

Copyright  2018, GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant
patents or other intellectual property rights (collectively, “IPR”) of which they may be aware which might
be necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. The technology provided or described herein is
subject to updates, revisions, and extensions by GlobalPlatform. This documentation is currently in draft
form and is being reviewed and enhanced by the Committees and Working Groups of GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent
with that agreement is strictly prohibited.

GlobalPlatform Technology
VPP - Concepts and Interfaces
Version 1.0

Public Release
March 2018
Document Reference: GPC_FST_142

 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

VPP - Concepts and Interfaces – Public Release v1.0 3 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction ... 7
1.1 Audience ... 7
1.2 IPR Disclaimer .. 7
1.3 References .. 7
1.4 Terminology and Definitions .. 9
1.5 Abbreviations and Notations ... 13
1.6 Revision History .. 14

2 Overview .. 15
2.1 Objectives and Use Cases .. 15
2.2 VPP Concept ... 15
2.3 The content of VPP Concepts and Interfaces ... 16

3 Hardware Platform .. 17
3.1 Hardware Architecture .. 17
3.2 Generic Core features ... 18

3.2.1 CPU .. 18
3.2.2 Memory Access .. 18
3.2.3 Non Volatile Memory .. 19
3.2.4 Form Factor .. 19
3.2.5 Power ... 19
3.2.6 Memory Transfer Function ... 19
3.2.7 Cryptographic Functions .. 20
3.2.8 Random Number Generator Function .. 21

3.3 System Functions .. 21
3.4 Security Functions ... 21

3.4.1 General ... 21
3.4.2 Memory Encryption and Integrity ... 21
3.4.3 Key Protection Function ... 22
3.4.4 Security Sensor Function ... 22

3.5 Memory Management Function .. 22
3.6 Memory Storage Function ... 22
3.7 Remote Audit Function .. 22

3.7.1 Remote Audit Function Requirements ... 23
3.7.2 BIST Remote Audit Function option ... 24

3.8 Hardware Service Function ... 24

4 Primary Platform Certification ... 25

5 Virtual Primary Platform ... 26
5.1 Overview ... 26
5.2 Access Groups .. 26
5.3 Security Perimeters ... 28
5.4 Unprivileged Execution Model... 30
5.5 Unprivileged Virtual Address Space ... 30
5.6 Run Time Model .. 32

5.6.1 Exception Handling .. 32
5.7 Provisioning of Firmware and Primary Platform Software .. 32
5.8 Low Level Operating System (LLOS) ... 33

5.8.1 Kernel Objects .. 33
5.8.2 Global Requirements and Mandatory Access Control Rules ... 33

4 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.3 Process States Diagram .. 36
5.8.4 Definition of the Process States ... 38
5.8.5 Kernel Functions ABI/API ... 40

5.9 Communication Service Interface ... 51
5.9.1 FIFO Update procedure ... 52

5.10 Firmware Management Service Interface ... 54
5.10.1 Firmware Header Management ... 57
5.10.2 Firmware State Management ... 59
5.10.3 Firmware Impersonation Management .. 61

5.11 Mandatory Access Control .. 68
5.11.1 VPP Application ... 69
5.11.2 System VPP Application .. 70
5.11.3 Kernel Functions Groups ... 70

6 Virtual Primary Platform Application ... 72
6.1 The Virtual Hardware Platform .. 72
6.2 Structure .. 72
6.3 VPP Application Session ... 73
6.4 High Level Operating System (HLOS) .. 77

6.4.1 HLOS Application ... 77
6.4.2 Remote Application Management .. 77

7 Minimum Level of Interoperability (MLOI) ... 78
7.1 Basic Data Types .. 78
7.2 Constants and Limits ... 83
7.3 Errors and Exceptions ... 85
7.4 Cross-Execution-Domain Identifiers ... 86
7.5 Cross-Execution-Domain Signals ... 87

8 Annexes ... 89
8.1 Services ... 89

8.1.1 Service Generic Message Flow ... 89

VPP - Concepts and Interfaces – Public Release v1.0 5 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures
Figure 2-1: TRE Internal Architecture ... 16

Figure 3-1: Example of Hardware Architecture .. 18

Figure 3-2: Memory Transfer Function Example .. 20

Figure 4-1 : Multiple VPP instance in a TRE .. 25

Figure 5-1: TRE Functional Architecture .. 26

Figure 5-2: TRE Access Groups ... 27

Figure 5-3: TRE Security Perimeters .. 28

Figure 5-4: Virtual Address Space Mapping for unprivileged CPU mode .. 31

Figure 5-5: Runtime Model ... 32

Figure 5-6: Process State Diagram .. 37

Figure 5-7: FIFO IN and OUT links ... 52

Figure 5-8: Firmware Lifecycle State Diagram ... 54

Figure 5-9: Firmware Installation or Update ... 66

Figure 6-1: Virtual Hardware Platform .. 72

Figure 6-2 : Structure of the VPP Application ... 73

Figure 6-3: VPP Application Termination ... 75

Figure 8-1: Service Generic Messages Flow ... 90

Tables
Table 1-1: Normative References ... 7

Table 1-2: Informative References ... 8

Table 1-3: Terminology and Definitions .. 9

Table 1-4: Abbreviations .. 13

Table 1-5: Revision History ... 14

Table 3-1: Cryptographic Recommendations ... 20

Table 5-1: Global Requirements ... 34

Table 5-2: Mandatory Access Control Rules .. 35

Table 5-3: Definition of States .. 38

Table 5-4: Management Service Commands ... 56

Table 5-5: Management Service Response Codes .. 56

Table 5-6: Management Service Command /Response Codes Assignment ... 57

Table 5-7: Standard Mandatory Access Control Rules .. 69

6 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-8: Access to Cross-Execution-Domain Mailboxes and IPC .. 70

Table 5-9: Groups of Kernel Functions ... 70

Table 7-1: Basic Data Types .. 78

Table 7-2: Composite Type Identifiers .. 79

Table 7-3: Execution Domain Types MK_DOMAIN_TYPE_e ... 79

Table 7-4: Priority values of a Process .. 80

Table 7-5: VRE Identifiers ... 80

Table 7-6: Firmware/Software Types .. 81

Table 7-7: Scheduling Types .. 81

Table 7-8: Signal Identifiers .. 82

Table 7-9: Constants and Limits for any Primary Platform ... 83

Table 7-10: Primary Platform Dependent Constants and Limits .. 84

Table 7-11: Exceptions ... 85

Table 7-12: Errors ... 86

Table 7-13: Cross-Execution Domain Composite Identifier ... 86

Table 7-14: Cross-Execution-Domain Signals .. 87

VPP - Concepts and Interfaces – Public Release v1.0 7 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction

1.1 Audience

This document specifies the concepts, rules, requirements, interfaces related to a Virtual Primary Platform,
as outlined in [IUICC Req] and aims at easing the portability of Firmwares designed for secure and Tamper
Resistant Elements.

Note: Portability is defined as capability of a program to be executed on various types of data processing
systems without converting the program to a different language and with little or no modification [2382].

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other
work product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or
others. For additional information regarding any such IPR that have been brought to the attention of
GlobalPlatform, please visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform
shall not be held responsible for identifying any or all such IPR, and takes no position concerning the
possible existence or the evidence, validity, or scope of any such IPR.

1.3 References
Table 1-1: Normative References

Standard / Specification Description Ref

AIS20 Functionality classes and evaluation methodology for
deterministic random number generators, Reference: AIS20,
version 1, 02/12/1999, BSI

[AIS20]

AIS31 Functionality classes and evaluation methodology for
physical random number generators, Reference: AIS31
version 1, 25/09/2001, BSI

[AIS31]

BSI-CC-PP-0084-2014 Security IC Platform BSI Protection Profile 2014 with
Augmentation Packages.

[PP-0084]

FIPS PUB 180-4 Secure Hash Standard (SHS) [FIPS 180-4]

FIPS PUB 186-4 Digital Signature Standard (DSS) [FIPS 186-4]

FIPS PUB 197 FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION PUB 197 - Advanced Encryption Standard
(AES)

[FIPS 197]

FIPS PUB 198-1 FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION
The Keyed-Hash Message Authentication Code (HMAC)

[FIPS 198-1]

FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions

[FIPS 202]

GP OFL GlobalPlatform Card Technology Open Firmware Loader for
Tamper Resistant Element Version 1.3

[OFL]

https://www.globalplatform.org/specificationsipdisclaimers.asp

8 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref

GP OFL Interface GlobalPlatform VPP-Network Protocol Extension for the
Open Firmware Loader

[EOFL]

GP VPP-Firmware Format GlobalPlatform VPP-Firmware Format specification [VFF]

GP VPP-Network Protocol GlobalPlatform VPP-Network Protocol specification [VNP]

IETF RFC 2119 Key words for use in RFCs to Indicate Requirement Levels [RFC 2119]

ISO/IEC 2382:2015 Information technology - Vocabulary [2382]

Joint Interpretation Library Joint Interpretation Library: "Application of Attack Potential to
Smartcards, v2.9, Jan 2013."

[JIL]

NIST Special Publication
800-38A

Recommendation for Block Cipher Modes of Operation [NIST
SP800-38A]

NIST Special Publication
800-38D

Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC

[NIST
SP800-38D]

NIST Special Publication
800-57 Part 1 Revision 4

Recommendation for Key Management Part 1: General [NIST SP
800-57 Pt1
R4]

Remote BIST Elena Dubrova, Mats Näslund, Gunnar Carlsson, John
Fornehed, Ben Smeets. Two Countermeasures Against
Hardware Trojans Exploiting Non-Zero Aliasing Probability of
BIST. DOI 10.1007/s11265-016-1127-4. Springer. J Sign
Process Syst. 2016

[BIST]

RFC 2104 HMAC: Keyed-Hashing for Message Authentication [RFC 2104]

RFC 4122 A Universally Unique IDentifier (UUID) URN Namespace [RFC 4122]

RFC 4231 Identifiers and Test Vectors for HMAC-SHA-224, HMAC-
SHA-256, HMAC-SHA-384, and HMAC-SHA-512

[RFC 4231]

RFC 4492 Elliptic Curve Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS)

[RFC 4492]

RFC 4493 The AES-CMAC Algorithm [RFC 4493]

Table 1-2: Informative References

Standard / Specification Description Ref

ETSI TS 102 221 Smart Cards; UICC-Terminal interface; Physical and logical
characteristics

[102 221]

ETSI TS 102 223 Smart Cards; Card Application Toolkit (CAT) [102 223]

ETSI TS 102 622 Smart Cards; UICC - Contactless Front-end (CLF) Interface;
Host Controller Interface (HCI (Release 13)

[102 622]

ETSI TS 103 383 Smart Cards; Embedded UICC; Requirements Specification [103 383]

ETSI TS 103 384 Smart Cards; Embedded UICC; Technical Specification [103 384]

GPC_SPE_014 GlobalPlatform Card Specification v.2.2 Amendment D:
Secure Channel Protocol '03' v1.1.1.

[HLOS14]

VPP - Concepts and Interfaces – Public Release v1.0 9 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref

GPC_SPE_025 GlobalPlatform Card Specification v.2.3 Amendment C:
Contactless Services v1.2

[HLOS25]

GPC_SPE_034 GlobalPlatform Card Specification v.2.3 [HLOS34]

GPC_SPE_042 GlobalPlatform Card Specification v.2.3 Amendment E:
Security Upgrade for Card Content Management v1.1

[HLOS42]

GPC_SPE_093 GlobalPlatform Card Specification v.2.3 Amendment F:
Secure Channel Protocol '11'

[HLOS93]

GSMA iUICC PoC PP GSMA iUICC PoC Group Primary Platform Requirements [IUICC Req]

ISO/IEC 7816-4 Identification cards - Integrated circuit cards - Part 4:
Organization, security and commands for interchange.

[7816-4]

SGP.02 GSMA Remote Provisioning of Embedded UICC Technical
specification V3.0

[HLOS02]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and
MAY in this document (refer to [RFC 2119]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD and SHOULD NOT indicate recommendations.

• MAY indicates an option.

Selected terms used in this document are included in Table 1-3.

Table 1-3: Terminology and Definitions

Term Definition

ABI Application Binary Interface. The interface between two Programs and
using the processor instruction set (with details like registers, stack
organization, memory access types, CPU modes...), the sizes, layout, and
alignment of basic data types the CPU can directly access. The use of an
ABI targets specifically the interface between a Process and the LLOS
running in different CPU Modes.

Abstraction An interface layer that masks underlying implementation differences

Access Group A logical grouping of software and/or hardware functions to indicate their
level of access to other Access Groups.

Accessor (1) A Program capable of reading the data of a hardware function. (2) A
hardware function capable of reading the data of another hardware
function.

Address Space The set of addresses that can be used by a particular Program or
functional unit.

10 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

API Application Programming Interface. The interface between an application
of a Program and the latter Program. API use may vary depending on the
type of programming language involved.

Bootstrap Program A Program used for loading the Primary Platform software from a Remote
Memory and to instantiate this software. A short Program that is
permanently resident or easily loaded into a computer and whose
execution brings a larger Program, such as an operating system or its
loader, into memory [2382].

COM Process A Process of VPP Execution Domain providing VPP Application
communication as defined in [VNP].

Composite Identifier Identifier having two parts: Execution Domain type and an enumerated
identifier.

Exception A notification from the kernel to a parent Process about a special
condition that occurred in one of its child Processes.

Execution Domain Property defining the membership of a Process in a logical group of
Processes.

Firmware The data needed to instantiate a VPP Application. See [OFL].

Firmware Format The data structure of the Firmware. See [VFF].

Firmware Identifier As defined in [VFF]

Firmware Loader Program in charge to load or update a Firmware into the TRE. The
Firmware Loader may expose extended capability for loading or updating
the Primary Platform software.

Forward Compliance Forward Compliance is the capability to support future needs (e.g. larger
Firmware) within the limits of the resources outside the TRE.

HLOS High Level Operating System. An additional Program encompassed in a
VPP Application, that provides further abstraction of resources and
services to its HLOS Application(s).

HLOS Application A Program or interpretable code using the HLOS to deliver a specific use
case.

Instance Concrete occurrence of any object at run time. The creation of an
instance from the description of an object (e.g. Firmware, software) is
called instantiation.

Integrated TRE A TRE which is integrated into, and part of, a larger SoC.

IPC Inter Process Communication based on a shared virtual memory between
two Processes.

Kernel Object Implementation dependent data structure within the kernel that represents
a Process, a Mailbox, an IPC or a VRE.

Kernel Object Handle A runtime representation of an instantiated Kernel Object instantiated by
the kernel for a Process.

VPP - Concepts and Interfaces – Public Release v1.0 11 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Kernel Object Identifier A unique identifier that allows VPP Application to get a Kernel Object
Handle. The identifier is known at development time. Some identifiers are
pre-defined as part of VPP.

Key Protection Function Hardware mechanism to separate key material from CPU access.

LIB Descriptor Shared library metadata as defined in [VFF].

LLOS Low level Operating System. A hardware-dependent software running in
Privileged CPU Mode and including a microkernel, critical low-level
resources and security functions support.

Mailbox A component owned by a Process capable of receiving Signals from
another Process or the kernel.

Main Process The first Process to run of a VPP Application.

Master Port The access point to direct memory transfer hardware function.

Memory Partition Concatenated sub-Memory Partitions as defined in [VFF].

MGT Process A Process within the VPP Execution Domain responsible for managing
VPP Applications.

Microkernel Minimal software supporting only the functionalities which are not able to
run in unprivileged mode such as memory management including their
access protection settings, multi-processing support. For simplicity the
rest of the present document uses “kernel” as an alias of microkernel.

MLOI Minimum Level Of Interoperability. The set of minimum system
capabilities that are guaranteed to exist in every Primary Platform.

MMF Memory Management Function as a function in charge to translate a
physical address to a virtual address and to apply rules of access (e.g.
read, write, execute) according to a Security Perimeter and the nature of
the virtual address sub space.

Mutator (1) A Program capable of writing, modifying or controlling the data of a
hardware function. (2) A hardware function capable of writing, modifying
or controlling the data of another hardware function.

Non-Shareable Memory
Space

Memory space that shall be declared by and accessed by a single
Program.

Operating System Program that controls the execution of other programs and that may
provide services such as resource allocation, scheduling, input-output
control, and data management [2382].

OTP One-Time Programmable physical memory cells, such as eFuses that can
be integrated in a SoC. These elements are programmed once and retain
their programmed value afterwards indefinitely.

Physical Address The actual, non-translated, addresses that can be used by a particular
Program or functional unit.

Physical Address Space The set of physical addresses that can be used by a particular Program or
functional unit as defined in [2382].

12 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Preemption The act of temporarily interrupting a Process being managed by a kernel,
without requiring its cooperation, and with the intention of resuming the
Process at a later time.

Primary Platform The hardware platform along with a low-level Operating System managing
the exceptions, the hardware platform resources and their accesses, the
services offering an abstraction of the resources.

Primary Platform Maker The entity developing and providing the Primary Platform.

Primary Platform Software Software package that contains the Program and data of the Primary
Platform (i.e., LLOS and VPP Processes).

Privileged CPU Mode CPU mode when dealing with hardware exceptions or when executing
privileged instructions.

Process Independent sequences of execution in CPU unprivileged mode and
running within an independent Virtual Address Space. A process may
have shared memory with other Processes (e.g. IPC). A Process is
scheduled by the LLOS.

Process Descriptor Process metadata, as defined in [VFF].

Program Independent set of instructions executed by a CPU.

Remote Audit Function A mechanism that enables a VPP Application to challenge the authenticity
of the Primary Platform.

Remote Memory Memory located outside the TRE, which can be RAM and NVM

Secure CPU A CPU supporting security functions for preventing hardware attacks (e.g.
DPA, DFA, Side channels).

Security Perimeter denotes the perimeter of a function on which rules, Access Groups,
properties and requirements apply

Service Process offering an abstraction of a functionality (e.g. communication)
providing an interface to another Process.

Shared Memory Space Memory space that may be accessed by at least two Programs that
declare sharing of a specific memory space.

Signal (1). noun. A fixed bit of information representing a fixed event.
(2). verb. The act of sending the signal bit between two Processes or
between a Process and the kernel.

System Tick A fixed duration periodical event that interrupts the Microkernel and is
used in Process scheduling.

System VPP Application A VPP Application having special privileges that enables it to manage
other applications. E.g. OFL [OFL].

Thread A Process within another Process that uses the resources of the latter
Process as defined in [2382].

TRE Tamper Resistant Element as defined in [IUICC Req].

Unprivileged CPU Mode CPU mode when NOT able to access privileged instructions or when NOT
dealing with hardware exceptions.

VPP - Concepts and Interfaces – Public Release v1.0 13 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Virtual Pertains to a functional unit that appears to be real, but whose functions
are accomplished by other means as defined in [2382].

Virtual Address Space Set of virtual addresses that can be used by a particular Program or
functional unit as defined in [2382].

Virtual Address Space
Region

A fixed-size partition of the Virtual Address Space dedicated to a given
memory type of a Process, e.g. code, stack, constants, etc.

Virtual Hardware Platform The virtualized hardware as it appears to a VPP Application

Virtualization Refers to the act of creating a virtual (rather than actual) version of
something, including virtual computer hardware platforms, storage
devices, and computer network resources.

VPP Instance of the Primary Platform at run time that exposes as a virtual
Primary Platform (VPP) for a VPP Application. The VPP includes
interfaces to services and the kernel and supports the virtualization of
resources.

VPP Application An instance of a Firmware on a VPP; use case dependent and can run an
HLOS and its application(s).

VPP Process A Process within the VPP Execution Domain.

VRE Virtual REgister is a set of virtual address allowing the access to a
hardware function.

1.5 Abbreviations and Notations

Selected abbreviations and notations used in this document are included in Table 1-4.

Table 1-4: Abbreviations

Abbreviation Meaning

BIST Built-In Self Test

CPU Central Processing Unit

CUT Chip-Under-Test

DFA Differential Fault attacks defined in [JIL]

DPA Differential Power Analysis defined in [JIL]

LIB Library

MGT Management

MISR Multiple Inputs Signature Register

NA Not Applicable

NVM Non-Volatile Memory

PFS Perfect Forward Secrecy

14 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Abbreviation Meaning

PRPG Pseudo Random Patterns Generator

PUF Physical Unclonable Function

RAM Random Access Memory (assumed to be volatile)

RO Read-Only

RW Read/Write

SoC System on Chip

SR Security Requirement

TOE Target Of Evaluation

UUID Universal Unique IDentifier version 5 as defined in [RFC 4122]

WO Write-Only

For the purposes of the present document, the following coding conventions apply:

• All lengths are presented in bytes, unless otherwise stated. Each byte is represented by bits b8 to b1,
where b8 is the most significant bit and b1 is the least significant bit. In each representation, the
leftmost bit is the most significant bit.

• Hexadecimal values are specified between single quotes, e.g. '1F'.

• All bytes specified as RFU shall be set to '00' and all bits specified as RFU shall be set to 0.

• Security Requirements established in this document are indicated by [SREQXX] or by a dot in the SR
column for tables in section 5.8.2. Both are used for easing their traceability.

• Functional Requirements established in this document are indicated by [REQXX] in order to ease their
traceability.

• Commands not explicitly indicated as “optional” are “mandatory”.

1.6 Revision History
Table 1-5: Revision History

Date Version Description

September 2017 0.1.0 Fast Track Member Review

November 2017 0.2.0 Fast Track Public Review

February 2018 0.3.0 Public Release Candidate

March 2018 1.0 Public Release

VPP - Concepts and Interfaces – Public Release v1.0 15 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Overview

2.1 Objectives and Use Cases

The main objectives of the VPP are described in [IUICC Req]. They can be split as follows:

• Make the VPP Application as independent as possible from the underlying Primary Platform and
consequently reduce the engineering effort to adapt the VPP Application to each different Primary
Platform,

• Provide at least the same level of flexibility as the legacy secure platforms for supporting all use
cases defined in [IUICC Req],

• Ease the VPP Application certification (if required) by enabling composite certification with a pre-
certified Primary Platform.

The following Primary Platform specifications shall be provided by the Primary Platform Maker:

• The architecture of the CPU and its reference.

• The specification of the hardware functions accessible by the VPP Application1.

• The LLOS ABI description adapting the interface to the LLOS implementation for a given CPU

• The Primary Platform dependent parameters defined in section 7

2.2 VPP Concept

The TRE contains three logical parts:

1. The Primary Platform consisting of the LLOS, its Processes and the hardware platform.

2. The abstraction and the Virtualization of the Primary Platform, called VPP, making2 the interface to
any Primary Platform virtually the same.

3. The use case dependent application of the VPP (i.e. a VPP Application) consisting of a HLOS and its
application(s).

Figure 2-1 illustrates the internal architecture of the TRE.

1 Via the VRE as defined in the section 5.7.4.5.

2 It is foreseen that a Firmware needs, to a certain extent, to be adapted and re-compiled for the Primary Platform.

16 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 2-1: TRE Internal Architecture

APPLICATION
OF THE HIGH-

LEVEL OS

HIGH LEVEL OS

LOW LEVEL OS

VPP

 S
ER

VI
C

E
IN

TE
R

FA
C

E

 KERNEL ABI

TAMPER RESISTANT ELEMENT (TRE)

SERVICES

VPP APPLICATION

HARDWARE

From the VPP Application perspective, the VPP hides the Primary Platform.

2.3 The content of VPP Concepts and Interfaces

• The requirements of the Primary Platform

• The Virtual Primary Platform

• The virtualization of resources as described in the section 5

• The interface with the LLOS

• The interface with the Communication Service

• The interface with the Management Service

• The VPP Application

• The MLOI

VPP - Concepts and Interfaces – Public Release v1.0 17 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 Hardware Platform

3.1 Hardware Architecture

The TRE shall embed [SREQ1]:

• One or more CPU(s), which shall be specifically built for high-level of security

• Random Access Memory (RAM)

• Non Volatile Memory (NVM) of potentially different types (reprogrammable or not)

• A Random Number Generator Function

• Long-term credentials storage

• Security functions (e.g. sensors)

• A Key Protection function to restrict CPU access to secret key material

• A Memory Management Function in charge of translating the physical memory addresses to virtual
memory addresses and protecting memory spaces according to their access rights.

The hardware platform should furthermore embed [SREQ2]:

• Cryptographic Functions

• Memory Transfer Function (e.g. a Direct Memory Access controller)

Figure 3-1 shows a generic hardware platform for an Integrated TRE. For example, the SoC may be a mobile
broadband modem, an application processor, a micro-controller or a dedicated controller (e.g. an NFC
controller).

Figure 3-1shows a particular example, in the sense that the SoC may contain many additional elements that
are not shown;

18 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-1: Example of Hardware Architecture

R
A

M

 eMMC/UFS

SEC
U

R
E C

PU

R
A

M

O
TP M

EM
O

R
Y

INTERNAL BUS

PER
IPH

ER
A

LS

iUICC

TAMPER RESISTANT

R
O

M

N
on-Tam

per R
esistant

 C
PU

e.g. general purpose

PER
IPH

ER
A

LS

SoC

REMOTE NVM

SECURE CPU

R
A

M

MMF

INTERNAL BUS

H
A

R
D

W
A

R
E

FU
N

C
TIO

N
S

INTERNAL HIGH SPEED BUS

MASTER PORT

TR
E

TAMPER RESISTANT

NVM INTERFACE
PER

IPH
ER

A
LS

N
VM

REMOTE RAM

RAM INTERFACE

R
EM

O
TE N

VM

R
EM

O
TE R

A
M

O
P

TIO
N

A
L

O
P

TIO
N

A
L

OPTIONAL OPTIONAL

O
P

TIO
N

A
L

O
P

TIO
N

A
L

OPTIONAL OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

3.2 Generic Core features

3.2.1 CPU

The CPU shall support at least two execution modes: Privileged CPU Mode and Unprivileged CPU Mode
[SREQ3].

The CPU architecture shall support an Application Binary Interface (ABI) able to transfer scalar parameters
between a Program running in Unprivileged CPU Mode and a Program running in Privileged CPU Mode
[SREQ4].

Note: ‘CPU’ in this document refers to the CPU inside the TRE that executes any Program in Primary
Platform.

3.2.2 Memory Access

The Primary Platform shall provide a mean to filer memory access, for each CPU mode, based on a
combination of multiple memory access (execute, read, write) [SREQ5].

VPP - Concepts and Interfaces – Public Release v1.0 19 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.3 Non Volatile Memory

At least one of the following options shall be implemented in the hardware platform:

• One Time Programmable NVM (OTP) [REQ6].

• Reprogrammable NVM [REQ7].

• Non-programmable NVM (i.e., ROM) [REQ8].

The hardware platform may use a remote NVM relying on a NVM outside the Security Perimeter of the TRE
[REQ9].

3.2.4 Form Factor

No form factor is mandated.

3.2.5 Power

The overall power consumption of the Primary Platform is outside the scope of this specification. For this
document, the Primary Platform shall be considered as powered up and capable of supporting the specified
behavior. The Primary Platform Maker may implement power management strategies that may not support
specified behavior. For example, power down or power collapse. Such strategies and their accompanying
states are too outside the scope of this document.

3.2.6 Memory Transfer Function

The hardware platform may provide a Memory Transfer Function (e.g. DMA) to allow a direct data transfer
(meaning without the use of the CPU) between two resources (i.e. hardware interface to function or
memory).

The Master Port is controlled by the TRE and makes the bridge between the TRE and the SoC buses.

For example, a transfer of data between the Remote Memory, via the interface of a function (e.g. Master
Port), outside of the TRE, and a resource within TRE (e.g. block cipher).

Figure 3-2 illustrates the concept of memory transfer function.

20 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-2: Memory Transfer Function Example

MEMORY PARTITION MASTER
PORT

KDF
(Key Derivation Function)

RAMBLOCK
CIPHER

LOGICAL CHANNELS OF THE
MEMORY TRANSFER FUNCTION

KEY

Non Volatile
Credentials
(NVM, PUF)

ANTI-
REPLAY/

PFS
FUNCTION

REMOTE MEMORY
 (e.g. RAM or NVM)

LIMIT OF THE TRE

MMF CPU

Seed Parameters

Key Protection Function

In the above example, two logical channels of the memory transfer function allow the data transfer between a
Remote Memory (i.e. either RAM or NVM) and a memory area located inside the TRE via a block cipher
function.

If a memory transfer function, is required for transferring data outside the TRE then:

• The Remote Memory (e.g. Memory Partition) and the TRE memory area(s) shall be isolated by a
hardware function (e.g., a master port) in order to ensure the following:

 Access control is managed by the TRE [SREQ10],

 Address translation across the different address spaces (e.g. the SoC address space and the
TRE address space).

If the memory transfer function is required for transferring data inside or outside the TRE, the following
requirement shall be fulfilled: The Primary Platform shall provide a means to protect against memory content
access violations from hardware memory transfer [SREQ11].

Data stored in Remote Memory must be integrity protected and confidentiality protected [SREQ12].

3.2.7 Cryptographic Functions

The TRE shall only execute cryptographic operations within its Security Perimeters (i.e., the TRE SP)
[SREQ13]. The Primary Platform may support, the following cryptographic primitives through hardware
assistance [REQ14]:

Table 3-1: Cryptographic Recommendations

Category Algorithm
Block cipher AES as defined in [FIPS 197]

Cryptographic hash SHA-224, SHA-256, SHA-384, SHA-512 as defined in [FIPS 180-4]

VPP - Concepts and Interfaces – Public Release v1.0 21 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

SHA-3 as defined in [FIPS 202]

Digital signature ECDSA as defined in [FIPS 186-4]

Key exchange ECC-based key exchange algorithms as defined in [RFC 4492]

Message
authentication

HMAC with SHA-2: HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384,
HMAC-SHA-512 as defined in [FIPS 198-1], [RFC 2104] and [RFC 4231]
HMAC with SHA-3 as defined in [FIPS 202]
AES-CMAC (CMAC with AES-128) as defined in [RFC 4493]
GCM and GMAC as defined in [NIST SP 800-38D]

Message cipher AES with confidentiality modes as defined in [NIST SP800-38A]

3.2.8 Random Number Generator Function

The TRE shall only execute random number generation operations within its Security Perimeters (i.e., TRE
SP) [SREQ15]

The Random Number Generator Function should be in conformance with [SREQ16]:

• AIS20 certification for a DRNG (Deterministic Random Number Generator) as defined in AIS20
version 1 [AIS20].

• AIS31 certification for a TRNG (True Random Number Generator) as defined in AIS31 version 1
[AIS31].

3.3 System Functions

The hardware platform shall embed an autonomous and independent clock and reset system confined in the
TRE Security Perimeter [SREQ17].

The hardware platform shall provide a tick counter, which has a fixed tick duration and is rising [REQ18].

The hardware platform may embed additional system functions (e.g., interrupt controller, etc.) out of the
scope of this document.

3.4 Security Functions

3.4.1 General

The Primary Platform shall have an exclusive control over the mechanism that controls the access to the
Primary Platform from outside the TRE [SREQ19].

The Primary Platform shall provide means for protecting itself against side channel attacks (hardware and
software), Differential Power Analysis (DPA) and Differential Fault Analysis (DFA) attacks [SREQ20].

3.4.2 Memory Encryption and Integrity

The TRE shall only depend on its own internal cryptographic software and hardware functions [SREQ21].

The robustness of the memory encryption shall be equivalent to or greater than AES-256-CBC [SREQ22].

Memory encryption and integrity may be combined with a hardware integrity check [REQ23].

The robustness of the memory integrity shall be equivalent to or greater than HMAC-SHA-256 [SREQ24].

22 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.3 Key Protection Function

The hardware platform shall provide and use a Key Protection Function to protect specific long-term key
material [SREQ25].

Keys used for encryption and integrity checking of Remote Memory shall be protected by the Key Protection
Function and shall not be directly accessible by the CPU [SREQ26].

The Key Protection Function shall utilize a hardware key derivation function as defined in [NIST SP 800-57
Pt1 R4] section 8.2.4 [SREQ27]. The hardware key derivation function shall provide an interface that accepts
[SREQ28]:

• A variable accessible only by Programs executing in Privileged CPU Mode,

• A diversified persistent secret seed (e.g. from a TRE NVM or from a PUF) which is only accessible
by the Key Protection Function,

The Key Protection Function shall support a mode where its output shall be the key for the Cryptographic
Functions [SREQ29].

3.4.4 Security Sensor Function

The hardware platform may embed security sensor function in charge to detect abnormal operating
conditions. The implementation of such function is outside the scope of this document.

3.5 Memory Management Function

The Primary Platform shall embed a MMF under the control of the LLOS [SREQ30] for supporting [SREQ31]:

• The Forward Compliance property, regardless of the Firmware size.

• A Virtual Address Space, eliminating Processes dependency on Physical Address Space of the
hardware platform.

The Memory Management Function shall enforce the access rules (i.e. Access Groups) of every Security
Perimeters as defined in the section 5.2 [SREQ32].

3.6 Memory Storage Function

The memory storage area is considered as being remote when it is located outside the TRE. Multiple remote
memory areas may be available with different persistency (e.g. ROM, RAM, OTP, NVM) and access times
(e.g. reading, writing).

Regardless of the persistency of the memory (volatile or non-volatile in relation to the power cycles of the
SoC), the term “cache” defines a memory storage area having a fast access time.

3.7 Remote Audit Function

For the sake of simplicity, this section considers the term VPP Application as either the System VPP
Application or a VPP Application as defined in section 5.11.

Remote Audit Function works by allowing the VPP Application to provide the Remote Audit Function with
value called ‘challenge’ and retrieving the result. The retrieved result can then be sent outside of the TRE,
compared to a precomputed result, establishing integrity if both results are identical.

VPP - Concepts and Interfaces – Public Release v1.0 23 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.7.1 Remote Audit Function Requirements

The hardware platform should support a Remote Audit Function [SREQ33].

If the hardware platform supports the Remote Audit Function, then the requirements of this section shall
apply.

In TOE life cycle phase 7 as defined in [PP-0084], the Remote Audit Function shall provide a means for a
VPP Application to challenge the hardware platform against modifications by comparing it to the hardware
platform that was submitted to certification laboratories [SREQ34].

The following requirements shall be fulfilled by the hardware platform:

• Support a Remote Audit Function which is capable of, with a probability greater than 0.8, to detect
a hardware platform modification [SREQ35].

• Prohibit access to key material by the Remote Audit Function [SREQ36].

• Provide a means for a VPP Application to confidentially, with respect to the LLOS and any SoC
sub-systems, a challenge into the Remote Audit Function [SREQ37].

• Provide a means for the VPP Application to confidentially retrieve the Remote Audit Function result
[SREQ38].

Only a single3 Remote Audit Function challenge may be injected into the Remote Audit Function by a given
Firmware4; during the entire Firmware life cycle5 [SREQ39].

The duration of Remote Audit Function operation6 should not exceed MK_MAX_RAF_TIME_MS [REQ40].

The VPP Application session (as defined in section 6.3) shall be terminated to allow the Remote Audit
Function operation to start [SREQ41]. The termination of the VPP Application session may be initiated by
Main Process or by the MGT Process.

The following illustrates how the Remote Audit Function could be used to check that the TRE has not been
modified after its certification:

• Once the compliance testing of a given TRE completes successful, the certification laboratory
generates a certain number of challenges, to be fed into the Remote Audit Function. The results
are then stored into a database7.

• The remote auditor;

• Requests a set of archived challenge/result couples.

• Establishes a secure communication channel8 with the VPP Application.

3 The requirement prevents a Denial of Service attack by a VPP Application.

4 Excluding the Firmware used for the instantiation of the system VPP Application.

5 From its initial loading to its deletion.

6 The protocol between the TRE and other SoC sub-systems that is used to properly stop the TRE, switch the TRE
hardware platform into Remote Audit Function mode and then back to the operational mode is VPP implementation
specific.

7 The management of the database of the certification laboratory is out of the scope of this document.

8 The procedure for setting up a secure communication between a remote auditor and a VPP Application may be
proprietary and is out of scope of this document

24 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Transfer over the secure communication channel, an archived challenge to the VPP Application
and collects the corresponding result from the Remote Audit Function over the secure
communication channel.

• Compares the archived result corresponding to the collected result.

Any archived/collected result mismatch shall indicate that the hardware platform has been modified
[SREQ42].

3.7.2 BIST Remote Audit Function option

3.7.2.1 Remote Audit Function based on BIST

The Remote Audit Function may use BIST9 to challenge the hardware platform. The Remote Audit Function
challenge is the seed of the PRPG. The hardware platform isolated from other SoC sub-system is the CUT.
The Remote Audit Function result is the MISR output subsequent to a cryptographic hash function.

The archived challenge/result couples generated by the Remote Audit Function should not be predictable.

The number of possible Remote Audit Function challenge/result couples shall be large enough to be
resistant to precomputation of all possible challenge/results couples.

3.8 Hardware Service Function

The Hardware Service Function are implementation dependent and out of the scope of this document.

One of the Hardware Service Functions is related to the communication between the TRE and the SoC sub-
systems, e.g. physical layers.

9 E.g., L-BIST (Logic BIST)

VPP - Concepts and Interfaces – Public Release v1.0 25 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 Primary Platform Certification
The certification of the Primary Platform shall claim in its Security Target one of the following options
[SREQ43]:

• Conformance with Protection Profile BSI-CC-PP-0084-2014 [PP0084] [SREQ44]

• Conformance with Protection Profile BSI-CC-PP-0084-2014 [PP0084]
and the certification by composition of the Loader package 2 [SREQ45].

• Conformance with Protection Profile BSI-CC-PP-0084-2014 [PP0084] including the Loader
package 2 [SREQ46].

Note: Only the two last options are compliant with the requirements described in [iUICC Req].

The Primary Platform shall be encompassed by the certification Target of Evaluation (TOE) boundary
[SREQ47].

The Security Target of the Primary Platform instance shall cover the security requirements listed in the
present document [SREQ48].

The certification minimum assurance level shall be at least EAL4 augmented with AVA_VAN.5 and
ALC_DVS.2 [SREQ49].

AVA_VAN.5 tests should be performed in accordance with the JIL Application of Attack potential to
Smartcards documentation [JIL] [SREQ50].

As illustrated in the Figure 4-1, a TRE may support multiple VPP instances as long as:

• Each VPP instance is compliant with the requirements set by the present document as well as both
[VFF] and [VNP].

• A VPP Application running on a VPP instance shall not be confronted with any differences of
behavior (e.g. timings), rules, security, certifications and MLOI when compared to running in a TRE
supporting a single VPP instance.

Figure 4-1 : Multiple VPP instance in a TRE

VPP Application

VPP VPP

VPP Application VPP Application

VPP

TRE

A

A

B

B C

C

26 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 Virtual Primary Platform

5.1 Overview

Figure 5-1 describes the functional architecture for a TRE.

Figure 5-1: TRE Functional Architecture

HARDWARE SERVICE
FUNCTIONS

(e.g.,COMMUNICATION
PERIPHERALS)

SERVICES

COMMUNICATION
&

FIRMWARE
MANAGEMENT

MEMORY MANAGEMENT
FUNCTION

&
SECURITY FUNCTIONS

&
SYSTEM FUNCTIONS

HARDWARE
CRYPTOGRAPHIC

FUNCTIONS &
RANDOM NUMBER

GENERATOR FUNCTION &
SPECIFIC LONG TERM

CREDENTIALS STORAGE&
REMOTE AUDIT FUNCTION

APPLICATION
OF THE HIGH-LEVEL

OS

HIGH LEVEL OS

LOW LEVEL OS

HAR
DW

A
RE FU

NCTIO
NS C

ON
DITIO

NA
LY AC

CESSIBLE

HAR
DW

A
RE

FUN
CTION

S
ACC

ESSIB
LE O

NLY
FRO

M
 CPU IN

PRIVILEG
ED

 M
OD

E

SOFTWARE FUNCTIONS HARDWARE FUNCTIONS

VPP:
 PRIMARY PLATFORM INSTANCE

SECURE TAMPER RESISTANT
ELEMENT (TRE)

VPP APPLICATION :
FIRMWARE INSTANCE

LO
W

 L
E

V
E

L

 H
IE

R
A

R
C

H
Y

 O
F

A
C

C
ES

S
 P

R
IV

IL
E

G
E

S

HIGH

LOW

PRO
GR

AM
S ON

LY AC
CESSIBLE FRO

M
 CPU IN

 U
NPR

IVILEGED M
O

DE
ACC

ESSIB
LE O

NLY
FRO

M
 CPU IN

PRIVILEG
ED

 M
OD

E

5.2 Access Groups

A combination of four Access Groups is defined within the TRE:

VPP - Concepts and Interfaces – Public Release v1.0 27 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1. AG_P_OU: Any Program and data only accessible from a CPU running in unprivileged mode.

2. AG_H_C: Any hardware function conditionally accessible from the CPU (see sections 5.8.5.5 and
5.11).

3. AG_P_OP: Any Program and data only accessible from a CPU running in privileged mode.

4. AG_H_OP: Any hardware function only accessible from the CPU running in privileged mode

Figure 5-2: TRE Access Groups

PRIVILEGED
HARDWARE
FUNCTIONS

CONDITIONAL
HARDWARE
FUNCTIONS

PROGRAMS

SOFTWARE FUNCTIONS HARDWARE FUNCTIONS

VPP

SECURE TAMPER RESISTANT
ELEMENT (TRE) ACCESS GROUPS

PRO
GR

AM
S ON

LY AC
CESSIBLE FRO

M
 CPU IN

 U
NPR

IVILEGED M
O

DE

PRO
GR

AM
S

ACC
ESSIB

LE O
NLY

FRO
M

 CPU IN
PRIVILEG

ED
 M

OD
E

 H
IE

R
A

R
C

H
Y

 O
F

A
C

C
ES

S
E

S

HIGH

LOW

HAR
DW

A
RE FU

NCTIO
NS C

ON
DITIO

NA
LY AC

CESSIBLE

HAR
DW

A
RE

FUN
CTION

S
ACC

ESSIB
LE O

NLY
FRO

M
 CPU IN

PRIVILEG
ED

 M
OD

E

PROGRAMS

VPP APPLICATION

AG_P_OU AG_H_C

AG_H_OPAG_P_OP

The software functions are grouped in three domains:

• The LLOS managing security-related hardware functions and native multiprocessing capabilities.

• The HLOS (acting as a secondary platform) and its accompanying applications.

• The services managing the hardware functions related to communication (defined in section 5.9)
and Firmware management (defined in section 5.10).

The hardware functions are grouped in two modules:

1. The Privileged Hardware Functions (AG_H_OP) which include:

• System Functions

• Security Functions

• Memory Management Function

2. The Conditional Hardware Functions (AG_H_C) which include:

• Hardware Service Functions

• Cryptographic Functions

28 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Remote Audit Function

• Long-term credentials storage

The Primary Platform consists of the Hardware Platform, the Services within the VPP Execution Domain and
the LLOS.

The abstraction and the virtualization of the Primary Platform is provided by the Virtual Primary Platform
(VPP) which is made of three parts:

1. LLOS interface (described in section 5.8.5) and the MMF allowing the virtualization of the physical
memory (described in section 5.5)

2. The service interfaces related to communication (described in section 5.9).

3. The service interfaces related to Firmware management (described in section 5.10).

5.3 Security Perimeters

The Security Perimeter (SP) defines the perimeter of a function on which rules, Access Groups, properties
and requirements shall apply.

Figure 5-3 illustrates the SPs of the TRE.

Figure 5-3: TRE Security Perimeters

SERVICES

MEMORY MANAGEMENT
FUNCTION

SECURITY FUNCTIONS&
SYSTEM FUNCTIONS

CRYPTOGRAPHIC PRIMITIVE
FUNCTIONS&

RANDOM NUMBER
GENERATOR FUNCTION&

REMOTE AUDIT FUNCTION&
LONG TERM CREDENTIALS

STORAGE

APPLICATION
OF THE HIGH LEVEL OS

HIGH LEVEL OS
HARDWARE SERVICE

FUNCTIONS
(eg .PERIPHERALS FOR

COMMUNICATION)

LOW LEVEL OS

SOFTWARE FUNCTION HARDWARE FUNCTION

VPP SP

SECURE TAMPER RESISTANT ELEMENT
TRE SP

IPC SP

IPC SP

HLOS SP

LLOS SP

SERVICE SP HARDWARE SERVICE SP

PRIVILEGED HARDWARE SP

HARDWARE CRYPTO SPHLOS APPLICATION SP
CROSS-EXECUTION-DOMAIN IPC SP

VPP APPLICATION SPPR
O

G
R

A
M

S O
N

LY A
C

C
ESSIB

LE FR
O

M
 C

PU
 IN

 U
N

PR
IVILEG

ED
 M

O
D

E
A

C
C

ESSIB
LE O

N
LY

FR
O

M
 C

PU
 IN

PR

IVILEG
ED

 M
O

D
E

 H
IE

R
AR

C
H

Y
O

F
AC

C
ES

S

HIGH

LOW

H
A

R
D

W
A

R
E FU

N
C

TIO
N

S C
O

N
D

ITIO
N

A
LY A

C
C

ESSIB
LE

H
A

R
D

W
A

R
E

FU
N

C
TIO

N
S

A
C

C
ESSIB

LE O
N

LY
FR

O
M

 C
PU

 IN

PR
IVILEG

ED
 M

O
D

E

PROCESS SP
MAILBOX SP

PROCESS SP
MAILBOX SP

Functional description of the Security Perimeters:

• VPP APPLICATION SP in section 6,

• HLOS APPLICATION SP in section 6.4.1,

VPP - Concepts and Interfaces – Public Release v1.0 29 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• HLOS SP in section 6.4,

• VPP SP in section 5,

• CROSS-EXECUTIONDOMAIN IPC SP in section 7.4 and 7.5,

• SERVICE SP in section 5.9 and 5.10,

• HARDWARE SERVICE SP in section 3.8,

• HARDWARE CRYPTO SP in section 3.2.7,

• LLOS SP in section 5.8,

• PRIVILEGED HARDWARE SP in section 3.3, 03.4, 3.5, 3.2.6 and 3.2.1,

• PROCESS SP in section 5.4, 5.5 and 0,

• MAILBOX SP in section 5.8.5.3,

• IPC SP in section 5.8.5.4,

The following requirements shall be fulfilled:

• TRE SP shall contain a single VPP APPLICATION SP at any given time [SREQ51]. The
processing of TRE data shall be performed inside the TRE SP [SREQ52]. The storage of TRE data
outside the TRE SP shall be protected for confidentiality, integrity, anti–rollback, software side
channel attack and perfect forward secrecy by means solely located within the PRIVILEGED
HARDWARE SP [SREQ53] The TRE code/data stored in the Remote Memory TRE SP shall be
bound to the TRE [SREQ54].

• VPP APPLICATION SP shall: contain at least an HLOS APPLICATION SP, a HLOS SP and be in
the Access Group AG_P_OU [SREQ55].

• HLOS APPLICATION SP shall be in the Access Group AG_P_OU [SREQ56].

• HLOS SP shall contain at least a PROCESS SP [SREQ57].

• HLOS SP may contain multiple IPC SP [SREQ58].

• VPP SP shall contain: a LLOS SP, a CROSS-EXECUTION-DOMAIN IPC SP, a PRIVILEGED
HARDWARE SP, multiple IPC SP, a SERVICE SP, a HARDWARE CRYPTO SP and a
HARDWARE SERVICE SP [SREQ59].

• CROSS-EXECUTION-DOMAIN IPC SP shall be able to transfer data to and from the SERVICE
SP, from to HLOS SP. It shall be in the Access Group AG_P_OU [SREQ60].

• SERVICE SP: shall contain at least two PROCESS SPs called MGT and COM SP and be in the
Access Group AG_P_OU [SREQ61].

• SERVICE SP may be able to transfer data to and from the HARDWARE SERVICE SP [SREQ62].

• HARDWARE SERVICE SP shall be in the Access Group AG_H_C [SREQ63].

• HARDWARE CRYPTO SP shall be in the Access Group AG_H_C [SREQ64].

• LLOS SP shall be: able to transfer data and credentials to and from the HARDWARE SYSTEM SP
and shall be in the Access Group AG_P_OP [SREQ65].

• PRIVILEGED HARDWARE SP shall be in the Access Group AG_H_OP [SREQ66].

• PROCESS SP shall run a single Process and prevent data transfer to and from any SP except via
a declared IPC SP. It shall be in the Access Group AG_P_OU [SREQ67].

• PROCESS SP may handle multiple MAILBOX SP [REQ68].

30 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• MAILBOX SP shall only have a single PROCESS SP as receiver and have only a single
PROCESS SP as sender and be either in the Access Group AG_P_OU or AG_P_OP [SREQ69].

• IPC SP shall: only contain a shareable memory space in the Access Group AG_P_OU, have only a
single PROCESS SP as Accessor, have only a single PROCESS SP as Mutator, and be in the
Access Group AG_P_OU [SREQ70].

The following rules shall apply to the TRE SP:

• Data transfer between Security Perimeters in the Access Group AG_P_OU and the Security
Perimeter in the Access Group AG_P_OP shall occur using fixed, pre-determined CPU registers
[SREQ71].

• Data transfer from Security Perimeters in the Access Group AG_P_OU to Security Perimeter in the
Access Group AG_P_OP shall be restricted to Identifiers, Handles and Signals [SREQ72].

• Data transfer from Security Perimeters in the Access Group AG_P_OP to Security Perimeter in the
Access Group AG_P_OU shall be restricted to memory address, Handle, Mailbox content, Errors
and Exceptions [SREQ73].

5.4 Unprivileged Execution Model

A Process shall be always executed in unprivileged CPU mode [SREQ74]. Each Process shall have its own
Virtual Address Space [SREQ75].

Each Process shall run on a Virtual Hardware Platform defined in section 6.1 [SREQ76].

A Process may implement a proprietary multithreading system managing its own Threads without the
assistance of the LLOS10.

5.5 Unprivileged Virtual Address Space

Any Process memory shall be mapped to the Virtual Address Space defined in Figure 5-4 [SREQ77]. The
gap between the start locations of two adjacent Virtual Address Space Region is equal to
MK_VSPACE_REGION_SIZE bytes.

The size of the data within each Virtual Address Space Region, is defined in the Firmware, specifically in the
Firmware Header, as defined in [VFF].

A memory access performed by a Process outside the boundaries of a sub Virtual Address Space is a
Security Perimeter violation.

The stack of a Process may reside in the Physical Address Space and shall have the same access rights
and boundaries protection as if it resided in Virtual Address Space [SREQ78].

10 For example, the stack overflow protection is only available for the stack of the process. By implementing a proprietary

multithreading system within a process, the designer of the multithreading system has no hardware assistance for
stack overflow detection.

VPP - Concepts and Interfaces – Public Release v1.0 31 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-4: Virtual Address Space Mapping for unprivileged CPU mode

WRITER IPC

NVM

READER IPC

 EXECUTE ONLY

READ ONLY

READ/WRITE ONLY

MK_VSPACE_
REGION_SIZE

DATA

CONSTANTS

CODE

STACK

MK_BEGIN_VSPACE

READ/WRITE ONLY

READ/WRITE ONLY

READ/WRITE ONLY

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

 READ ONLY

VIRTUAL
ADDRESS

SPACE

SYSTEM PLATFORM
DEPENDENT

NON-
SHAREABLE

SHAREABLE EXECUTE ONLY

READ ONLY

LIB CONSTANTS

LIB CODE

MK_VSPACE_
REGION_SIZE

MK_VSPACE_
REGION_SIZE

For each Process, the following regions are defined in Virtual Address Space:

• READER IPC: Used by IPC reader Process (read-only memory access).

• WRITER IPC: Used by IPC writer Process (read/write memory access)

• NVM: Persistent storage (read/write memory access)

• DATA: Initialized volatile storage (read/write memory access)

• STACK: Program stack (read/write permission)

• CONSTANTS: Process constants (read-only memory access)

• CODE: Process code (execute only memory access)

• SYSTEM: Reserved for the Primary Platform use; e.g. address for impersonation as defined in the
section 5.8.5.6 (memory access according to use).

• LIB CONSTANTS: Constants for shared library (read only memory access)

• LIB CODE: Code for shared library (execute only memory access).

32 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6 Run Time Model

The instance of the Primary Platform (i.e. VPP) and the instance of the Firmware (i.e. VPP Application) is
made of two parts:

• The LLOS.

• A collection of Processes assigned to the Execution Domains.

Depending on their functions and their Execution Domain (VPP or VPP Application), a Process and the
LLOS may have access to some specific hardware functions [REQ79].

Any Process shall only communicate with the LLOS by using the kernel ABI defined in section 5.8.5
[SREQ80].

A Process shall only communicate with another Process by using IPC and Signals [SREQ81].

5.6.1 Exception Handling

Exceptions are reserved for severe run-time error that requires termination of the affected Process. If the
Exception is not in the Main Process, then Main Process has a chance to shut down other Processes and
then terminate itself. If the Exception is in the Main Process, the Main Process and all its descendants are
terminated.

In order to recover a terminated VPP Application, it has to be restarted at the next VPP Application Session
opening, as defined in section 6.3.

Figure 5-5: Runtime Model

COM
SERVICE

FU
N

C
TI

O
N

AL

BL
O

C
K

FU
N

C
TI

O
N

AL

BL
O

C
K

BOOTSTRAP
LOADER

KERNEL

NVM SECURITY
FUNCTIONS

PROCESS

PROCESS

MGT
SERVICE

PROCESS

IPC

CRYPTOGRAPHIC
PRIMITIVE

FUNCTIONS&
 RNG FUNCTION&
REMOTE AUDIT

FUNCTION&
LONG TERM
CREDENTIAL

STORAGE

PROCESSPROCESS

ABI

PROCESS

FU
N

C
TI

O
NA

L
BL

O
C

K

FU
N

C
TI

O
NA

L
BL

O
C

K

FU
N

C
TI

O
NA

L
BL

O
C

K

VPP APPLICATION

PROCESS

C
R

YP
TO

-D
R

IV
ER

M
M

F

HARDWARE
SERVICE

FUNCTIONS
(e.g.,

Communication)

MANAGEMENT OF
THE SECURITY

FUNCTIONS

RAM

C
PU

U

N
PR

IV
IL

EG
ED

M

O
D

E

C
PU

 P
R

IV
IL

EG
ED

M

O
D

E

DIRECT

VRE ACCESS

HARDWAREHARDWARE

PROCESS

M
A

IN

PROCESS

ABI CPU

VPP

5.7 Provisioning of Firmware and Primary Platform Software

The Primary Platform shall provide an interface for supporting the Firmware Loader [REQ82]. The Interface
shall support a Firmware Loader as defined in [OFL] [SREQ83].

The Firmware Loader shall be the System VPP Application [SREQ84].

The Primary Platform may support provisioning of Primary Platform Software according to OFL [OFL]
[REQ85].

VPP - Concepts and Interfaces – Public Release v1.0 33 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8 Low Level Operating System (LLOS)

The Primary Platform embeds a LLOS running in privileged CPU mode. This LLOS is minimal and contains
only the functionality which cannot run in unprivileged CPU mode [SREQ86].

The LLOS shall include a kernel supporting the management of multiple Processes [SREQ87].

In addition to a kernel, the LLOS shall support [SREQ88]:

• The initial Bootstrap Program of the Primary Platform,

• The management of all the following hardware functions:0

• Security Functions, as defined in section 3.4

• Memory Management Functions, as defined in section 3.5

• Memory Transfer Functions, as defined in section 3.2.6

• System Functions, as defined in section 3.3

5.8.1 Kernel Objects

The kernel manages multiple internal Kernel Objects:

• Mailbox for receiving Signals;

• IPC for communication between two Processes;

• Process for running a Program;

• VRE to enable a Process to directly access a hardware function.

In addition to the above Kernel Objects, the kernel manages the following notification mechanism:

• A Signal as a notification without additional data that may be sent from a Process to another
Process or it may be sent from the kernel to a Process. A Signal is typically used to indicate that a
pre-defined event has occurred. See 7.5 for a list of such pre-defined Signals.

• An Exception as a notification without additional data that is sent by the kernel to a parent Process
when a special condition occurred in one of its child Processes. A severe Exception is thrown by
the kernel when a Process has caused a violation that led to its termination by the kernel.

Kernel Objects are addressed by their owner Process using a Kernel Object Identifier. Some identifiers are
shared between the Execution Domains are pre-defined by this document in the section 7.4. All other
identifiers are defined by the Firmware Makers during Firmware design stage.

Kernel Object Handles are run-time identifiers for instantiated Kernel Objects. When operating on Kernel
Objects, the Kernel ABI requires Kernel Object Handles. A Process shall retrieve Kernel Object Handles from
the kernel by using Kernel Objects Identifiers [SREQ89]. A Process shall use Kernel Object Handles when
interacting with the kernel in order to use Kernel Objects [SREQ90]. A Kernel Object Handle shall be valid
only within the context of its owner Process [SREQ91]. The kernel shall restrict Kernel Object Handle use to
the Process owning the object [SREQ92].

5.8.2 Global Requirements and Mandatory Access Control Rules

Table 5-1 defines the requirements for any Primary Platforms.

34 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-1: Global Requirements

Rule SR Description

GR1  The Primary Platform shall provide a mechanism to guarantee the confidentiality
of any data in Non-Shareable Memory spaces.

GR2  The Primary Platform shall provide a mechanism to guarantee the integrity of any
data in Non-Shareable Memory spaces.

GR3  The Primary Platform shall provide a mechanism to ensure that access to a
hardware function, including its input and output data, is exclusive and confidential
to each Accessor or Mutator.

GR4  The Primary Platform shall provide a mechanism to restrict the access to
hardware functions only to authorized Accessors or Mutators.

GR5  The LLOS shall only have a Non-Shareable Memory Space.

GR6  The requirements above shall be enforced by the LLOS.

GR7  The kernel shall be able to manage memory assigned to any Process.

GR8  The kernel shall communicate with a Process only using Signals and Kernel
Service ABI using scalars as parameters (via registers).

GR9  The MGT Process is the parent of the Main Process.

GR10  VRE (Virtual Register) access shall be exclusive between the access and the
release of the VRE.

GR11  A Process accessing the VRE should clean up the hardware function related to
the VRE before releasing it.

GR12 For VPP Application Processes, collaborative scheduling shall be supported.

GR13 For VPP Application Processes, pre-emptive scheduling should be supported.

GR14 For VPP Application Processes, scheduling type shall be a declared option in its
Firmware.

GR15 The Primary Platform shall only accept a Firmware if the Primary Platform
capabilities meet the Firmware requirements, as described in its header.

GR16 For VPP Processes, scheduling shall be pre-emptive.

GR17  A VPP Process in ‘Waiting’ state may pre-empt a VPP Application Process in
‘Running’ state.

GR18  In case the collaborative scheduling is required, a pre-empted VPP Application
Process shall be the next Process to execute.

GR19  VPP Processes shall have higher priority than VPP Application Processes.

GR20  A Process shall be instantiated in the “Suspended-R” state.

GR21  A Process shall be able to suspend itself or any Process in its sub-hierarchy.

GR22  A Process shall be able to resume any Process in its sub hierarchy.

GR23
 When a Process dies, all its resources as well as resources owned by its sub-

hierarchy Processes shall be released for future use by other Process.
Confidentiality of the dead Process(es)’ resources must be maintained.

VPP - Concepts and Interfaces – Public Release v1.0 35 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

GR24  The MGT Process shall limit its control over the Main Process to its suspension
and resumption.

GR25  All Kernel Objects (e.g. Mailboxes, IPC, VRE,) belonging to or used by a Process
shall be instantiated before the Process is instantiated.

GR26  Accessing a non-existing Kernel Objects shall throw a severe Exception to the
parent Process.

GR27  Any severe error (e.g. kernel rules infringement, memory firewall model violation)
in a Process shall throw an Exception to the parent Process.

GR28  Any severe error in a Process in the “Running” state shall set the Process in the
“Dead” state.

GR29  Exceptions shall be cleared by the kernel only after having been read by the
parent Process.

GR30  The current VPP Application shall be terminated prior starting the next VPP
Application.

GR31  All resources (Processes, Mailboxes, IPC, VRE) related to the VPP Application
shall be allocated during the Firmware instantiation.

GR32  The Handle of a Kernel Object provided to a Process shall only be valid/used for
that Process.

GR33  The kernel shall throw a severe Exception11 to the parent Process of a Process
which violates its Security Perimeter.

GR34  The kernel shall reject unknown or undefined kernel calls by throwing a severe
Exception.

GR35  Any severe Exception in MGT Process shall reset the TRE.

GR36 VPP shall provide VPP Applications a monotonic and rising tick counter during
VPP Application Session.

Table 5-2 defines the access rules to resources, granted to Processes.

Table 5-2: Mandatory Access Control Rules

Rule SR Description

AC1 Access to a Service, a LLOS interface or to a Hardware Function shall be denied
unless explicitly allowed.

AC2 MAC rules shall be conjunctive.

AC3 The MAC rules described in this document shall be the most permissive. Primary
Platform Makers and Firmware Makers may reduce the required access to kernel
calls and resources; permitting only resources and kernel calls needed by a VPP
Application or available in the Primary Platform.

AC4  A (Writer) Process shall define one or more IPCs for which that Process shall have

11 MK_EXCEPTION_SEVERE as defined in the section 7.3.

36 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

read/write-access. These IPCs shall be owned exclusively by that Process.

AC5  A (Reader) Process shall define one or more IPCs for which it shall have read-only
access. These IPCs shall not be owned by that Process.

AC6  An IPC shall only accept a single Writer Process and a single Reader Process.

AC7  A (Receiver) Process shall declare one or more Mailboxes from which that Process
shall be able to receive Signals. These Mailboxes shall be owned exclusively by
that Process.

AC8  A (Sender) Process shall declare one or more Mailboxes to which that Process may
send Signals. These Mailboxes shall not be owned by that Process.

AC9  A Mailbox shall only accept Signals from a single source, either a Process or the
kernel.

AC10  Every Process shall have a specific Mailbox to which only the kernel may send
Signals. This Mailbox shall be owned by the Process, and the Process shall be able
to receive Signals.

AC11  Only the owner of a Mailbox shall be able to read its content

Note: All Mailboxes and IPCs shall be defined during VPP Application development and in its resulting
Firmware.

5.8.3 Process States Diagram

Figure 5-6 illustrates the state diagram of a Process. An event (IN or OUT) allows a Process to change
states. Events may be:

• Call of a Kernel ABI function (e.g. _mk_Yield),

• A Signal from a Process via the calling of _mk_Send_Signal function,

• A Signal from the kernel related to a VRE,

• An Exception,

• A timeout,

• A preemption by the kernel scheduling function.

VPP - Concepts and Interfaces – Public Release v1.0 37 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Figure 5-6: Process State Diagram

WAITING

READY

SUSPENDED
RRUNNING

_mk_Resume_Process

_mk_Suspend_Process

_mk_Suspend_Process

_mk_Wait_Signal

Signal timeout

_mk_Yield
Program decision

VPP Application Session
openning

SUSPENDED
W

_mk_Resume_Process

SYNC

_mk_Rollback
_mk_Commit
_mk_Commit_Impersonated

_mk_Commit/Rollback Done

DEAD

severe Exception

_mk_Suspend_Process

ANY
STATE

mk_Kill_ProcessPreemption
Scheduler
decision

SUSPENDED
S

_mk_Resume_Process

_mk_Suspend_Process

Red: Signals, Exceptions
Black: kernel functions
Green: functions not exposed to Process

This state diagram is applicable to both VPP and VPP Application Processes. Only one Process may be in
the “Running” state at any given time.

38 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.4 Definition of the Process States

Processes in ‘Suspended’ states (R/S/W), may receive Signals, but will handle the Signals once the Process
is resumed [REQ93].

When a Process transition between different states, the scheduler shall place the Process as the last
position is the queue assigned to the new state with the exception of GR17 [REQ94].

The scheduler shall select Processes for operations based first on Process priority and then in order in the
Process queue [REQ95].

Table 5-3 defines in detail the states of a Process.

Table 5-3: Definition of States

State Name Description Event in Event out

Ready The Process is eligible for
running.

_mk_Resume_Process,
Signal, time-out, _mk_Yield
Completion of mk_Commit or
_mk_Rollback
Scheduler decision, e.g. a VPP
Process has received a Signal.

Scheduler decision,
_mk_Suspend_Process

Running
The Process is running.

Selected for execution by the
scheduler

_mk_Yield,
_mk_Suspend_Process,
_mk_Wait_Signal,
Scheduler decision: e.g.
a Signal was sent to
another Process12,
_mk_Commit,
_mk_Rollback,
_mk_Commit_Imperson
ated
Severe Exception

Sync

The Process is blocked until
_mk_Commit or
_mk_Rollback
 is completed.

_mk_Commit,
_mk_Rollback
_mk_Commit_Impersonated
_mk_Resume_Process

Completion of
_mk_Commit or
_mk_Rollback,
_mk_Suspend_Process

Waiting The Process is waiting for a
Signal or an elapsed timeout.

_mk_Wait_Signal
_mk_Resume_Process

Signal (via
_mk_Wait_Signal),
time-out,
_mk_Suspend_Process

12 The process preemption occurs in one of the followings cases:

• The Process of the VPP Execution Domain sends a Signal to another Process of the same Execution Domain
which has a higher priority.

• The VPP Application has declared in its Firmware the use of preemptive scheduling and the Process in its
Execution Domain sends a Signal to another Process of the same Execution Domain which has a higher
priority.

• The VPP Application has declared in its Firmware the use of a collaborative scheduling and the process in its
Execution Domain sends a Signal to a process of the VPP Execution Domain.

VPP - Concepts and Interfaces – Public Release v1.0 39 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Suspended R

The Process remains in the
“Suspended R” state until it
is resumed by its parent
Process.

_mk_Suspend_Process
Process instantiation (Swap IN
VPP Application)14

_mk_Resume_Process

Suspended S

The Process remains in the
“Suspended S” state until it
is resumed by its parent
Process. When resumed, the
Process is in the “Sync”
state.

_mk_Suspend_Process _mk_Resume_Process

Suspended W

The Process is in
“Suspended W” state until it
is resumed by its parent
Process. When resumed, the
Process is appended to the
end of the list of Processes
in the” Waiting” state.

_mk_Suspend_Process _mk_Resume_Process

Dead

The Process is no longer
active due to a termination, a
severe Exception, a rule
violation or a violation of the
memory firewall model.

Process termination13
Severe Exception

Firmware instantiation14

13 Internal events are expressed for easing the reading of the table but are not exposed in the ABI

14 Firmware instantiation: All Kernel Objects of a Firmware are instantiated (i.e. Process, Mailboxes, IPC, VRE) and the
Memory Partition containing the Firmware are mounted and selected. Prior to a Firmware instantiation on the VPP the
previous Firmware instance is removed.

40 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.5 Kernel Functions ABI/API

The Primary Platform Maker shall provide an ABI (Application Binary Interface) related to the implementation
of the LLOS in order to map any API (Application Programming Interface) which are dependent of the
programming language made available on the HLOS [REQ96].

The Primary Platform Maker shall provide the C language API using the above ABI and mapping it to the C
function prototypes as defined in this section [REQ97].

All data types and constant values are defined in chapter 7.

5.8.5.1 Generic Functions

5.8.5.1.1 Function _mk_Get_Exception

Brief: Retrieve an Exception.

Description: This function retrieves the last Exception thrown by the kernel. Exceptions are cleared after
reading. Only exceptions of child processes can be retrieved.

Parameter:

• _hProcess (MK_HANDLE_t) Process Handle

Return:

• bitmap (MK_BITMAP_t) A MK_EXCEPTION_e bitmap where each bit represents a unique
Exception, as defined in Table 7-11.

C prototype function:

MK_BITMAP_t _mk_Get_Exception(MK_HANDLE_t _hProcess)

5.8.5.1.2 Function _mk_Get_Error

Brief: Get the last error generated through the execution of a function within a given Process. The returned
error value is volatile.

Description: This function retrieves an error stored by kernel. The access to the last error is always
possible for a Process and any of its descendants regardless of its state and persistent during state
transitions (see Table 5-3).

Parameter:

• _hProcess (MK_HANDLE_t) Handle of the Process

Return:

• error (MK_ERROR_e) value of the error (see Table 7-12).

C prototype function:

MK_ERROR_e _mk_Get_Error(MK_HANDLE_t _hProcess)

5.8.5.1.3 Function _mk_Get_Time

Brief: Get the absolute time (in ticks) since the Primary Platform start up.

VPP - Concepts and Interfaces – Public Release v1.0 41 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Description: The return value is 64 bits in length. It is important to note that whenever the Primary Platform
starts or restarts, the timer is reset to zero. The returned value represents elapsed time only during the
caller’s VPP Application Session. Between different VPP Application Sessions there is no guarantee on
elapsed time or even for the value being monotonic and increasing.

Parameter:

• None No parameters

Return:

• time (MK_TIME_t) value of the current time in ticks

C prototype function:

MK_TIME_t _mk_Get_Time(void)

5.8.5.2 Process Management

5.8.5.2.1 Function _mk_Get_Process_Handle

Brief: Get the Process kernel Handle for itself or for one of its descendants.

Description: This function gets a Process kernel Handle through its Process identifier.

The Process retrieving the Process Handle does not inherit the rights of its owner.

Parameter:

• _eProcess_ID (MK_PROCESS_ID_u) identifier of the Process

Return:

• Handle (MK_HANDLE_t) Handle of the Process Kernel Object.

• NULL On error _mk_Get_Error function returns one of the following error codes:

 MK_ERROR_UNKNOWN_ID if the ID does not exist or the Process is in “Dead” state.

 MK_ERROR_ACCESS_DENIED if the Process is not one of the descendants of the caller
Process.

C prototype function:

MK_HANDLE_t _mk_Get_Process_Handle(MK_PROCESS_ID_u _eProcess_ID)

5.8.5.2.2 Function _mk_Get_Process_Priority

Brief: Get the Process priority.

Description: This function gets the priority of a Process.

Parameter:

• _hProcess (MK_HANDLE_t) Handle of the Process

Return:

• Priority (MK_PROCESS_PRIORITY_e) Priority of the Process or the
priority reserved for error

• MK_PROCESS_PRIORITY_ERROR On error _mk_Get_Error function
returns the following error code:

 MK_ERROR_UNKNOWN_HANDLE if the Process Handle is invalid.

42 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C prototype function:

MK_PROCESS_PRIORITY_e _mk_Get_Process_Priority(MK_HANDLE_t _hProcess)

5.8.5.2.3 Function _mk_Set_Process_Priority

Brief: Set the Process priority.

Description: This function sets the priority of a Process. A Process may change its priority or the priority of
one of its descendants. The priority can be changed anytime, independent from the state.

Parameter:

• _hProcess (MK_HANDLE_t) Handle of the Process

• _xPriority (MK_PROCESS_PRIORITY_e) Priority of the Process

Return:

• MK_ERROR_NONE if the function is successful

• MK_ERROR_UNKNOWN_HANDLE if the Process Handle is invalid

• MK_ERROR_UNKNOWN_PRIORITY if the priority value is invalid

C prototype function:

MK_ERROR_e _mk_Set_Process_Priority(MK_HANDLE_t _hProcess, MK_PROCESS_PRIORITY_e
_xPriority)

5.8.5.2.4 Function _mk_Suspend_Process

Brief: Suspend a Process. A Process can suspend itself or any of its descendants.

Description: This function suspends a Process. The suspended Process is no longer scheduled for
execution. If a Process suspends itself, then this call will only return upon resumption by the parent Process.

Parameter:

• _hProcess (MK_HANDLE_t) Handle of the Process to be suspended

Return:

• MK_ERROR_NONE if the Process suspended successfully

• MK_ERROR_UNKNOWN_HANDLE if the Process Handle is invalid

• MK_ERROR_ACCESS_DENIED if the Process is not itself or any of its descendants.

C prototype function:

MK_ERROR_e _mk_Suspend_Process(MK_HANDLE_t _hProcess)

5.8.5.2.5 Function _mk_Resume_Process

Brief: Resume a Process

Description: This function resumes a Process. A resumed Process must be a descendant of the running
Process.

Parameter:

• _hProcess (MK_HANDLE_t) Handle of the Process

Return:

VPP - Concepts and Interfaces – Public Release v1.0 43 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• MK_ERROR_NONE if the Process resumes successfully

• MK_ERROR_UNKNOWN_HANDLE if the Process Handle is invalid

• MK_ERROR_ACCESS_DENIED if the Process is not one of its descendant

C prototype function:

MK_ERROR_e _mk_Resume_Process(MK_HANDLE_t _hProcess)

5.8.5.2.6 Function _mk_Request_No_Preemption

Brief: Allows a VPP Application Process to request a period of time during which it cannot be pre-empted
by a VPP Process.

Description: This call requests continuous CPU processing allocation to a given Process for a certain
amount of time and should help handling operations that require more exact timing. Requests with a period
of time shorter than MK_APP_STOP_GRACEFUL_TICKS shall be ignored except when the requested time
value is 0, which will resume pre-emption This function is optional.

Parameter:

• _uTime (uint32_t) requested time shall not exceed
MK_NO_PREEMPTION_MAX_TIMEOUT (number of ticks). If uTime is 0 then pre-emption
becomes possible.

Return:

• MK_ERROR_NONE if the request is accepted

• MK_ILLEGAL_PARAMETER if _uTime exceeds MK_NO_PREEMPTION_MAX_TIMEOUT

C prototype function:

MK_ERROR_e _mk_Request_No_Preemption(uint32_t _uTime)

5.8.5.2.7 Function _mk_Commit

Brief: Commits all the changes in the caller’s NVM.

Description: This function commits all changes to the NVM of the caller Process, as defined in [VFF]. No
roll-back is possible after calling this function. The caller Process is suspended until the completion of this
operation. This operation is atomic and cannot fail (unless due to an irrecoverable error).

Parameter:

• void No parameters

Return:

• void No returned value.

C prototype function:

void _mk_Commit(void)

5.8.5.2.8 Function _mk_RollBack

Brief: Rolls back all the changes made to the caller’s NVM.

Description: This function rolls back all changes to the NVM of the caller Process, back to the last commit
operation. The caller Process is suspended until the completion of this operation. This operation is atomic
and cannot fail (unless due to an irrecoverable error).

44 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameter:

• void No parameters.

Return:

• void No returned value.

C prototype function:

void _mk_RollBack(void)

5.8.5.2.9 Function _mk_Yield

Brief: Return the control to the kernel scheduler.

Description: Let the caller Process ask the kernel to yield its execution, causing the kernel to switch the
caller to “Ready” state. This call will return when the Process is scheduled to run by the scheduler.

Parameter:

• void None.

Return:

• void No value returned.

C prototype function:

void _mk_Yield(void)

5.8.5.3 Mailbox Management

5.8.5.3.1 Function _mk_Get_Mailbox_Handle

Brief: Get a Mailbox Handle from a Mailbox identifier.

Description: This function gets the Mailbox Handle through a Mailbox identifier.

Parameter:

• _eMailboxID (MK_MAILBOX_ID_u) identifier of the Mailbox

Return:

• Handle (MK_HANDLE_t) of the Mailbox.

• NULL On error _mk_Get_Error function returns one of the following error codes:

 MK_ERROR_ACCESS_DENIED if the Process is not allowed to send a Signal to the Mailbox

 MK_ERROR_UNKNOWN_ID if the Mailbox identifier is invalid.

C prototype function:

MK_HANDLE_t _mk_Get_Mailbox_Handle(MK_MAILBOX_ID_u _eMailboxID)

5.8.5.3.2 Function _mk_Get_Mailbox_ID_Activated

Brief: When waiting for Signal on any Mailbox owned by the caller Process, get the Mailbox identifier of a
Process that has a pending Signal.

Description: This function retrieves the identifier of a Mailbox with a pending signal when the Process waits
on any Mailbox of the caller Process.

Parameter:

VPP - Concepts and Interfaces – Public Release v1.0 45 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• void No parameter

Return:

• identifier (MK_MAILBOX_ID_u) of the Mailbox identifier

• NULL if no Mailbox has received a Signal

C prototype function:

MK_MAILBOX_ID_u _mk_Get_Mailbox_ID_Activated(void)

5.8.5.3.3 Function _mk_Send_Signal

Brief: Send a Signal to a Mailbox.

Description: This function sends Signals to a Mailbox. The signals sent are represented as a bitmap of
Signal values and there is no priority among Signals as to the order of their arrival within the Mailbox.

Parameter:

• _hMailbox (MK_HANDLE_t) Handle of the Mailbox

• _eSignal (MK_BITMAP_t) Signal value

Return:

• MK_ERROR_NONE the Signal(s) was/were sent successfully

• MK_ERROR_UNKNOWN_HANDLE if the Mailbox Handle is invalid

• MK_ERROR_ACCESS_DENIED if the caller Process is not defined as the sender Process of
the Mailbox

C prototype function:

MK_ERROR_e _mk_Send_Signal(MK_HANDLE_t _hMailbox, MK_BITMAP_t _eSignal)

5.8.5.3.4 Function _mk_Wait_Signal

Brief: Wait for a Signal on a Mailbox.

Description: This function waits for a Signal on one or any Mailboxes of the caller Process, either for given
time or without a time limit. This call is blocking and will return when a signal is received or when the timeout
occurred.

When a Process waits on any Mailbox, the Signals MK_SIGNAL_TIME_OUT, MK_SIGNAL_ERROR and
MK_SIGNAL_EXCEPTION are sent only to its kernel Mailbox.

When a Process waits on a Mailbox, the Signals MK_SIGNAL_TIME_OUT, MK_SIGNAL_ERROR and
MK_SIGNAL_EXCEPTION are sent to that Mailbox.

Only the owner of the Mailbox can wait on it.

Parameter:

• _hMailbox (MK_HANDLE_t) Handle of the Mailbox. If the Handle is NULL, then the
Process shall wait for any Signal sent to any of the Mailboxes owned by the Process

• _uTime (uint32_t) timeout time in ticks.

 If the value is 0, the function will not wait for a Signal and will return control to the caller Process
immediately.

46 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 If the value is MK_ENDLESS then the function will wait for a Signal forever and control will not
be returned until a Signal is received.

Return:

• void no value is returned.

C prototype function:

void _mk_Wait_Signal(MK_HANDLE_t _hMailbox, uint32_t _uTime)

5.8.5.3.5 Function _mk_Get_Signal

Brief: Get a Signal from a Mailbox.

Description: This function gets a Signal on a Mailbox. A Process can only retrieve the Signal from its own
Mailbox. The _mk_Get_Signal should be repeatedly called until 0 is returned. The pending Signals are
cleared once they have been read.

Parameter:

• _hMailbox (MK_HANDLE_t) Mailbox Handle

Return:

• bitmap (MK_BITMAP_t) a bitmap where each bit represents a Signal
(MK_SIGNAL_e)

• NULL On error _mk_Get_Error function returns the following error code:

 1<<MK_SIGNAL_ERROR if the Mailbox Handle is invalid, or the access is denied.

C prototype function:

MK_BITMAP_t _mk_Get_Signal(MK_HANDLE_t _hMailbox)

5.8.5.4 IPC Management

The content of the IPC owned by a VPP Application is persistent until the state of the VPP Application is
instantiated.

5.8.5.4.1 Function _mk_Get_IPC_Handle

Brief: Get the Handle of an IPC.

Description: This function gets an IPC Handle for communication between two Processes.

The size, the ownership and the granted access of the IPC are defined in the IPC descriptor, which is part of
the Firmware header.

The owner Process (i.e. writer) of the IPC has a read-write access.

The granted access Process (i.e. reader) has read-only access.

Parameter:

• _eIPC_ID (MK_IPC_ID_u) identifier of the IPC

Return:

• Handle (MK_HANDLE_t) IPC Handle

• NULL On error _mk_Get_Error function returns the following error code:

 MK_ERROR_UNKNOWN_ID if the IPC identifier is not defined or if access is not allowed.

VPP - Concepts and Interfaces – Public Release v1.0 47 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

C prototype function:

MK_HANDLE_t _mk_Get_IPC_Handle(MK_IPC_ID_u _eIPC_ID);

5.8.5.4.2 Function _mk_Get_Access_IPC

Brief: Get access to a shared memory area used by an IPC.

Description: This function returns the virtual memory address of the IPC (virtual shared memory).

The number of concurrent access of the IPC is guaranteed to be at least limited
MK_MIN_CONCURRENT_IPC_LIMIT.

A Process can only access the IPC virtual memory address if it is the owner or the granted Process, as
described in the IPC descriptor

Parameter:

• _hIPC (MK_HANDLE_t) IPC Handle

Return:

• Virtual memory address of the IPC.

• NULL On error _mk_Get_Error function returns one of the following error
code:

 MK_ERROR_UNKNOWN_HANDLE if the IPC Handle is invalid

 MK_ERROR_ACCESS_DENIED if the Process is not the allowed to access the IPC.

C prototype function:

void* _mk_Get_Access_IPC(MK_HANDLE_t _hIPC)

5.8.5.4.3 Function _mk_Release_Access_IPC

Brief: Release access to the IPC.

Description: This function allows releasing the access to the IPC. The Process cannot longer access the
virtual shared memory.

The IPC is a scarce resource, thus the number of access of IPC is limited (MK_IPC_LIMIT) at the run time.

Parameter:

• _hIPC (MK_HANDLE_t) IPC Handle.

Return:

• NULL On error _mk_Get_Error function returns one of the following error codes:

 MK_ERROR_NONE if the IPC releases successfully

 MK_ERROR_UNKNOWN_HANDLE if the IPC Handle is invalid

 MK_ERROR_ACCESS_DENIED if the Process is allowed to access the IPC

C prototype function:

MK_ERROR_e _mk_Release_Access_IPC(MK_HANDLE_t _hIPC)

48 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.5.5 VRE Management

5.8.5.5.1 Function _mk_Get_VRE_Handle

Brief: Get the Handle of a virtual register.

Description: This function gets the VRE Handle for communication with a hardware function. A VRE is used
for direct access to a hardware function.

The access policy to VREs is defined in the Process Descriptor.

Parameter:

• _eVRE_ID (MK_VRE_ID_e) identifier of the VRE

Return:

• Handle (MK_HANDLE_t) VRE Handle.

• NULL On error _mk_Get_Error function returns one of the following error codes:

 MK_ERROR_UNKNOWN_ID: if the VRE ID is invalid/unknown

 MK_ERROR_ACCESS_DENIED: if the VRE violates the MAC as defined section 5.11 or
exclusive with respects to another VPP Applications (e.g. Remote Audit Function)

C prototype function:

MK_HANDLE_t _mk_Get_VRE_Handle(MK_VRE_ID_e_eVRE_ID)

5.8.5.5.2 Function _mk_Get_Access_VRE

Brief: Allows the caller Process to get the address of a VRE.

Description: This function gets the virtual registers base address of the hardware function (VRE) to be
accessed. The operation of said hardware function is Primary Platform specific, and dependent on the
hardware used and exposed by the Primary Platform Maker.

The number of different VREs that can be accessed simultaneously by a VPP Application is limited to
MK_VRE_LIMIT. If that limit is exceeded, then access to new VREs shall be denied.

Parameter:

• hVRE (MK_HANDLE_t) VRE Handle

Return:

• Virtual registers base address of the hardware function to access.

• NULL On error _mk_Get_Error function returns one of the
following error codes:

 MK_ERROR_UNKNOWN_HANDLE if the VRE Handle is invalid

 MK_ERROR_ACCESS_DENIED if the number of VREs in use by the VPP
Application has exceeded the MK_VRE_LIMIT or if the VRE is accessed from another Process

C prototype function:

void* _mk_Get_Access_VRE(MK_HANDLE_t _hVRE)

5.8.5.5.3 Function _mk_Release_Access_VRE

Brief: Release access to a VRE.

VPP - Concepts and Interfaces – Public Release v1.0 49 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Description: This function releases the access to a VRE.

The Process is responsible to clean up the content of the hardware function before releasing the VRE,
according to the specifications of the specific hardware function.

Parameter:

• _hVRE (MK_HANDLE_t) VRE Handle

Return:

• NULL On error _mk_Get_Error function returns one of the following error
codes:

 MK_ERROR_NONE if the VRE is released successfully

 MK_ERROR_UNKNOWN_HANDLE if the VRE Handle is invalid

C prototype function:

MK_ERROR_e _mk_Release_Access_VRE(MK_HANDLE_t _hVRE)

5.8.5.5.4 Function _mk_Attach_VRE

Brief: Attach a VRE to the kernel Mailbox of a Process.

Description: Set the callback Signals to send to the caller Process kernel Mailbox when the status of a
hardware function related to a VRE changes.

If a Process waits on Signals from an attached VRE and the attached VRE is preempted by another Process,
then the MK_EXCEPTION_VRE_DETACHED Exception is thrown to the waiting Process.

This function is valid only if the Process declares the VRE access within the Process descriptor and if the
use of the VRE is allowed by the Mandatory Access Control.

Parameter:

• _hVRE (MK_HANDLE_t) VRE Handle

• _uSignal (MK_BITMAP_t) value of the Signal(s) to send to the kernel Mailbox
when the status of the VRE changes. The Signal(s) shall be in the range of
MK_SIGNAL_DOMAIN_BASE_0 to MK_SIGNAL_DOMAIN_BASE_28 (inclusive).

Return:

• MK_ERROR_NONE if the VRE attachment is accepted

• MK_ERROR_UNKNOWN_HANDLE if the Handle is invalid or the Process Descriptor does not
define a VRE access

• MK_ILLEGAL_PARAMETER if the provided bitmap is not in the allowed range of Signals.

C prototype function:

MK_ERROR_e _mk_Attach_VRE(MK_HANDLE_t _hVRE, MK_BITMAP_t _uSignal)

5.8.5.6 Firmware Management

The following functions apply to the Management Service Interface in section 5.10.

5.8.5.6.1 Function _mk_Open_Impersonation

Brief: Inform the kernel that the impersonation of a Firmware is started.

50 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Description: This function can only be used by the System VPP Application (e.g. OFL).

This function works in conjunction with _mk_Impersonate_Process, which must be called in order to enable
the writing to individual sub Memory Partition defined in [VFF]. When impersonation is done, this function
needs to be followed with _mk_Close_Impersonation.

_mk_Open_Impersonation allows reading and writing in the Memory Partition of the registered Firmware.

 Parameter:

• _uFirmwareID (UUID_t) Identifier of the Firmware to impersonate in [VFF]

 Return:

• MK_ERROR_NONE if the impersonation is successfully opened

• MK_ERROR_UNKNOWN_UUID if the given _uFirmwareID is unknown

• MK_ERROR_INTERNAL if an internal error occurred, e.g., an impersonation was
already started

• MK_ERROR_ACCESS_DENIED if the VPP application does not have the access rights

C prototype function:

MK_ERROR_e _mk_Open_Impersonation(UUID_t _uFirmwareID)

5.8.5.6.2 Function _mk_Close_Impersonation

 Brief: Inform the kernel that the impersonation of a Firmware has completed.

 Description: This function can only be used by the System VPP Application.

 Parameter:

• void No parameters

 Return:

• MK_ERROR_NONE if the impersonation is successfully closed

C prototype function:

MK_ERROR_e _mk_Close_Impersonation(void)

5.8.5.6.3 Function _mk_Impersonate_Process

Brief: Inform the kernel that the caller wishes to impersonate another Process’ sub Memory Partition, e.g.
CODE, belonging to the Firmware being loaded or updated.

Description: This function allows the System VPP Application to impersonate a sub Memory Partition of the
Firmware being loaded or updated, so that the code, constants, data and the NVM areas of a sub Memory
Partition may be written.

This function can only be used by the System VPP Application assigned at the Firmware loading.

Parameter:

• void No parameters

Return:

• The virtual memory address of the beginning of the impersonated sub Memory Partition, as defined
in section 5.5 and marked as MK_BEGIN_VSPACE.

VPP - Concepts and Interfaces – Public Release v1.0 51 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• NULL On error _mk_Get_Error function returns one of the
following error codes:

 MK_ERROR_UNKNOWN_ID if the PROCESS ID is invalid/unknown within the
impersonated application

 MK_ILLEGAL_PARAMETER if the segment index is invalid within the impersonated
Process

 MK_ERROR_ACCESS_DENIED if no Firmware impersonation has been performed prior
calling _mk_Impersonate_Process

C prototype function:

void* _mk_Impersonate_Process(void)

5.8.5.6.4 Function _mk_Commit_Impersonated

Brief: Commit all changes in impersonated sub Memory Partition to NVM.

Description: This function allows the System VPP Application to commit the sub Memory Partition related to
an impersonated Process. The System VPP Application may impersonate a shared library or the LLOS, if the
Primary Platform supports this capability. No roll-back is possible after calling this function. The caller
Process is suspended until the completion of this operation. This operation is atomic and cannot fail (unless
due to an irrecoverable error).

Parameter:

• void No parameters

 Return:

• void No returned value.

C prototype function:

void _mk_Commit_Impersonnated (void)

5.9 Communication Service Interface

The Communication service manages two data chunk FIFO queues as defined in 6.1 between the VPP
(COM Process) and a VPP Application (Main Process):

• FIFO OUT as a FIFO queue allows transferring data chunks in sequence from a source Process
(Main or COM) to a destination Process (COM or Main) containing arrays of m_Size_OUT data
chunks each being m_MTU_OUT bytes long.

• FIFO IN as a FIFO queue allows transferring data chunks in sequence from a source Process
(COM or MAIN) to the destination Process (Main or COM) containing Array of m_Size_IN data
chunks of m_MTU_IN bytes.

The data chunk shall contain a packet as defined in [VNP] [REQ98].

The transfer of data is based on two IPC identified as:

• MK_IPC_COM_MAIN_ID for the data transfer from the COM Process to the Main Process.

• MK_IPC_ MAIN_COM_ID for the data transfer from the Main Process to the COM Process.

52 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Both Processes using the IPC, obtain access to the IPC by retrieving the virtual memory addresses using the
kernel function _mk_Get_Access_IPC.

For clarity, the virtual memory addresses used by the IPC between VPP Application Main Process and COM
Process are:

• pIPC_COM_MAIN – The COM (Writer)  Main (Reader) IPC.

• pIPC_MAIN_COM – The Main (Writer)  COM (Reader) IPC.

The virtual shared memory address for transferring data from one Process to another are:

• FIFO OUT COM to Main: pIPC_COM_MAIN from the COM to the Main Process

• FIFO OUT Main to COM: pIPC_MAIN_COM from the Main to the COM Process

The FIFO OUT of the source Process is the FIFO IN of the destination Process:

• FIFO IN Main from COM: pIPC_COM_MAIN from the COM to the Main Process,

• FIFO IN COM from Main: pIPC_MAIN_COM from the Main to the COM Process.

Figure 5-7 illustrates the links between the FIFO IN and FIFO OUT.

Figure 5-7: FIFO IN and OUT links

FIFO OUT

FIFO IN

COM PROCESS MAIN PROCESS

FIFO OUT

FIFO IN

MK_IPC_ MAIN_COM_ID

MK_IPC_ COM_MAIN_IDMK_IPC_ MAIN_COM_ID

MK_IPC_ COM_MAIN_ID

The destination shall read its FIFO IN when the Signal MK_SIGNAL_IPC_UPDATED is sent by the source
Process [REQ99].

5.9.1 FIFO Update procedure

Brief: Update the FIFO IN and OUT irrespective of the Process (COM or Main). The source Process shall
inform the destination Process that its FIFO OUT has been updated.

The returned values are updated each time the Process receives the MK_SIGNAL_IPC_UPDATED Signal.

Description:

The parameters from the source Process Main or COM shall be filled with a structure pointed by
pIPC_MAIN_COM or pIPC_COM_MAIN respectively.

The source Process shall send, for each update made to its FIFO OUT, an MK_SIGNAL_IPC_UPDATED
Signal to the destination Process Mailbox.

The destination Process shall only read its FIFO IN after an MK_SIGNAL_IPC_UPDATED Signal has been
received on the destination Process Mailbox [REQ100].

The command performs the following operations:

• The source Process signals the destination Process, using the MK_SIGNAL_IPC_UPDATED
signal, that it wrote a data chunk.

• The location of the written data chunk is in m_Buff_OUT array at the index (m_Write_OUT-1)
modulo m_Size_OUT.

VPP - Concepts and Interfaces – Public Release v1.0 53 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• The destination Process signals the source Process, using the MK_SIGNAL_IPC_UPDATED
signal, that it read a data chunk.

• The location of the read data chunk is in m_Buff_IN array at the index (m_Write_IN-1) modulo
m_Size_IN.

Parameters:

• m_MTU_OUT (uint16_t) The FIFO OUT Maximal Transport Unit (size of a data chunk)

• m_Size_OUT (uint16_t) The FIFO OUT maximal number of data chunks

• m_Read_IN (uint32_t) The index of the last data chunk read in the FIFO IN

• m_Write_OUT (uint32_t) The index of the next data chunk to be written into the FIFO OUT

• m_Buff _OUT (array) Array of m_Size_OUT data chunks of m_MTU_OUT bytes

Return:

• m_MTU_IN (uint16_t) The FIFO IN Maximal Transport Unit (size of a data chunk)

• m_Size_IN (uint16_t) The FIFO IN maximal number of data chunks

• m_Read _OUT (uint32_t) The index of the last data chunk read in the FIFO OUT

• m_Write_IN (uint32_t) The index of the next data chunk to be written into the FIFO IN

• m_Buff_IN (array) Array of m_Size_IN data chunks of m_MTU_IN bytes

• The fields in the FIFO structure are packed in IPC memory, so there is no alignment and no
padding.

• The algorithm supporting the management of both FIFO queues is the following:

• FIFO OUT is empty if m_ReadOUT equals m_WriteOUT.

• FIFO IN is empty if m_ReadIN equals m_WriteIN.

• FIFO OUT is full if (m_WriteOUT. - m_ReadOUT) >= m_SizeOUT

• FIFO IN is full if (m_WriteIN. - m_ReadIN) >= m_SizeIN.

• The next data chunk to be written in FIFO OUT is m_Buff[m_WriteOUT]. The field m_WriteOUT shall
be incremented after the writing of the data chunk.

• The next data chunk to be read in FIFO IN is m_Buff[m_ReadIN]. The field m_ReadIN shall be
incremented after the reading of the data chunk. The content of the data chunk shall be considered
as consumed, by the writer, as soon as m_ReadIN is incremented.

The indexes of the FIFO are unsigned 32-bit integers therefore the incrementing of the indexes is modulo
232. That leads to a wrong detection of a FIFO queue full when the algorithm encounters an arithmetic
overflow. The following algorithm shall be applied [REQ101].

CountXX is an unsigned integer.

Compute CountXX (m_WriteXX. - m_ReadXX) is the number of pending data chunks in the FIFO xx.

IF CountXX < 0 THEN

CountXX = complement of CountXX+1

END IF

54 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10 Firmware Management Service Interface

This Service, running in the MGT Process, may support the management of multiple Firmwares regardless of
their type (i.e. normal or system).

Firmware Management Service shall only be accessible by the system VPP Application [SREQ102].

The System VPP Application shall be responsible to either fully write or pad with zeros (‘00’) impersonated
Memory Partition, according to its specified size defined in the Firmware header [SREQ103].

A VPP Application is an instance of a Firmware; a Firmware has two states:

• A Firmware in Enabled state may be instantiated [REQ104].

• A Firmware in Disabled state shall not be instantiated [SREQ105].

Firmware state shall be persistent against power cycles and is managed by the MGT Process [SREQ106].

Figure 5-8 illustrates the lifecycle state diagram in conjunction with the Management Service functionality.

Figure 5-8: Firmware Lifecycle State Diagram

Firmware Lifecycle State (stored by the MGT Process)

Disabled

Firmware cannot be instantiated
Firmware can be loaded/updated/deleted

Enabled

Firmware can be instantiated

MGT_Store_Firmware_Header
(only if Firmware not loaded)

MGT_Enable_Firmware MGT_Disable_Firmware MGT_Delete_Firmware

When a command is sent from the Main Process to the MGT Process, the Main Process shall:

1. Fill a data structure related to the command to be executed and map it on the IPC
MK_IPC_MAIN_MGT_ID [REQ107].

2. Send the Signal MK_SIGNAL_IPC_UPDATED to the Mailbox MK_MAILBOX_MAIN_MGT_ID
[REQ108].

3. Wait for the Signal MK_SIGNAL_IPC_UPDATED on the Mailbox MK_MAILBOX_MGT_MAIN_ID
[REQ109].

4. Read the response from a data structure through the IPC MK_IPC_MGT_MAIN_ID [REQ110].

When a response is to be returned from the MGT Process to the Main Process, the MGT Process shall:

1. Wait for the Signal MK_SIGNAL_IPC_UPDATED on the Mailbox MK_MAILBOX_MAIN_MGT_ID
[REQ111].

VPP - Concepts and Interfaces – Public Release v1.0 55 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2. Read the command data through the IPC MK_IPC_MAIN_MGT_ID [REQ112].

3. Send the response data through the IPC MK_IPC_MGT_MAIN_ID [REQ113].

4. Send the Signal MK_SIGNAL_IPC_UPDATED to the Mailbox MK_MAILBOX_MGT_MAIN_ID
[REQ114].

56 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-4 lists the commands.

Table 5-4: Management Service Commands

Command Code Command

‘00’ MGT_Store_Firmware_Header

‘01’ MGT_Retrieve_Firmware_Header

‘02’ MGT_Allocate_Firmware

‘03’ MGT_Delete_Firmware

‘04’ MGT_Enable_Firmware

‘05’ MGT_Disable_Firmware

‘06’ MGT_Is_Firmware_Enabled

‘07’ MGT_Open_Process_Impersonation

‘08’ MGT_Close_Process_Impersonation

‘09’ MGT_Open_Library_Impersonation (optional)

‘0A’ MGT_Close_Library_Impersonation (optional)

‘0B’ MGT_Open_LLOS_Impersonation (optional)

‘0C’ MGT_Close_LLOS_Impersonation (optional)

Table 5-5 lists the response codes.

Table 5-5: Management Service Response Codes

Response Code Definition

‘00’ MGT_ERROR_NONE

‘01’ MGT_ERROR_ILLEGAL_PARAMETER

‘02’ MGT_ERROR_INTERNAL

‘03’ MGT_ERROR_UNKNOWN_UUID

‘04’ MGT_ERROR_COMMAND_NOK

VPP - Concepts and Interfaces – Public Release v1.0 57 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-6: Management Service Command /Response Codes Assignment

RESPONSE

 COMMAND

M
G

T_
St

or
e_

Fi
rm

w
ar

e_
H

ea
de

r

M
G

T_
R

et
rie

ve
_F

irm
w

ar
e_

H
ea

de
r

M
G

T_
Al

lo
ca

te
_F

irm
w

ar
e

M
G

T_
D

el
et

e_
Fi

rm
w

ar
e

M
G

T_
En

ab
le

_F
irm

w
ar

e

M
G

T_
D

is
ab

le
_F

irm
w

ar
e

M
G

T_
Is

_F
irm

w
ar

e_
En

ab
le

d

M
G

T_
O

pe
n_

Pr
oc

es
s_

Im
pe

rs
on

at
io

n

M
G

T_
C

lo
se

_P
ro

ce
ss

_I
m

pe
rs

on
at

io
n

M
G

T_
O

pe
n_

Li
br

ar
y_

Im
pe

rs
on

at
io

n

M
G

T_
C

lo
se

_L
ib

ra
ry

_I
m

pe
rs

on
at

io
n

M
G

T_
O

pe
n_

LL
O

S_
Im

pe
rs

on
at

io
n

M
G

T_
C

lo
se

_L
LO

S_
Im

pe
rs

on
at

io
n

MGT_ERROR_NONE             

MGT_ERROR
_ILLEGAL_PARAMETER

        

MGT_ERROR_INTERNAL           

MGT_ERROR
_UNKNOWN_UUID

        

MGT_ERROR
_COMMAND_NOK

            

Note: MGT_ERROR_COMMAND_NOK is reserved for the Primary Platform Maker, as a generic error.

The fields in the command and response structures are neither aligned nor padded.

5.10.1 Firmware Header Management

5.10.1.1 MGT_Store_Firmware_Header

Brief: Store the Firmware header as defined in [VFF].

Description:

The command performs the following operations:

• Parse the firmware_header

• If parsing failed

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Compare the firmware_header to the Primary Platform capabilities

• If firmware_header is not supported

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Extract the Firmware Identifier (UUID) from firmware_header

58 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Retrieve the firmware_header from the MGT Process NVM, based on its provided Firmware
Identifier as defined in [VFF]

• If the firmware_header cannot be found

 Add a new Firmware header, store the provided Firmware Identifier as the key to this record.
The initial Firmware state should be ‘Disabled’

• Else

 Update firmware_header record

• Return response_code = MGT_ERROR_NONE

Parameters:

• 00 (uint8_t) MGT_Store_Firmware_Header Command.

• (firmware_header data) header as described in [VPP]

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.1.2 MGT_Retrieve_Firmware_Header

Brief: Retrieve from the MGT Process as defined in [VFF]

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code =MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM, that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• Return

 response_code = MGT_ERROR_NONE

 (the Firmware Header in the response)

Parameters:

• ‘01’ (uint8_t) MGT_Retrieve_Firmware_Header command.

• firmware_identifier (UUID_t) identifier of the Firmware (ie. m_xName in [VFF]).

Return:

• response_code (uint8_t) management service response code as described
in Table 5-5

• (Firmware Header data) The data of the Firmware Header, as defined in [VFF]

VPP - Concepts and Interfaces – Public Release v1.0 59 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2 Firmware State Management

5.10.2.1 MGT_Enable_Firmware

Brief: Change Firmware state to ‘Enabled’.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM, that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• Instruct the COM Process that the identified Firmware shall be registered with the entity managing
the communication to the TRE, may now receive, and be instantiated upon incoming data as
defined in [VNP].

• Update the Firmware state in NVM belonging to MGT Process to ‘Enabled’

• If error while enabling Firmware

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘04’ (uint8_t) MGT_Enable_Firmware command

• firmware_identifier (UUID_t) identifier of the Firmware (ie. m_xName in [VFF])

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.2.2 MGT_Disable_Firmware

Brief: Change Firmware state to ‘Disabled’.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM,that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

60 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Instruct the COM Process that the identified Firmware shall be deregistered with the entity
managing the communication to the TRE, shall not receive incoming data as defined in [VNP], and
shall not be instantiated.

• Update the Firmware state in NVM belonging to MGT Process to ‘Disabled’

• If error while disabling Firmware

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘05’ (uint8_t) MGT_Disable_Firmware command.

• firmware_identifier (UUID_t) identifier of the Firmware (ie. m_xName in [VFF]) to be disabled

Return:

• response_code (uint8_t) management service response code as described in Table 5-5

5.10.2.3 MGT_Is_Firmware_Enabled

Brief: Query if the state of a Firmware is ‘Enabled’.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM, that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• Return

 response_code = MGT_ERROR_NONE

 state =

• TRUE if the state of the Firmware is ‘Enabled’

• FALSE otherwise

Parameters:

• ‘06’ (uint8_t) MGT_Is_Firmware_Enabled command.

• firmware_identifier (UUID_t) identifier of the Firmware (i.e. m_xName in [VFF]) to query

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

• state (uint8_t) ‘01’ if the Firmware is enabled, ‘00’ if the Firmware is disabled

5.10.2.4 MGT_Delete_Firmware

Brief: Deletion of an existing Firmware related to a VPP Application.

VPP - Concepts and Interfaces – Public Release v1.0 61 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• If Firmware state is not ‘Disabled’

 Return response_code = MGT_ERROR_INTERNAL

• Erase the Memory Partition from non-volatile data storage (NVM) and from any cache memory,
based on the provided firmware_identifier

• If error while erasing

 Return response_code = MGT_ERROR_INTERNAL

• Erase the Firmware Header and the Firmware state from the MGT Process NVM, based on the
provided firmware_identifier

• Unregister the Firmware Identifier within the COM Process

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘03’ (uint8_t) Code corresponding to MGT_Delete_Firmware command

• firmware_identifier (UUID_t]) identifier of the Firmware (i.e., m_xName
in [VFF]) to be deleted

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.3 Firmware Impersonation Management

5.10.3.1 MGT_Open_Process_Impersonation

Brief: Prepare the Primary Platform to impersonate a Process belonging to the Firmware being
impersonated.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM,that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

62 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Load the Memory Partitions of the Firmware

• Initiate the instantiation of a Kernel Object for the impersonation

• Initialize the above Kernel Object with the physical memory address of the sub-Memory Partition,
belonging to the impersonated Process, which is itself part of the Firmware being loaded

• If error while impersonating

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘07’ (uint8_t) MGT_Open_Process_Impersonation command.

• firmware_identifier (UUID_t) identifier of the Firmware (i.e., m_xName in [VFF])

• index (MK_Index_t) index of the Process Descriptor index within the array
of Process Descriptors of the Firmware header defined in [VFF]

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.3.2 MGT_Close_Process_Impersonation

Brief: Prepare a Firmware for closing the impersonation of a Process.

Description:

The command performs the following operations:

• Instruct the kernel to clear the reference related to the sub-partition for a Process to impersonate

• If error while closing impersonation

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘08’ (uint8_t) MGT_Close_Process_Impersonation command.

Return:

• response_code (uint8_t) response in Table 5-5

5.10.3.3 MGT_Open_Library_Impersonation

Brief: Prepare a Firmware for the impersonation of a shared Library as defined in [VFF]. This command is
optional.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM, that has the same Firmware Identifier as
the provided firmware_identifier.

VPP - Concepts and Interfaces – Public Release v1.0 63 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• Load the Memory Partitions of the Firmware

• Initiate the instantiation of a Kernel Object for the impersonation

• Initialize the above Kernel Object with the physical memory address of the sub-Memory Partition
related to a given Library.

• If error while impersonation

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘09’ (uint8_t) MGT_Open_Library_Impersonation command.

• firmware_identifier (UUID_t) identifier of the Firmware (i.e., m_xName in [VFF]).

• index (MK_Index_t) index of the Library Descriptor index within the array
of Library descriptors of the Firmware header defined in [VFF]

Return:

• response_code (uint8_t) management service response code as described
in Table 5-5

5.10.3.4 MGT_Close_Library_Impersonation

Brief: Prepare a Firmware for the closing of a library impersonation. This command is optional.

Description:

The command performs the following operations:

• Instruct the kernel to clear the reference related to the sub-partition for a Library to impersonate

• If error while closing impersonation

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘0A’ (uint8_t) MGT_Close_Library_Impersonation command.

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.3.5 MGT_Open_LLOS_Impersonation

Brief: Prepare the LLOS software for the impersonation of LLOS Software as defined in [VFF]. This
command is optional.

Description:

The command performs the following operations:

• Load the Memory Partition of the software related to the LLOS

64 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• If error while impersonating

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘0B’ (uint8_t) MGT_Open_LLOS_Impersonation command.

• firmware_identifier (UUID_t) identifier of the software (i.e., m_xName in [VFF]).

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.3.6 MGT_Close_LLOS_Impersonation

Brief: Prepare the LLOS software for the closing of a LLOS impersonation. This command is optional.

Description:

The command performs the following operations:

• Instruct the kernel to clear the reference related to the sub-partition for the LLOS to impersonate

• If error while closing impersonation

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘0C’ (uint8_t) MGT_Close_LLOS_Impersonation command.

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

5.10.3.7 MGT_Allocate_Firmware

Brief: Prepare a Firmware for the impersonation.

Description:

The command performs the following operations:

• If firmware_identifier is not 16 bytes in size

 Return response_code = MGT_ERROR_ILLEGAL_PARAMETER

• Load the Firmware Header from the MGT Process NVM, that has the same Firmware Identifier as
the provided firmware_identifier.

• If Firmware Header is not found

 Return response_code = MGT_ERROR_UNKNOWN_UUID

• Load the Firmware header from the MGT Process based on provided its identifier

• Allocate memory for Firmware according to the Process Descriptors of the Firmware Header

VPP - Concepts and Interfaces – Public Release v1.0 65 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• Allocated memory is uninitialized. Therefore, the System VPP Application shall fully write into each
impersonated Virtual Address Space Region. First with all content of the each provided Firmware
Sub Memory Partition, and then pad the rest with zeros (‘00’).

• If error while allocating

 Return response_code = MGT_ERROR_INTERNAL

• Return response_code = MGT_ERROR_NONE

Parameters:

• ‘02’ (uint8_t) MGT_Allocate_Firmware command.

• firmware_identifier (UUID_t] identifier of the Firmware (i.e., m_xName in [VFF]).

Return:

• response_code (uint8_t) management service response code as described in
Table 5-5

66 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-9 illustrates the installation of a Firmware.

Figure 5-9: Firmware Installation or Update

Firmware Loading and update (part 1/3)

kernel
(via ABI/API calls)

kernel
(via ABI/API calls)

Main Process
System VPP Application

Main Process
System VPP Application

MGT Process
(using IPC)

MGT Process
(using IPC)

1 MGT_Retrieve_Firmware_Header
Firmware_Header

alt [This is a firmware update]

2 MGT_ERROR_NONE

[This is a firmware loading]

3 MGT_ERROR_UNKNOWN_UUID

4 MGT_Store_Firmware_Header
Firmware_Header

Store Firmware_Header in Memory Partition

5 MGT_ERROR_NONE

Error handling not shown

6 MGT_Allocate_Firmware
Firmware_uuid

Allocate Firmware
using Firmware_Header
that matches Firmware_uuid

7 MK_ERROR_NONE

Error handling not shown

VPP - Concepts and Interfaces – Public Release v1.0 67 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Firmware Loading and update (part 2/3)

kernel
(via ABI/API calls)

kernel
(via ABI/API calls)

Main Process
System VPP Application

Main Process
System VPP Application

MGT Process
(using IPC)

MGT Process
(using IPC)

loop [for every process in Firmware_Header]

8 MGT_Open_Process_Impersonation
Firmware_UUID , Process_index

Configure kernel to impersonate process

9 MGT_ERROR_NONE

Error handling not shown

10 _mk_Open_Impersonation
Firmware_uuid

Instantiate kernel object for impersonation

11 MK_ERROR_NONE

Error handling not shown

12 _mk_Impersonate_Process

13 void *ptr

Error handling not shown

Note: data pointed by void* is uninitialized.

14 Write process segments

15 Pad unused segment space.

16 mk_Commit_Impersonated_Process

17 MK_ERROR_NONE

Error handling not shown

68 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Firmware Loading and update (part 3/3)

kernel
(via ABI/API calls)

kernel
(via ABI/API calls)

Main Process
System VPP Application

Main Process
System VPP Application

MGT Process
(using IPC)

MGT Process
(using IPC)

17 _mk_Close_Impersonation

Clear UUID kernel object

18 MK_ERROR_NONE

Error handling not shown

19 MGT_Close_Process_Impersonation

clean up impersonation

20 MGT_ERROR_NONE

Error handling not shown

21 MGT_Enable_Firmware
Firmware_uuid

22 MK_ERROR_NONE

Error handling not shown

5.11 Mandatory Access Control

The Mandatory Access Control (MAC) allows controlling the access to:

• Cross-Execution-Domain Mailboxes and IPC defined in section 7.4,

• Group of kernel functions defined in 5.11.3.

Any VPP Application violating the predefined accesses generates a severe Exception (i.e.,
MK_EXCEPTION_SEVERE).

Cross-Execution-Domain Mailboxes and IPC consider only the following Processes:

• Main Process of a VPP Application,

• COM Process of VPP,

• MGT Process of VPP.

Two types of VPP Application are considered:

• VPP Application

• System VPP Application, having extended rights

VPP - Concepts and Interfaces – Public Release v1.0 69 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.11.1 VPP Application

Table 5-7: Standard Mandatory Access Control Rules

FROM

COM Process MGT Process Main Process

IPC MAILBOX IP
C MAILBOX IPC MAILBOX

TO
 P

ro
ce

ss

C
O

M

 MK_IPC_MAI
N_COM_ID

MK_MAILBOX_M
AIN_COM_ID

M
G

T MK_MAILBOX_M
AIN_MGT_ID

M
ai

n

MK_IPC_CO
M_MAIN_ID

MK_MAILBOX_C
OM_MAIN_ID MK_MAILBOX_M

GT_MAIN_ID

The VPP Application shall be able to access the following VREs [SREQ115]:

• MK_VRE_RNG Random Number Generation hardware function

The VPP Application may access the following VRE:

• MK_VRE_ECC ECC accelerator hardware function

• MK_VRE_RSA RSA accelerator hardware function

• MK_VRE_AES AES accelerator hardware function

• MK_VRE_HASH HASH accelerator hardware function

• MK_VRE_RAF Remote Audit Function

Note: The Primary Platform Maker may provide additional, platform-specific VREs, to be accessible by VPP
Application.

70 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.11.2 System VPP Application

Table 5-8: Access to Cross-Execution-Domain Mailboxes and IPC

FROM
COM Process MGT Process Main Process

IPC Mailbox IPC Mailbox IPC Mailbox

TO
 P

ro
ce

ss
 C

O
M

MK_IPC
_MAIN_COM
_ID

MK_MAILBOX
_MAIN_COM
_ID

M
G

T

MK_IPC
_MAIN_MGT
_ID

MK_MAILBOX
_MAIN_MGT
_ID

M
ai

n MK_IPC
_COM_MAIN
_ID

MK_MAILBOX
_COM_MAIN
_ID

MK_IPC
_MGT_MAIN
_ID

MK_MAILBOX
_MGT_MAIN
_ID

The System VPP Application shall be able to access the following VRE [SREQ116]:

• MK_VRE_RNG Random Number Generation hardware function

The System VPP Application may optionally access the following VREs:

• MK_VRE_ECC ECC accelerator hardware function

• MK_VRE_RSA RSA accelerator hardware function

• MK_VRE_ROT Long-term credentials storage as defined in section 3.1

• MK_VRE_AES AES accelerator hardware function

• MK_VRE_HASH HASH accelerator hardware function

• MK_VRE_RAF Remote Audit Function

• Any VRE reserved by the Primary Platform Makers

5.11.3 Kernel Functions Groups

Table 5-9 defines the groups of kernel functions.

Table 5-9: Groups of Kernel Functions

Groups Description Allowed Kernel Functions

MK_MAC_GA General ABI for any
Process

_mk_Get_Error
_mk_Get_Exception
_mk_Get_Process_Priority
_mk_Set_Process_Priority
_mk_Suspend_Process
_mk_Resume_Process
_mk_Request_No_Preemption
_mk_Commit

VPP - Concepts and Interfaces – Public Release v1.0 71 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

_mk_RollBack
_mk_Yield
_mk_Get_Mailbox_Handle
_mk_Get_IPC_Handle
_mk_Get_Access_IPC
_mk_Release_Access_IPC
_mk_Get_Mailbox_Handle_Activated
_mk_Send_Signal
_mk_Wait_Signal
_mk_Get_Signal
_mk_Get_VRE_Handle
_mk_Attach_VRE
_mk_Get_Access_VRE
_mk_Release_Access_VRE
_mk_Get_Time
_mk_Get_Process_Handle

MK_MAC_SYS_APP
System ABI for System
VPP Application
Processes

_mk_Open_Impersonation
_mk_Close_Impersonation
_mk_Impersonate_Process
_mk_Commit_Impersonated

Use of Kernel Functions:

• MK_MAC_GA - is available to all Applications, including VPP Processes

• MK_MAC_SYS_APP – is restricted to System VPP Applications

72 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6 Virtual Primary Platform Application

6.1 The Virtual Hardware Platform

Figure 6-1 illustrates the virtual hardware platform on which the VPP Application is built.

Figure 6-1: Virtual Hardware Platform

CPU VIRTUAL MEMORY

CRYPTOGRAPHIC FUNCTIONS
REMOTE AUDIT FUNCTION

LONG TERM CREDENTIAL STORAGE

FIFO IN

FIFO OUT

DATA CHUNKS

Each Process of the VPP Application runs on top of a virtual hardware platform.

Only the Main Process of the VPP Application shall access a FIFO of data chunks [SREQ117].

6.2 Structure

Figure 6-2 illustrates the structure of the VPP Application.

VPP - Concepts and Interfaces – Public Release v1.0 73 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 6-2 : Structure of the VPP Application

PROCESS
P

R
O

C
E

S
S

 W
ITH

 C
P

U
 IN

 U
N

P
R

IV
ILE

D
G

E
D

 M
O

D
E

 O
N

LY
PROCESS

IPC

A
B

I

VIRTUAL PRIMARY PLATFORM

PROCESS

M
A

IN

FU
N

C
TI

O
N

A
L

B
LO

C
K

FU
N

C
TI

O
N

A
L

B
LO

C
K

A
B

I

V
R

E

VPP APPLICATION

IPC

IPC
IPC

IPC
IPC

The VPP Application may be a collection of Processes. The VPP Application shall run at least a Process
named Main [SREQ118].

6.3 VPP Application Session

A VPP Application session represents the period of time from VPP Application instantiation to its termination.
The following operations are performed during the Firmware instantiation [SREQ119]:

• All VPP Application Processes are instantiated:

 The content of CODE, CONSTANTS, DATA, and the optional LIB_CODE and
LIB_CONSTANTS of each Process is initialized with the data previously written by the Firmware
Loader.

 The NVM of each Process is initialized by the content of the last successful _mk_Commit
operation or by initial values provided by the Firmware Loader.

 The Virtual/Physical Memory15 Space content of each STACK is zeroed.

 The Virtual Address Space content of each Writer IPC in is zeroed, including the Cross-
Execution Domain IPCs.

 The Writer IPCs are cleared.

 All Processes are instantiated in the “Suspended R” state with the default priority
MK_PROCESS_PRIORITY_NORMAL. The entry point address for each Process is provided in
the Firmware, as defined in [VFF].

15 The stack of the process may be mapped to the Virtual Address Space or to the Physical Address Space (Primary

Platform implementation dependent).

74 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• The VPP COM Process shall [SREQ120]:

 Reset the m_ReadIN field of its FIFO OUT.

 Write the incoming data chunks, if any, in its FIFO OUT.

 Notify the Main Process that its FIFO IN has been updated

• The MGT Process resumes the Main Process.

• The Main Process copies:

 The values m_MTU_IN and m_Size_IN from its FIFO IN within the IPC referenced by
MK_IPC_COM_MAIN_ID,

 The values in m_MTU_OUT and m_Size_OUT to its FIFO OUT within the IPC referenced by
MK_IPC_MAIN_COM_ID.

A VPP Application may restart itself (and therefore its session) by sending the Signal
MK_SIGNAL_APP_RESTART to the Mailbox identified as MK_MAILBOX_MAIN_MGT_ID in the MGT
Process.

A VPP Application session shall end when VPP Application termination begins [REQ121].

A VPP Application termination shall begin [SREQ122]:

• When the Mailbox identified as MK_MAILBOX_MGT_MAIN_ID in the Main Process receives the
MK_SIGNAL_KILL_REQUESTED

• Or when the Mailbox identified as MK_MAILBOX_MAIN_MGT_ID in the MGT Process receives the
MK_SIGNAL_KILL_ITSELF

VPP shall complete VPP Application termination [REQ123]:

• When the Mailbox identified as MK_MAILBOX_MAIN_MGT_ID in the MGT Process receives the
MK_SIGNAL_KILL_ACCEPTED or MK_SIGNAL_KILL_ITSELF

• Or after VPP Application MK_APP_STOP_GRACEFUL_TICKS time elapsed [SREQ124] The
following applies when the VPP Application terminates [SREQ125]:

 All data chunks in the FIFO OUT of the COM and Main Processes which have not been read
are lost.

 Only changes committed to NVM Memory Partitions are preserved.

VPP shall ensure that VPP Application restart does not override VPP Application termination [SREQ126].

Figure 6-3 illustrates the termination of the VPP Application.

VPP - Concepts and Interfaces – Public Release v1.0 75 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 6-3: VPP Application Termination
Firmware Termination (part 1/3)

MGT process of VPP
(using IPC)

MGT process of VPP
(using IPC)

Kernel
(via function calls)

Kernel
(via function calls)

MAIN process of VPP Application

MAIN process of VPP Application

Initialization MGT

1 _mk_Get_MAILBOX_Handle (MK_MAILBOX_MGT_MAIN_ID)
Get the handle of the mailbox MK_MAILBOX_MGT_MAIN_ID

2 hMAILBOX_MGT_MAIN
handle of the mailbox MK_MAILBOX_MGT_MAIN_ID

3 _mk_Get_MAILBOX_Handle (MK_MAILBOX_MAIN_MGT_ID)
Get the handle of the mailbox MK_MAILBOX_MAIN_MGT_ID

4 hMAILBOX_MAIN_MGT
handle of the mailbox MK_MAILBOX_MAIN_MGT_ID

Initialization MAIN

5 _mk_Get_MAILBOX_Handle (MK_MAILBOX_MGT_MAIN_ID)
Get the handle of the mailbox MK_MAILBOX_MGT_MAIN_ID

6 hMAILBOX_MGT_MAIN
handle of the mailbox MK_MAILBOX_MGT_MAIN_ID

7 _mk_Get_MAILBOX_Handle (MK_MAILBOX_MAIN_MGT_ID)
Get the handle of the mailbox MK_MAILBOX_MAIN_MGT_ID

8 hMAILBOX_MAIN_MGT
handle of the mailbox MK_MAILBOX_MAIN_MGT_ID

Termination request

9
_mk_Send_Signal (hMAILBOX_MGT_MAIN,MK_SIGNAL_KILL_REQUESTED)
Notify the MAIN
that the killing of the VPP application is requested

10 MK_ERROR_NONE

11 Signal MK_SIGNAL_KILL_REQUESTED
to the mailbox MK_MAILBOX_MGT_MAIN_ID

12 _mk_Wait_Signal (hMAILBOX_MAIN_MGT,MK_APP_STOP_GRACEFUL_TICKS)
Wait on mailbox IPC_MAIN_COM handle

76 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Firmware Termination (part 2/3)

MGT process of VPP
(using IPC)

MGT process of VPP
(using IPC)

Kernel
(via function calls)

Kernel
(via function calls)

MAIN process of VPP Application

MAIN process of VPP Application

KERNEL

KERNEL

loop [MAIN Processing]

13 _mk_Wait_Signal (NULL,MK_ENDLESS)
Wait on mailbox IPC_MAIN_COM handle

14 void

loop [mailbox scanning]

15
_mk_Get_Mailbox_ID_Activated ()
Get the mailbox identifier of a mailbox
having a pending signal

16 mailbox identifier

alt [Is the mailbox identifier MK_MAILBOX_MGT_MAIN_ID]

17 _mk_Get_Signal (hMAILBOX_MGT_MAIN)
Read the signal on mailbox IPC_MGT_MAIN handle

18 Signals

alt [the signals contains MK_SIGNAL_KILL_REQUESTED]

19 Processing to prepare the termination of the VPP application

20
_mk_Send_Signal (hMAILBOX_MAIM_MGT,MK_SIGNAL_KILL_ACCEPTED)
Notify the MGT
that the the VPP application termination is accepted

21 Signal MK_SIGNAL_KILL_ACCEPTED

22 MK_ERROR_NONE

"Other Mailboxes"

[is NULL]

"No more mailbox has a pending signal"

"Other processings"

VPP - Concepts and Interfaces – Public Release v1.0 77 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Firmware Termination (part 3/3)

MGT process of VPP
(using IPC)

MGT process of VPP
(using IPC)

Kernel
(via function calls)

Kernel
(via function calls)

23 void

24 _mk_Get_Signal (hMAILBOX_MAIN_MGT)
Read the signal on mailbox IPC_MGT_MAIN handle

25 Signals

alt [the signals contains MK_SIGNAL_KILL_ACCEPTED]

26 Suspend all VPP application process

6.4 High Level Operating System (HLOS)

The HLOS may support one or several Applications [REQ127].

The HLOS may claim conformance to [HLOS02], [HLOS34], [HLOS25], [HLOS14], [HLOS42] and [HLOS93].

6.4.1 HLOS Application

An application running on a HLOS supporting a suitable configuration based on [HLOS02], [HLOS34],
[HLOS25], [HLOS14], [HLOS42] and [HLOS93] may claim conformance with [102 221], [103 383], [102 223],
[7816-4], [103 384] and [102 622].

6.4.2 Remote Application Management

The HLOS may support Remote Application Management of non-native applications running on an
application framework (e.g. Java Card) of the HLOS.

78 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7 Minimum Level of Interoperability (MLOI)
Note: Interoperability is the capability to communicate, execute programs, or transfer data among various
functional units in a manner that requires the user to have little or no knowledge of the unique characteristics
of those units [2832].

Note: Some constants and data types defined in this section are used in other documents defining VPP, e.g.
[VFF].

7.1 Basic Data Types

The Primary Platform shall at least be based on 32-bit architecture CPU [REQ128]. The endianness is
Primary Platform Dependent.

Note: Through Table 7-1 XLEN is the size in bytes memory address. It is a platform dependent value and for
32bit platforms XLEN equals 4 bytes, and 8 bytes for 64bit platforms.

Table 7-1 defines the basic data types used within the Firmware header.

Table 7-1: Basic Data Types

Type Description Size (byte)

uint8_t 8-bit unsigned integer 1

uint16_t 16-bit unsigned integer 2

uint32_t 32-bit unsigned integer 4

uint64_t 64-bit unsigned integer 8

VPP_FRW_TYPE_e
Enumerated VPP firmware/software type as
defined in
Table 7-6

1

MK_Index_t Index of an element in a typed array 2

MK_IPC_ID_u Composite Identifier of an IPC as defined in
Table 7-2

2

MK_MAILBOX_ID_u Composite Identifier of a Mailbox as defined in
Table 7-2

2

MK_PROCESS_ID_u Composite Identifier of a Process as defined in
Table 7-2

2

MK_PROCESS_PRIORITY_e Priority of a Process as defined as defined in
Table 7-4

2

MK_LIB_ID_u Composite Identifier of a shared library 2

MK_VRE_e Enumerated VRE Identifier 4

PPROCESS_Function_t Memory address to a Process entry point XLEN

PLLOS_Function_t Memory address to a LLOS entry point XLEN

StackType_t Stack element XLEN

UUID_t Unique Universal IDentifier 16

VPP - Concepts and Interfaces – Public Release v1.0 79 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

v32_u void 32-bit 4

MK_ERROR_e Enumerated type for errors 2

MK_EXCEPTION_e Enumerated type for Exceptions 2

MK_BITMAP_t 32-bit bitmap for Exception, Signal or LIB
Descriptor conveyor

4

MK_SIGNAL_e Enumerated Signal type as defined in Table 7-8 4

MK_HANDLE_t Handle to a Kernel Object XLEN

MK_TIME_t Time unsigned 64-bit integer (uint64_t) 8

Table 7-2: Composite Type Identifiers

Composite Type
Identifier

Execution Domain type
(unsigned integer bit field)
Bit [15-14]

Enumerated Identifier
(unsigned integer bit
field)
Bit [13-0]

Description

MK_IPC_ID_u

MK_DOMAIN_TYPE_e as
defined in Table 7-3

MK_IPC_ID_e Identifier of an
IPC

MK_MAILBOX_ID_u MK_MAILBOX_ID_e Identifier of a
Mailbox

MK_PROCESS_ID_u MK_PROCESS_ID_e Identifier of a
Process

MK_LIB_ID_u MK_LIB_ID_e Identifier of a
shared library

 Table 7-3: Execution Domain Types MK_DOMAIN_TYPE_e

Type Enumerated Identifier
Bit [1-0] Domain Value

MK_EXECUTION
_DOMAIN_TYPE_e

MK_EXECUTION_DOMAIN_TYPE_VPP System VPP Execution
Domain b10

MK_EXECUTION_DOMAIN_TYPE_APP VPP Application Execution
domain b01

80 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 7-4: Priority values of a Process

Priority Definition Value

MK_PROCESS_PRIORITY_LOW Lowest priority ‘0000’

MK_PROCESS_PRIORITY_NORMAL Normal Priority (Default) ‘0004’

MK_PROCESS_PRIORITY_HIGH Highest priority ‘0008’

MK_PROCESS_PRIORITY_ERROR Indicates error when Process priority is retrieved ‘FFFF’

Table 7-5 defines the interoperable identifiers for accessing hardware resources16.

Table 7-5: VRE Identifiers

Identifier Definition Value

MK_VRE_AES Access to the interface of the AES function ‘01’

MK_VRE_ECC Access to the interface of the ECC function ‘04’

MK_VRE_RSA Access to the interface of the RSA function ‘08’

MK_VRE_ROT Access to the interface of the Long-term credentials storage ‘10’

MK_VRE_HASH Access to the interface of the Hash function ‘20’

MK_VRE_RNG Access to the interface of the RNG function ‘40’

MK_VRE_RAF Access to the interface of the Remote Audit Function ‘80’

MK_VRE_
DOMAIN_BASE

Access to the interfaces of additional Execution Domain
hardware functions ‘100’

Note: This table enumerates VRE Identifiers for different and possibly optional hardware functions.

Table 7-6 defines the different types of executable code.

16 VRE usage is hardware/implementation dependent. For example, two Primary Platform implementations may use

different RNG hardware and thus require different handling of the MK_VRE_RNG

VPP - Concepts and Interfaces – Public Release v1.0 81 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 7-6: Firmware/Software Types

Identifier Definition Value

FIRMWARE_SOFTWARE_TYPE_APP The Firmware of a VPP Application ‘01’

FIRMWARE_SOFTWARE_TYPE_VPP The Primary Platform Software excluding
the LLOS software ‘02’

FIRMWARE_SOFTWARE_TYPE_SYSAPP The Firmware of the System VPP
Application ‘04’

FIRMWARE_SOFTWARE_TYPE_LLOS The software of the LLOS ‘08’

 Table 7-7: Scheduling Types

Identifier Definition Value

MK_SCHEDULING_TYPE_COLLABORATIVE Collaborative scheduling ‘01’

MK_SCHEDULING_TYPE_PREEMPTIVE Pre-emptive scheduling ‘02’

82 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 7-8: Signal Identifiers

MK_SIGNAL_ID_e Description Value

MK_SIGNAL_TIME_OUT Timeout notification ‘00000001’

MK_SIGNAL_ERROR _mk_Get_Signal function or VRE has generated
an error ‘00000002’

MK_SIGNAL_EXCEPTION Notification for an Exception from a child
Process ‘00000004’

MK_SIGNAL_DOMAIN_BASE_0

Mailbox defined Signals for generic use within
the scope of the Execution Domains
MK_EXECUTION_DOMAIN_TYPE_VPP and
MK_EXECUTION_DOMAIN_TYPE_APP as
defined in Table 7-3

‘00000008’

MK_SIGNAL_DOMAIN_BASE_1 ‘00000010’

MK_SIGNAL_DOMAIN_BASE_2 ‘00000020’

MK_SIGNAL_DOMAIN_BASE_3 ‘00000040’

MK_SIGNAL_DOMAIN_BASE_4 ‘00000080’

MK_SIGNAL_DOMAIN_BASE_5 ‘00000100’

MK_SIGNAL_DOMAIN_BASE_6 ‘00000200’

MK_SIGNAL_DOMAIN_BASE_7 ‘00000400’

MK_SIGNAL_DOMAIN_BASE_8 ‘00000800’

MK_SIGNAL_DOMAIN_BASE_9 ‘00001000’

MK_SIGNAL_DOMAIN_BASE_10 ‘00002000’

MK_SIGNAL_DOMAIN_BASE_11 ‘00004000’

MK_SIGNAL_DOMAIN_BASE_12 ‘00008000’

MK_SIGNAL_DOMAIN_BASE_13 ‘00010000’

MK_SIGNAL_DOMAIN_BASE_14 ‘00020000’

MK_SIGNAL_DOMAIN_BASE_15 ‘00040000’

MK_SIGNAL_DOMAIN_BASE_16 ‘00080000’

MK_SIGNAL_DOMAIN_BASE_17 ‘00100000’

MK_SIGNAL_DOMAIN_BASE_18 ‘00200000’

MK_SIGNAL_DOMAIN_BASE_19 ‘00400000’

MK_SIGNAL_DOMAIN_BASE_20 ‘00800000’

MK_SIGNAL_DOMAIN_BASE_21 ‘01000000’

MK_SIGNAL_DOMAIN_BASE_22 ‘02000000’

MK_SIGNAL_DOMAIN_BASE_23 ‘04000000’

MK_SIGNAL_DOMAIN_BASE_24 ‘08000000’

MK_SIGNAL_DOMAIN_BASE_25 ‘10000000’

MK_SIGNAL_DOMAIN_BASE_26 ‘20000000’

MK_SIGNAL_DOMAIN_BASE_27 ‘40000000’

VPP - Concepts and Interfaces – Public Release v1.0 83 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

MK_SIGNAL_DOMAIN_BASE_28 ‘80000000’

7.2 Constants and Limits

Table 7-9: defines the constants and limits related to the Firmware format or a Firmware or the VPP
Application as the runtime instance of the Firmware. Other limits may apply to the Primary Platform.

The Primary Platform shall support the Constants and Limits as described in Table 7-9 [REQ129].

Primary Platform-dependent values, as described in Table 7-10, shall be provided by the Primary Platform
Maker [REQ130].

Table 7-9: Constants and Limits for any Primary Platform

Name Description Value

MK_APP_STOP
_GRACEFUL_TICKS

A grace period, in ticks, given to a VPP Application,
so it may shut down gracefully

10

MK_IPC_ DOMAIN_BASE _ID Minimal enumerated IPC identifier within the scope
of an Execution Domain (including BASE_ID)

‘100’

MK_IPC_COM_LENGTH
Length of the IPC identified by
MK_IPC_MAIN_COM_ID and
MK_IPC_COM_MAIN_ID

4KB

MK_IPC_LIMIT Maximal number of IPC descriptors per Firmware 64

MK_IPC_MAX_ID Maximal enumerated IPC identifier value within the
scope of an Execution Domain (including MAX_ID)

‘3FFF’

MK_IPC_MGT_LENGTH
Length of the IPC identified by
MK_IPC_MAIN_MGT_ID and
MK_IPC_MGT_MAIN_ID

6KB

MK_IPC_SIZE_LIMIT Maximal IPC length 32KB

MK_LIB_ DOMAIN_BASE _ID Minimal enumerated library identifier within the
scope of an Execution Domain (including BASE_ID)

‘100’

MK_LIB_LIMIT Maximal number of LIB Descriptors in the Firmware 32

MK_LIB_MAX_ID
Maximal enumerated shared library identifier value
within the scope of an Execution Domain (including
MAX_ID)

‘3FFF’

MK_MAILBOX_DOMAIN
_BASE_ID

Minimal enumerated Mailbox identifiers within the
scope of an Execution Domain

‘100’

MK_MAILBOX_LIMIT Maximal number of Mailbox descriptors per
Firmware excluding the kernel Mailbox

64

MK_MAILBOX_MAX_ID Maximal enumerated Mailbox identifier value within
the scope of a domain (including MAX_ID)

‘3FFF’

MK_MIN
_CONCURRENT_IPC_LIMIT

Minimal number of IPCs accessible concurrently by
a Process

6

MK_MIN_STACKS_SUM The minimal size in bytes, supported by the Primary
Platform, for the sum of all stack memory used by

24K

84 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

_SUPPORTED all Processes in a VPP Application

MK_MIN_APP_IPC Minimal number of IPC descriptors in a Firmware 0

MK_MIN_APP_MAILBOXES Minimal number of Mailbox descriptor of a
Firmware, not including kernel Mailboxes.

0

MK_MIN_APP_PROCESSS Minimal number of Process supported by a VPP
Application.

1

MK_MIN_SUPPORTED
_MEMORY_PARTITION_SIZE

Minimal size in bytes of Memory Partition in [VFF]
supported by the Primary Platform

8MB

MK_MIN_VIRTUAL
_MEMORY_SIZE17

Minimum size of the Virtual Memory that the MMF
shall manage

1KB

MK_PROCESS
_ DOMAIN_BASE _ID

Minimal enumerated Process identifier within the
scope of an Execution Domain (including BASE_ID)

‘100’

MK_PROCESS_LIMIT Maximal number of Process Descriptors in the
Firmware

32

MK_MAX_PROCESS_ ID Maximal enumerated Process identifier value within
the scope of an Execution Domain (included)

‘3FFF’

MK_MIN_SUPPORTED _STACK Minimal stack size supported for a Process, given in
StackType_t units

512
StackType_t
units
 (2KB if 32bit)

Table 7-10: Primary Platform Dependent Constants and Limits

Name Description

MK_ MEMORY_PARTITION_SIZE
The size in bytes of Memory Partition. Shall be greater than
MK_MIN_SUPPORTED_MEMORY
_PARTITION_SIZE

MK_AVERAGE_COMMIT_TIME Average NVM transaction time (tick unit)

MK_BEGIN_VSPACE Virtual memory address of the beginning of the Virtual Address
Space

MK_IS_LITTLE_ENDIAN
0 – false
1 – true

MK_IS_PREEMPTIVE
_SCHEDULING_SUPPORTED

Define the type of scheduling being supported for VPP
Applications
0 – false
1 - true

MK_MAX
_STACKS_SUM_SUPPORTED

The maximal size in bytes, supported by the Primary Platform, for
the sum of all stack memory used by all Processes in a VPP

17 This information allows the VPP Application designer to prevent some software side channel attacks.

VPP - Concepts and Interfaces – Public Release v1.0 85 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Application.

MK_MAX_CONTEXT
_SWITCH_TIME Maximal time in ticks for switching between two Processes

MK_MAX_RAF_TIME_MS Maximal time for performing a Remote Audit Function operation
in milliseconds

MK_NO_PREEMPTION
_MAX_TIMEOUT

Maximal time duration during which the VPP Application Process
cannot be pre-empted by a VPP Process (tick unit)
0 if _mk_Request_No_Preemption is not supported

MK_PERFORMANCE
_INDEX_METHOD

Performance benchmark method, to be declared by Primary
Platform Maker

MK_PERFORMANCE_INDEX The performance of Primary Platform based on given benchmark
method

MK_TICK_PER_MS Value of the kernel tick time in milliseconds

MK_VSPACE_REGION_SIZE
The size in bytes of the Virtual Address Space Region.
Shall be equal or greater than MK_
MEMORY_PARTITION_SIZE.

7.3 Errors and Exceptions

Table 7-11 defines the Exception values.

Table 7-11: Exceptions

Exception Name Description Rank Value

MK_EXCEPTION_ERROR An error has occurred in a child of the Process 0

MK_EXCEPTION_SEVERE A severe Exception has occurred (e.g. memory
violation) 1

MK_EXCEPTION
_CHILD_PROCESS_DIED A child Process has died 2

MK_EXCEPTION_VRE_DETACHED A VRE has been detached while a Process was
waiting on it 3

MK_EXCEPTION_VENDOR_BASE Starting index for
VPP implementation-specific Exceptions 16

86 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

MK_EXCEPTION_MAX Maximal Exception rank value allowed 31

The Exception type is MK_EXCEPTION_e as an enumerated value representing the bit rank (power of 2)
within a 32 bit bitmap (MK_BITMAP_t).

Table 7-12 defines the error values.

Table 7-12: Errors

Error Name Description LSB Value

MK_ERROR_NONE No error 0

MK_ERROR_UNKNOWN_UUID Unknown UUID 1

MK_ERROR_SEVERE Severe error 2

MK_ERROR_ILLEGAL_PARAMETER Illegal parameter 3

MK_ERROR_UNKNOWN_ID Unknown identifier 4

MK_ERROR_UNKNOWN_HANDLE Unknown Handle 5

MK_ERROR_UNKNOWN_PRIORITY Unknown priority 6

MK_ERROR_ACCESS_DENIED Access denied 7

MK_ERROR_INTERNAL Internal error 8

MK_ERROR_VENDOR_BASE Reserved for VPP implementation-
specific 32

MK_ERROR_MAX Maximal error value 255

The Exception type is MK_ERROR_e (16 bit) where the eighth most significant bits (MSBs) are the
complementary bits of the eighth least significant bits (LSBs).

7.4 Cross-Execution-Domain Identifiers

Table 7-13 defines the Cross-Execution-Domain Composite Identifiers.

Table 7-13: Cross-Execution Domain Composite Identifier

Identifiers Domain type Bit [15-14]
Enumerated
Identifier
Bit [13-0]

Description

MK_PROCESS
_COM_VPP_ID

MK_EXECUTION_DOMAIN
_TYPE_VPP 0 VPP COM Process

VPP - Concepts and Interfaces – Public Release v1.0 87 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

MK_PROCESS
_MGT_VPP_ID

MK_EXECUTION_DOMAIN
TYPE VPP 1 MGT Process

MK_PROCESS
_MAIN_APP_ID

MK_EXECUTION_DOMAIN
_TYPE_APP 0 Main Process

MK_MAILBOX
_COM_MAIN_ID

MK_EXECUTION_DOMAIN
_TYPE_VPP 0 COM Process Mailbox (sender: Main

Process)

MK_MAILBOX
_MGT_MAIN_ID

MK_EXECUTION_DOMAIN
_TYPE_VPP 1 MGT Process Mailbox (sender: Main

Process)

MK_MAILBOX
_MAIN_COM_ID

MK_EXECUTION_DOMAIN
_TYPE_APP 0 Main Process Mailbox (sender: COM

Process)

MK_MAILBOX
_MAIN_MGT_ID

MK_EXECUTION_DOMAIN
_TYPE_APP 1 Main Process Mailbox (sender: MGT

Process)

MK_IPC_
MAIN_COM_ID

MK_EXECUTION_DOMAIN
_TYPE_APP 0 IPC from the Main Process to the COM

Process

MK_IPC_
COM_MAIN_ID

MK_EXECUTION_DOMAIN
_TYPE_VPP 0 IPC from the COM Process to the Main

Process

MK_IPC_
MAIN_MGT_ID18

MK_EXECUTION_DOMAIN
_TYPE_APP 1 IPC from the Main Process to the MGT

Process

MK_IPC_
MGT_MAIN_ID18

MK_EXECUTION_DOMAIN
_TYPE_VPP 1 IPC from the MGT Process to the Main

Process

Cross-Execution-Domain IPCs and Mailbox descriptors are automatically instantiated by the kernel. As such,
they cannot be defined in by Firmware. Their ID and IPC size are fixed.

7.5 Cross-Execution-Domain Signals

Table 7-14 defines the Cross-Execution-Domain Signals.

Table 7-14: Cross-Execution-Domain Signals

Identifiers Value Description

MK_SIGNAL_IPC_UPDATED MK_SIGNAL_DOMAIN_BASE_0 The IPC updated

MK_SIGNAL_KILL_REQUESTED MK_SIGNAL_DOMAIN_BASE_1 MGT signaled the Main Process to
terminate itself

MK_SIGNAL_KILL_ACCEPTED MK_SIGNAL_DOMAIN_BASE_1 The Main Process signaled MGT
that it has accepted the kill request

MK_SIGNAL_APP_RESTART MK_SIGNAL_DOMAIN_BASE_2 The Main Process signaled MGT
to restart the VPP Application

MK_SIGNAL_KILL_ITSELF MK_SIGNAL_DOMAIN_BASE_3 The Main Process committed
suicide

18 The IPCs between MAIN and MGT Processes are valid for the system VPP Application only.

88 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

As a Mailbox has only a single reader and writer, Cross-Execution-Domain Signals use the same values
when different Signals are used by different Mailboxes. For example, MK_SIGNAL_KILL_REQUESTED has
the same value as MK_SIGNAL_KILL_ACCEPTED, but they are being used on different mailboxes.

VPP - Concepts and Interfaces – Public Release v1.0 89 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8 Annexes

8.1 Services

8.1.1 Service Generic Message Flow

Figure 8-1 illustrates a generic data flow between a service providing a function and a Process consuming
that function.

90 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 8-1: Service Generic Messages Flow
Data flow to a Service and an Application (part 1/5)

Service: Process service

Service: Process service

Kernel
(via function calls)

Kernel
(via function calls)

Application: Process application

Application: Process application

Application Initialization

1 _mk_Get_IPC_Handle (IPC_APPLICATION_to_SERVICE_ID)
Get the handle of the mailbox IPC_APPLICATION_to_SERVICE_ID

2 hIPC_APPLICATION_to_SERVICE
handle of the mailbox IPC_APPLICATION_to_SERVICE_ID

3 _mk_Get_IPC_Handle (IPC_SERVICE_to_APPLICATION_ID)
Get the handle of the mailbox IPC_SERVICE_to_APPLICATION_ID

4 hIPC_SERVICE_to_APPLICATION
handle of the mailbox IPC_SERVICE_to_APPLICATION_ID

5 _mk_Get_MAILBOX_Handle (MAILBOX_SERVICE_to_APPLICATION_ID)
Get the handle of the mailbox MAILBOX_SERVICE_to_APPLICATION_ID

6 hMAILBOX_SERVICE_to_APPLICATION
handle of the mailbox MAILBOX_SERVICE_to_APPLICATION_ID

7 _mk_Get_MAILBOX_Handle (MAILBOX_APPLICATION_to_SERVICE_ID)
Get the handle of the mailbox MAILBOX_APPLICATION_to_SERVICE_ID

8 hMAILBOX_APPLICATION_to_SERVICE
handle of the mailbox MAILBOX_APPLICATION_to_SERVICE_ID

VPP - Concepts and Interfaces – Public Release v1.0 91 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Data flow to a Service and an Application (part 2/5)

Kernel
(via function calls)

Kernel
(via function calls)

Application: Process application

Application: Process application

service

service

Service initialization

1 _mk_Get_IPC_Handle (IPC_SERVICE_to_APPLICATION_ID)
Get the handle of the mailbox IPC_SERVICE_to_APPLICATION_ID

2 hIPC_SERVICE_to_APPLICATION
handle of the mailbox IPC_SERVICE_to_APPLICATION_ID

3 _mk_Get_IPC_Handle (IPC_APPLICATION_to_SERVICE_ID)
Get the handle of the mailbox IPC_APPLICATION_to_SERVICE_ID

4 hIPC_APPLICATION_to_SERVICE
handle of the mailbox IPC_APPLICATION_to_SERVICE_ID

5 _mk_Get_MAILBOX_Handle (MAILBOX_SERVICE_to_APPLICATION_ID)
Get the handle of the mailbox MAILBOX_SERVICE_to_APPLICATION_ID

6 hMAILBOX_SERVICE_to_APPLICATION
handle of the mailbox MAILBOX_SERVICE_to_APPLICATION_ID

7 _mk_Get_MAILBOX_Handle (MAILBOX_APPLICATION_to_SERVICE_ID)
Get the handle of the mailbox MAILBOX_APPLICATION_to_SERVICE_ID

8 hMAILBOX_APPLICATION_to_SERVICE
handle of the mailbox MAILBOX_APPLICATION_to_SERVICE_ID

92 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Data flow to a Service and an Application (part 3/5)

Kernel
(via function calls)

Kernel
(via function calls)

Application: Process application

Application: Process application

"Command preparation"

1 _mk_Get_Access_IPC(hIPC_APPLICATION_to_SERVICE)
Get access to the IPC of application to service

2 VME_IPC_APPLICATION_to_SERVICE as the virtual memory address of the IPC

3
Fill a command
in a structure mapped on
VME_IPC_APPLICATION_to_SERVICE

4 _mk_Get_Release_IPC (hIPC_APPLICATION_to_SERVICE)
Release the access to the IPC of application to service

5 MK_ERROR_NONE

6 _mk_Send_Signal (hMAILBOX_APPLICATION_to_SERVICE,MK_SIGNAL_IPC_UPDATED)
Notify the Service service that the IPC is updated

7 MK_ERROR_NONE

8 _mk_Wait_Signal (hMAILBOX_SERVICE_APPLICATION,MK_ENDLESS)
Wait for the Service service that the IPC is updated

VPP - Concepts and Interfaces – Public Release v1.0 93 / 94

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Data flow to a Service and an Application (part 4/5)

Service: Process service

Service: Process service

Kernel
(via function calls)

Kernel
(via function calls)

loop [Service Processing]

_mk_Wait_Signal (hMAILBOX_APPLICATION_to_SERVICE,MK_ENDLESS)
Wait on mailbox IPC_APPLICATION_to_SERVICE handle

void

_mk_Get_Signal (hMAILBOX_APPLICATION_to_SERVICE)
Read the signal on mailbox IPC_APPLICATION_to_SERVICE handle

Signals

alt [the signals contains MK_SIGNAL_IPC_UPDATED]

_mk_Get_Access_IPC(hIPC_APPLICATION_to_SERVICE)
Get access to the IPC of application to service

VME_IPC_APPLICATION_to_SERVICE as the virtual memory address of the IPC

_mk_Get_Access_IPC(hIPC_SERVICE_to_APPLICATION)
Get access to the IPC of service to application

VME_IPC_SERVICE_to_APPLICATION as the virtual memory address of the IPC

Read a command in a structure mapped on VME_IPC_APPLICATION_to_SERVICE
Processing of the command
Fill a response in a structure mapped on VME_IPC_SERVICE_to_APPLICATION

_mk_Get_Release_IPC (hIPC_SERVICE_to_APPLICATION)
Release the access to the IPC of application to service

MK_ERROR_NONE

_mk_Get_Release_IPC (hIPC_APPLICATION_to_SERVICE)
Release the access to the IPC of application to service

MK_ERROR_NONE

_mk_Send_Signal (hMAILBOX_SERVICE_to_APPLICATION,MK_SIGNAL_IPC_UPDATED)
Notify the Service service that the IPC is updated

MK_ERROR_NONE

"Other processings"

94 / 94 VPP - Concepts and Interfaces – Public Release v1.0

Copyright  2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Data flow to a Service and an Application (part 5/5)

Service: Process service

Service: Process service

Kernel
(via function calls)

Kernel
(via function calls)

Application: Process application

Application: Process application

"response processing"
1 void

2 _mk_Get_Signal (hMAILBOX_SERVICE_to_APPLICATION)
Read the signal on mailbox IPC_SERVICE_to_APPLICATION handle

3 Signals

alt [the signals contains MK_SIGNAL_IPC_UPDATED]

4 _mk_Get_Access_IPC(hIPC_SERVICE_to_APPLICATION)
Get access to the IPC of application to service

5 VME_IPC_SERVICE_to_APPLICATION as the virtual memory address of the IPC

6
Read the response
from a structure mapped on
VME_IPC_SERVICE_to_APPLICATION

7 _mk_Get_Release_IPC (hIPC_SERVICE_to_APPLICATION)
Release the access to the IPC of application to service

8 MK_ERROR_NONE

"Other processings"

	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Overview
	2.1 Objectives and Use Cases
	2.2 VPP Concept
	2.3 The content of VPP Concepts and Interfaces

	3 Hardware Platform
	3.1 Hardware Architecture
	3.2 Generic Core features
	3.2.1 CPU
	3.2.2 Memory Access
	3.2.3 Non Volatile Memory
	3.2.4 Form Factor
	3.2.5 Power
	3.2.6 Memory Transfer Function
	3.2.7 Cryptographic Functions
	3.2.8 Random Number Generator Function

	3.3 System Functions
	3.4 Security Functions
	3.4.1 General
	3.4.2 Memory Encryption and Integrity
	3.4.3 Key Protection Function
	3.4.4 Security Sensor Function

	3.5 Memory Management Function
	3.6 Memory Storage Function
	3.7 Remote Audit Function
	3.7.1 Remote Audit Function Requirements
	3.7.2 BIST Remote Audit Function option
	3.7.2.1 Remote Audit Function based on BIST

	3.8 Hardware Service Function

	4 Primary Platform Certification
	5 Virtual Primary Platform
	5.1 Overview
	5.2 Access Groups
	1. AG_P_OU: Any Program and data only accessible from a CPU running in unprivileged mode.
	2. AG_H_C: Any hardware function conditionally accessible from the CPU (see sections ‎5.8.5.5 and ‎5.11).
	3. AG_P_OP: Any Program and data only accessible from a CPU running in privileged mode.
	4. AG_H_OP: Any hardware function only accessible from the CPU running in privileged mode

	5.3 Security Perimeters
	5.4 Unprivileged Execution Model
	5.5 Unprivileged Virtual Address Space
	5.6 Run Time Model
	5.6.1 Exception Handling

	5.7 Provisioning of Firmware and Primary Platform Software
	5.8 Low Level Operating System (LLOS)
	5.8.1 Kernel Objects
	5.8.2 Global Requirements and Mandatory Access Control Rules
	5.8.3 Process States Diagram
	5.8.4 Definition of the Process States
	5.8.5 Kernel Functions ABI/API
	5.8.5.1 Generic Functions
	5.8.5.1.1 Function _mk_Get_Exception
	5.8.5.1.2 Function _mk_Get_Error
	5.8.5.1.3 Function _mk_Get_Time

	5.8.5.2 Process Management
	5.8.5.2.1 Function _mk_Get_Process_Handle
	5.8.5.2.2 Function _mk_Get_Process_Priority
	5.8.5.2.3 Function _mk_Set_Process_Priority
	5.8.5.2.4 Function _mk_Suspend_Process
	5.8.5.2.5 Function _mk_Resume_Process
	5.8.5.2.6 Function _mk_Request_No_Preemption
	5.8.5.2.7 Function _mk_Commit
	5.8.5.2.8 Function _mk_RollBack
	5.8.5.2.9 Function _mk_Yield

	5.8.5.3 Mailbox Management
	5.8.5.3.1 Function _mk_Get_Mailbox_Handle
	5.8.5.3.2 Function _mk_Get_Mailbox_ID_Activated
	5.8.5.3.3 Function _mk_Send_Signal
	5.8.5.3.4 Function _mk_Wait_Signal
	5.8.5.3.5 Function _mk_Get_Signal

	5.8.5.4 IPC Management
	5.8.5.4.1 Function _mk_Get_IPC_Handle
	5.8.5.4.2 Function _mk_Get_Access_IPC
	5.8.5.4.3 Function _mk_Release_Access_IPC

	5.8.5.5 VRE Management
	5.8.5.5.1 Function _mk_Get_VRE_Handle
	5.8.5.5.2 Function _mk_Get_Access_VRE
	5.8.5.5.3 Function _mk_Release_Access_VRE
	5.8.5.5.4 Function _mk_Attach_VRE

	5.8.5.6 Firmware Management
	5.8.5.6.1 Function _mk_Open_Impersonation
	5.8.5.6.2 Function _mk_Close_Impersonation
	5.8.5.6.3 Function _mk_Impersonate_Process
	5.8.5.6.4 Function _mk_Commit_Impersonated

	5.9 Communication Service Interface
	5.9.1 FIFO Update procedure

	5.10 Firmware Management Service Interface
	5.10.1 Firmware Header Management
	5.10.1.1 MGT_Store_Firmware_Header
	5.10.1.2 MGT_Retrieve_Firmware_Header

	5.10.2 Firmware State Management
	5.10.2.1 MGT_Enable_Firmware
	5.10.2.2 MGT_Disable_Firmware
	5.10.2.3 MGT_Is_Firmware_Enabled
	5.10.2.4 MGT_Delete_Firmware

	5.10.3 Firmware Impersonation Management
	5.10.3.1 MGT_Open_Process_Impersonation
	5.10.3.2 MGT_Close_Process_Impersonation
	5.10.3.3 MGT_Open_Library_Impersonation
	5.10.3.4 MGT_Close_Library_Impersonation
	5.10.3.5 MGT_Open_LLOS_Impersonation
	5.10.3.6 MGT_Close_LLOS_Impersonation
	5.10.3.7 MGT_Allocate_Firmware

	5.11 Mandatory Access Control
	5.11.1 VPP Application
	5.11.2 System VPP Application
	5.11.3 Kernel Functions Groups

	6 Virtual Primary Platform Application
	6.1 The Virtual Hardware Platform
	6.2 Structure
	6.3 VPP Application Session
	6.4 High Level Operating System (HLOS)
	6.4.1 HLOS Application
	6.4.2 Remote Application Management

	7 Minimum Level of Interoperability (MLOI)
	7.1 Basic Data Types
	7.2 Constants and Limits
	7.3 Errors and Exceptions
	7.4 Cross-Execution-Domain Identifiers
	7.5 Cross-Execution-Domain Signals

	8 Annexes
	8.1 Services
	8.1.1 Service Generic Message Flow

		2018-03-30T14:18:42-0500
	Document Management

