e e aanbbeeeeaeeeeaannnnees 177
6.2.3 TEE_GetOperatioNINTO.......coieiieiiii ettt e e a e e e 178
6.2.4 TEE_GetOperationINfOMURIPIEccoiiiiiiiee i e e e e e 179
7S T I = R = =T 7= (O 0 1= = 1o o SRR 181
I T I = S Y= (@] o 1T - o] 1] S-SR 182
6.2.7 TEE_SetOPEratiONKEY2uuiiiiiiiiiiiiiiee ettt ettt e e e e e st et e e e e e e e e anbbeeeeaaeeeaannnnees 184
6.2.8 TEE_COPYOPEIALIONeeiieiiiiiitiiete e e e ettt ettt et e e e e s et e be e e e e e e e s snnbebeeeaaeesaaanbbeeeeaaeaeaannnnees 186
6.2.9 TEE_ISAIQOrthMSUPPOITEA.oeeiiiiiiiiiiii ettt e e e e e e e e e e e e e annaees 187
6.3 MESSAJE DIGESE FUNCHONSeeiiiiee it ee e e e s s e e e s s st e e e e e e s s sanbe e e e e e e e s snsnnaneneeeeneanns 188
T B0 R I = R o =] (U] o o o SRR 188
L T I = S o =] 1D o T T | SRR 189
6.4 SYMMELHC CIPNEI FUNCLIONSttt ettt e et e e e e e e e ab bt e e e e e e s snbbeaeeeaeas 190
T ot R I =t @11 o o T= T4 | o 1 PP RR 190
6.4.2 TEE_CIPNEIUPUALEcoiiiiiiiiiieei ettt e e e e et e e e e e e e e e aanbbeee e e e e e e e e nnneees 192
I B I = R O o] 1= o T - SRR 193
6.5 YN @ ¥ g Tox 1o L PP RP PSR 194
ST 70 R I =1 1Y O 1o 1 S U RPP T PPPR 194
T I = i VY @10 o To £ = USRS 195
6.5.3 TEE_MACCOMPULIEFINGL ...ttt e e e e e e e e e e e e e e nnenees 196
6.5.4 TEE_MACCOMPArEFINGL. ...ttt e e e e e e e e e e e e e e e e nneeees 197
6.6 Authenticated ENCryption FUNCHONScoiiiiiiiiiii e e e s e e e e e e s e e e e e e s e nnnnenes 198
oI Tt R I =1 A = [o SRR 198
6.6.2 TEE_AEUPUAIEAAD ...ttt ettt e e e bt e b e e e ekt e e e et e e e e nbe e e s aba e e e aneee 200
ST T I = N oo o (SRR SR 201
6.6.4 TEE_AEENCIYPIFINGL ...coiiiiiiee ettt e e e e e e e e e e s nneee e 202
6.6.5 TEE_AEDECIYPIFING ...cooiiiiieiei ettt e e e et e e e e e e e et e e e e e e e e e s nnnaees 203
6.7 F NSV L L= o T o 1o T PSR 204
6.7.1 TEE_AsymmetricEncrypt, TEE_ASYMMEtriCDECIYPL.....cccciiiiiiiiieie e e e 204
6.7.2 TEE_ASYMMEICSIGNDIGEST .. .uuiiiiiieeiiiiiieie e e e ceee e e e s s e e e e e s st ee e e e e e e s s st e e e e e e s snnnnnnees 206
6.7.3 TEE_ASYMMEtriCVErifyDIgEST ... ettt e e e e e e e e e nneaees 209
6.8 Key Derivation FUNCHONSoiiiii ettt ettt e e e e e e s et b et e e e e e e e e anbbeeeaaaeeaaans 212
B.8.1 TEE_DEIVEKEYceeieiiiiie ettt ettt e e e e ekt e bttt e e e e e e s a b bbbt e e e e e e s e annbbeee e e e e e e e nnrnees 212
6.9 Random Data Generation FUNCHONiiiiiiiiiiiiee it 215
I R I = R =T o 1= o (=1 = U o (oo o SRR 215
6.10 Cryptographic Algorithms SPeCIfiCatioNcoiiiiiiiiiie e e e 216
6.10.1 List of AlIGOrithm IAeNTIFIEISeeiiii e e e e e 216

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 71341

T R I @ o] =Tt 1Y/ o 1= SRR 219
6.10.3 Optional CryptographiC EIEMENTSccoiiiiiiiiiiiie et 221
6.11 ODbject Or Operation AIIDULES........c.uiii et a b e e s b b e e s sbbe e e e eneee 223
T THMIE AP e 226
7.1 D= L= B Y/ 01T ST PRTRPPPRPRTRPTIN 226
4% S R I =1 I 4T TSP 226
7.2 LI L=T 0T Ted 1T LSOO 227
7 R I = R =1 653 V) (=10 0 1 1T - SRR 227
A A = = T - V| S SRR 228
7.2.3 TEE _GetT APEISISIENITIMIE ... tuuiuiiiiiiiiitiiittitit e aa e e aa e aea s as e aaaasasasasssassssnsssssnssssnssnnnnns 229
7.2.4 TEE _SetTAPEISISIENTITIME ...uuuiiiiiiiiiiiiii e aae e aae e e e e e e e e aaasasassessassasnsssssnnnsssnnnnnnns 231
T7.25 TEE _GEIREETIME ...utiiiiiiiiie e ittt ett e sttt e e sttt e e e st e e e sttt e e e st be e e e e asbaeeeesbeeeeesbaeeesnsaeeeennses 232
8 TEE ArithmetiCal AP ... ettt e e e e ettt e e e e e eeaanas 233
8.1 [0 To [N L1 1 o] o PO SR TPRP PSR 233
8.2 Error Handling and Parameter CheCKINGcccuuiiiiiieei ittt e e e e e e e e s nnnnaeeee e e e e e e 233
8.3 D= U= T Y/ 01T TP 234
SR B0 R N | R = o | o) SRS OPPPROTPRR 234
8.3.2 TEE_BIQINTFMMOCONTEXE ..ceiiiiiiiiiiiiiiiie ettt ettt ettt e e e e e e s e bt be e e e e e e e e snnbbbneeaaaaeaanns 235
8.3.3 TEE_BIGINTFEMM ...ttt ettt e ettt e e e sab e e e e sttt e e s sbbeeeessbbeeeesnnbeeeeans 235
8.4 Memory Allocation and Size Of ODJECEScccii i e e e e 236
8.4.1 TEE_BIQINSIZEINUSB2 ...oeeeiiiie ittt s s st et e e e e e e e e e e s s s nnanbe e e e e e e e s s nnnrnneeeeeenanns 236
8.4.2 TEE_BIgINtFMMCONIEXISIZEINUS2...cciiiiiiiiiiei ettt ee e e e e 237
8.4.3 TEE_BIQINtFMMSIZEINUS2ciiiii ettt e et e e e e st e e e e snbae e e s sntaeeessnbanaeeas 238
8.5 INILIANIZAION FUNCHIONS ...ttt e e e s ettt e e e e e e s e aabbb et e e e e e e s s nnbbbeeeaaaeeaanns 239
8.5.1 TEE_BIGINTINIE ...ttt ettt ettt e e et e e s sabe e e e s sbbe e e e s sabeeeesabbeeeesanbeeeeans 239
8.5.2 TEE_BIgINtINItFMMECONIEXTL........uiiiiiiieeiiiiiiiieee e e e s s setieeeeee e e s s senreeereaeeessssantaeeeeaeessasnnrnneeeeeesans 240
8.5.3 TEE_BIGINTINIEFEMMeeiiiiiiiiii ettt ettt e e s st e e s sabe e e e s sbbeeeessnbeeeeaas 241
8.6 (O] 01V T o (=T gl VT o o1 o] LS PP UP PRI 242
8.6.1 TEE_BIigINtConVertFromMOCIEISIING ..c.coiiiiiiiiieie ettt e e e e ebn e e e e e e e e 242
8.6.2 TEE_BIgINtCONVEITOOCIESIIING ...eeeiiieiiiiiiiiiieiee ettt e ettt e e e e et e e e e e e e nnbbaeeeaaeeeaans 243
8.6.3 TEE_BIgINtCONVEIFIOMS32.... .. iiiiiiiieei ittt e e e s e sttt e et e e e s s st e e e ae e e s s ssanteeeeeaeeeannnnrneeeeeeesanns 244
8.6.4 TEE_BigINtCONVEITOS32....cciiiiieiiieee e et e sttt et e e e s sttt e s e e e e s s snaataeeeaaeessassantaeeeeaeessnsnnrnneeeeeesanns 245
8.7 [o [Tor= 1K@ 0 1= - 1o PSSR 246
S A R N | R =7 To 1) (@1] TSP PPPROTPRR 246
8.7.2 TEE _BIgINtCIMPS32 .. uiiiiiiiiiie e iiiiee ettt e sttt e e st e e e st e e e st e e e e sstaee e e sstaeeessstaeeesssbaaeesastaeeesssbaaeesas 246
8.7.3 TEE_BIgGINtSRIfIRIGNTeiiiiiiiiiiiiiiie ettt e e st e e e st e e e s ssbae e e s srtaeeessnbaaeeaas 247
8.7.4 TEE_BIGINtGEIBILcuiiiiiiiiiie ettt ettt e e st e e s sab e e e s sbbe e e e s nrbeeeeaas 248
8.7.5 TEE_BIgINtGEIBItCOUNTceeiiiiiiiiieii e e e e e ettt et e e e s e s e e e e e e s s st e e e e e e e s s ssnnbeeeeeaeessnnnnrneeeeeeesanns 248
8.7.6 TEE_BIGINTSEIBIL ...ccitiiiiiiiiiii ettt ettt e e s st e e s rab e e e s sbbe e e e s ntbeeeeans 249
B.7.7 TEE_BIGINTASSION - .. ttieiiiie ettt ettt ettt e e e e e s e bbb et e e e e e e e s e abbbe e e e e e e e e s nnbbbeeeaaaaeaann 250
8.7.8 TEE _BIGINTADS . .eiiiiiiiii ettt e e e e e e st e e et a e e e et e e e e e nrra e e e e nrraeeeenraaaaeans 251
8.8 BasiC ArthMEtiC OPEIatiONS......ccii ittt e e et e e e e e e s e sabb et e e e e e e e s anbbbeeeaaaaeaanns 252
8.8.1 TEE_BIGINTAGU.coiiiiiiiieiitiie ettt e et e e s sttt e e s sbbe e e e s nbbeeeesnbbeeeeans 252
8.8.2 TEE_BIGINTSUD.....eoiiiiiiiiiiie ettt e ettt e e st bt e e s na e e e s nrbe e e e e nraeeeeans 253
oS T It R = o 1Y dN =T o PRSP 254
8.8.4 TEE_BIGINTMUI .. .uiiiiiiiiii ettt et e e st e e e et e e e snta e e e e ssba e e e e ssbaeeeessbaeeesasbaeeesasbeaaeans 255
8.8.5 TEE_BIQINTSOUAIEeiieiiiiieeiiieee ettt ettt e e e e e ettt e e e e e e s e bbbbe e e e e e e e e ansbbbeeeaaaeeaanns 256
8.8.6 TEE _BIGINTDIV.....uiiiiiiiiiieiiiiie it ettee ettt et e e e st e e e ssta e e e e sstaee e e sstaeeeessbaeaeaasbaeeeentbeeeeenrbeaaeans 257
8.9 Modular ArithmetiC OPEIAtIONS.iceriieiiee e e e et e e e e e e s e e e e e s s s e e e e e e s s ssnraereeeeessansnnrnneeeaessans 259
8.9.1 TEE_BIGINTMOMciiiiiiiiie ittt ettt et e et e e st e e e sab et e e s sabe e e e s sbbeeeesnnbeeeeaas 259
8.9.2 TEE_BIgINTAAAMOU.eeiiiieeiiiiiiier e e e s s e e e e e e s e e e e e e e s s sen e e e e e e e e snsnnrneeeeeenaanns 260

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

8.9.3 TEE_BIgINtSUBMOU.oeeiiiii it e e e e e s s e e e e e e s s nanrneeaaeeesanns 261
8.9.4 TEE_BIGINtMUIMOToeiiiiiiiiee ettt ettt sttt e e s seb et e e s sab e e e s sbbeeeessnbeeeenas 262
8.9.5 TEE_BIgINtSQUAIrEMOUcceeeiiiiiiiiiiiie ettt e s s st e e e e e e s st e e e e e e s s s ssnnbeeeeeaeessnnnnrneeeeeeesanns 263
8.9.6 TEE_BIGQINTINVIMOMouiiiiiiiiie ettt et e et e e e st e e e st e e e e ssba e e e e snbaeeesssbaeeesasbeneeans 264
8.9.7 TEE_BIGINTEXPMOUciiiiiiiiieeiiiiie ettt e e ettt e sttt e e st e e e st e e e e st e e e s ssbaeeesssbaeeesssbaeeesssbeeaesssbeaaesns 265
8.10 Other ArithmMeEtiC OPEIALIONS. ... ceiiiiiiiiitiiiee ettt e e e e e et e e e e e e s e sabbeeeeeaeeesasnnnbeeeeaaeaaann 266
8.10.1 TEE_BIgINtREIAtIVEPTIME.....ccii ittt e e e e e s e e e e e e e s st e e e e e e s sesnarneeaaeeeeanns 266
8.10.2 TEE_BIigINtCOMPULEEXIENAEAGCAcceiiiiiiiieie ettt e e e e e e e e e e e e e e e e e anns 267
8.10.3 TEE_BIgINtISProbablePrimeuuiiiiieeiiiiiiiiiee et s e e e e e s e e e e e e s s nnnrneeeeaeeeanns 268
8.11 Fast Modular Multiplication OPEIratiONS...........oiuuuiiiiieee ettt e e e e e e e eaebeeeeaaeeeeans 269
8.11.1 TEE_BIgINtCONVEITORFMMttt ettt e e e e e e e e e s nbebaeeaaaeeeanas 269
8.11.2 TEE_BIgINtCONVEIFIOMEMMoiiiiiiiiiiiiiiie ettt e e e e e e e e e e e s nbbbneeaaaeeeanns 270
8.11.3 TEE_BIgINtCOMPUIEFMIMcciiiiiiiiieie e ettt s st e et e e e e e s r e e e e e s s snanta e e e e aeessnnnnrneeeeaeesanns 271

9 Peripheral and EVENT APISuiiiiiiiiii e 272
9.1 [0 o [N T4 1 o] o PO PP UP PSR 272
LS 0 R = =T T o] 4 =T = 1TSS PRPRRR 272
9.1.1.1 Access to PeripheralS from @ TA ... e 273
9.1.1.1.1 Multiple Access to Peripherals (INfOrmative)oocuuiiiiiiiiiiiiiiiiieeee e 273

0.0.2 EVENE LOOP oo ————— 274

Lo TR T = =T T o] U= = L] = L= RSP 274
9.1.4 Overview of Peripheral and EVENt APISuuuiiiiiiiiiieee e e e e ssnnn e e e e e e 274

9.2 LO70] 11 r= 1 | £ TTTRTRTRTRTRPRTTPTON 277
LS I R o F- T o To | L= TP PPPPTT 277
0.2.2 MAXIMUIM SIZES .. iiiiiiiiiiiii ettt oottt et e e e oo sk b ettt e e e e e o e ababe e et e ae e e s e bbbbeeeaaaee s e nbnbrneeaaaeeaann 277
9.2.3 TEE_EVENT _TYPE .. oottt ettt ettt et e et e e st e e s sab et e e s sa b e e e e s sbbeeeesnbbeeeeans 277
9.24 TEE_PERIPHERAL_TYPE ...cii ittt ettt ettt ettt e st e e s saba e e e s snbeeeessnbeeeeens 279
9.2.5 TEE_PERIPHERAL_FLAGS.ottt ettt ettt et e e st e e e s sabe e e e s snbeeee e 280
9.2.6 TEE_PeripheralStateld VAlUESccooo ittt e e 281

9.3 Peripheral State TabIEttt e e e e e e e e e e e s s bbbbeeeaaaaeeaaa 282
9.3.1 Peripheral NAIMEttt e e ettt e e e e e s e bbb be e e e e e e e e s nnbbbneeaaaeeaanns 282
9.3.2 Firmware INFOMMALIONocuueiiiiiiie ettt e e et e e s sabe e e e s sbbeeeessnbeeeeaas 282

1S e T |V - o 11) = Tt (0= PP PP P OPPPROTPPR 283

LS TR S - Vo £ USSP 283
O.3.5 EXCIUSIVE ACCESS .. .iiitiiiiiiie ettt ettt et e oo ook b ettt e e e e e o e s b et e et e e e e e e s e bbb be e e e e e e e e s nnbbbaeeaaaeeaann 283

9.4 Operating System PSeudo-peripheral........ ... 284
LS S = (= = o] [T ST RT PP PPPPRT 284
O.4.2 EVEINS ittt e e e e e e et e e e o R R e e et e e e e e e R a e e e e e e e e e e a b rr e e e aeeneaaan 284

9.5 YT o] T Y =TU o (o R 0 T=T] o] =T - | 285
LSBT0 R S - (= I o [P PPOPPPPOTPRR 285
0.5, EVBINES e 285

9.6 DALEA SITUCTUIES ...tttk skttt e bnbnn e 286
9.6.1 TEE_PEIPNEIAL.....coieeeiiie ettt et e e e e e e s bbbt e e e e e e e e bbb e e e e e e e e aaa 286
9.6.2 TEE_PeripheralDESCIIPLON . .cciiiiiiiieei e e e e e ettt et e e e s e st e e e e e e s s st e e e ee e e s s ssanteneeeaeeesnsnnrnneeeaeesanns 287
9.6.3 TEE_PeripheralHANAIEcccuriiiiiiee ittt e e e e e e e e e e e e s sennnrneeeaeeeeanns 287

Lo I S I R =Y o] 1= 11 o USSP 288
9.6.5 TEE_PErPREralSIALEcoiiiiiiiiiiiiiiii ettt ettt e e e e e s e e e e e e e e snbbbeeeaaaaeeanns 288
9.6.6 TEE_PeripheralStateldooiuiiiiiiiiiiiiie ettt e e e e e s ebb e e e e e e e e 289
9.6.7 TEE_PeripheralValu Ty . ..o ittt ettt ettt e e e et e e e e e e e s nbb e e e e e e e e e aans 289
0.6.8 TEE_EVENT ..ottt e e et et e e e nhbe e e e s nbbe e e e e nrreeeeans 290

L IS B 1= 1= ol == 1Y (o - Vo £ USSR 291
9.6.9.1 TEE_EVENt ACCESSCRANGE.......uuuiiiiieeiiiiiieiii e e et ee e e e e s s s e e e e e s s s e e e e e e e s ennreneeeees 291

9.6.9.2 TEE_EVENt ClENtCANCElccooiiiieieiceee e nanannanannannnnes 291

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 9/341

S I TR R I =y o V=T o 0 =T PP 291

9.6.10 TEE_EVeNtQUEUEHANAIE ...ttt e s e e e e e e e s s e e e e e e e s snnnnrneeeeeeeeanns 292
9.6.11 TEE_EVeNtSOUIrCEHANMIE ... e e e e s e e e e e e s e e e e e e e e e anns 292

9.7 Peripheral APT FUNCHONSuiiiiii ittt e et e e e e e e s s e bbbt e e e e e e e e sannbbbeeeaaaaeaaan 293
9.7.1 TEE_PeriPhEral_ClOSE.....ccoi ittt ettt e e e e et e e e e e e e s nbb e e e aaaeeeaans 293
9.7.2 TEE_Peripheral_CIOSEMUIIPIEcoiiiiiiieiei e e e e 294
9.7.3 TEE_Peripheral_GetPeripheralS.........ccciiiiiiiiiiiie ettt e e e e e e e e ne e e e e e e e aans 295
9.7.4 TEE_Peripheral_GetState.........ccuviiiiiie it e e s s st e e e e e s s e e e e e s s s e e e e e e e s s nnnrneeeeeeesanns 296
9.7.5 TEE_Peripheral_GetStateTabIle........cciuiiiiiiiiiieiec e e e e e e e e s s ne e e e e e e e anns 297
9.7.6 TEE_PeriPREral_OPEN ..ottt ettt e e e e e e et e e e e e e e e e nanrneeaaaaeeanns 298
9.7.7 TEE_Peripheral_OpenMUIIPIE.coi it a e 299
9.7.8 TEE_Peripheral_REAdcooi ittt e e e e bbb e e e e e 301
9.7.9 TEE_Peripheral_SetStatecccuiiiiieiiiiiiiiii e e e e st e e e e e s s s e e e e e e s st e e e e e e e s sennnnrneeeaaeeeanns 302
9.7.10 TEE_PEriPNEral_WITLEeeiieeiiiiiiiiiit e e e s e ettt e e e s s sttt e e e e e e s st e e e ae e s s s nnanaeeeeeae e s s nnnrneeeaeennanns 304

9.8 YT | AN o U T 1o o ST RP PSR 305
9.8.1 TEE _EVENt AAUSOUICEScccoiieieeeee e, 305
9.8.2 TEE_EVENt CaAnCEISOUICES........ccce oo, 306
9.8.3 TEE _EVENt CIOSEQUEUEccc o, 307
9.8.4 TEE_EVENT_DIOPSOUICESccoi i e i e ettt ettt ettt e e e e e e e e e e e e e a e a e e e e e e e n e e e e e e aeeas 308
9.8.5 TEE_EVENT LISISOUICES ...ciiiiiiiiiiiiiieie e e e ettt et e e e s s st e e e e e e s st e e e ae e e s s santeneeeaeessnnnnrnneeeeeesanns 309
9.8.6 TEE_EVENt_OPENQUEUEcooiii ettt e e e e e e e e e e e a e e e e e e e e e e e e e e e e aeeas 310
9.8.7 TEE _EVENt TIMEICIEALE ... oo, 312
9.8.8 TEE_EVENT Wal...cciiiiiiieiiiiiie ettt s et e e e st e e e e st e e e e snta e e e e ssbaeeeessbeaeesanbaeaesnstenaeans 313
Annex A Panicked Function Identificationcccceiiiiiiiii 315
Annex B Deprecated Functions, Identifiers, Properties, and Values.................ooveevinnnnnn. 321
B.1 DEPreCated FUNCHIONSceiieieeie et s e e e e e s e s e e e e e e s s sne e e e e e e e e s s annabeneeeeeeesnnnnaneneaeenan 321
B.1.1 TEE_GetObjectInfo — DEPreCAtedcciiieiiiiiiiiiiiiie e e sttt e e e e e s et e e e e e e e s e e e e e e s ennrnaeeeee s 321
B.1.2 TEE_RestrictObjectUsage — DepreCatedueeiiiiiiiiiiiiieiee e 323
B.1.3 TEE_CopyObjectAttributes — Deprecatedcooiii it 324
B.1.4 TEE_CloseAndDeletePersistentObject — Deprecated...........ccccoiiiiiiiiiiieeiiiiiieeeee e 325
B.1.5 TEE_BigIntInitFMMContext - depreCatedccuuuriieeeiiiiiiiiiieee e e esiiree e e e e s s e e e e e s snnraaeeee s 325

B.2 D =T o] £ or= 1 =T I o (=T) 11T SRR 327
B.3 D CT o] (= Tor- 1 L= I o] =] 4 1T SRR 329
Annex C Normative References for AIgorithms ..., 330
Annex D Peripheral APl Usage (INfOrmative).........cooviiuiiiiiiie e 334

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

10/341

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Figure 2-1:
Figure 7-1:
Figure 9-1:
Figure 9-2:
Figure 9-3:

Figures

Trusted Application Interactions with the Trusted OS.........ccoeiiiiiiiiiiiieee e 26
Persistent Time Status State MaChiNecueiiiiiiiiiei e 229
Example of Multiple Access to Bus-oriented Peripheral (Informative)............occcuvieeiiiiiniiiinnen. 273
Peripheral APT OVEIVIBWeiiiiiii ittt e e e e e e st e e e e e e e e s bbb be e e e e e e e e annbnneeeaens 275
EVENT APT OVEIVIEWviiiiiie ittt ettt et e e nn et e s e nn e e nne e e nnn e e 276

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 11/341

Tables

Table 1-1: NOrMAatiVe REFEIENCES.......ciiiiiiiiie ittt r e nnn e 15
Table 1-2: INfOrmative REFEIENCESvviii ittt e s e e 16
Table 1-3: Terminology and DefiNItIONS.........oooi i ee e s 17
TabIE 1-4: ADDIEVIATIONScitieie ettt ettt e ekt e e ek et e e sk b et e e et b e e e e e nbr e e e e anbr e e e e anbr e e e e neee 20
Table 1-5: REVISION HISOIYuuiiiiiiieiiiiiieie e s st e e e s s e e e e e s s st e e e e e e e s s s be e e e eeeesssnnteaeeeeeessasnnsnnneeeees 22
QLI Lo (=T e T T T | L= Y/ o= 34
Table 3-1: UUID USAQE RESEIVALIONSuuuiiiieeiiiiiiiiiteee e e ssiietieireeeessssstateeeeeaeasssststeeeeeaessannsrsseeeeeessssnnsnnneeeeees 40
Table 3-2: Return Code FOrmats and RANGESuueiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e snnreaeeeaens 41
Table 3-3: APIREIUIM COUEScoiiiiiiiiiiiee ettt etttk e ekt e e e bt e e e b b e e e e e br e e e e aabr e e e e anbreeesnnes 42
Table 4-1: Parameter TYPE CONSLANTSoiiiiiiiiiiiiiiiiei ettt e e et b e e e e e e e e s b b be e e e e e e e s aanbbebeeeaaaseesnnrnseeeaans 52
QLI Lo (=T e Mo To [1Y o =T @0 1] = L | P 52
LI Lo (=T S @ T o [T a O o o L= @ 1] = | £ P 53
Table 4-4: Property Set Pseudo-Handle CONSLANTScooiieiiiiiiie e ee e e e s s e e e e e e e snanaeeeee s 53
Table 4-5: Memory Access RIGhtS CONSTANTSuuiiiiiiiiiiiie et e e e s 53
Table 4-6: TA INTErface FUNCHONSoiuiiiiiiiiiie ittt ettt e e et e e et et e s abr e e e e anre e e s annes 55
Table 4-7: Effect of Client Operation 0N TA INtEITACEooieiiiiiiii e 56
Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called...........cccccceeeeviiiviiennenenn. 64
Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returnsccccccvveveeenn. 65
QLI Lo Lo 0 T 0T 0T o 4 ST~ R 67
Table 4-11: Trusted Application Standard Configuration Properties...........ccciiiiiiiiienniiiiiiieeee e 81
Table 4-12: Standard CHENE PrOPEITIEScoii ittt e e e e e e e e e anbe b e e e e e e e e e snnreaeeeaans 84
Table 4-13: ClENt IAENTHIESeeii ittt e et e e et et e e et e e e e s br e e e s anbr e e e e anbeeeesanees 84
Table 4-14: Implementation PrOPEITIESuuiii i e e e e e e s e e e e e e s s e e e e e e e e e e snnnnneeeees 86
Table 4-14b: Specification Version Number Property — 32-bit Integer Structurecocccvveeeeeeeeiicciiieeneeennnn 92
Table 4-15: Interpretation of params[i] on Entry to Internal Client APl.........ccovevevee i 99
Table 4-16: Effects of Internal Client AP1 0N params[d] .ocoooooooioiiiiiiiiiiici e eananaes 99
Table 4-17: Valid HINEVAIUES ...ttt e et e e s e e e e s anb e e e e s anreeeeans 109
Table 5-1: Values of gpd.tee.trustedStorage.rollbackDetection.protectionLevel..................... 119
Table 5-1b: TEE_WheNnce CONSIANTSuuuiiiieeiiiiiiiieie e e e s s siieeer e e e e e s s s e e e e e e e sssnnateereeeeesssnseeeeeeeeeessnstnnneeees 121
Table 5-2: ObjJeCt STOrage CONSIANLSuuiiiieeii e e e s s s e e e e s e s e e e e e e ssaae e ereeeessssssaeereeeessannnreneeeees 122
Table 5-3: Data FIag CONSTANTS.........iccceiiiiiee e e r e e s s s e e e e e e s s s e e e e e e e s rnate e e e e eeessnnnesaeeeeeeesssnstnnneeaes 122
TaDIE 5-4: USAQE CONSTANTSeeiiiiiiiiiiiii ettt e ettt e e e e e s s ab b be e et e e e e e s e abebeeeaaae e s s nbbbeeeeaaeseaaanbbeneaaaeas 122
Table 5-4b: Miscellaneous Constants [formerly Table 5-8]ccooiii e 123
Table 5-5: Handle Flag CONSIANTSu it e ettt e e e e e s sabebe e e e e e e e s anrbeaeeeaeas 123

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

12/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Table 5-6: OPeration CONSIANTSoiiiiiiiiie e e e e e e e e e e e s abb e e e e e e e e e s bbeeeeeaaeeeaanbbeneaeaeas 123
Table 5-7: OPEIAtiON STALESeiiiiiiiiiiiiii ettt e e e e e e e e e e s e ab b e e e e e e e e s s nbbebeeeaaeeeaaanbbeneaaaeas 123
Table 5-8: [Moved — NOW Table 5-4D]o et e e e e e e e e snbbeaeeaaeas 123
Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizesccccccvveeiiiiiiiiiieeeeeeee i 132
Table 5-10: TEE_PopulateTransientObject Supported AttribUteS.......ccccciiiiiiiiiiie e 136
Table 5-11: TEE_CopyObjectAttributesl Parameter TYPESccooccciiiiiiieeiiiiiieie e e e e e sesveieeee e e e s snnrnaeeee s 143
Table 5-12: TEE_GenerateKey ParametersS.......ccccciiiiiiiiiiiiiiiiiiiii i aa e aaaaanaasssassansennnnnnnnnns 145
Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of TEE_CreatePersistentObject 152
Table 5-14: Examples of TEE_OpenPersistentObject Sharing RUIEScccuiiiiiiiiiiiiiii e, 155
Table 6-1: Supported Cryptographic AIGOrthMScoiiiiiiic e 168
Table 6-2: Optional CryptographiC AIGOItMSeeiiiiiii e e e 169
Table 6-3: Possible TEE_OperationMode ValUEScccccciiiiieiiiiiiiiiiiece e s e ee e e st e e e e st anee e 170
Table 6-4: TEE_AllocateOperation ANOWEd MOAEScccooiiiiiiiiiiiiiiiiic e aenannnes 174
Table 6-5: Public KeY AIOWEA IMOUEScoiiiiiiiiiiiiii ettt e e e e e s bbb e e e e e e e e snnbeaeeeaeas 182
Table 6-6: Key-Pair Parts for Operation MOUESccoii ittt e e e ee s 183
Table 6-6b: Symmetric Encrypt/Decrypt Operation Parametersc.uuvvveeeeeiiiiiiieieeee e e seseeieeeee e e s e snnsnneeeeeas 190
Table 6-7: Asymmetric Encrypt/Decrypt Operation Parametersccuvvveeieeeiiiiiieieee e e seseeveeee e e snvnneeee s 204
Table 6-8: Asymmetric Sign Operation ParameterS.........coccuuririieeeiiiiiiiee e e e e e ssstteeee e e e e e sssnvnreee e e e e s s snnrnneeeees 207
Table 6-9: Asymmetric Verify Operation Parameters............uuueiiiiiiiiiiiiie e e s 210
Table 6-10: Asymmetric Derivation Operation Parameters...........oouiiiiiiieiieeiiiieeie e 213
Table 6-11: List of AIGOrthm IAENTIFIEIScoiiiiiiieee e a e ee e 216
Table 6-12: Structure of Algorithm Identifier or Object Type Identifier........ccccovvcciiieeiee e 218
Table 6-12b: Algorithm Subtype IdENtfIerocviiiieee e 218
Table 6-13: LiSt Of ODJECE TYPES..iiiiii ittt et s s e e e s e s e e e e e e e ssaaee e reeeeessnstsaeeeeeeessanstnnneeees 219
Table 6-14: List of Supported CryptographiC EIEmMENtS............oeiiiiiiiiiiiiiie e 221
Table 6-15: Object or Operation AMIDULES ... i e e e e 223
Table 6-16: Attribute FOrmat DefiNitiONSveiiiiiiiie it e e e ee e 225
Table 6-17: Partial Structure of Attribute [dentifier ... 225
Table 6-18: Attribute Identifier FIAQSuvviiiiii i e s e s e e e e e e e e e ee s 225
Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property.......ccccccooiiiiiieeeeiiiiiinennn. 227
Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property.........cccccccoiiiiiinnnnn. 230
Table 9-1: Maximum Sizes Of StruCture PaYlOAdSoooiuiiiiiiiiiiiii e 277
Table 9-2: TEE_EVENT _TYPE VaAlUBSo aaaaaaaansasssnsnsnsnsssnssnnsnnnnnnnnnnns 278
Table 9-3: TEE_PERIPHERAL_TYPE VaAIUEBS.......ccccuiiiiie e i ettt e ettt e e e s e e e e e e e sttt e e e e e e e s snntnnnaeaes 279
Table 9-4: TEE_PERIPHERAL_FLAGS VaAIUEBS.......ccuuiiiiieeiiiiiiie et e e e s e sttt e e e et st e e e e e e e st e e e e e e e s snntnnneeees 280
Table 9-5: TEE_PeripheralStateld ValUES....... et e e e et ne e 281

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 13/341

Table 9-6: TEE_PERIPHERAL_STATE_NAME VaAlUES.......coiiiiiiiiiiiii i asssasnansnnnnnnnnnnns 282
Table 9-7: TEE_PERIPHERAL_STATE_FW_INFO VAlUEScocveuieeeeeeeeeieeeeeeeeseeeeeeeseeeeeeee e e s en e en s 282
Table 9-8: TEE_PERIPHERAL_STATE_MANUFACTURER ValUBS.......cccoiiiiiii e 283
Table 9-9: TEE_PERIPHERAL_STATE_FLAGS VaAlUEBS......ccciiciiiiiiie ettt et e e s st e e e e e e e st e e e e e e e s snntnaneeee s 283
Table 9-10: TEE_PERIPHERAL_STATE_EXCLUSIVE_ACCESS ValUES.....cccccvieeiiiiiiiiiieeeeesesiiieeee e e e e s snninnneeeeas 283
Table 9-11: TEE_PERIPHERAL_OS State Table ValUEScccuuuvivieeiiiiiiiee et e e 284
Table 9-12: TEE_PERIPHERAL_SESSION State Table Valuescccooiiiiiiiiiiiiiic e 285
Table 9-13: TEE_PeripheralValueType VaAIUES. ... aasaassansnnnnnnnnnnns 289
Table A-1: Function 1dentifiCation VAIUESooiiiiiiiiie et e e 315
Table B-1: Deprecated ObJECt IAENLIETciceii i e e e e e e et reeeee s 327
Table B-2: Deprecated AlGorithm IdeNtifiers...........uuuieiii i e e s e e 327
Table B-3: DepPreCated PrOPEITIEScc.uuieiiieei e it e e e s s st e e e e e e s s st e e e e e e e ssasae e eeaaeessnntnaneeeeeesssnnstaneeeeeas 329
Table C-1: Normative References for AlgOIthMS..........ooo i 330

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

© 00 NO O~ WwWN

[
(BN)

[~ S S
g » w N

el
0 ~N o

19

20
21
22

23
24

25

26
27
28
29
30
31

14/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

1 Introduction

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside
a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the
requirements defined in the GlobalPlatform TEE System Architecture ([Sys Arch]) specification, i.e. it is
accessible from a Rich Execution Environment (REE) through the GlobalPlatform TEE Client API (described
in the GlobalPlatform TEE Client API Specification [Client API]) but is specifically protected against malicious
attacks and only runs code trusted in integrity and authenticity.

The APIs defined in this document target the C language and provide the following set of functionalities to TA
developers:

e Basic OS-like functionalities, such as memory management, timer, and access to configuration
properties

e Communication means with Client Applications (CAs) running in the Rich Execution Environment
e Trusted Storage facilities

e Cryptographic facilities

e Time management facilities

The scope of this document is the development of Trusted Applications in the C language and their interactions
with the TEE Client API. It does not cover other possible language bindings or the run-time installation and
management of Trusted Applications.

1.1 Audience

This document is suitable for software developers implementing Trusted Applications running inside the TEE
which need to expose an externally visible interface to Client Applications and to use resources made available
through the TEE Internal Core API, such as cryptographic capabilities and Trusted Storage.

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework,
the TEE APIs, and the communications infrastructure required to access Trusted Applications.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please
visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

https://www.globalplatform.org/specificationsipdisclaimers.asp

32

33

34

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

15/341

1.3 References

See also Annex C: Normative References for Algorithms.

Table 1-1: Normative References

Cryptography

Standard / Specification | Description Ref

GPD_SPE_007 GlobalPlatform Technology [Client API]
TEE Client API Specification

GPD_SPE_009 GlobalPlatform Technology [Sys Arch]
TEE System Architecture

GPD_SPE_025 GlobalPlatform Technology [TEE TA Debug]
TEE TA Debug Specification

GPD_SPE_120 GlobalPlatform Technology [TEE Mgmt Fmwk]
TEE Management Framework

GPD_SPE_042 GlobalPlatform Technology [TEE TUI Bio]
TEE TUI Extension: Biometrics API

GPD_SPE_055 GlobalPlatform Technology [TEE TUI Low]
TEE Trusted User Interface Low-level API

GPD_SPE_021 GlobalPlatform Technology [TEE PP]
TEE Protection Profile

BSI TR-03111 BSI Technical Guideline TR-03111: Elliptic Curve [BSI TR 03111]

ISO/IEC 9899:1999

Programming languages — C

[C99]

NIST Recommended
Elliptic Curves

Recommended Elliptic Curves for Federal Government
Use

[NIST Re Cur]

NIST SP800-56B

Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography

[NIST SP800-56B]

China, “Public Key Cryptographic Algorithm SM2
Based on Elliptic Curves — Part 2: Digital Signature
Algorithm”, December 2010

RFC 2045 Multipurpose Internet Mail Extensions (MIME) [RFC 2045]
Part One: Format of Internet Message Bodies

RFC 2119 Key words for use in RFCs to Indicate Requirement [RFC 2119]
Levels

RFC 4122 A Universally Unique IDentifier (UUID) URN [RFC 4122]
Namespace

RFC 7748 Elliptic Curves for Security [X25519]

RFC 8032 Edwards-Curve Digital Signature Algorithm [Ed25519]

SM2 Organization of State Commercial Administration of [SM2]
China, “Public Key Cryptographic Algorithm SM2
Based on Elliptic Curves", December 2010

SM2-2 Organization of State Commercial Administration of [SM2-2]

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

35

36

37

38

39
40

41
42
43
44

16/341

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Standard / Specification

Description

Ref

SM2-4

Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2
Based on Elliptic Curves — Part 4: Public Key
Encryption Algorithm”, December 2010

[SM2-4]

SM2-5

Organization of State Commercial Administration of
China, “Public Key Cryptographic Algorithm SM2
Based on Elliptic Curves — Part 5: Parameter
definitions”, December 2010

[SM2-5]

SM3

Organization of State Commercial Administration of
China, “SM3 Cryptographic Hash Algorithm”,
December 2010

[SM3]

SM4

Organization of State Commercial Administration of
China, “SM4 block cipher algorithm”, December 2010

[SM4]

Table 1-2: Informative References

Standard / Specification

Description

Ref

GP_GUI_001

GlobalPlatform Document Management Guide

[Doc Mgmt]

ISO/IEC 10118-3

Information technology — Security techniques —
Hash-functions — Part 3: Dedicated hash-functions

(English language reference for SM3)

[ISO 10118-3]

ISO/IEC 14888-3

Information technology — Security techniques — Digital
signatures with appendix — Part 3: Discrete logarithm
based mechanisms

(English Language reference for SM2)

[ISO 14888-3]

ISO/IEC 18033-3

Information technology — Security techniques —
Encryption algorithms — Part 3: Block ciphers

(English Language reference for SM4)

[ISO 18033-3]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and

MAY in this document (refer to [RFC 2119]):
e SHALL indicates an absolute requirement, as does MUST.

e SHALL NOT indicates an absolute prohibition, as does MUST NOT.
e SHOULD and SHOULD NOT indicate recommendations.

e MAY indicates an option.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

45

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

17/341

Table 1-3: Terminology and Definitions

Term

Definition

Cancellation Flag

An indicator that a Client has requested cancellation of an operation.

Client

Either of the following:
e a Client Application using the TEE Client API

e a Trusted Application acting as a client of another Trusted
Application, using the Internal Client API

Client Application (CA)

An application running outside of the Trusted Execution Environment
making use of the TEE Client API to access facilities provided by
Trusted Applications inside the Trusted Execution Environment.

Contrast Trusted Application (TA).

Client Properties

A set of properties associated with the Client of a Trusted Application.

Command

A message (including a Command Identifier and four Operation
Parameters) send by a Client to a Trusted Application to initiate an
operation.

Command Identifier

A 32-bit integer identifying a Command.

Cryptographic Key Object

An object containing key material.

Cryptographic Key-Pair Object

An object containing material associated with both keys of a key-pair.

Cryptographic Operation
Handle

An opaque reference that identifies a particular cryptographic operation.

Cryptographic Operation Key

The key to be used for a particular operation.

Data Object

An object containing a data stream but no key material.

Data Stream

Data associated with a persistent object (excluding Object Attributes
and metadata).

Event API

An API that supports the event loop. Includes the following functions,
among others:

TEE_Event_AddSources
TEE_Event_OpenQueue
TEE_Event_Wait

Event loop

A mechanism by which a TA can enquire for and then process
messages from types of peripherals including pseudo-peripherals.

Function Number

Identifies a function within a specification. With the Specification
Number, forms a unique identifier for a function. May be displayed when
a panic occurs or in debug messages where supported.

Implementation

A particular implementation of the Trusted OS.

Initialized Describes a transient object whose attributes have been populated.

Instance A particular execution of a Trusted Application, having physical memory
space that is separated from the physical memory space of all other TA
instances.

Key Size The key size associated with a Cryptographic Object; values are limited

by the key algorithm used.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

18/341

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Term

Definition

Key Usage Flags

Indicators of the operations permitted with a Cryptographic Object.

Memory Reference Parameter

An Operation Parameter that carries a pointer to a client-owned
memory buffer.

Contrast Value Parameter.

Metadata

Additional data associated with a Cryptographic Object: Key Size and
Key Usage Flags.

Multi Instance Trusted
Application

Denotes a Trusted Application for which each session opened by a
client is directed to a separate TA instance.

Object Attribute

Small amounts of data used to store key material in a structured way.

Object Handle

An opaque reference that identifies a particular object.

Object Identifier

A variable-length binary buffer identifying a persistent object.

Operation Parameter

One of four data items passed in a Command, which can contain
integer values or references to client-owned shared memory blocks.

Panic

An exception that kills a whole TA instance. See section 2.3.3 for full
definition.

Parameter Annotation

Denotes the pattern of usage of a function parameter or pair of function
parameters.

Peripheral API

A low-level API that enables a Trusted Application to interact with
peripherals via the Trusted OS. Includes the following functions, among
others:

TEE_Peripheral_ GetPeripherals
TEE_Peripheral GetStateTable
TEE_Peripheral_Open

The Peripheral APl was initially defined in [TEE TUI Low].

Persistent Object

An object identified by an Object Identifier and including a Data Stream.
Contrast Transient Object.

Property An immutable value identified by a name.
Property Set Any of the following:
e The configuration properties of a Trusted Application
e Properties associated with a Client Application by the Rich Execution
Environment
e Properties describing characteristics of a Trusted OS and/or TEE
Implementation
REE Time A time value that is as trusted as the REE.

(REE)

Rich Execution Environment

An environment that is provided and governed by a Rich OS, potentially
in conjunction with other supporting operating systems and hypervisors;
it is outside of the TEE. This environment and applications running on it
are considered untrusted.

Contrast Trusted Execution Environment (TEE).

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 19/341

Term

Definition

Rich OS

Typically, an OS providing a much wider variety of features than are
provided by the OS running inside the TEE. It is very open in its ability
to accept applications. It will have been developed with functionality and
performance as key goals, rather than security. Due to its size and
needs, the Rich OS will run in an execution environment outside of the
TEE hardware (often called an REE — Rich Execution Environment) with
much lower physical security boundaries. From the TEE viewpoint,
everything in the REE is considered untrusted, though from the Rich OS
point of view there may be internal trust structures.

Contrast Trusted OS.

Session

Logically connects multiple commands invoked on a Trusted
Application.

Single Instance Trusted
Application

Denotes a Trusted Application for which all sessions opened by clients
are directed to a single TA instance.

Specification Number

Identifies the specification within which a function is defined. May be
displayed when a panic occurs or in debug messages where supported.

Storage ldentifier

A 32-bit identifier for a Trusted Storage Space that can be accessed by
a Trusted Application.

System Time

A time value that can be used to compute time differences and
operation deadlines.

TA Persistent Time

A time value set by the Trusted Application that persists across platform
reboots and whose level of trust can be queried.

Task

The entity that executes any code executed in a Trusted Application.

TEE Implementation

A specific embodiment of a TEE —i.e. a Trusted OS executing on a
particular hardware platform.

Transient Object

An object containing attributes but no data stream, which is reclaimed
when closed or when the TA instance is destroyed.

Contrast Persistent Object.

Trusted Application (TA)

An application running inside the Trusted Execution Environment that
provides security related functionality to Client Applications outside of
the TEE or to other Trusted Applications inside the Trusted Execution
Environment.

Contrast Client Application (CA).

Trusted Application
Configuration Properties

A set of properties associated with the installation of a Trusted
Application.

Trusted Core Framework or
“Framework”

The part of the Trusted OS responsible for implementing the Trusted
Core Framework API* that provides OS-like facilities to Trusted
Applications and a way for the Trusted OS to interact with the Trusted
Applications.

-

The Trusted Core Framework API is described in Chapter 4.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

46

47

48

20/341

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Term

Definition

Trusted Execution
Environment (TEE)

An execution environment that runs alongside but isolated from an
REE. A TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets from general software attacks,
defines rigid safeguards as to data and functions that a program can
access, and resists a set of defined threats. There are multiple
technologies that can be used to implement a TEE, and the level of
security achieved varies accordingly.

It incorporates a Trusted OS and may include additional firmware as
indicated by the gpd.tee.trustedos.* and gpd.tee.firmware.*
properties.

Contrast Rich Execution Environment (REE).

Trusted OS

An operating system running in the TEE providing the TEE Internal
Core API to Trusted Applications.

Trusted Storage Spaces Storage that is protected either by the hardware of the TEE or

cryptographically by keys held in the TEE. Data held in such storage is
either private to the Trusted Application that created it or is shared
according to the rules of a Security Domain hierarchy. See [TMF].

Uninitialized

Describes a transient object allocated with a certain object type and
maximum size but with no attributes.

(UUID)

Universally Unique Identifier An identifier as specified in RFC 4122 ([RFC 4122]).

Value Parameter

An Operation Parameter that carries two 32-bit integers.

Contrast Memory Reference Parameter.

1.5 Abbreviations and Notations

Table 1-4: Abbreviations

Term Definition

AAD Additional Authenticated Data
AE Authenticated Encryption

AES Advanced Encryption Standard
API Application Programming Interface
CA Client Application

CMAC Cipher-based MAC

CRT Chinese Remainder Theorem
CTS CipherText Stealing

DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

49

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 21/341

Term Definition

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ETSI European Telecommunications Standards Institute
FMM Fast Modular Multiplication

gcd Greatest Common Divisor

HMAC Hash-based Message Authentication Code
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IPR Intellectual Property Rights

ISO International Organization for Standardization
v Initialization Vector

LS Liaison Statement

MAC Message Authentication Code

MD5 Message Digest 5

MGF Mask Generating Function

NIST National Institute of Standards and Technology
OAEP Optimal Asymmetric Encryption Padding

(O] Operating System

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

REE Rich Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF
RSA Rivest, Shamir, Adleman asymmetric algorithm
SDO Standards Defining Organization

SHA Secure Hash Algorithm

TA Trusted Application

TEE Trusted Execution Environment

UTC Coordinated Universal Time

UTF Unicode Transformation Format

uuID Universally Unique Identifier

XTS XEX-based Tweaked Codebook mode with ciphertext stealing (CTS)

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

50

51
52
53
54

55

22/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

1.6 Revision History

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are
minor releases where changes typically introduce supplementary items that do not impact backward
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks.

Table 1-5: Revision History

Date Version | Description

December | 1.0 Initial Public Release, as “TEE Internal API Specification”.

2011

June 2014 | 1.1 Public Release, as “TEE Internal Core API Specification”.

June 2016 | 1.1.1 Public Release, showing all non-trivial changes since v1.1.

Significant changes include:

e Many parameters were defined as size_t in v1.0 then changed to
uint32_t invl.1, and have now been reverted.

e Improved clarity of specification with regard to TEE_GenerateKey
parameter checking. Reverted over-prescriptive requirements for parameter
vetting, re-enabling practical prime checking.

¢ Clarification of invalid storage ID handling with regard to
TEE_CreatePersistentObject and TEE_OpenPersistentObject.

e Clarified which algorithms may use an IV.

¢ Clarified the availability of TEE_GetPropertyAsBinaryBlock.

¢ Clarified mismatches between Table 6-12 and elsewhere.

e Deprecated incorrectly defined algorithm identifiers and defined a distinct set.
e Corrected an error in TEE_BigIntComputeExtendedGcd range validation.
e Clarified operation of TEEC_OpenSession with NULL TEEC Operation.

e Clarified relationship of specification with FIPS 186-2 and FIPS 186-4.

e Clarified uniqueness of gpd.tee.devicelID in case of multiple TEES on a
device.

e Corrected details of when TEE_HANDLE_FLAG_INITIALIZED is set.

o Clarified the security of the location of operation parameters that the TA is
acting on.

e Clarified the handling and validation of storage identifiers.

e Clarified the protection level relationships with anti-rollback, and the way
anti-rollback violation is signaled to a TA.

o Clarified the data retention requirement for an unused “b” attribute value.
e Clarified the acceptable bit size for some security operations.

e Relaxed attribute restrictions such that TEE_PopulateTransientObject
and TEE_GenerateKey are aligned.

e Clarified the handling of ACCESS_WRITE_META.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

56

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

Date Version | Description
November | 1.1.2 e New section 3.1.1 — Added #define TEE_CORE_API specific to API
2016 specification version.
e Section 4.7 — Clarified existing gpd.tee.apiversion, and noted that it is
deprecated.
e Section 4.7 — Added more precise gpd.tee.internalCore.version.
¢ New section 4.7.1 — Defined structure of integer version field structure as
used in other GlobalPlatform specs.
August 1.1.1.17 | Committee Review toward v1.2
2017 e Introduced:
o Curve 25519 & BSI related curves and algorithms support
Chinese Algorithms
o0 Peripheral APl and Event API
0 TEE_IsAlgorithmSupported to interrogate available ECC algorithms
o TEE_BigIntAbs, TEE_BigIntExpMod, TEE_BigIntSetBit,
TEE_BigIntSet bignum functions
0 Memory allocation options with No Share and No Fill hints
e Clarified principles behind the choice of Panic vs. Error
e Improved version control allowing TA builder to potentially request an API
version
e Improved support for 32-bit or 64-bit TA operation
e Clarified functionality:
o Cryptographic operation states with regard to reset
0 Use of identical keys in TEE_SetOperationKey2
0 State transitions in TEE_AEUpdateAAD and associated functionality
April 2018 1.1.1.44 | Member Review
June 2018 | 1.1.2.50 | Public Review
TBD 1.2 Public Release

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

23/341

57

58
59
60
61
62

63
64
65
66
67
68

69

70
71

72
73

74
75

76
77

78
79

247341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2 Overview of the TEE Internal Core API Specification

This specification defines a set of C APIs for the development of Trusted Applications (TAS) running inside
a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the
requirements defined in [Sys Arch], i.e. it is accessible from a Rich Execution Environment (REE) through
the GlobalPlatform TEE Client API [Client API] but is specifically protected against malicious attacks and runs
only code trusted in integrity and authenticity.

A TEE provides the Trusted Applications an execution environment with defined security boundaries, a set of
security enabling capabilities, and means to communicate with Client Applications running in the Rich
Execution Environment. This document specifies how to use these capabilities and communication means for
Trusted Applications developed using the C programming language. It does not cover how Trusted
Applications are installed or managed (described in TEE Management Framework — [TEE Mgmt Fmwk]) and
does not cover other language bindings.

Sections below provide an overview of the TEE Internal Core API specification.

e Section 2.1 describes Trusted Applications and their operations and interactions with other TEE
components.

e Section 2.2 gives an overview of the TEE Internal Core APIs that provide core secure services to the
Trusted Applications.

e Section 2.3 describes error handling, including how errors are handled by TEE internal specifications,
whether detected during TA execution or in a panic situation.

e Section 2.4 describes different opaque handle types used in the specification. These opaque handles
refer to objects created by the API implementation for a TA instance.

e Section 2.5 describes TEE properties that refer to configuration parameters, permissions, or
implementation characteristics.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

80

81
82

83
84
85
86

87
88
89
90

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 25/341

2.1 Trusted Applications

A Trusted Application (TA) is a program that runs in a Trusted Execution Environment (TEE) and exposes
security services to its Clients.

A Trusted Application is command-oriented. Clients access a Trusted Application by opening a session with
the Trusted Application and invoking commands within the session. When a Trusted Application receives a
command, it parses the messages associated with the command, performs any required processing, and then
sends a response back to the client.

A Client typically runs in the Rich Execution Environment and communicates with a Trusted Application using
the TEE Client API [Client API]. It is then called a “Client Application”. It is also possible for a Trusted
Application to act as a client of another Trusted Application, using the Internal Client API (see section 4.9).
The term “Client” covers both cases.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

91

92
93
94
95
96

97
98
99
100

101

102
103

26/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2.1.1 TA Interface

Each Trusted Application exposes an interface (the TA interface) composed of a set of entry point functions
that the Trusted Core Framework implementation calls to inform the TA about life cycle changes and to relay
communication between Clients and the TA. Once the Trusted Core Framework has called one of the TA entry
points, the TA can make use of the TEE Internal Core API to access the facilities of the Trusted OS, as
illustrated in Figure 2-1. For more information on the TA interface, see section 4.3.

Each Trusted Application is identified by a Universally Unique Identifier (UUID) as specified in [RFC 4122].
Each Trusted Application also comes with a set of Trusted Application Configuration Properties. These
properties are used to configure the Trusted OS facilities exposed to the Trusted Application. Properties can
also be used by the Trusted Application itself as a means of configuration.

Figure 2-1: Trusted Application Interactions with the Trusted OS

-
TA Interface implements Trusted Application
-
T
ca;lls calls
_____ ; l
|
1
1

Internal Core APIs
except TA Interface

| Peripheral API :l

S ——

e

I
calls Event f
Event imple:ne nts
[Trusted Core Framework and other Internal APl implementation]
Trusted OS
T
I
|
[HW / Peripherals j

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

104

105
106
107
108

109
110
111
112
113

114
115
116

117
118
119

120
121

122

123
124
125

126
127
128

129
130

131
132
133

134

135

136
137

138
139
140
141
142

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 271341

2.1.2 Instances, Sessions, Tasks, and Commands

When a Client creates a session with a Trusted Application, it connects to an Instance of that Trusted
Application. A Trusted Application instance has physical memory space which is separated from the physical
memory space of all other Trusted Application instances. The Trusted Application instance memory space
holds the Trusted Application instance heap and writable global and static data.

All code executed in a Trusted Application is said to be executed by Tasks. A Task keeps a record of its
execution history (typically realized with a stack) and current execution state. This record is collectively called
a Task context. A Task SHALL be created each time the Trusted OS calls an entry point of the Trusted
Application. Once the entry point has returned, an Implementation may recycle a Task to call another entry
point but this SHALL appear like a completely new Task was created to call the new entry point.

A Session is used to logically connect multiple commands invoked in a Trusted Application. Each session has
its own state, which typically contains the session context and the context(s) of the Task(s) executing the
session.

A Command is issued within the context of a session and contains a Command Identifier, which is a 32-bit
integer, and four Operation Parameters, which can contain integer values or references to client-owned
shared memory blocks.

It is up to the Trusted Application implementer to define the combinations of commands and their parameters
that are supported by the Trusted Application. This is outside the scope of this specification.

2.1.3 Sequential Execution of Entry Points

All entry point calls within a given Trusted Application instance are called in sequence, i.e. no more than one
entry point is executed at any point in time. The Trusted Core Framework implementation SHALL guarantee
that a commenced entry point call is completed before any new entry point call is allowed to begin execution.

If there is more than one entry point call to complete at any point in time, all but one call SHALL be queued by
the Framework. The order in which the Framework queues and picks enqueued calls for execution is
implementation-defined.

It is not possible to execute multiple concurrent commands within a session. The TEE guarantees that a
pending command has completed before a new command is executed.

Since all entry points of a given Trusted Application instance are called in sequence, there is no need to use
any dedicated synchronization mechanisms to maintain consistency of any Trusted Application instance
memory. The sequential execution of entry points inherently guarantees this consistency.

2.1.4 Cancellations

Clients can request the cancellation of open-session and invoke-command operations at any time.

If an operation is requested to be cancelled and has not reached the Trusted Application yet but has been
gueued, then the operation is simply retired from the queue.

If the operation has already been transmitted to the Trusted Application, then the task running the operation is
put in the cancelled state. This has an effect on a few “cancellable” functions, such as TEE_Wait, but this
effect may also be masked by the Trusted Application if it does not want to be affected by client cancellations.
See section 4.10 for more details on how a Trusted Application can handle cancellation requests and mask
their effect.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

143

144
145
146

147
148
149

150
151

152

153
154

155

156
157
158

159
160
161
162

163
164
165
166
167

168

169
170

171
172
173

28/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2.1.5 Unexpected Client Termination

When the client of a Trusted Application dies or exits abruptly and when it can be properly detected, then this
SHALL appear to the Trusted Application as if the client requests cancellation of all pending operations and
gracefully closes all its client sessions. It SHALL be indistinguishable from a clean session closing.

More precisely, the REE SHOULD detect when a Client Application dies or exits. When this happens, the REE
SHALL initiate a termination process that SHALL result in the following sequence of events for all Trusted
Application instances that are serving a session with the terminating client:

e If an operation is pending in the closing session, it SHALL appear as if the client had requested its
cancellation.

e When no operation remains pending in the session, the session SHALL be closed.

If a TA client is a TA itself, this sequence of events SHALL happen when the client TA panics or exits due to
the termination of its own Client Application.?2

2.1.6 Instance Types

At least two Trusted Application instance types SHALL be supported: Multi Instance and Single Instance.
Whether a Trusted Application is Multi Instance or Single Instance is part of its configuration properties and
SHALL be enforced by the Trusted OS. See section 4.5 for more information on configuration properties.

e [For a Multi Instance Trusted Application, each session opened by a client is directed to a separate
Trusted Application instance, created on demand when the session is opened and destroyed when the
session closes. By definition, every instance of such a Trusted Application accepts and handles one
and only one session at a given time.

e Fora Single Instance Trusted Application, all sessions opened by the clients are directed to a
single Trusted Application instance. From the Trusted Application point of view, all sessions share the
same Trusted Application instance memory space, which means for example that memory
dynamically allocated for one session is accessible in all other sessions. It is also configurable
whether a Single Instance Trusted Application accepts multiple concurrent sessions or not.

2.1.7 Configuration, Development, and Management

Trusted Applications as discussed in this document are developed using the C language. The way Trusted
Applications are compiled and linked is implementation-dependent.

The TEE Management Framework [TEE Mgmt Fmwk] defines a mechanism by which Trusted Applications
can be configured and installed in a TEE. The scope of this specification does not include configuration,
installation, de-installation, signing, verification, or any other life cycle or deployment aspects.

2 Panics are discussed in section 2.3.3.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

174

175
176
177
178

179
180
181
182

183

184

185
186
187

188
189
190

191
192

193
194
195

196
197
198

199
200

201
202

203

204
205

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 29/341

2.2 TEE Internal Core APIs

The TEE Internal Core APIs provide specified functionality that MUST be available on a GlobalPlatform TEE
implementation alongside optional functionality that MAY be available in a GlobalPlatform TEE implementation.
The Trusted OS implements TEE Internal Core APIs that are used by Trusted Applications to develop secure
tasks. These APIs provide building blocks to TAs by offering them a set of core services.

A guiding principle for the TEE Internal Core APIs is that it should be possible for a TA implementer to write
source code which is portable to different TEE implementations. In particular, the TEE Internal Core APIs are
designed to be used portably on TEE implementations which might have very different CPU architectures
running the Trusted OS.

The TEE Internal Core APIs are further classified into six broad categories described below.

2.2.1 Trusted Core Framework API

This specification defines an API that provides OS functionality — integration, scheduling, communication,
memory management, and system information retrieval interfaces — and channels communications from Client
Applications or other Trusted Applications to the Trusted Application.

2.2.2 Trusted Storage API for Data and Keys
This specification defines an API that defines Trusted Storage for keys or general purpose data. This API
provides access to the following facilities:

e Trusted Storage for general purpose data and key material with guarantees on the confidentiality and
integrity of the data stored and atomicity of the operations that modify the storage

0 The Trusted Storage may be backed by non-secure resources as long as suitable cryptographic
protection is applied, which SHALL be as strong as the means used to protect the TEE code and
data itself.

0 The Trusted Storage SHALL be bound to a particular device, which means that it SHALL be
accessible or modifiable only by authorized TAs running in the same TEE and on the same device
as when the data was created.

0 See [Sys Arch] section 2.2 for more details on the security requirements for the Trusted Storage.
e Ability to hide sensitive key material from the TA itself

e Association of data and key: Any key object can be associated with a data stream and pure data
objects contain only the data stream and no key material.

e Separation of storage among different TAs:

0 Each TA has access to its own storage space that is shared among all the instances of that TA but
separated from the other TAs.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

206

207
208
209
210
211
212
213
214
215

216
217

218

219

220
221

222
223
224

225

226
227
228
229
230
231
232

233

234
235
236

237
238
239

30/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2.2.3 Cryptographic Operations API

This specification defines an API that provides the following cryptographic facilities:
e Generation and derivation of keys and key-pairs
e Support for the following types of cryptographic algorithms:
o Digests
o Symmetric Ciphers
0 Message Authentication Codes (MAC)
0 Authenticated Encryption algorithms such as AES-CCM and AES-GCM
o Asymmetric Encryption and Signature
o0 Key Exchange algorithms

e Pre-allocation of cryptographic operations and key containers so that resources can be allocated
ahead of time and reused for multiple operations and with multiple keys over time

2.24 Time API

This specification defines an API to access three sources of time:

e The System Time has an arbitrary non-persistent origin. It may use a secure dedicated hardware
timer or be based on the REE timers.

e The TA Persistent Time is real-time and persistent but its origin is individually controlled by each TA.
This allows each TA to independently synchronize its time with the external source of trusted time of
its choice. The TEE itself is not required to have a defined trusted source of time.

e The REE Time is real-time but SHOULD NOT be more trusted than the REE and the user.

The level of trust that a Trusted Application can put in System Time and its TA Persistent Time is
implementation-defined as a given Implementation may not include fully trustable hardware sources of time
and hence may have to rely on untrusted real-time clocks and timers managed by the Rich Execution
Environment. However, when a more trustable source of time is available, it is expected that it will be exposed
to Trusted Applications through this Time API. Note that a Trusted Application can programmatically determine
the level of protection of time sources by querying implementation properties
gpd.tee.systemTime.protectionLevel and gpd.tee.TAPersistentTime.protectionLevel.

2.25 TEE Arithmetical API

The TEE Arithmetical API is a low-level API that complements the Cryptographic APl when a Trusted
Application needs to implement asymmetric algorithms, modes, or paddings not supported by the
Cryptographic API.

The API provides arithmetical functions to work on big numbers and prime field elements. It provides operations
including regular arithmetic, modular arithmetic, primality test, and fast modular multiplication that can be
based on the Montgomery reduction or a similar technique.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

240
241
242
243
244
245
246
247
248
249
250

251

252

253
254
255

256
257
258
259

260

261
262
263

264
265
266
267

268
269
270
271
272
273

274
275

276
277
278

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 31/341

2.2.6 Peripheral and Event API

The Peripheral and Event APl is a low-level API that enables a Trusted Application to interact with peripherals
via the Trusted OS.

The Peripheral and Event API offers mechanisms to:
e Discover and identify the peripherals available to a Trusted Application.
e Determine the level of trust associated with data coming to and from the peripheral.
e Configure peripherals.
¢ Open and close connections between the Trusted Application and peripherals.
¢ Interact with peripherals using polling mechanism.

¢ Receive input from peripherals and other event sources using an asynchronous event mechanism.

2.3 Error Handling

2.3.1 Normal Errors

The TEE Internal Core API functions usually return a return code of type TEE_Result to indicate errors to
the caller. This is used to denote “normal” run-time errors that the TA code is expected to catch and handle,
such as out-of-memory conditions or short buffers.

Routines defined in this specification SHOULD only return the return codes defined in their definition in this
specification. Where return codes are defined they SHOULD only be returned with the meaning defined by this
specification: Errors which are detected for which no return code has been defined SHALL cause the routine
to panic.

2.3.2 Programmer Errors

There are a number of conditions in this specification that can only occur as a result of Programmer Error,
i.e. they are triggered by incorrect use of the API by a Trusted Application, such as wrong parameters, wrong
state, invalid pointers, etc., rather than by run-time errors such as out-of-memory conditions.

Some Programmer Errors are explicitly tagged as “Panic Reasons” and SHALL be reliably detected by an
Implementation. These errors make it impossible to produce the result of the function and require that the
API panic the calling TA instance, which kills the instance. If such a Panic Reason occurs, it SHALL NOT go
undetected and, e.g. produce incorrect results or corrupt TA data.

However, it is accepted that some Programmer Errors cannot be realistically detected at all times and that
precise behavior cannot be specified without putting too much of a burden on the implementation. In case of
such a Programmer Error, an Implementation is therefore not required to gracefully handle the error or even
to behave consistently, but the Implementation SHOULD still make a best effort to detect the error and panic
the calling TA. In any case, a Trusted Application SHALL NOT be able to use a Programmer Error on purpose
to circumvent the security boundaries enforced by an Implementation.

In general, incorrect handles—i.e. handles not returned by the API, already closed, with the wrong owner, type,
or state—are definite Panic Reasons while incorrect pointers are imprecise Programmer Errors.

Any routine defined by this specification MAY generate a panic if it detects a relevant hardware failure or is
passed invalid arguments that could have been detected by the programmer, even if no panics are listed for
that routine.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

279

280
281
282

283
284

285

286
287

288
289

290
201

292

293
294
295

296

297
298

299

300
301

302
303

304
305
306

307

308
309

310
311
312
313

32/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2.3.3 Panics

The GP TA interface assumes that parameters have been validated prior to calling. While some platforms
might return errors for invalid parameters, security vulnerabilities are often created by incorrect error handling.
Thus, rather than returning errors, the general design of the GP interfaces invokes a Panic in the TA.

To avoid TA Panics, the TA implementer SHALL handle potential fault conditions before calling the Trusted
OS. This approach reduces the likelihood of a TA implementer introducing security vulnerabilities.

A Panic is an instance-wide uncatchable exception that kills a whole TA instance.

1. A Panic SHALL be raised when the Implementation detects an avoidable Programmer Error and
there is no specifically defined error code which covers the problem;

2. A Panic SHALL be raised when the Trusted Application itself requests a panic by calling the function
TEE_Panic.

3. A Panic MAY be raised if the TA’s action results in detection of a fault in the TEE itself (e.g. a
corrupted TEE library) which renders the called services temporarily or permanently unavailable.

4. A Trusted OS MAY raise a TA Panic under implementation-defined circumstances.

In earlier versions of this and other GlobalPlatform TEE specifications, function definitions frequently contain
the "catch all" statement that a TA may Panic if an error occurs which is not one of those specified for an API
which has been called by the TA.

With the introduction of the Peripheral API, and in particular the Event API it should be noted that:

e A function SHALL NOT cause a Panic if the error detected during the call is not specifically defined for
or occurring within that function.

¢ A function SHALL NOT cause a Panic due to an error detected during an asynchronous operation.

e |tis the responsibility of the Trusted OS to cause a Panic based on the criteria of a specific
function/operation.

¢ An asynchronous operation SHALL cause a Panic in the background of any function if the Panic
conditions of that asynchronous operation is met.

¢ Inall cases, any reported specification number and function number SHALL be for the operation or
function that caused the detected the Panic state and SHALL NOT be for any other operation or
function that is occurring at the same time.

When a Panic occurs, the Trusted Core Framework kills the panicking TA instance and does the following:

¢ It discards all client entry point calls queued on the TA instance and closes all sessions opened by
Clients.

e It closes all resources that the TA instance opened, including all handles and all memory, and
destroys the instance. Note that multiple instances can reference a common resource, for example an
object. If an instance sharing a resource is destroyed, the Framework does not destroy the shared
resource immediately, but will wait until no other instances reference the resource before reclaiming it.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

314

315
316
317
318

319
320
321
322
323

324
325
326

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 33/341

After a Panic, no TA function of the instance is ever called again, not even TA DestroyEntryPoint.

From the client’s point of view, when a Trusted Application panics, the client commands SHALL return the
error TEE_ERROR_TARGET_DEAD with an origin value of TEE_ORIGIN_TEE until the session is closed. (For
details about return origins, see the function TEE_InvokeTACommand in section 4.9.3 or the function
TEEC_InvokeCommand in [Client API] section 4.5.9.)

When a Panic occurs, an Implementation in a non-production environment, such as in a development or
pre-production state, is encouraged to issue precise diagnostic information using the mechanisms defined in
GlobalPlatform TEE TA Debug Specification ([TEE TA Debug]) or an implementation-specific alternative to
help the developer understand the Programmer Error. Diagnostic information SHOULD NOT be exposed
outside of a secure development environment.

The debug API defined mechanism [TEE TA Debug] passes a panic code among the information it returns.
This SHALL either be the panic code passedto TEE_Panic or any standard or implementation-specific error
code which best indicates the reason for the panic.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

327

328
329
330

331
332
333
334

335
336

337
338
339
340

341

342

343

344
345
346
347

34/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

2.4 Opaque Handles

This specification makes use of handles that opaquely refer to objects created by the API Implementation for
a particular TA instance. A handle is only valid in the context of the TA instance that creates it and SHALL
always be associated with a type.

The special value TEE_HANDLE_NULL, which SHALL always be 9, is used to denote the absence of a handle.
It is typically used when an error occurs or sometimes to trigger a special behavior in some function. For
example, the function TEE_SetOperationKey clears the operation key if passed TEE_HANDLE_NULL. In
general, the “close”-like functions do nothing if they are passed the NULL handle.

Other than the particular case of TEE_HANDLE_NULL, this specification does not define any constraint on the
actual value of a handle.

Passing an invalid handle, i.e. a handle not returned by the API, already closed, or of the wrong type, is always
a Programmer Error, except sometimes for the specific value TEE_HANDLE_NULL. When a handle is
dereferenced by the API, the Implementation SHALL always check its validity and panic the TA instance if it is
not valid.

This specification defines a C type for each high-level type of handle. The following types are defined:

Table 2-1: Handle Types

Handle Type Handle Purpose

TEE_TASessionHandle Handle on sessions opened by a TA on another TA
TEE_PropSetHandle Handle on a property set or a property enumerator
TEE_ObjectHandle Handle on a cryptographic object
TEE_ObjectEnumHandle Handle on a persistent object enumerator
TEE_OperationHandle Handle on a cryptographic operation

These C types are defined as pointers on undefined structures. For example, TEE_TASessionHandle is
defined as struct _ TEE_TASessionHandle*. This is just a means to leverage the C language type-
system to help separate different handle types. It does not mean that an Implementation has to define the
structure, and handles do not need to represent addresses.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

348

349
350

351
352

353
354

355
356

357
358

359

360
361
362

363
364
365

366

367
368
369
370
371

372
373
374

375

376
377
378

379
380
381
382
383

384

TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2) 35/341

2.5 Properties

This specification makes use of Properties to represent configuration parameters, permissions, or
implementation characteristics.

A property is an immutable value identified by a name, which is a Unicode string. The property value can be
retrieved in a variety of formats: Unicode string, binary block, 32-bit integer, Boolean, and Identity.

Property names and values are intended to be rather small with a few hundreds of characters at most, although
the specification defines no limit on the size of names or values.

In this specification, Unicode strings are always encoded in zero-terminated UTF-8, which means that a
Unicode string cannot contain the U+0000 code point.

The value of a property is immutable: A Trusted Application can only retrieve it and cannot modify it. The value
is set and controlled by the Implementation and SHALL be trustable by the Trusted Applications.

The following Property Sets are exposed in the API:

e Each Trusted Application can access its own configuration properties. Some of these parameters
affect the behavior of the Trusted OS itself. Others can be used to configure the behavior of the TAs
that this TA connects to.

e A TAinstance can access a set of properties for each of its Clients. When the Client is a Trusted
Application, the property set contains the configuration properties of that Trusted Application.
Otherwise, it contains properties set by the Rich Execution Environment.

e Finally, a TA can access properties describing characteristics of the TEE Implementation itself.

Property names are case-sensitive and have a hierarchical structure with levels in the hierarchy separated by
the dot character “.”. Property names SHOULD use the reverse domain name convention to minimize the risk
of collisions between properties defined by different organization, although this cannot really be enforced by
an Implementation. For example, the ACME company SHOULD use the “com.acme.” prefix and properties
standardized at ISO will use the “org.iso.” namespace.

This specification reserves the “gpd.” namespace and defines the meaning of a few properties in this
namespace. Any Implementation SHALL refuse to define properties in this namespace unless they are defined
in the GlobalPlatform specifications.

2.6 Peripheral Support

This specification defines support for managing peripherals. There are functions for communicating directly, in
a low-level manner, with peripherals and support for an event loop which can receive events from peripherals
such as touch screens and biometric authenticators.

In this specification, the Peripheral APl and Event API are optional. Implementation of other GlobalPlatform
specifications may make the presence of the Peripheral APl and Event APl mandatory. As an example, at the
time of writing the GlobalPlatform TEE TUI Extension: Biometrics API ([TEE TUI Bio]) and GlobalPlatform
TEE Trusted User Interface Low-level API [TEE TUI Low] specifications require support of the Peripheral and
Event APIs.

Copyright © 2011-2018 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

385

386
387

388

389
390

391

392

393

394
395
396
397
398
399

400
401
402
403

404
405

406
407
408

409
410
411

412
413
414
415
416

417
418

419

420

421
422

36/341 TEE Internal Core API Specification — Public Review v1.1.2.50 (Target v1.2)

3 Common Definitions

This chapter specifies the header file, common data types, constants, and parameter annotations used
throughout the specification.

3.1 Header File

The header file for the TEE Internal Core APl SHALL have the name “tee_internal_api.h".

‘#include “tee_internal_api.h"

3.1.1 API Version

The header file SHALL contain version specific definitions from which TA compilation options can be selected.

#tdefine TEE_CORE_API_MAJOR_VERSION ([Major version number])

#define TEE_CORE_API_MINOR_VERSION ([Minor version number])

#define TEE_CORE_API_MAINTENANCE_VERSION ([Maintenance version number])
#define TEE_CORE_API_VERSION (TEE_CORE_API_MAJOR_VERSION << 24) +
(TEE_CORE_API_MINOR_VERSION << 16) +

(TEE_CORE_API_MAINTENANCE_VERSION << 8)

The document version-numbering format is X.Y[.z], where:
e Major Version (X) is a positive integer identifying the major release.
e Minor Version (Y) is a positive integer identifying the minor release.
¢ The optional Maintenance Version (z) is a positive integer identifying the maintenance release.

TEE_CORE_API_MAJOR_VERSION indicates the major version number of the TEE Internal Core API. It SHALL
be set to the major version number of this specification.

TEE_CORE_API_MINOR_VERSION indicates the minor version number of the TEE Internal Core API. It SHALL
be set to the minor version number of this specification. If the minor version is zero, then one zero shall be
present.

TEE_CORE_API_MAINTENANCE_VERSION indicates the maintenance version number of the TEE Internal Core
API. It SHALL be set to the maintenance version number of this specification. If the maintenance version is
zero, then one zero shall be present.

The definitions of “Major Version”, “Minor Vers