

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents
or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. The technology provided or described herein is
subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by
the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Technology
TEE TUI Extension: Biometrics API
Version 1.0

Public Release
March 2018
Document Reference: GPD_SPE_042

 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE TUI Extension: Biometrics API – Public Release v1.0 3 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 6
1.1 Audience ... 6
1.2 IPR Disclaimer .. 7
1.3 References .. 7
1.4 Terminology and Definitions ... 8
1.5 Abbreviations and Notations ... 13
1.6 Revision History .. 13

2 Biometrics API Objectives ... 14
2.1 Target .. 14
2.2 Purpose ... 14
2.3 Scope .. 14

3 Overview of Biometric Architecture .. 15
3.1 API Function Calls Overview .. 19

3.1.1 Enroll .. 19
3.1.2 Capture... 19
3.1.3 Verify .. 20
3.1.4 Associate .. 20
3.1.5 Dissociate ... 20
3.1.6 List Templates .. 20
3.1.7 Stop .. 20

3.2 Data Object Lifecycle .. 21
3.2.1 Live Templates ... 21
3.2.2 Stored Templates ... 21
3.2.3 Associations ... 22

4 Biometrics API .. 23
4.1 Standard TEE Terminology and Methodology .. 23

4.1.1 Parameter Annotations .. 23
4.1.1.1 Inbufs and Outbufs .. 23

4.1.2 Data Types ... 23
4.1.3 Return Codes Including Error Codes Used in this Specification ... 23
4.1.4 External Functions ... 24
4.1.5 Specification Version Number Property ... 25
4.1.6 Header File ... 25
4.1.7 API Version .. 26
4.1.8 Version Compatibility Definitions ... 27
4.1.9 Structure Versions .. 28

4.2 Background Material and Implementation Options ... 29
4.2.1 Biometric Peripherals ... 29
4.2.2 Live Images, Templates, and Raw Images .. 29
4.2.3 Using Biometrics with the TUI Low-level API ... 30
4.2.4 Biometric Matching Thresholds .. 30
4.2.5 Use of Trusted Storage .. 31

4.3 Data Constants ... 32
4.3.1 Return Codes ... 32
4.3.2 TEE_BIO_ASSURANCE_LEVEL .. 34
4.3.3 TEE_BIO_CAPTURE_TYPE ... 35
4.3.4 TEE_BIO_TYPE ... 35
4.3.5 TEE_EVENT_BIO_TYPE... 36

4 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 State Table .. 37
4.5 Data Structures ... 37

4.5.1 TEE_BioHandle .. 37
4.5.2 TEE_BioTag ... 37
4.5.3 TEE_Event_Bio .. 38
4.5.4 TEE_TemplateID .. 39

4.6 Biometric Functions ... 40
4.6.1 Functions That Do Not Require a TUI Session .. 40

4.6.1.1 TEE_BioDissociateTemplate .. 40
4.6.1.2 TEE_BioListTemplates .. 42

4.6.2 Functions That Require a Low-level TUI Session .. 43
4.6.2.1 TEE_BioStartAssociate ... 44
4.6.2.2 TEE_BioStartCapture .. 46
4.6.2.3 TEE_BioStartEnroll ... 48
4.6.2.4 TEE_BioStartVerify ... 50
4.6.2.5 TEE_BioStop ... 52

Annex A Panicked Function Identification .. 53

Annex B Biometrics API Usage ... 54

Annex C Sequence Diagrams .. 61

TEE TUI Extension: Biometrics API – Public Release v1.0 5 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables
Table 1-1: Normative References .. 7

Table 1-2: Informative References .. 7

Table 1-3: Terminology and Definitions ... 8

Table 1-4: Abbreviations and Notations .. 13

Table 1-5: Revision History ... 13

Table 4-1: External Functions .. 24

Table 4-2: Specification Version Number Property – 32-bit Integer Structure .. 25

Table 4-3: Structure Versions .. 28

Table 4-4: Return Code Structure ... 32

Table 4-5: Return Codes ... 32

Table 4-6: TEE_BIO_ASSURANCE_LEVEL Values .. 34

Table 4-7: TEE_BIO_CAPTURE_TYPE Values ... 35

Table 4-8: TEE_BIO_TYPE Values ... 35

Table 4-9: TEE_EVENT_BIO_TYPE Values ... 36

Table 4-10: TEE_PERIPHERAL_BIO State Table Values .. 37

Table A-1: Function Identification Values .. 53

Figures
Figure 3-1: Architecture Overview – Multiple Biometrics... 16

Figure 3-2: Architecture Overview – Biometrics .. 18

Figure C-1: Biometric Enroll Using TUI Low-level API .. 61

Figure C-2: Biometric Associate Using TUI Low-level API .. 62

Figure C-3: Biometric Verify Using TUI Low-level API .. 63

6 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction
Many sensitive use cases lead to a user interaction during which the physical presence and acceptance of the
authorized user must be confirmed. They are mainly, but not exclusively, related to financial services and
corporate usages: bill payment, money transfer, document signature validation, access control to corporate
data assets, etc. In the past, verification of the user has often been performed through PIN or password entry.

The TEE Internal Core API ([TEE Core API]) offers the possibility to execute all sensitive operations within a
Trusted Application (TA) running in the Trusted Execution Environment (TEE). However, certain applications
need to verify the presence of a known user and sometimes to request a conscious gesture to confirm
validation or acceptance of information or a transaction. To be trustworthy, these verification operations need
to be handled inside the TEE and not to rely on facilities in the Rich Execution Environment (REE); hence the
requirement to implement the Biometric Sensor as part of a Trusted User Interface, with its driver amongst the
Trusted OS Components. The Biometrics API will be implemented as part of the TEE, and all data will be
processed and stored protected by the TEE.

This document defines and specifies:

• The discovery and identification of all biometric capabilities.

• The use of biometric functionality supported by hardware, entirely protected inside the TEE.

This specification is to be used by Trusted Application developers relying on biometric recognition for
authentication of the user and confirmation of user acceptance.

The structure of the defined interface is such that alternative biometric functionality can easily be integrated in
a logical manner into the function structure. The only functionality that is required to be common to all
biometrics is the ability to discover and disclose all biometric capability that may be present in the device. The
structures returned are intended to support management of parallel instances of different Biometric
Peripherals, and to support the concurrent use of multi-modal biometrics through fusion.

The current set of functions in the API has been validated against the requirements of fingerprint biometrics
specifically. We anticipate that the API will be sufficient for a large number of established biometric modalities,
but we recognize that some biometric sources may require future extensions. The architecture and structure
of this API have been designed to support such future extensions as necessary, and the Discover function
provides support for multiple biometric modalities to be available and used, jointly and separately, on one
device.

This document is an extension to TEE Trusted User Interface Low-level API ([TEE TUI Low]).

1.1 Audience

This document is intended to support software developers implementing Trusted Applications running inside
the TEE which need to verify the user’s presence and/or the user’s acceptance of a proposed transaction, or
implementing Relying Applications (RAs) running in the REE relying on a Relying Trusted Application (RTA)
for verification of user presence and/or acceptance.

This document is also intended for TEE implementers who wish to support these biometric interfaces.

TEE TUI Extension: Biometrics API – Public Release v1.0 7 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform,
please visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

1.3 References
Table 1-1: Normative References

Standard / Specification Description Ref

GPD_SPE_010 GlobalPlatform Technology
TEE Internal Core API Specification

[TEE Core API]

GPD_SPE_055 GlobalPlatform Technology
TEE Trusted User Interface Low-level API

[TEE TUI Low]

ISO/IEC 9899:1999 Programming languages – C [C99]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

Table 1-2: Informative References

Standard / Specification Description Ref

GPD_SPE_007 GlobalPlatform Technology
TEE Client API Specification

[TEE Client API]

GPD_SPE_009 GlobalPlatform Technology
TEE System Architecture

[TEE Sys Arch]

GPD_SPE_021 GlobalPlatform Technology
GPD TEE Protection Profile

[TEE Prot Profile]

GPD_SPE_025 GlobalPlatform Technology
TEE TA Debug Specification

[TEE Debug]

GPD_SPE_120 GlobalPlatform Technology
TEE Management Framework

[TEE Mgmt Fmwk]

GP_GUI_001 GlobalPlatform Document Management Guide [Doc Mgmt]

ISO/IEC 2382-37:2017 Information Technology – Vocabulary – Part 27:
Biometrics

[ISO 2382]

BSI-PP-0084 Security IC Platform Protection Profile with
Augmentation Packages – Eurosmart

[BSI-PP-0084]

https://www.globalplatform.org/specificationsipdisclaimers.asp

8 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, and MAY in this
document (refer to [RFC 2119]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD indicates a recommendation.

• MAY indicates an option.

Our terminology is aligned with ISO/IEC 2382-37/2017 ([ISO 2382]); however, our definitions may vary in
precision from those in the ISO document. For the purpose of this document, the definitions in Table 1-3 shall
take precedence.

Table 1-3: Terminology and Definitions

Term Definition

Associate For an RTA to form a Link with a Stored Template through the TEE, so that
subsequently the RTA:
• Will consider a successful match against that template as authentication of

the Authorized User ID in question.
• May also link an action or function with the Stored Template so that a

successful match also leads to a call to that action or function.
• May also link state change with the Stored Template so that a successful

match also enables abilities only available in that state.

Association The creation (by an RTA) of a Link between a Stored Template and an
Authorized User ID. For more details, see Associate.

Authorized User The person expected or required to control the device, the owner, but also the
person with access and usage rights to the service or function in the RA. This
term should be considered in the context of each RTA separately and multi-
user devices have to be taken into account as well as personal devices. The
important distinction to make is that the ownership of the RTA and the
services and assets it represents is not linked to the ownership of the device
and its integrated Biometric Sub-system.
The following roles may become an authorized user once validated by the
biometric sub-system.

o Biometric (sub-)system owner (ISO Definition 3.7.9)
o Biometric applicant (ISO Definition 3.7.1)
o Biometric capture subject (ISO Definition 3.7.3)
o Biometric data subject (ISO Definition 3.7.5)

Biometric Peripheral A component of the TEE and part of the Biometric Sub-system. It represents
a selected biometric modality, or set of modalities in multi modal fusion, and
software to process it. Multiple Biometric Peripherals may use the same
Biometric Sensor and one Biometric Peripheral may use multiple Biometric
Sensors at the same time or alternately. It is discovered by TAs through a
discovery function provided through the Peripheral API. It is the Biometric
Peripheral’s task, using whatever capability the Biometric Sensor offers, to
provide the functionality required by the Biometrics API.

TEE TUI Extension: Biometrics API – Public Release v1.0 9 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Biometric Sensor Hardware device, including its drivers, physically integrated in the device. A

physical component that transforms the user’s biometric feature, when
presented, into raw or processed biometric data: the Live Image. A Biometric
Sensor might be able to provide other functionality such as pre-processing of
raw data, extraction of template, or matching.

Biometric Sub-system The part of the Trusted OS Components specific to implementing the
Biometrics API, including supporting hardware, such as Biometric Sensors. In
addition to Trusted OS Components, it also includes any untrusted parts such
as an REE Enrollment support app.

Biometrics API The API defined in the current document, TEE TUI Extension: Biometrics API.

Capture The act by which the Biometric Sensor collects data from the physical
biometric feature to create the raw data set, known as the Live Image in the
case of biometric traits, which can be visualized as images, e.g. face, iris, or
fingerprints.
The term Capture is equivalent to Biometric Capture Process
(ISO Definition 3.5.2); in our definition:
• physical biometric feature is equivalent to biometric characteristic (ISO

Definition 3.1.2).
• raw data set is equivalent to biometric sample (ISO Definition 3.3.21).
• Live Image is equivalent to biometric sample (ISO Definition 3.3.14).

Client Application (CA) An application running outside of the Trusted Execution Environment (TEE)
making use of the TEE Client API ([TEE Client API]) to access facilities
provided by Trusted Applications inside the TEE.
Contrast Trusted Application (TA).

Dissociate For an RTA to delete the Link it has created between an Authorized User ID
known to the RTA and a specific Stored Template, after which the RTA
cannot request verification against that Stored Template.
Contrast Associate.

Dissociation The deletion (by an RTA) of a Link between a Stored Template and an
Authorized User ID. For more details, see Dissociate.

End User Someone who presents a biometric trait to the biometric system and who may
or may not have been authenticated.
The ISO vocabulary distinguishes between biometric applicant (ISO
Definition 3.7.1), i.e. an individual seeking to be enrolled, and claimant (ISO
Definition 3.7.10), i.e. an individual seeking to be verified.

Enroll To create a new Stored Template for future reference, defining the authorized
user with reference to the unique instance of this biometric trait.

Enrollment The creation of a new Stored Template for future reference, defining the
authorized user with reference to the unique instance of this biometric trait.
Enrollment is a prerequisite to Association.

10 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Event API An API that supports the event loop. Includes the following functions, among

others:
TEE_Event_AddSources
TEE_Event_OpenQueue
TEE_Event_Wait

The Event API is currently defined in [TEE TUI Low], but will be defined in
[TEE Core API] beginning with v1.2.

Event loop A mechanism by which a TA can enquire for and then process messages
from types of peripherals including pseudo-peripherals.

Extract (Extraction) To create a Template from biometric image data (Live Image) through
extraction of critical and unique information (the biometric features (ISO
Definition 3.3.11)) contained in the image and so in the physical biometric
trait. The term Extract is equivalent to Biometric Feature Extraction (ISO
Definition 3.5.4).

Fingerprint Sensor Hardware component which captures an image of the fingerprint when the
End User presents the finger to the sensor.

Identification The Matching of a Live Template against a list of Associated and Stored
Templates to identify the best correlation.
For more details, see Identify.

Identify To Match a Live Template against a list of Associated and Stored Templates
to identify the best correlation. Returns the unique identifier of the best match
to the Stored Template, provided a preset minimum of likeness is achieved.
In terms of ISO vocabulary, identify is defined as a biometric search (ISO
Definition 3.5.6) against a biometric enrolment database (ISO Definition
3.3.9) to find and return the biometric reference identifier(s) (ISO Definition
3.3.19).

Link Internal association between an RTA and a Stored Template. Links are
managed by the TEE.

Live Image Image data captured in real time by the Biometric Sensor as the End User’s
biometric trait is presented to it. Live Image is equivalent to biometric
sample (ISO Definition 3.3.21).

Live Template The Template Extracted from the current scan sample, the Live Image. Live
Template is equivalent to biometric probe (ISO Definition 3.3.14).

Match Any similarity score (ISO Definition 37.03.35) higher than the threshold
value is considered a match. Match is equivalent to the term biometric
comparison (ISO Definition 3.5.7.)

Metadata Metadata is other data associated with the template or Biometric Sub-system
and used by the Biometric Sub-system for housekeeping. Examples of such
metadata may include association links.

Opaque Handle The TEE uses opaque handles to refer to objects, enabling more
implementation options. See [TEE Core API] section 2.4.

Panic An exception that kills a whole TA instance. See [TEE Core API] section 2.3.3
for full definition.

TEE TUI Extension: Biometrics API – Public Release v1.0 11 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Peripheral API A low-level API that enables a Trusted Application to interact with peripherals

via the Trusted OS. Includes the following functions, among others:
• TEE_Peripheral_GetPeripherals
• TEE_Peripheral_GetStateTable
• TEE_Peripheral_Open
The Peripheral API is currently defined in [TEE TUI Low], but will be defined
in [TEE Core API] beginning with v1.2.

Property An immutable value identified by a name.

Relying Application (RA) Any application (TA or CA) that uses the response to a call to Verify to infer
the presence and possible acceptance of the Authorized User.

Relying Trusted
Application (RTA)

Any TA that uses the response to a call to Verify to guide process decisions.
The RTA may specifically communicate information about the Match result
(comparison decision result (ISO Definition 3.3.26), which can be a match
(ISO Definition 3.3.31) or non-match (ISO Definition 3.3.33)) to a CA using
established TEE communication methods. This CA then becomes an RA.

Rich Execution
Environment (REE)

An environment that is provided and governed by a Rich OS, potentially in
conjunction with other supporting operating systems and hypervisors; it is
outside of the TEE. This environment and applications running on it are
considered untrusted.
Contrast Trusted Execution Environment (TEE).

Rich OS Typically, an OS providing a much wider variety of features than are provided
by the OS running inside the TEE. It is very open in its ability to accept
applications. It will have been developed with functionality and performance
as key goals, rather than security. Due to its size and needs, the Rich OS will
run in an execution environment outside of the TEE hardware (often called an
REE – Rich Execution Environment) with much lower physical security
boundaries. From the TEE viewpoint, everything in the REE is considered
untrusted, though from the Rich OS point of view there may be internal trust
structures.
Contrast Trusted OS.

Secure Element A tamper-resistant secure hardware component which is used in a device to
provide the security, confidentiality, and multiple application environment
required to support various business models. May exist in any form factor,
such as embedded or integrated SE, SIM/UICC, smart card, smart microSD,
etc.

Session Logically connects multiple functions invoked on a Trusted Application.

Stored Template A Template created through Enrollment and stored with a unique identifier for
use in future Identification and Verification. The term Stored Template is
equivalent to biometric reference (ISO Definition 3.3.16).

Tamper-resistant secure
hardware

Hardware designed to isolate and protect embedded software and data by
implementing appropriate security measures. The hardware and embedded
software meet the requirements of the latest Security IC Platform Protection
Profile ([BSI-PP-0084]) including resistance to physical tampering scenarios
described in that Protection Profile.

12 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
Template A condensed vector format data set which captures the essential data of a

biometric trait.

Trusted Application (TA) An application running inside the Trusted Execution Environment (TEE) that
provides security-related functionality to Client Applications outside of the
TEE or to other Trusted Applications inside the TEE.
Contrast Client Application (CA).

Trusted Execution
Environment (TEE)

An execution environment that runs alongside but isolated from an REE. A
TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets from general software attacks, defines
rigid safeguards as to data and functions that a program can access, and
resists a set of defined threats. There are multiple technologies that can be
used to implement a TEE, and the level of security achieved varies
accordingly.
Contrast Rich Execution Environment (REE).

Trusted OS An operating system running in the TEE providing the TEE Internal Core API
to Trusted Applications.
Contrast Rich OS.

Trusted Storage Storage that is protected either by the hardware of the TEE or
cryptographically by keys held in the TEE, and that contains data that is
accessible only to the Trusted Application that created the data.

Trusted User Interface
(Trusted UI or TUI)

A user interface that ensures that the displays and input components are
controlled by the TEE and isolated from the REE and even the TAs.

Verification The Match between a Stored Template and a Live Template. The answer is
only Match or No Match.
The definition of the term Verification corresponds to the definition given for
biometric comparison (ISO Definition 3.5.7).
The comparison decision result (ISO Definition 3.3.26) is either a match
(ISO Definition 3.3.31) or non-match (ISO Definition 3.3.33).

Verify To Match a Stored Template and a Live Template.
For more details, see Verification.

TEE TUI Extension: Biometrics API – Public Release v1.0 13 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.5 Abbreviations and Notations
Table 1-4: Abbreviations and Notations

Abbreviation / Notation Meaning

API Application Programming Interface

CA Client Application

ID IDentifier

IETF Internet Engineering Task Force

OS Operating System

PIN Personal Identification Number

PNG Portable Network Graphics

RA Relying Application

REE Rich Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF

RTA Relying Trusted Application

SE Secure Element

TA Trusted Application

TEE Trusted Execution Environment

TUI Trusted User Interface

UI User Interface

1.6 Revision History

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are
minor releases where changes typically introduce supplementary items that do not impact backward
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks.

Table 1-5: Revision History

Date Version Description

March 2018 1.0 Public Release

14 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Biometrics API Objectives

2.1 Target

This specification is targeted at a TEE running within a smartphone or a tablet. A biometrics API can be
envisaged for other devices hosting a TEE, but facilities specific to supporting such devices are out of scope
of this specification.

Supported smartphones and tablets in this document have at least a Biometric Sensor which SHALL be wired
and integral to the device. Remote peripherals are not considered in this specification.

2.2 Purpose

The Biometrics API permits Relying Trusted Applications (RTAs) to verify the authorized user through access
to the Biometric Sub-system of the TEE.

2.3 Scope

This specification describes the API, including functions, data, and implementation properties. It makes
possible a fully interoperable implementation of biometrics integrated into the TEE. These will be accessible
to TAs through an extension of TEE Trusted User Interface Low-level API ([TEE TUI Low]).

TEE TUI Extension: Biometrics API – Public Release v1.0 15 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 Overview of Biometric Architecture
Biometric capabilities and their functionality as present in the hardware of the TEE are made available to the
TAs. The biometric capabilities are contained in the Biometric Sub-system, consisting of the Biometric
Peripherals which use the Biometric Sensors more precisely:

• A Biometric Sub-system is a component of the TEE, composed of all TEE Biometric Peripherals in the
device plus any supporting TEE or REE software and hardware.

o Definition: The part of the Trusted OS Components specific to implementing the Biometrics API,
including supporting hardware, such as sensors. In addition to Trusted OS Components, the
Biometric Sub-system includes untrusted parts such as an REE Enrollment support app.

o The Biometric Sub-system exposes the API defined in this document.

o To discover a Biometric Peripheral, a TA uses the Peripheral API (effectively a different
sub-system in the Trusted OS Components) which will communicate in an implementation-specific
manner with the Biometric Sub-system to support the discovery of Biometric Peripherals.

• A Biometric Peripheral is a component of the Biometric Sub-system.

o Definition: A Biometric Peripheral represents a selected biometric modality, or a set of modalities in
multi modal fusion, and software to process it. Multiple Biometric Peripherals may use the same
sensor and one Biometric Peripheral may use multiple sensors at the same time or alternately. The
TAs discover Biometric Peripherals through a discovery function provided through the Peripheral
API. It is the Biometric Peripheral’s task, using whatever capability the sensor offers, to provide the
functionality required by the Biometrics API.

o The Peripheral API provides an abstracted interface to the biometric sensor which can be used by
the TA.

o The device design and implementation MAY restrict how a Biometric Peripheral can manage
access to a sensor or group of sensors, and how the data from that sensor or sensors is exposed
to the TA.

o For data, the Biometric Peripheral only exposes opaque handles to templates and match
indications.

o For access restrictions:

 The Biometric Peripheral blocks other TAs from using the sensors associated with that
Biometric Peripheral when in use.

 Note that it might achieve this blocking by asking other parts of the Trusted OS Components to
manage the blocking.

o The Biometric Peripheral manages access control to that peripheral’s templates.

 Note that it might achieve this access control by asking other parts of the Biometric Sub-system
components to manage the Biometric Peripheral’s Templates.

• A Biometric Sensor provides the Live Image and possibly other related services.

o Definition: A physical component, transforming the user’s biometric feature, when presented, into
raw or processed biometric data; the Live Image. A Biometric Sensor might be able to provide
other functionality such as pre-processing of raw data, extraction of template or matching.

• In general, it is an implementation choice as to whether particular functionality is implemented in the
generic Biometric Sub-system, the Biometric Peripheral, or the Biometric Sensor. Such decisions
SHALL be transparent to the calling TA.

16 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

When interacting with the Biometric Sub-system of the TEE, the first step is the discovery of the available
biometric capabilities present in the platform. This is performed using the standard discovery mechanisms in
the Peripheral API. The functions used are TEE_Peripheral_GetPeripherals and
TEE_Peripheral_GetStateTable. These functions are defined in [TEE TUI Low] but will be defined in
[TEE Core API] beginning with v1.2.

The Biometric Peripheral appears as a peripheral with the type TEE_PERIPHERAL_BIO, while the Biometric
Sensor will appear with the specific type; for example, TEE_PERIPHERAL_FINGERPRINT. The TA calling will
only interact with the Biometric Peripheral (TEE_PERIPHERAL_BIO); it will not interact directly with the
Biometric Sensor.

Once the biometric capabilities are known, the TA can select which Biometric Peripheral to engage with and
proceed to utilize that service, as shown for the specific case of fingerprint biometrics in Figure 3-1.

Figure 3-1: Architecture Overview – Multiple Biometrics

Trusted OS Components

Other Biometric Peripherals

Biometric Sub-System

Peripheral Discovery

Specific Fingerprint Biometric
Peripheral(s)

GlobalPlatform Internal APIs

Relying TAs (RTAs)

Fingerprint
Sensor Generic communications

Implementation defined
communications

Peripheral API Other GP APIEvent APIBiometrics API Extensions

Communications defined by this
GlobalPlatform specification

Other Biometric Peripherals
Other Biometric Peripherals

Enroll VerifyAssociate

Event
Management

TEE TUI Extension: Biometrics API – Public Release v1.0 17 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The Biometric Sub-system is integrated into the TEE and provides a service through the established interfaces.
It will utilize TEE secure storage, along with REE and SE capabilities as appropriate and available on any
specific platform. Figure 3-2 shows the general positioning of the Biometric Sub-system, the Biometric
Peripheral, and the Biometric Sensor in a conceptual TEE architecture. Note that part or all of the Biometric
Peripheral may optionally be implemented as TAs executing on the TEE, or in one of the available SEs
executing as “Match on Card”. In addition, some functionality that is not security-critical may, in some
implementations, be handled by Biometric Sub-system components in the REE. Each positioning will provide
different advantages and limitations; the choice of architecture in this respect is left to the device manufacturer.
However, regardless of where the Biometric Sub-system is placed, its execution and all data, whether long
term stored or run-time, SHALL be protected using the security criteria of the TEE for Trusted Storage.
Generally, this means that material held on the TEE’s behalf must be bound to the TEE and cannot be
accessed or manipulated by unauthorized applications in the TEE, REE, or SE. The Biometric Sub-system
described in this specification is, regardless of where it is placed, considered part of the Trusted OS for the
purposes of security evaluation.

A Relying TA communicates only with the Biometric Sub-system; this communication API is defined in this
document. The Biometric Sub-system communicates with the Biometric Peripheral, which may communicate
with a Biometric Sensor, to complete any demanded biometric activity.

The interfaces between the Biometric Sub-system, Biometric Peripheral, and Biometric Sensor are internal to
the specific implementation and are out of scope of this document.

18 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-2: Architecture Overview – Biometrics

GPD TEE Client API

REE GPD TEE

Normal REE
Application(s)

REE
Communication

Agent

Rich OS Components

GPD TEE Internal API and
other GPD TEE APIs

TEE
Communication

Agent

Trusted OS Components

Relying CAs
(RCAs)

Relying TAs
(RTAs)

Biometric
Sub-System

Biometric
Sensor(s)

Is
ol

at
io

n
de

fin
ed

 b
y

G
P

D
 T

E
E

 P
P

Platform Hardware

GPD TEE TUI Extension:
Biometrics API

Generic communications

RCA / RTA specific protocol

Communications defined by
this specification

REE based Enrollment
Support App (Optional)

Biometric
Peripheral(s)

Implementation defined
communications

Messages

A TEE design may provide the UI experience for the biometric enrollment operation internally or via REE
software that is indicated here as the optional Enrollment Support App. The Enrollment Support App is an
optional REE piece of software that may be used by the TEE (in conjunction with the TEE-based enrollment
sub-system) to provide the UI experience to users who are undergoing the complex enrollment process. How
the Enrollment Support App is connected to the TEE, and the relevant parts of the Biometric Sub-system, are
implementation-specific.

TEE TUI Extension: Biometrics API – Public Release v1.0 19 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1 API Function Calls Overview

The following functionality is required from the Biometric Sub-system:

• Enroll: Creates one new Stored Template from Live Images captured in the operation.

• Capture: Initiates the process of capturing biometric data.

• Verify: Performs the match between designated Stored Templates and the Live Template.

• Associate: Associates one Stored Template with an RTA.

• Dissociate: Releases the connection between an RTA and a specific Stored Template. The opposite
of Associate.

• List Templates: Lists currently Stored Templates.

• Stop: Stops a process.

3.1.1 Enroll

Enroll tells the Biometric Sub-system to create a Stored Template and store it securely with an associated
unique identifier.

1. Capture one or more images of the End User’s biometric feature and create a Template.

2. Optionally, provide user guidance in the process.

3. If able to create a Template of sufficient quality:

a. Store the created Template as a Stored Template.

b. Create and retain one unique identifier for the new Stored Template.

4. If unable to create a Template of sufficient quality, no Template is created and an error is returned.

3.1.2 Capture

Capture tells the Biometric Sub-system to start capturing biometric data.

1. Initiate event to prepare the Biometric Peripheral to accept input.

2. Indicate when user first presents their biometric feature.

3. When capture is complete, provide an opaque handle to the captured data, now considered a Live
Template.

20 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1.3 Verify

Verify tells the Biometric Sub-system to match a Live Template captured in a previous Capture operation
against one or more Stored Templates. This makes it possible to confirm the identity of the End User is as
claimed, or to identify one End User’s biometric feature from a list of Stored Templates. In ISO terms, it
comprises biometric comparison (the match and decision) and serves both for biometric identification
(when performed against a list of Stored Templates) and biometric verification (when performed against only
one Stored Template, which represents the claim).

The ISO vocabulary defines biometric verification (ISO Definition 3.8.3) as the process of confirming a
biometric claim (ISO Definition 3.6.4) through biometric comparison (ISO Definition 3.5.7).

1. Perform Match between one Live Template and a list of Stored Templates. Alternatives are:

a. The list is one index to one Stored Template only; that is the Verify is attempted against only one
claimed identity.

b. The list contains indexes to several Stored Templates that the RTA has previously associated with.

3.1.4 Associate

Associate tells the Biometric Sub-system to increase the count of RTAs associated with a Stored Template. It
supports housekeeping functions in the Biometric Sub-system.

1. Match all available Stored Templates against a Live Template provided by the End User.

2. If a Match is found, then:

a. Create a Link between the calling RTA and one specific Stored Template. Provide one unique
identifier to the Stored Template which will be used by the RTA to invoke that Stored Template for
Verification or Dissociation.

3. If no Match is found, an error is returned.

3.1.5 Dissociate

Dissociate tells the Biometric Sub-system to decrease the count of RTAs associated with a Stored Template.
It supports housekeeping functions in the Biometric Sub-system.

1. Break link between RTA and a specific Stored Template.

2. May provoke an automatic erase of the template.

3.1.6 List Templates

List Templates tells the Biometric Sub-system to return a list of the Stored Templates currently associated with
the calling TA.

3.1.7 Stop

Stop tells the Biometric Sub-system to stop the Associate, Capture, Enroll, or Verify operation.

TEE TUI Extension: Biometrics API – Public Release v1.0 21 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2 Data Object Lifecycle

To implement this API, the Biometric Sub-system SHALL manage Live Templates, Stored Templates, and
Associations.

3.2.1 Live Templates

A Live Template is the data captured by the sensor. A Live Template is created by a Capture operation started
when the TA calls the TEE_BioStartCapture function.

The template data SHALL only be available to the Biometric Peripheral.

The Biometric Peripheral SHALL store the Live Template in storage that is at least as secure as TEE working
memory.

Each Biometric Peripheral stores a single Live Template. When a Capture operation starts, any stored Live
Template SHALL be deleted.

The Biometric Peripheral SHALL ensure that the data presented as a Live Template was captured by the
current Capture operation. It SHALL not be possible to re-present data captured in an earlier operation.
Therefore, the Live Template SHOULD be stored in volatile memory. If the Live Template is stored in non-
volatile memory, the Biometric Peripheral SHALL ensure that it is deleted or invalidated when the TA closes
the Biometric Peripheral or starts a new Capture operation.

If the operation is successful, the Biometric Sub-system returns an opaque handle to the Live Template to the
calling TA in the TEE_EVENT_BIO_CAPTURE_COMPLETED event. As with other opaque handles, this handle
is only valid in the context of the TA instance that created it.

If a TA instance attempts to use an opaque handle issued to a different TA instance, that handle SHALL be
invalid and the TEE SHALL panic.

While the handle to a template SHALL remain valid for as long as a TA instance is open, the TA SHOULD use
a Live Template without delay. If there is a delay between capture and verification or association, the data
associated with the handle may no longer exist and the Biometric Sub-system will return an error.

3.2.2 Stored Templates

A stored template is the template created when a user enrolls and is used to verify or associate a Live
Template. A stored template is created by an Enroll operation started when the TA calls the
TEE_BioStartEnroll function.

Stored templates belong to the Biometric Sub-system and SHALL NOT be accessible to any TA or other
sub-system or API.

A TA cannot access the stored template; it only knows the TEE_TemplateID through its association with
that template.

Stored templates SHALL be stored in non-volatile storage that is at least as secure as TEE trusted storage.

Stored templates SHOULD persist over a power cycle and over upgrades to the TEE or upgrades to the
Biometric Sub-systems.

This API does not provide a mechanism to install templates captured on another device. A Biometric Peripheral
MAY support a proprietary mechanism for loading templates and creating associations with them.

Stored templates SHALL be deleted:

• when the last association with the template is removed

• on factory reset

22 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.3 Associations

An association indicates that a given TA has associated a user’s biometric feature with a given stored template.
An Association is created by an enroll or an Associate operation started when the TA calls the
TEE_BioStartEnroll or TEE_BioStartAssociate function.

The Biometric Sub-system SHALL store a table of which templates are associated with which TAs, so that it
can return a TEE_TemplateID whenever a TA verifies biometric data. This table SHALL be stored in storage
that is only accessible to the Biometric Sub-system. This storage SHALL be at least as secure as the TEE
Trusted Storage.

For any TA instance, the Biometric Sub-system SHALL return the same TEE_TemplateID every time a Live
Template is verified against a given stored template. The Biometric Sub-system MAY return the same
TEE_TemplateID for a given stored template to every TA with which it is associated, or it MAY return different
TEE_TemplateIDs to different TAs.

There is no security advantage to returning different IDs. The only information a TA learns on a successful
association is that the user has previously enrolled this biometric data with another TA on the system – but not
which TA. The value of the ID does not add any information.

Note: The Biometric Sub-system merely records the fact that specific biometric data has been enrolled
and associated with this TA. It does NOT store any data about the identity of the user to whom
the template belongs or the purpose for which they want to use that biometric feature. For
example, in a banking application a user may choose to associate their index finger with their
checking account and the ring finger with a savings account.

The TA SHALL store this information itself. It may be that in their email application the index finger
is associated with the user’s business email. However, the banking TA cannot know this.

The Biometric Sub-system should maintain all associations in non-volatile memory. Associations SHALL
persist over a power cycle and over upgrades to the TEE, Biometric Sub-systems, or TAs.

The Biometric Sub-system SHALL delete an association when:

• A TA calls the Dissociate function.

• The TA that created the association is uninstalled.

TEE TUI Extension: Biometrics API – Public Release v1.0 23 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 Biometrics API

4.1 Standard TEE Terminology and Methodology

TEE TUI Extension: Biometrics API is an extension of [TEE TUI Low], and as such the generic definitions from
that document apply here.

In the following cases, this specification enhances or modifies those definitions.

4.1.1 Parameter Annotations

In the descriptions of functions, parameters are annotated in accordance with [TEE Core API] section 3.4.

4.1.1.1 Inbufs and Outbufs

This specification makes use of [inbuf] and [outbuf] (as described in [TEE Core API] sections 3.4.3
and 3.4.4), but instead of using a void* pointer for the buffer, it uses a typed pointer. However, the size
parameter always refers to a number of bytes.

4.1.2 Data Types

This specification uses the data types defined in [TEE Core API] section 3.2, plus those listed below.

Note: These additional data types will be defined in [TEE Core API] v1.2 and later.

• size_t: The unsigned integer type of the result of the sizeof operator.

• uint64_t: Unsigned 64-bit integer

In the event of any difference between the definitions in this specification and those in the C99 standard
(ISO/IEC 9899:1999 – [C99]), C99 shall prevail.

4.1.3 Return Codes Including Error Codes Used in this Specification

Synchronous functions return TEE_RESULT values which are uint32_t. Functions that start asynchronous
operations also return an immediate result but return further information in events which are added to an event
queue. These events are listed in section 4.3.5.

In the case of an error, there is an error event which includes a TEE_Result value to indicate the error.

Standard return codes are defined in [TEE Core API]. Additional return codes are listed in section 4.3.1.

24 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1.4 External Functions

This specification refers to the following functions defined in other GlobalPlatform specifications:

Table 4-1: External Functions

Function Specification
TEE_Event_AddSources
TEE_Event_OpenQueue
TEE_Event_Wait

Event API introduced in [TEE TUI Low]
These functions will be defined in [TEE Core API]
beginning with v1.2.

TEE_Panic [TEE Core API]

TEE_Peripheral_GetPeripherals
TEE_Peripheral_GetStateTable
TEE_Peripheral_Open

Peripheral API introduced in [TEE TUI Low]
These functions will be defined in [TEE Core API]
beginning with v1.2.

TEE_TUI_BlitDisplaySurface
TEE_TUI_GetDisplayInformation
TEE_TUI_GetDisplaySurface
TEE_TUI_GetPNGInformation
TEE_TUI_GetSurface
TEE_TUI_GetSurfaceBuffer
TEE_TUI_GetSurfaceInformation
TEE_TUI_InitSessionLow
TEE_TUI_SetPNG

[TEE TUI Low]

TEE TUI Extension: Biometrics API – Public Release v1.0 25 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1.5 Specification Version Number Property

This specification defines a TEE property containing the version number of the specification that the
implementation conforms to. The property can be retrieved using the normal Property Access Functions
defined in [TEE Core API]. The property SHALL be named “gpd.tee.biometric.version” and SHALL be
of integer type with the interpretation given below.

The specification version number property consists of four positions: major, minor, maintenance, and RFU.
These four bytes are combined into a 32-bit unsigned integer as follows:

• The major version number of the specification is placed in the most significant byte.

• The minor version number of the specification is placed in the second most significant byte.

• The maintenance version number of the specification is placed in the second least significant byte.
If the version is not a Maintenance version, this SHALL be zero).

• The least significant byte is reserved for future use. Currently this byte SHALL be zero.

Table 4-2: Specification Version Number Property – 32-bit Integer Structure

Bits [24-31] (MSB) Bits [16-23] Bits [8-15] Bits [0-7] (LSB)

Major version number
of the specification

Minor version number
of the specification

Maintenance version
number of the specification

Reserved for future use.
Currently SHALL be zero.

So, for example:

• Specification version 1.1 will be held as 0x01010000 (16842752 in base 10).

• Specification version 1.2 will be held as 0x01020000 (16908288 in base 10).

• Specification version 1.2.3 will be held as 0x01020300 (16909056 in base 10).

• Specification version 12.13.14 will be held as 0x0C0D0E00 (202182144 in base 10).

• Specification version 212.213.214 will be held as 0xD4D5D600 (3570783744 in base 10).

This places the following requirement on the version numbering:

• No specification can have a Major or Minor or Maintenance version number greater than 255.

4.1.6 Header File

The header file for the Biometrics API SHALL have the name “tee_tui_bio_api.h”.

#include "tee_tui_bio_api.h"

26 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1.7 API Version

The header file SHALL contain version specific definitions from which TA compilation options can be selected.

#define TEE_BIO_API_MAJOR_VERSION ([Major version number])
#define TEE_BIO_API_MINOR_VERSION ([Minor version number])
#define TEE_BIO_API_MAINTENANCE_VERSION ([Maintenance version number])
#define TEE_BIO_API_VERSION (TEE_BIO_API_MAJOR_VERSION << 24) +

 (TEE_BIO_API_MINOR_VERSION << 16) +
 (TEE_BIO_API_MAINTENANCE_VERSION << 8)

The document version-numbering format is X.Y[.z], where:

• Major Version (X) is a positive integer identifying the major release.

• Minor Version (Y) is a positive integer identifying the minor release.

• The optional Maintenance Version (z) is a positive integer identifying the maintenance release.

TEE_BIO_API_MAJOR_VERSION indicates the major version number of the Biometrics API. It SHALL be set
to the major version number of this specification.

TEE_BIO_API_MINOR_VERSION indicates the minor version number of the Biometrics API. It SHALL be set
to the minor version number of this specification. If the minor version is zero, then one zero shall be present.

TEE_BIO_API_MAINTENANCE_VERSION indicates the maintenance version number of the Biometrics API.
It SHALL be set to the maintenance version number of this specification. If the maintenance version is zero,
then one zero shall be present.

The definitions of “Major Version”, “Minor Version”, and “Maintenance Version” in the version number of this
specification are determined as defined in the GlobalPlatform Document Management Guide
([Doc Mgmt]). In particular, the value of TEE_BIO_API_MAINTENANCE_VERSION SHALL be zero if it is not
already defined as part of the version number of this document. The “Draft Revision” number SHALL NOT
be provided as an API version indication.

A compound value SHALL also be defined. If the Maintenance version number is 0, the compound value
SHALL be defined as:

#define TEE_BIO_API_[Major version number]_[Minor version number]

If the Maintenance version number is not zero, the compound value SHALL be defined as:

#define TEE_BIO_API_[Major version number]_[Minor version number]_[Maintenance
version number]

Some examples of version definitions:

For TEE TUI Extension: Biometrics API v1.3, these would be:

#define TEE_BIO_API_MAJOR_VERSION (1)
#define TEE_BIO_API_MINOR_VERSION (3)
#define TEE_BIO_API_MAINTENANCE_VERSION (0)
#define TEE_BIO_API_1_3

And the value of TEE_BIO_API_VERSION would be 0x01030000.

For a maintenance release of the specification as v2.14.7, these would be:

TEE TUI Extension: Biometrics API – Public Release v1.0 27 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

#define TEE_BIO_API_MAJOR_VERSION (2)
#define TEE_BIO_API_MINOR_VERSION (14)
#define TEE_BIO_API_MAINTENANCE_VERSION (7)
#define TEE_BIO_API_2_14_7

And the value of TEE_BIO_API_VERSION would be 0x020E0700.

4.1.8 Version Compatibility Definitions

A TA can set the definitions in this section to non-zero values if it was written in a way that requires strict
compatibility with a specific version of this specification. These definitions could, for example, be set in the TA
source code, or they could be set by the build system provided by the Trusted OS, based on metadata that is
out of scope of this specification.

This mechanism can be used where a TA depends for correct operation on the older definition. TA authors are
warned that older versions are updated to clarify intended behavior rather than to change it, and there may
be inconsistent behavior between different Trusted OS platforms where these definitions are used.

This mechanism resolves all necessary version information when a TA is compiled to run on a given Trusted
OS.

#define TEE_BIO_REQUIRED_MAJOR_VERSION (major)
#define TEE_BIO_REQUIRED_MINOR_VERSION (minor)
#define TEE_BIO_REQUIRED_MAINTENANCE_VERSION (maintenance)

The following rules govern the use of TEE_BIO_API_REQUIRED_MAJOR_VERSION,
TEE_BIO_REQUIRED_MINOR_VERSION, and TEE_BIO_REQUIRED_MAINTENANCE_VERSION by TA
implementers:

• If TEE_BIO_REQUIRED_MAINTENANCE_VERSION is defined by a TA, then
TEE_BIO_REQUIRED_MAJOR_VERSION and TEE_BIO_REQUIRED_MINOR_VERSION SHALL also be
defined by the TA.

• If TEE_BIO_REQUIRED_MINOR_VERSION is defined by a TA, then
TEE_BIO_REQUIRED_MAJOR_VERSION SHALL also be defined by the TA.

If the TA violates any of the rules above, TA compilation SHALL stop with an error indicating the reason.

TEE_BIO_REQUIRED_MAJOR_VERSION is used by a TA to indicate that it requires strict compatibility with a
specific major version of this specification in order to operate correctly. If this value is set to 0 or is unset, it
indicates that the latest major version of this specification SHALL be used.

TEE_BIO_REQUIRED_MINOR_VERSION is used by a TA to indicate that it requires strict compatibility with a
specific minor version of this specification in order to operate correctly. If this value is unset, it indicates that
the latest minor version of this specification associated with the determined
TEE_BIO_REQUIRED_MAJOR_VERSION SHALL be used.

TEE_BIO_REQUIRED_MAINTENANCE_VERSION is used by a TA to indicate that it requires strict compatibility
with a specific major version of this specification in order to operate correctly. If this value is unset, it indicates
that the latest maintenance version of this specification associated with
TEE_BIO_REQUIRED_MAJOR_VERSION and TEE_BIO_REQUIRED_MINOR_VERSION SHALL be used.

If none of the definitions above is set, a Trusted OS SHALL select the most recent version of this specification
that it supports.

If the Trusted OS is unable to provide an implementation matching the request from the TA, compilation of the
TA against that Trusted OS SHALL fail with an error indicating that the Trusted OS is incompatible with the
TA. This ensures that TAs originally developed against previous versions of this specification can be compiled
with identical behavior, or will fail to compile.

28 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

If the above definitions are set, a Trusted OS SHALL behave exactly according to the definitions for the
indicated version of the specification, with only the definitions in that version of the specification being exported
to a TA. In particular an implementation SHALL NOT enable APIs which were first defined in a later version of
this specification than the version requested by the TA.

If the above definitions are set to 0 or are not set, then the Trusted OS SHALL behave according to this version
of the specification.

As an example, consider a TA which requires strict compatibility with TEE TUI Extension: Biometrics API v1.0:

#define TEE_BIO_REQUIRED_MAJOR_VERSION (1)
#define TEE_BIO_REQUIRED_MINOR_VERSION (0)
#define TEE_BIO_REQUIRED_MAINTENANCE_VERSION (0)

Due to the semantics of the C preprocessor, the above definitions SHALL be defined before the main body of
definitions in “tee_tui_bio_api.h” is processed. The mechanism by which this occurs is out of scope of this
document.

4.1.9 Structure Versions

It is expected that TAs will be loaded onto devices over the air using the TEE Management Framework
([TEE Mgmt Fmwk]), so it will be useful to be able to write a TA to work with different versions of the API.
Therefore, each structure defined in this specification that the implementation can return has a version field
and a union of the different versions. As this is the first release, all structures currently only have one member
in this union. Each function that returns a structure enables the TA to specify the version of the structure it
wants.

An implementation of this API should be able to issue the current version of a structure and such older versions
as are defined by that version of the specification and any configuration documents.

A TA should check the version of the API at start up.

If the TEE implements an earlier version, the TA should determine whether it can work with the versions of
structures defined in that version of the specification. If it cannot, it should exit gracefully.

If the TA requests an old version, the API should return this version if it can or else return an error if the version
is no longer supported.

If the TA requests a version that is higher than that supported by the API, the API should return the most recent
version it supports.

The TA should always check the version of the structure returned before attempting to use it.

Table 4-3: Structure Versions

Structure Version in API 1.0
TEE_Event_Bio 1

TEE TUI Extension: Biometrics API – Public Release v1.0 29 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Background Material and Implementation Options

4.2.1 Biometric Peripherals

This API is designed to work with many different Biometric Peripherals.

The Biometric Sub-system will consist of a Biometric Sensor and functionality that can match the output from
the Biometric Sensor to Stored Templates.

Some systems, such as those for fingerprint recognition, have a dedicated Biometric Sensor. Others, such as
facial recognition, use a general-purpose sensor, in this case a camera, to capture the data.

The Biometric Peripheral and the Biometric Sensor appear as separate peripheral types.

When the TA calls a biometric function, the Biometric Sub-system will attempt to lock the required peripherals,
and will return an error if it cannot. The TA only needs to lock the Biometric Peripheral.

4.2.2 Live Images, Templates, and Raw Images

Depending on the implementation, the Biometric Sensor may convert the image into a template or it may return
a handle to the raw image. Under no circumstances must the TA be able to access the image or template, so
this handle may only be used to access the image or template by the underlying TEE.

• When attempting to create a template, the Biometric Sensor will be able to determine whether it has
enough information to create a template.

• When returning a handle to the raw data, the Biometric Sensor may not be able to provide immediate
feedback as to whether the captured image is a valid biometric sample; this information is only
provided once the image is processed, using the TEE_BioStartAssociate or the
TEE_BioStartVerify functions. In either case, at some point if the image does not contain enough
data, an error is returned and the RTA will need to prompt the user to re-present their biometric
feature.

This information is returned as the TEE_BIO_CAPTURE_TYPE field in the peripheral state table.

In either case, the data from the Biometric Sensor must not be available outside the Biometric Sub-system.
This data must therefore be stored in a TEE memory area not accessible to general TAs, in TEE Trusted
Storage, or in a location considered more isolated and immutable than the TEE but which is bound to the TEE
cryptographically (e.g. in a Secure Element file system encrypted against TEE held keys). All references to
this data are passed using an opaque handle of type TEE_BioHandle.

Any errors processing the image into a template may be returned immediately or as events. Errors where the
user may need prompting are returned as events. It is the duty of the TA to update the display to guide the
user.

30 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.3 Using Biometrics with the TUI Low-level API

The Event and Peripheral APIs are defined in [TEE TUI Low], but will be defined in [TEE Core API] beginning
with v1.2.

When using the Event and Peripheral APIs:

• The TA SHALL use the function TEE_Peripheral_GetPeripherals to get a list of all peripherals.

• Peripherals of type TEE_PERIPHERAL_BIO are Biometric Peripherals.

• The TA MAY examine the peripheral state table to determine which Biometric Peripheral to use.

• The TA SHALL open the required peripherals.

• The TA MAY open other event sources such as a touch display to allow users to signal inability to
present a biometric feature or a desire to use an alternative authentication method such as a PIN.

• The TA SHALL use the function TEE_Event_AddSources to add any required
TEE_EventSourceHandle to the TEE_EventQueue used by the TA.

• The TA SHALL call the appropriate biometric function TEE_BioStartCapture (section 4.6.2.2) or
TEE_BioStartEnroll (section 4.6.2.3).

• The TA SHALL monitor the events returned and take the appropriate action. This may involve
updating the display to prompt the user.

• After a capture, the TA SHALL call TEE_BioStartAssociate (section 4.6.2.1) or
TEE_BioStartVerify (section 4.6.2.4).

• When finished using the Biometric Sub-system, the TA SHOULD remove the
TEE_EventSourceHandle from the TEE_EventQueue and close the Biometric Peripheral and any
other resources opened by the TA for this task.

4.2.4 Biometric Matching Thresholds

Because there is currently no standard way to describe thresholds, this version of the API does not provide
information on the threshold values used by the Biometric Sub-system and provides no means for the TA to
directly set the threshold being applied. It is assumed that all Biometric Sensors and Biometric Peripherals will
use a default value selected by the manufacturer.

This specification does support two assurance levels; it is an implementation detail for the Biometric Peripheral
to choose how to implement the different levels. For example, the Biometric Peripheral MAY use a lower
matching threshold or MAY switch off liveness detection or other features, when operating at the lower
assurance level.

TEE TUI Extension: Biometrics API – Public Release v1.0 31 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.5 Use of Trusted Storage

The Biometric Sub-system uses Trusted Storage (or an equally secure equivalent) to maintain templates and
metadata. If it uses a system outside of the TEE, such as Match on Card, then that system must provide the
same characteristics and at least the same security strength as the Trusted Storage system. Therefore, any
biometric function may report one of the standard storage errors (see [TEE Core API] Table 3-3: API Return
Codes).

For example, while storage systems should attempt to maintain the integrity of the files, they cannot guarantee
that data will not be corrupted and therefore must report such corruption.

If the Biometric Sub-system discovers that a template has become corrupted, that template will automatically
be deleted and it will no longer be possible to associate or verify against it. If the stored metadata becomes
corrupted, access to all templates will be lost.

In case of factory reset:

• Template storage lists SHALL be treated as if they were held in TEE_STORAGE_PRIVATE.

• Biometric sessions are terminated.

32 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3 Data Constants

4.3.1 Return Codes

In addition to the return codes specified in [TEE Core API], new ones are used in this specification.

For more information on these return codes, including the agreed interpretation valid for that function context,
see the function descriptions in section 4.6, where all used return codes are listed.

Return codes associated with the Biometrics API SHALL be of the form 0xabbbccdd where:

Table 4-4: Return Code Structure

Digit Value Meaning

a 0x0 For all Warnings

0xf For all Errors

bbb 0x042 SHALL be set to the document number in binary coded decimal: therefore 042 for
codes associated with the Biometrics API

cc 0x00 Errors or warnings that apply to all peripheral types.

0x01-ff SHALL be set to the value of the bottom 8 bits of TEE_BIO_TYPE – so 01 for
fingerprint errors.

dd 0x00-7f Values defined by GlobalPlatform Specifications

0x80-ff Implementation defined values

Table 4-5: Return Codes

Return Code Value

Reserved for warnings that apply to all peripheral types 0x00420000 – 0x0042007f

Implementation defined warnings that apply to all peripheral
types

0x00420080 – 0x004200ff

TEE_WARN_FP_CAPTURE_TOO_FAST 0x00420100

TEE_WARN_FP_CAPTURE_TOO_SLOW 0x00420101

TEE_WARN_FP_CAPTURE_TOO_FAR_LEFT 0x00420102

TEE_WARN_FP_CAPTURE_TOO_FAR_RIGHT 0x00420103

TEE_WARN_FP_CAPTURE_TOO_FAR_UP 0x00420104

TEE_WARN_FP_CAPTURE_TOO_FAR_DOWN 0x00420105

Reserved for future fingerprint warnings 0x00420106 – 0x0042017f

Implementation defined fingerprint warnings 0x00420180 – 0x004201ff

Reserved for future peripheral warnings 0x0042xx00 – 0x0042xx7f
where xx is the bottom 8 bits of a
TEE_BIO_TYPE yet to be defined

Implementation defined peripheral warnings 0x0042xx80 – 0x0042xxff
where xx is the bottom 8 bits of a
TEE_BIO_TYPE yet to be defined

TEE TUI Extension: Biometrics API – Public Release v1.0 33 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Code Value
TEE_ERROR_NO_MATCH 0xf0420000

TEE_ERROR_INSUFFICIENT_DATA 0xf0420001

TEE_ERROR_SENSOR_ERROR 0xf0420002

TEE_ERROR_PERIPHERAL_IN_USE 0xf0420003

TEE_ERROR_MISSING_LIVE_TEMPLATE 0xf0420004

TEE_ERROR_INSUFFICIENT_ASSURANCE 0xf0420005

Reserved for future errors that apply to all peripherals 0xf0420006 – 0xf042007f

Implementation defined errors that apply to all peripherals 0xf0420080 – 0xf04200ff

Reserved for future fingerprint errors 0xf0420100 – 0xf042017f

Implementation defined fingerprint errors 0xf0420180 – 0xf04201ff

Reserved for future peripheral errors 0xf042xx00 – 0xf042xx7f
where xx is the bottom 8 bits of a
TEE_BIO_TYPE yet to be defined

Implementation defined peripheral errors 0xf042xx80 – 0xf042xxff
where xx is the bottom 8 bits of a
TEE_BIO_TYPE yet to be defined

Values not defined above may be defined in other
GlobalPlatform TEE specifications.

All other values

34 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.2 TEE_BIO_ASSURANCE_LEVEL

TEE_BIO_ASSURANCE_LEVEL is a uint32_t used to enumerate the assurance level at which a capture and
subsequent verification is to be performed.

An Enroll operation is always performed at assurance level High and an Associate operation may only be
performed with a capture made at assurance level High. However, once an association has been made, a TA
may choose to capture biometric data at assurance level Low – in which case the subsequent Verify operation
is also made at this level.

For compatibility, all Biometric Peripherals must offer both assurance levels – but they MAY choose to offer
the same assurance at both levels.

At assurance level Low, a Biometric Peripheral may perform fewer liveness checks, use fewer invariants, or in
the case of a fusion biometric, use fewer biometric modalities.

There is no mechanism to compare the assurance between different biometric modalities. The TA developer
must take its own steps to ensure that the actual assurance offered by a Biometric Peripheral corresponds to
the assurance level suitable for their needs.

Table 4-6: TEE_BIO_ASSURANCE_LEVEL Values

Constant Name Value Description
TEE_BIO_ASSURANCE_HIGH 0x00001000 Higher or equal assurance than

TEE_BIO_ASSURANCE_LOW

TEE_BIO_ASSURANCE_LOW 0x00000100 Lower or equal assurance than
TEE_BIO_ASSURANCE_HIGH

Reserved 0x00000000 –
0x7ffffffe

Except as defined above.

TEE_BIO_ASSURANCE_ILLEGAL_VALUE 0x7fffffff This value is reserved for testing
and validation. It SHALL NOT be
generated or used in normal
operation.

Implementation defined 0x80000000 –
0xffffffff

TEE TUI Extension: Biometrics API – Public Release v1.0 35 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.3 TEE_BIO_CAPTURE_TYPE

TEE_BIO_CAPTURE_TYPE is a uint32_t used to enumerate the different ways a Biometric Sensor can
return data for processing. It is returned in the peripheral state table (see Table 4-10).

Table 4-7: TEE_BIO_CAPTURE_TYPE Values

Constant Name Value Description
TEE_BIO_CAPTURE_TEMPLATE 0x00000001 Biometric Sensor converts raw data

into a template. The TA will receive a
handle to that template.

TEE_BIO_CAPTURE_RAW 0x00000002 The Biometric Sensor returns raw
data. The TA will receive a handle to
that raw data.

Reserved 0x00000000 – 0x7ffffffe Except as defined above.

TEE_BIO_CAPTURE_ILLEGAL_
VALUE

0x7fffffff This value is reserved for testing and
validation. It SHALL NOT be
generated or used in normal
operation.

Implementation defined 0x8000000 – 0xffffffff

4.3.4 TEE_BIO_TYPE

TEE_BIO_TYPE is a uint32_t used to enumerate the different biometric modalities. It is returned in the
peripheral state table (see Table 4-10).

Table 4-8: TEE_BIO_TYPE Values

Constant Name Value Description
TEE_BIO_FINGERPRINT 0x00000001 Biometric modality is fingerprint.

Reserved 0x00000000 – 0x7ffffffe Except as defined above.

TEE_BIO_ILLEGAL_VALUE 0x7fffffff This value is reserved for testing and
validation. It SHALL NOT be
generated or used in normal
operation.

Implementation defined 0x80000000 – 0xffffffff

36 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.5 TEE_EVENT_BIO_TYPE

TEE_EVENT_BIO_TYPE is a uint32_t used to enumerate the different event types generated by the
Biometrics API.

For more information, see the function descriptions in section 4.6.

Table 4-9: TEE_EVENT_BIO_TYPE Values

Constant Name Value Data Field Type
TEE_EVENT_BIO_CAPTURE_READY 0x00000000 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_CAPTURE_STARTED 0x00000001 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_CAPTURE_FAILED 0x00000002 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_CAPTURE_
INSUFFICIENT_DATA

0x00000003 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_CAPTURE_COMPLETED 0x00000004 Opaque handle TEE_BioHandle

TEE_EVENT_BIO_ASSOCIATE_STARTED 0x00000005 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_ASSOCIATE_COMPLETED 0x00000006 TemplateID TEE_TemplateID

TEE_EVENT_BIO_ASSOCIATE_NO_MATCH 0x00000007 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_ENROLL_READY 0x00000008 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_ENROLL_STARTED 0x00000009 TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_ENROLL_COMPLETED 0x0000000a TemplateID TEE_TemplateID

TEE_EVENT_BIO_VERIFY_STARTED 0x0000000b TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_VERIFY_MATCH 0x0000000c TemplateID TEE_TemplateID

TEE_EVENT_BIO_VERIFY_NO_MATCH 0x0000000d TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_STOPPED 0x0000000e TEE_HANDLE_NULL TEE_BioHandle

TEE_EVENT_BIO_ERROR 0x0000000f Error code TEE_Result

Reserved for Future Use 0x00000010-
0x7ffffffe

TEE_EVENT_BIO_ILLEGAL_VALUE 0x7fffffff This value is
reserved for testing
and validation. It
SHALL NOT be
generated or used
in normal operation.

Implementation defined general events 0x80000000-
0xffffffff

TEE TUI Extension: Biometrics API – Public Release v1.0 37 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 State Table

The peripheral state table for a Biometric Peripheral SHALL contain the values listed in Table 4-10.

Table 4-10: TEE_PERIPHERAL_BIO State Table Values

TEE_PeripheralValueType.id TEE_PeripheralValueType.u
TEE_PERIPHERAL_STATE_BIO_CAPTURE_TYPE TEE_BIO_CAPTURE_TYPE

TEE_PERIPHERAL_STATE_BIO_TYPE TEE_BIO_TYPE

4.5 Data Structures

This section defines data structures specific to this specification. In addition, this specification makes use of
types and parameter hints (e.g. [in]) defined in [TEE Core API].

4.5.1 TEE_BioHandle

TEE_BioHandle is an opaque handle on the data returned from TEE_BioStartCapture in events with
type TEE_EVENT_TYPE_BIO, which the TA can then pass to TEE_BioStartAssociate or
TEE_BioStartVerify:

typedef struct __TEE_BioHandle* TEE_BioHandle;

The handle can only be used in biometric functions. Attempting to access the data by using a biometric handle
with the Trusted Storage API functions (described in [TEE Core API]) will cause a panic.

Depending on the internals of the Biometric Sub-system, the data may be a raw image or it may be a template.

4.5.2 TEE_BioTag

typedef TEE_BioTag uint32_t;

As Biometric Peripherals MAY support multiple concurrent operations, each operation is associated with a tag
parameter.

The tag does not need to be unpredictable; it MAY be a simple counter. It is permissible for different Biometric
Peripherals to use the same tag, but for any TA instance the combination of Biometric Peripheral and tag
SHALL uniquely identify an operation. The tag is generated and supplied by the relevant event generator
function, TEE_BioStartxxxxx, described below.

38 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.3 TEE_Event_Bio

The TEE_BioStartAssociate, TEE_BioStartCapture, TEE_BioStartEnroll, and
TEE_BioStartVerify functions generate events with type TEE_EVENT_TYPE_BIO. The TA SHALL use the
TEE_Event_Wait function to collect the events. The payload field of these events is a TEE_Event_Bio
structure generated by the Biometric Peripheral and this event source must have been added to the calling TA
event queue, as per section 4.6.2.

typedef struct {
 uint32_t version;
 union{
 TEE_Event_Bio_V1 v1;
 } u;
} TEE_Event_Bio;

typedef struct {
 uint32_t tag;
 TEE_EVENT_BIO_TYPE bioType;
 TEE_Event_Bio_Return data;
} TEE_Event_Bio_V1;

The return type is one element of the following union, as defined by the value of TEE_EVENT_BIO_TYPE (see
Table 4-9).

typedef union
 {
 TEE_Result error;
 TEE_TemplateID templateId;
 TEE_BioHandle handle;
 } TEE_Event_Bio_Return;

These events are produced by user interaction with a Biometric Sensor.

version The version of the included union.
• On entry, the highest version the TA understands.
• On return, the actual version returned – this will always be lower or equal the

requested version.
As this is the first release, there is only one supported version.
For more information, see section 4.1.9, Structure Versions.

tag The tag parameter of the function that started the process that generated the event.

bioType The type of event; for example, capture started. See Table 4-9.

error A TEE_Result value encoding an error (TEE_EVENT_BIO_ERROR events).

templateId The TEE_TemplateID of the Template to which the event refers, or “ZERO” if no
TEE_TemplateID is returned
(See events:
TEE_EVENT_BIO_ASSOCIATE_COMPLETED
TEE_EVENT_BIO_ENROLL_COMPLETED
TEE_EVENT_BIO_VERIFY_MATCH)

TEE TUI Extension: Biometrics API – Public Release v1.0 39 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

handle An opaque handle to live capture data in raw or template forms
(TEE_EVENT_BIO_CAPTURE_COMPLETED events).

4.5.4 TEE_TemplateID

A uint32_t used as a TEE allocated reference number to a Stored Template.

typedef uint32_t TEE_TemplateID;

“ZERO” is an invalid Template ID which is used to indicate that no Stored Template is available, or could be
identified. All other values are assignable by the Biometric Sub-system to identify a specific Stored Template.

The Template ID SHALL be unique for each Stored Template on a per Biometric Peripheral basis. Different
Biometric Peripherals may use the same Template ID value.

40 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6 Biometric Functions

Sequence diagrams for the biometric functions are found in Annex C.

The specification number and function numbers listed are used by the TEE TA Debug Specification
([TEE Debug]) to provide feedback to developers when debug is active.

4.6.1 Functions That Do Not Require a TUI Session

These functions may be called outside of a TUI session.

4.6.1.1 TEE_BioDissociateTemplate

TEE_Result TEE_BioDissociateTemplate(
[in] TEE_EventSourceHandle bioPeripheral,
[in] TEE_TemplateID templateId
);

Description

The TEE_BioDissociateTemplate non-TUI function removes the association with the biometric template
referenced by the id, and places no requirement on a TUI session. After dissociation, the template can no
longer be used by the calling RTA as part of verification. The system MAY at this point choose to garbage
collect the template data and it MAY be impossible to re-associate with this template, so the enrollment process
would have to be re-executed.

Specification Number: 42 Function Number: 0x0201

Parameters

bioPeripheral A handle referencing the target Biometric Peripheral.

templateId The Template ID to be dissociated.

Return Value

TEE_SUCCESS In case of success.

TEE_ERROR_NO_DATA If there was no association for templateId.

TEE_ERROR_CORRUPT_OBJECT If an object the Biometric Sub-system needed to access
was corrupt.

TEE_ERROR_STORAGE_NOT_AVAILABLE If the storage system in which an object the Biometric
Sub-system needs is not accessible for some reason.

TEE_ERROR_ACCESS_CONFLICT If while opening an object the Biometric Sub-system
needs, an access right conflict was detected.

TEE_ERROR_ITEM_NOT_FOUND If for any object the Biometric Sub-system needs to
access, the storage does not exist or the object cannot be
found in the storage.

TEE_ERROR_STORAGE_NO_SPACE If insufficient space is available to create a new persistent
object.

TEE TUI Extension: Biometrics API – Public Release v1.0 41 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons

• If bioPeripheral does not refer to a Biometric Peripheral.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

42 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.1.2 TEE_BioListTemplates

TEE_Result TEE_BioListTemplates(
[in] TEE_EventSourceHandle bioPeripheral,
[outbuf] TEE_TemplateID* templateIds, size_t* size
);

Description

The TEE_BioListTemplates non-TUI function lists the templateIds associated with the current TA. This
function places no requirement on a TUI session.

Specification Number: 42 Function Number: 0x0202

Parameters

bioPeripheral A handle referencing the target Biometric Peripheral.

templateIds A pointer to an array of TEE_TemplateID. The buffer
parameter of the [outbuf].

size The size field of an [outbuf].

Return Value

TEE_SUCCESS In case of success.

TEE_ERROR_SHORT_BUFFER If the provided buffer is too small. See [outbuf] handling
in [TEE Core API].

TEE_ERROR_CORRUPT_OBJECT If an object the Biometric Sub-system needed to access
was corrupt.

TEE_ERROR_STORAGE_NOT_AVAILABLE If the storage system in which an object the Biometric
Sub-system needs is not accessible for some reason.

TEE_ERROR_ACCESS_CONFLICT If while opening an object the Biometric Sub-system needs,
an access right conflict was detected.

TEE_ERROR_ITEM_NOT_FOUND If for any object the Biometric Sub-system needs to access,
the storage does not exist or the object cannot be found in
the storage.

TEE_ERROR_STORAGE_NO_SPACE If insufficient space is available to create a new persistent
object.

Panic Reasons

• If size is NULL.

• See [TEE Core API] section 3.4.4 for reasons for [outbuf] generated panic.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

TEE TUI Extension: Biometrics API – Public Release v1.0 43 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2 Functions That Require a Low-level TUI Session

These functions are to be used with the Event and Peripheral APIs, which are currently defined in
[TEE TUI Low] but will be defined in [TEE Core API] beginning with v1.2.

The TA must:

1. Before calling one of these functions first obtain a handle for the Biometric Peripheral using the
TEE_Peripheral_GetPeripherals and TEE_Peripheral_Open functions.

2. Either use the TEE_Event_OpenQueue function to open a TEE_EventQueue to receive events from
the Biometric Peripheral, or use the TEE_Event_AddSources function to add the Biometric
Peripheral to an existing open queue.

3. Tell the Biometric Peripheral which operation to perform using TEE_BioStartEnroll or
TEE_BioStartCapture followed by TEE_BioStartVerify or TEE_BioStartAssociate, and
retrieve the results as events using the TEE_Event_Wait function.

4. Once the required operations are complete, either use the TEE_Event_DropSources function to
remove the Biometric Peripheral from the event queue or close the event queue.

5. Close the Biometric Peripheral.

The functions described in this section invoke asynchronous operations. It is possible to have multiple
operations invoked by these functions running at the same time. The number of simultaneous operations is
implementation dependent and SHALL be at least 1. If you attempt to start a function and too many operations
are active, the function will return TEE_ERROR_BUSY.

As some Biometric Peripherals may be able to deal with multiple operations, each operation is associated with
a tag parameter; see section 4.6.2.1.

The TA may process events from other sources while dealing with events from the Biometric Sub-system. For
example, the TA may provide the user the option of entering a PIN using a secure display or presenting their
biometric feature. In this case, it would need to ensure the event source from the touch display is on the same
event queue as the Biometric Peripheral.

The implementation MAY deliver additional events related to the acquisition of biometric data prior to delivering
the result.

When using these biometric functions, except for TEE_BioStartEnroll, it is the duty of the TA to tell the
user what actions to take by displaying information using the TUI Low-level functions.

If several Biometric Peripherals are present and it is not clear which one the user will use, the TA can call
TEE_BioStartCapture or TEE_BioStartEnroll on each in turn, then wait for the events on all those
Peripherals. Identify which one returns the TEE_EVENT_BIO_CAPTURE_STARTED event, then stop the other
Peripherals using the TEE_BioStop function.

44 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2.1 TEE_BioStartAssociate

TEE_Result TEE_BioStartAssociate(
[in] TEE_EventSourceHandle bioPeripheral,
[in] TEE_BioHandle data,
[out] TEE_BioTag* tag
);

Description

The TEE_BioStartAssociate function starts the process of associating the input returned by
TEE_BioStartCapture with this TA using the Biometric Peripheral referenced by bioPeripheral.

To make an association, the biometric data SHALL be captured at assurance level High.

The biometric input SHALL be matched against all existing enrolled templates. If the biometric input matches
a template that the calling TA has not already associated with, a new association SHALL be created.

The function can be used to perform a Match against any and all Stored Templates Enrolled in the system. As
specified, TEE_EVENT_BIO_ASSOCIATE_COMPLETED will signal a successful Match. If a TA wishes to know
that the live template matches a stored template that resides on the device, does not care why the stored
template was enrolled on the device, and has no interest in storing and managing a relationship between itself
and the stored template, then upon receiving TEE_EVENT_BIO_ASSOCIATE_COMPLETED the TA should
immediately invoke TEE_BioDissociateTemplate to prevent Stored Template to TA binding from blocking
the garbage collection of the stored template by the biometric sub-system.

Note that the calling TA will have no control over what Stored Templates are Enrolled in the system by other
software and will have to make assumptions about the level of authorization that can be attributed to an
enrolled template’s presence. We therefore recommend that many use cases use the template ID returned by
the successful Match, plus a back channel such as password validation, to provide initial binding of the
template to owner identity.

The operation is cancellable with the TEE_BioStop function.

If the operation is terminated by an error, an error status will be returned through the event queue. For a full
list of events that may be returned, see section 4.3.5.

The function is designed to return promptly and report further progress on the invoked operation through
events. The function’s return does not mean that the biometric data could be associated with a template.

While the operation is active, the Biometric Sub-system will intercept events from the peripherals needed by
the Biometric Sub-system.

Refer to the relevant sequence diagram in Annex C for details.

Expected Events for Successful Association

TEE_EVENT_BIO_ASSOCIATE_STARTED Sent to confirm that this Biometric Peripheral is about to
perform an Associate operation; information only.

TEE_EVENT_BIO_ASSOCIATE_COMPLETED Sent when association has completed or an existing
association match is found; contains the templateId.

TEE TUI Extension: Biometrics API – Public Release v1.0 45 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Failure Events

TEE_EVENT_BIO_ASSOCIATE_NO_MATCH Sent if association failed because the Live Image could
not be matched against any of the existing templates.
If the RTA wants to retry the association at this point, it
will need to start over and capture new biometric input
from the user.

TEE_EVENT_BIO_ERROR An error or warning has occurred.

TEE_EVENT_BIO_STOPPED The operation was stopped using the TEE_BioStop
function.

Specification Number: 42 Function Number: 0x0301

Parameters

bioPeripheral The handle to the event source associated with the target
Biometric Peripheral.

data A pointer to an opaque handle to biometric data.

tag A pointer to the tag used to identify this operation, in events or in
the TEE_BioStop function. See section 4.6.2.1.

Return Value

TEE_SUCCESS The function completes and the operation reports further
progress via events.

TEE_ERROR_INSUFFICIENT_ASSURANCE If the capture was not performed at a high enough
assurance level to make an association.

TEE_ERROR_MISSING_LIVE_TEMPLATE If the Live Template referenced by data is no longer
available.

TEE_ERROR_NO_DATA If there are no enrolled templates. The operation will not
be started.

TEE_ERROR_OUT_OF_MEMORY If the system ran out of resources. The operation will not
be started.

TEE_ERROR_BUSY If the TUI resources are currently in use. The operation
will not be started.

Panic Reasons

• If bioPeripheral does not refer to a Biometric Peripheral.

• If tag pointer is NULL.

• If the biometric sub-system fails to load any critical code component.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

46 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2.2 TEE_BioStartCapture

TEE_Result TEE_BioStartCapture(
[in] TEE_EventSourceHandle bioPeripheral,
 TEE_BIO_ASSURANCE_LEVEL level
[out] TEE_BioTag* tag
);

Description

The TEE_BioStartCapture function tells the Biometric Peripheral to start capturing biometric data, which
may then be associated with or verified against a Stored Template, using biometric input from the Biometric
Peripheral referenced by bioPeripheral. This will free any current Live Templates before starting the
capture.

The operation is cancellable with the TEE_BioStop function. If the operation is cancelled, an event will be
returned to signal cancellation and no further events will be generated by this operation.

If the Biometric Peripheral encounters a problem which it deems to be recoverable, a warning code is returned
through the event queue, see section 4.3.1. The calling TA is expected to handle the warning event through
appropriate information to the End User.

If the operation is terminated by an error, an error status will be returned through the event queue. For a full
list of events that may be returned, see section 4.3.1.

The function is designed to return promptly and report further progress on the invoked operation through
events. The prompt return does not indicate that the user presented their biometric feature or that the biometric
data could be captured.

While the operation is active, the Biometric Sub-system will intercept events from the peripherals needed by
the Biometric Sub-system.

Expected Events

TEE_EVENT_BIO_CAPTURE_READY Sent when the Biometric Peripheral is ready to
accept input. Do not prompt the user for input
until this event has been received. If user
presents their biometric feature before READY is
received, this will be ignored.

TEE_EVENT_BIO_CAPTURE_STARTED Sent when user first presents their biometric
feature; information only. Calling TA will always
receive both a START and COMPLETED event.

TEE_EVENT_BIO_CAPTURE_COMPLETED Sent when capture is complete; contains an
opaque handle to the captured data. This handle
can be used in a call to
TEE_BioStartAssociate or
TEE_BioStartVerify.
Calling TA will always receive both a START and
COMPLETED event.

TEE TUI Extension: Biometrics API – Public Release v1.0 47 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Failure Events

TEE_EVENT_BIO_CAPTURE_FAILED Sent if the sensor failed to capture an image.

TEE_EVENT_BIO_CAPTURE_INSUFFICIENT_DATA Sent if the image could not be converted into a
template as it did not contain enough information.

TEE_EVENT_BIO_ERROR An error or warning has occurred.

TEE_EVENT_BIO_STOPPED The operation was stopped using the
TEE_BioStop function.

Specification Number: 42 Function Number: 0x0302

Parameters

bioPeripheral The handle to the event source associated with the target
Biometric Peripheral.

level The assurance level at which to capture the biometric data.

tag A pointer to the tag used to identify this operation, in events or in
the TEE_BioStop function. See section 4.6.2.1.

Return Value

TEE_SUCCESS In case of success.

TEE_ERROR_NO_DATA If there are no enrolled templates.

TEE_ERROR_OUT_OF_MEMORY If the system ran out of resources.

TEE_ERROR_BUSY If the TUI resources are currently in use.

Panic Reasons

• If bioPeripheral does not refer to a Biometric Peripheral.

• If tag pointer is NULL.

• If the biometric sub-system fails to load any critical code component.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

48 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2.3 TEE_BioStartEnroll

TEE_Result TEE_BioStartEnroll(
[in] TEE_EventSourceHandle bioPeripheral,
[in] uint32_t displayNumber,
[out] TEE_BioTag* tag
);

Description

The TEE_BioStartEnroll function tells the Biometric Sub-system to start enrolling a new template using
biometric input from the Biometric Peripheral referenced by bioPeripheral.

The function is designed to return promptly and report further progress through events. The prompt return
does not indicate that the user presented a biometric feature or that the biometric data could be captured.

The operation is cancellable with the TEE_BioStop function. If the operation was cancelled, an event will be
returned to signal cancellation and no further events will be generated by this operation.

During the enroll process, the Biometric Peripheral will open a session on the selected display and lock any
required peripherals. This session may be a TUI session or an REE session; in either case, the calling TA
must close any conflicting TUI sessions of its own before calling Enroll. The display is identified by the display
number, and it is for the TEE or REE components of the Biometric Sub-system to make sure that the enrollment
prompts appear in the correct location. The Biometric Sub-system will provide the user interface to guide the
user through the enroll process. While the enrollment process is active, the Biometric Sub-system will intercept
events from the peripherals needed by the Biometric Sub-system.

If a recoverable problem is encountered during the Enroll process, the Biometric Peripheral will handle this,
for example by displaying instructions on display. Such errors are not reported to the TA.

While an Enroll operation is ongoing, the Biometrics API and the TUI Low-level API will act as though another
TA currently has ownership of the required peripherals.

If the operation is terminated by a fatal error, an error status will be returned through the event queue. For a
full list of events that may be returned, see section 4.3.5.

When the Enroll operation is complete, the Biometric Sub-system will return control of the display to the TA
and issues a TEE_EVENT_BIO_ENROLL_COMPLETED event. The display will be left unchanged from the latest
status as displayed by the Enroll operation. As soon as the TA receives a
TEE_EVENT_BIO_ENROLL_COMPLETED event or an event indicating a fatal error, it SHOULD update the
display, either by opening a new TUI session or by using the REE through its Client Application.

Expected Events

TEE_EVENT_BIO_ENROLL_READY Sent when the Biometric Peripheral is ready to accept
input. Do not prompt the user for input until this event has
been received.

TEE_EVENT_BIO_ENROLL_STARTED Sent when user first presents their biometric feature;
information only.

TEE_EVENT_BIO_ENROLL_COMPLETED Sent when capture is complete; contains
TEE_TemplateID to the created template.

TEE TUI Extension: Biometrics API – Public Release v1.0 49 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Failure Events

TEE_EVENT_BIO_ERROR An error or warning has occurred.

TEE_EVENT_BIO_STOPPED The operation was stopped using the TEE_BioStop function.

Specification Number: 42 Function Number: 0x0303

Parameters

bioPeripheral The handle to the event source associated with the target
Biometric Peripheral.

displayNumber The display number used by [TEE TUI Low] to describe this
display. The Biometric Sub-system will display instructions to the
user on this display.

tag A pointer to the tag used to identify this operation, in events or in
the TEE_BioStop function. See section 4.6.2.1.

Return Value

TEE_SUCCESS In case of success.

TEE_ERROR_NO_DATA If there are no enrolled templates.

TEE_ERROR_OUT_OF_MEMORY If the system ran out of resources.

TEE_ERROR_BUSY If a TA has an open TUI session on the selected display, or
if the Biometric Sub-system cannot open the required peripherals.

Panic Reasons

• If bioPeripheral does not refer to a Biometric Peripheral.

• If tag pointer is NULL.

• If the biometric sub-system fails to load any critical code component.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

50 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2.4 TEE_BioStartVerify

TEE_Result TEE_BioStartVerify (
[in] TEE_EventSourceHandle bioPeripheral,
[in] TEE_BioHandle data,
[inbuf] TEE_TemplateID* templateIds, uint32_t size,
[out] uint32_t* tag
);

Description

The TEE_BioStartVerify function starts the process of verifying input captured with
TEE_BioStartCapture against the previously associated templates selected through the templateIds
input buffer using the Biometric Peripheral referenced by the bioPeripheral.

Information on the progress of the operation is sent via events. The TA must process these using the
TEE_Event_Wait function.

Successful verification results in a TEE_EVENT_BIO_VERIFY_MATCH event. However, if the Biometric
Sub-system checks all the supplied templates and does not find a match, it generates a
TEE_EVENT_BIO_VERIFY_NO_MATCH event.

The operation is cancellable with the TEE_BioStop function. If the operation was cancelled, an event will be
returned to signal cancellation, and no further events will be generated by this operation.

If the operation is terminated by an error, an error status will be returned through the event queue. For a full
list of events that may be returned, see section 4.3.5.

The function is designed to return promptly and report further progress through events. It does not mean that
the user presented their biometric feature or that the biometric data could be verified against an existing
template.

While the operation is active, the Biometric Sub-system will intercept events from the peripherals needed by
the Biometric Sub-system.

For details, see the relevant sequence diagram in Annex C.

Expected Events

TEE_EVENT_BIO_VERIFY_STARTED Sent to confirm that the Biometric Peripheral is about to
perform a Verify operation; information only.

TEE_EVENT_BIO_VERIFY_NO_MATCH Sent when Verify operation does not find any match.

TEE_EVENT_BIO_VERIFY_MATCH Sent when Verify operation finds a match; contains the
TEE_TemplateId.

Failure Events

TEE_EVENT_BIO_ERROR An error or warning has occurred.

TEE_EVENT_BIO_STOPPED The operation was stopped using the TEE_BioStop function.

Specification Number: 42 Function Number: 0x0304

TEE TUI Extension: Biometrics API – Public Release v1.0 51 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters

bioPeripheral The handle to the event source associated with the target
Biometric Peripheral.

data A pointer to an opaque handle to biometric data.
templateIds, size An input buffer containing previously associated Template IDs

to be used for the verification. The buffer can optionally be set
to NULL with size set to 0, meaning the verification should
be performed with all previously associated templates.

tag A pointer to the tag used to identify this operation, in events or
in the TEE_BioStop function. See section 4.6.2.1.

Return Value

TEE_SUCCESS In case of success.

TEE_ERROR_NO_LIVE_TEMPLATE If the Live Template referenced by data is no longer
available.

TEE_ERROR_OUT_OF_MEMORY If the system ran out of resources.

TEE_ERROR_BUSY If the TUI resources are currently in use.

Panic Reasons

• If bioPeripheral does not refer to an event source.

• If tag pointer is NULL.

• If the biometric sub-system fails to load any critical code component.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

52 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6.2.5 TEE_BioStop

TEE_Result TEE_BioStop(
[in] TEE_EventSourceHandle bioPeripheral,
[in] uint32_t tag
);

Description

The TEE_BioStop function stops the process identified by bioPeripheral and tag.

If this is a capture process, the Biometric Peripheral will not expect further user interaction, and it can free any
resources it has allocated and return control of the peripherals and event queue to the calling TA.

If the process is active, it responds by sending a TEE_EVENT_BIO_STOPPED event.

If the process has already completed, the function has no effect. However, it is not an error to send multiple
TEE_BioStop functions.

Other processes running on the Biometric Peripheral are unaffected.

The Biometric Peripheral is still reserved for use by the calling TA until it is removed from the event queue.

No further events will be generated associated with this tag. However, events already issued will still need to
be processed by the TA. They will not be cleared from the queue.

Because a biometric operation can complete or be cancelled asynchronously, it is not an error to call the
function with a tag that is not valid; in this case, the function SHALL have no effect.

Specification Number: 42 Function Number: 0x0305

Parameters

bioPeripheral The handle to the event source associated with the target
Biometric Peripheral.

tag The tag used to identify this operation. See section 4.6.2.1.

Return Value

TEE_SUCCESS In case of success. Function has been processed. It is not an
error to send multiple stop functions, and the TEE is not required
to track the state of completed functions, thus this will be returned
even if the tag is invalid.

TEE_ERROR_OUT_OF_MEMORY If the system ran out of resources. Unable to process the
TEE_BioStop function and therefore events associated with the
tag may continue to be generated.

Panic Reasons

• If bioPeripheral does not refer to an event source.

• If the Implementation detects any error associated with this function which is not explicitly associated
with a defined return code for this function.

TEE TUI Extension: Biometrics API – Public Release v1.0 53 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex A Panicked Function Identification
If this specification is used in conjunction with the TEE TA Debug Specification ([TEE Debug]), then the
specification number is 42 and the following values SHALL be associated with the function declared.

Table A-1: Function Identification Values

Category Function Function Number
in hexadecimal

Function Number
in decimal

Functions that do not require a TUI session
 TEE_BioDissociateTemplate 0x0201 513

 TEE_BioListTemplates 0x0202 514
Functions that require a Low-level TUI session
 TEE_BioStartAssociate 0x0301 769

 TEE_BioStartCapture 0x0302 770

 TEE_BioStartEnroll 0x0303 771

 TEE_BioStartVerify 0x0304 772

 TEE_BioStop 0x0305 773

54 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex B Biometrics API Usage
The following example code is informative. No guarantee is made as to its quality or correctness.

#include "tee_internal_api.h"
#include "tee_tui_low_api.h"
#include "tee_tui_bio_api.h"

#define TA_GETPERIPHERALS (1)
#define TA_VERSIONFAIL (2)
#define TA_GETSTATETABLE (3)
#define TA_FAILBAUDRATE (4)
#define TA_FAILOPEN (5)
#define TA_FAILWRITE (6)
#define TA_OPENFAIL (7)
#define TA_NOHANDLE (8)

struct Ehandle{
 Ehandle *next;
 uint32_t component;
 bool locked;
} ;

struct Template{
 Template *next;
 uint32_t Tid;
} ;

struct Ehandle *rootcomp;
uint32_t lastTag =0;
uint32_t numTemplates = 0;
struct Template *roottemplate;
uint32_t i; // counter

TEE_Result getImage(const char* imagename, TEE_TUIImage* foundimg) {
 // helper function to find the ObjectID for an image from its name.

 if (sizeof(imagename) == 0){
 foundimg = 0;
 return TEE_ERROR_ITEM_NOT_FOUND;
 }
 else{
 // code to find image and set foundimg would go here
 return TEE_SUCCESS;
 }
}

TEE TUI Extension: Biometrics API – Public Release v1.0 55 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE_Result tuiLowLevel() {
/* This is an example of how a low level API may make use of biometrics
 * A call to this function will open a standard low level interface with
 * the addition of giving the user the option to provide a biometric
 * If a biometric is provided then the function looks for a match and
 * performs an action if it finds one
 */

 TEE_EventQueueHandle *myQueue; // points to event queue
 TEE_PeripheralId myFingerId; // Id for chosen fingerprint scanner
 TEE_PeripheralId myTouchId; // Id for Touch event source for display
 TEE_PeripheralId myTeeId; // Id for Event Source for TEE events
 TEE_PeripheralDescriptor *myFingerPD; // Peripheral Descriptor
 TEE_PeripheralDescriptor *myTouchPD; // Peripheral Descriptor
 TEE_PeripheralDescriptor *myTeePD; // Peripheral Descriptor
 TEE_PeripheralDescriptor myPDArray[3]; // Array of Peripheral Decriptors
 TEE_EventSourceHandle myFingerESH; // Handle for fingerprint scanner
 TEE_EventSourceHandle myTouchESH; // Handle for Touch event source
 // associated with display
 TEE_EventSourceHandle myTeeESH; // Handle for Event Source for events
 TEE_EventSourceHandle myDeviceArray[2]; // array of event sources
 TEE_TUIImage *myPng; // pointer to image to show
 uint32_t *myWidth; // height of image
 uint32_t *myHeight; // width of image
 uint32_t *myColortype; //
 TEE_TUIDisplay *myDisplay; // diplay to use
 TEE_TUISurface *myDisplaySurface; // surface for the display
 TEE_TUIDisplayInfo *myDisplayInfo; // info about display
 TEE_TUISurfaceInfo *mySurfaceInfo; // info about surface
 int numSources = 2 ; // myTeeESH myTouchESH
 uint32_t version = 1; // all structures are
 // currently version 1
 bool match = false; // indicates successful match
 bool complete = false; // used in while
 uint32_t *numevents; // number of events
 TEE_Event events[20]; // stores returned events
 TEE_Event_TUI_Touch myTouchEvent; // stuct for touch events
 TEE_Event_Bio myBioEvent; // strut for bio events
 uint32_t *dropped; // count of dropped events.
 uint32_t myTemplate[0]; // list of acceptable templates
 TEE_BioTag *myTag; // tag to identify commands
 TEE_TemplateID matched; // specific template matched
 TEE_Peripheral myPeripherals[1]; // array of peripherals
 TEE_Result myResult;
 size_t size;
 uint32_t max;
 bool supports_exclusive;
 bool supports_baudrate_change;
 uint8_t buf[256];
 size_t bytes_in_Peripheral_array = 0;
 size_t bytes_in_state_table = 0;
 TEE_Peripheral peripherals[1];
 TEE_PeripheralState myPeripheralstate[1];

 // Trivial error handling
 #define ta_assert(cond, val); if (!(cond)) TEE_Panic(val);

56 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 // find out how much space is needed for information on the available peripherals
 TEE_Peripheral_GetPeripherals(&version, NULL, &bytes_in_Peripheral_array) !=
TEE_ERROR_SHORT_BUFFER

 // defend against stange result
 ta_assert((myResult == TEE_ERROR_SHORT_BUFFER) && (bytes_in_Peripheral_array != 0),
 TA_GETPERIPHERALS);

 peripherals = TEE_Malloc(bytes_in_Peripheral_array, TEE_MALLOC_FILL_ZERO);

 // fetch the information on the peripherals

 myResult = TEE_Peripheral_GetPeripherals(&version, peripherals, &bytes_in_Peripheral_array);

 // check result is sensible
 ta_assert((myResult == TEE_SUCCESS) && (&bytes_in_Peripheral_array != 0),
 TA_GETPERIPHERALS);

 // assume we only have one display
 // if the device has more displays, the TA must determine which to use.
 // find touch source for display 1

 if (TEE_TUI_GetDisplayInformation(1,
 &version,
 myDisplayInfo,
 myDisplay) != TEE_SUCCESS) {

 /* error obtaining Display Info buffer */
 }

 //**
 // Find Peripheral ID for OS pseudo-peripheral (there is only one) and for
 // the proprietary UART (there is also only one, for simplicity)
 //**

 max = size / sizeof(TEE_Peripheral);
 for (uint32_t i = 0; i < max; i++) {
 ta_assert(peripherals[i].version == 1, TA_VERSIONFAIL);
 if (peripherals[i].u.v1.periphType == TEE_PERIPHERAL_OS) {
 myTeePD->id = peripherals[i].u.v1.id;
 }

 // find fingerprint source

 if (myPeripherals[i].u.v1.periphType == TEE_PERIPHERAL_BIO) {
 size = sizeof(myPeripheralstate);
 myResult = TEE_Peripheral_GetStateTable(peripherals[i].u.v1.id,
 myPeripheralstate, &size);
 ta_assert((myResult == TEE_SUCCESS) && (size <= sizeof(myPeripheralstate)),
 TA_GETSTATETABLE);
 // Get a value from TEE pseudo-peripheral
 max = size / sizeof(TEE_PeripheralState);
 for (uint32_t j = 0; j < max; j++) {
 if ((myPeripheralstate[j].u.uint32val == TEE_BIO_FINGERPRINT) &&
 (myPeripheralstate[j].id == TEE_BIO_TYPE)) {
 myFingerPD->id = peripherals[i].u.v1.id;
 };
 };
 };

TEE TUI Extension: Biometrics API – Public Release v1.0 57 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 // find touch source

 if (myPeripherals[i].u.v1.periphType == TEE_PERIPHERAL_TOUCH) {
 for (uint32_t j = 0; j < myDisplayInfo->numPeripherals; j++){
 if (myPeripherals[i].u.v1.periphType == myDisplayInfo->associatedPeripherals[j]){
 myTouchPD->id = peripherals[i].u.v1.id;
 }
 }
 }
 }

 // open the display and peripherals.
 myPDArray[0] = *myTeePD;
 myPDArray[1] = *myFingerPD;
 myPDArray[2] = *myTouchPD;
 myResult = TEE_TUI_InitSessionLow(1,1000,
 TEE_TUI_INIT_SESSION_LOW_FLAGS_REQUIREINDICATOR,
 myDisplay, 3, myPDArray);
 switch (myResult){
 case TEE_SUCCESS:
 myTeeESH = myPDArray[0].eHandle;
 myFingerESH = myPDArray[1].eHandle;
 myTouchESH = myPDArray[2].eHandle;
 break;

 case TEE_ERROR_BUSY:
 // Touch event source is in use return an error
 return TEE_ERROR_BUSY;

 default:
 // some other error so assert
 TEE_Panic(myResult);
 }

 if (TEE_TUI_GetDisplaySurface(myDisplay,
 myDisplaySurface) != TEE_SUCCESS) {

 /* Error opening Display Surface */
 }

 /* Get a new surface to use to manipulate the image */

 if (TEE_TUI_GetSurfaceInformation(&version,
 myDisplaySurface,
 mySurfaceInfo) != TEE_SUCCESS) {

 /* error obtaining Surface Info*/
 }

 if (TEE_TUI_GetSurface(myDisplayInfo->pixelWidth,
 myDisplayInfo->pixelHeight,
 mySurfaceInfo->u.v1.stride,
 myDisplaySurface) != TEE_SUCCESS) {
 /* error obtaining working buffer */
 }

 myDeviceArray[0] = myTeeESH;
 myDeviceArray[1] = myTouchESH;

58 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 if (TEE_Event_OpenQueue(&version,
 numSources,
 1000,
 myDeviceArray,
 myQueue
) != TEE_SUCCESS) {
 /* Cannot open Event queue */
 }

 if (TEE_BioStartCapture(myFingerESH, TEE_BIO_ASSURANCE_HIGH, myTag) != TEE_SUCCESS) {
 // Cannot open BioDevice
 }

 /* Wait for an event */

 while (!complete) {
 if (TEE_Event_Wait(myQueue,
 100,
 events,
 numevents,
 dropped) != TEE_SUCCESS) {
 /* deal with error */
 } else {

 /* deal with input */
 for(int idx=0;idx < *numevents; idx++)
 {
 switch (events[idx].u.v1.eventType) {
 case TEE_EVENT_TYPE_TUI_TOUCH:
 /* User touched display work out which button was pressed */

 memcpy(&myTouchEvent,
 events[idx].u.v1.payload,
 sizeof(myTouchEvent));

 /* MyTouchEvent contains a touch */
 /* Code to deal with touch events goes here */
 break;

 case TEE_EVENT_TYPE_BIO:
 /* we have a bio event */
 memcpy(&myBioEvent,
 events[idx].u.v1.payload,
 sizeof(myBioEvent));

 // if we had multiple open biometric components we would need to check
 // events[idx].handle
 // if we had multiple commands running we would need to check myBioEvent.tag
 // we could assert myBioEvent.tag == myTag

 switch (myBioEvent.u.v1.bioType) {
 /* based on the event type we select the image to display
 we then update the display */

 case TEE_EVENT_BIO_CAPTURE_READY:
 /* Ready for input - tell user to swipe finger */
 if (getImage("ready.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 break;

TEE TUI Extension: Biometrics API – Public Release v1.0 59 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 case TEE_EVENT_BIO_CAPTURE_STARTED:
 /* User has presented their finger */
 if (getImage("swipe.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 break;
 case TEE_EVENT_BIO_ERROR:
 case TEE_EVENT_BIO_CAPTURE_INSUFFICIENT_DATA:

 /* Cannot complete capture */
 /* myBioEvent.data.error explains why */
 if (getImage("sorry.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 break;

 case TEE_EVENT_BIO_CAPTURE_COMPLETED:
 /* Capture completed successfully
 /* Start verification */

 if (TEE_BioStartVerify(myFingerESH, myBioEvent.u.v1.data.handle,
 myTemplate, sizeof(myTemplate), myTag) != TEE_SUCCESS) {
 // Cannot start verification process
 if (getImage("sorry.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 }
 else {
 /* Starting to verify - tell user */
 if (getImage("starting_to_verify.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 }
 break;

 case TEE_EVENT_BIO_VERIFY_MATCH:
 /* matched template */
 if (getImage("matched.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 complete = true;
 match = true;
 matched = myBioEvent.u.v1.data.templateId;
 break;

 case TEE_EVENT_BIO_VERIFY_NO_MATCH:
 /* Finger does not match MyBioEvent.template */
 if (getImage("failed.png", myPng) != TEE_SUCCESS) {
 // error finding image
 }
 complete = true;
 match = false;
 break;
 } // end of switch on bio event type
 // update display with new image
 /* Obtain the size of the image */
 if (TEE_TUI_GetPNGInformation(myPng,
 myWidth,
 myHeight,
 myColortype) != TEE_SUCCESS) {
 /* error obtaining information from image */
 }
 // write it to buffer

60 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 if (TEE_TUI_SetPNG(myDisplaySurface,
 myPng,
 0,
 0,
 myWidth,
 myHeight,
 TEE_TUI_SURFACE_OPACITY_OPAQUE) != TEE_SUCCESS) {
 /* error writing PNG to surface */
 }
 /* Call BlitDisplaysurface to update display */
 if (TEE_TUI_BlitDisplaySurface(myDisplay, myDisplaySurface) != TEE_SUCCESS){
 /* error updating display */
 }
 // get new surface
 if (TEE_TUI_GetDisplaySurface(myDisplay,
 myDisplaySurface) != TEE_SUCCESS) {
 /* error obtaining surface for display */
 }
 break;

 } // end of switch
 } // end of for
 } // end of else
 } // end of while
 return TEE_SUCCESS;
}

int main(){
 TEE_Result r;
 rootcomp->next = 0;
 r = tuiLowLevel();
 }

TEE TUI Extension: Biometrics API – Public Release v1.0 61 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex C Sequence Diagrams
Figure C-1: Biometric Enroll Using TUI Low-level API

62 / 63 TEE TUI Extension: Biometrics API – Public Release v1.0

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure C-2: Biometric Associate Using TUI Low-level API

TEE TUI Extension: Biometrics API – Public Release v1.0 63 / 63

Copyright  2012-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure C-3: Biometric Verify Using TUI Low-level API

	Contents
	Tables
	Figures
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Biometrics API Objectives
	2.1 Target
	2.2 Purpose
	2.3 Scope

	3 Overview of Biometric Architecture
	3.1 API Function Calls Overview
	3.1.1 Enroll
	3.1.2 Capture
	3.1.3 Verify
	3.1.4 Associate
	3.1.5 Dissociate
	3.1.6 List Templates
	3.1.7 Stop

	3.2 Data Object Lifecycle
	3.2.1 Live Templates
	3.2.2 Stored Templates
	3.2.3 Associations

	4 Biometrics API
	4.1 Standard TEE Terminology and Methodology
	4.1.1 Parameter Annotations
	4.1.1.1 Inbufs and Outbufs

	4.1.2 Data Types
	4.1.3 Return Codes Including Error Codes Used in this Specification
	4.1.4 External Functions
	4.1.5 Specification Version Number Property
	4.1.6 Header File
	4.1.7 API Version
	4.1.8 Version Compatibility Definitions
	4.1.9 Structure Versions

	4.2 Background Material and Implementation Options
	4.2.1 Biometric Peripherals
	4.2.2 Live Images, Templates, and Raw Images
	4.2.3 Using Biometrics with the TUI Low-level API
	4.2.4 Biometric Matching Thresholds
	4.2.5 Use of Trusted Storage

	4.3 Data Constants
	4.3.1 Return Codes
	4.3.2 TEE_BIO_ASSURANCE_LEVEL
	4.3.3 TEE_BIO_CAPTURE_TYPE
	4.3.4 TEE_BIO_TYPE
	4.3.5 TEE_EVENT_BIO_TYPE

	4.4 State Table
	4.5 Data Structures
	4.5.1 TEE_BioHandle
	4.5.2 TEE_BioTag
	4.5.3 TEE_Event_Bio
	4.5.4 TEE_TemplateID

	4.6 Biometric Functions
	4.6.1 Functions That Do Not Require a TUI Session
	4.6.1.1 TEE_BioDissociateTemplate
	4.6.1.2 TEE_BioListTemplates

	4.6.2 Functions That Require a Low-level TUI Session
	4.6.2.1 TEE_BioStartAssociate
	4.6.2.2 TEE_BioStartCapture
	4.6.2.3 TEE_BioStartEnroll
	4.6.2.4 TEE_BioStartVerify
	4.6.2.5 TEE_BioStop

	Annex A Panicked Function Identification
	Annex B Biometrics API Usage
	Annex C Sequence Diagrams

		2018-04-06T13:41:48-0500
	Document Management

