

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual
property rights (collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of
the specification or other work product set forth in this document, and to provide supporting documentation. The technology
provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Device Technology

TEE Internal Core API Specification
Version 1.1.1

Public Release

June 2016

Document Reference: GPD_SPE_010

 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE Internal Core API Specification – Public Release v1.1.1 3/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents

1 Introduction .. 12
1.1 Audience ... 12
1.2 IPR Disclaimer... 12
1.3 References .. 13
1.4 Terminology and Definitions .. 13
1.5 Abbreviations and Notations ... 17
1.6 Revision History .. 18

2 Overview of the TEE Internal Core API Specification .. 20
2.1 Trusted Applications .. 21

2.1.1 TA Interface .. 21
2.1.2 Instances, Sessions, Tasks, and Commands .. 22
2.1.3 Sequential Execution of Entry Points ... 22
2.1.4 Cancellations .. 22
2.1.5 Unexpected Client Termination .. 23
2.1.6 Instance Types ... 23
2.1.7 Configuration, Development, and Management .. 23

2.2 TEE Internal Core APIs ... 24
2.2.1 Trusted Core Framework API .. 24
2.2.2 Trusted Storage API for Data and Keys ... 24
2.2.3 Cryptographic Operations API ... 25
2.2.4 Time API ... 25
2.2.5 TEE Arithmetical API .. 25

2.3 Error Handling ... 26
2.3.1 Normal Errors ... 26
2.3.2 Programmer Errors .. 26
2.3.3 Panics ... 27

2.4 Opaque Handles ... 28
2.5 Properties .. 29

3 Common Definitions .. 30
3.1 Header File .. 30
3.2 Data Types .. 30

3.2.1 Basic Types .. 30
3.2.2 Bit Numbering... 30
3.2.3 TEE_Result, TEEC_Result .. 30
3.2.4 TEE_UUID, TEEC_UUID ... 31

3.3 Constants .. 32
3.3.1 Return Code Ranges and Format .. 32
3.3.2 Return Codes ... 33

3.4 Parameter Annotations ... 34
3.4.1 [in], [out], and [inout] ... 34
3.4.2 [outopt] ... 34
3.4.3 [inbuf] .. 34
3.4.4 [outbuf] ... 35
3.4.5 [outbufopt] .. 35
3.4.6 [instring] and [instringopt] ... 36
3.4.7 [outstring] and [outstringopt] ... 36
3.4.8 [ctx] ... 36

4 Trusted Core Framework API .. 37

4/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1 Data Types .. 38
4.1.1 TEE_Identity ... 38
4.1.2 TEE_Param .. 38
4.1.3 TEE_TASessionHandle ... 38
4.1.4 TEE_PropSetHandle .. 38

4.2 Constants .. 39
4.2.1 Parameter Types .. 39
4.2.2 Login Types .. 39
4.2.3 Origin Codes .. 39
4.2.4 Property Set Pseudo-Handles.. 40
4.2.5 Memory Access Rights .. 40

4.3 TA Interface ... 41
4.3.1 TA_CreateEntryPoint ... 44
4.3.2 TA_DestroyEntryPoint .. 45
4.3.3 TA_OpenSessionEntryPoint .. 45
4.3.4 TA_CloseSessionEntryPoint .. 46
4.3.5 TA_InvokeCommandEntryPoint ... 47
4.3.6 Operation Parameters in the TA Interface ... 48

4.4 Property Access Functions ... 52
4.4.1 TEE_GetPropertyAsString ... 54
4.4.2 TEE_GetPropertyAsBool ... 55
4.4.3 TEE_GetPropertyAsU32 .. 56
4.4.4 TEE_GetPropertyAsBinaryBlock.. 57
4.4.5 TEE_GetPropertyAsUUID .. 58
4.4.6 TEE_GetPropertyAsIdentity ... 59
4.4.7 TEE_AllocatePropertyEnumerator ... 60
4.4.8 TEE_FreePropertyEnumerator .. 61
4.4.9 TEE_StartPropertyEnumerator .. 61
4.4.10 TEE_ResetPropertyEnumerator .. 62
4.4.11 TEE_GetPropertyName ... 62
4.4.12 TEE_GetNextProperty ... 63

4.5 Trusted Application Configuration Properties ... 64
4.6 Client Properties .. 66
4.7 Implementation Properties .. 68
4.8 Panics .. 71

4.8.1 TEE_Panic ... 71
4.9 Internal Client API ... 72

4.9.1 TEE_OpenTASession .. 72
4.9.2 TEE_CloseTASession .. 73
4.9.3 TEE_InvokeTACommand .. 74
4.9.4 Operation Parameters in the Internal Client API .. 76

4.10 Cancellation Functions .. 77
4.10.1 TEE_GetCancellationFlag .. 77
4.10.2 TEE_UnmaskCancellation ... 78
4.10.3 TEE_MaskCancellation .. 78

4.11 Memory Management Functions... 79
4.11.1 TEE_CheckMemoryAccessRights ... 79
4.11.2 TEE_SetInstanceData .. 82
4.11.3 TEE_GetInstanceData ... 83
4.11.4 TEE_Malloc .. 84
4.11.5 TEE_Realloc .. 85
4.11.6 TEE_Free ... 86

TEE Internal Core API Specification – Public Release v1.1.1 5/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.7 TEE_MemMove.. 86
4.11.8 TEE_MemCompare ... 87
4.11.9 TEE_MemFill .. 88

5 Trusted Storage API for Data and Keys .. 89
5.1 Summary of Features and Design .. 89
5.2 Trusted Storage and Rollback Detection .. 91
5.3 Data Types .. 92

5.3.1 TEE_Attribute ... 92
5.3.2 TEE_ObjectInfo .. 92
5.3.3 TEE_Whence ... 93
5.3.4 TEE_ObjectHandle .. 93
5.3.5 TEE_ObjectEnumHandle ... 93

5.4 Constants .. 94
5.4.1 Constants Used in Trusted Storage API for Data and Keys .. 94
5.4.2 Constants Used in Cryptographic Operations API ... 95

5.5 Generic Object Functions .. 96
5.5.1 TEE_GetObjectInfo1 .. 96
5.5.2 TEE_RestrictObjectUsage1 ... 98
5.5.3 TEE_GetObjectBufferAttribute ... 99
5.5.4 TEE_GetObjectValueAttribute ... 101
5.5.5 TEE_CloseObject ... 102

5.6 Transient Object Functions ... 103
5.6.1 TEE_AllocateTransientObject .. 103
5.6.2 TEE_FreeTransientObject ... 106
5.6.3 TEE_ResetTransientObject ... 106
5.6.4 TEE_PopulateTransientObject... 107
5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute .. 111
5.6.6 TEE_CopyObjectAttributes1 .. 112
5.6.7 TEE_GenerateKey ... 114

5.7 Persistent Object Functions .. 117
5.7.1 TEE_OpenPersistentObject ... 117
5.7.2 TEE_CreatePersistentObject ... 119
5.7.3 Persistent Object Sharing Rules .. 122
5.7.4 TEE_CloseAndDeletePersistentObject1 .. 124
5.7.5 TEE_RenamePersistentObject .. 125

5.8 Persistent Object Enumeration Functions ... 126
5.8.1 TEE_AllocatePersistentObjectEnumerator .. 126
5.8.2 TEE_FreePersistentObjectEnumerator ... 126
5.8.3 TEE_ResetPersistentObjectEnumerator ... 127
5.8.4 TEE_StartPersistentObjectEnumerator ... 128
5.8.5 TEE_GetNextPersistentObject ... 129

5.9 Data Stream Access Functions ... 130
5.9.1 TEE_ReadObjectData .. 130
5.9.2 TEE_WriteObjectData .. 131
5.9.3 TEE_TruncateObjectData .. 132
5.9.4 TEE_SeekObjectData .. 133

6 Cryptographic Operations API .. 134
6.1 Data Types .. 136

6.1.1 TEE_OperationMode ... 136
6.1.2 TEE_OperationInfo .. 136
6.1.3 TEE_OperationInfoMultiple .. 137

6/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1.4 TEE_OperationHandle ... 137
6.2 Generic Operation Functions .. 138

6.2.1 TEE_AllocateOperation .. 138
6.2.2 TEE_FreeOperation ... 142
6.2.3 TEE_GetOperationInfo ... 143
6.2.4 TEE_GetOperationInfoMultiple .. 144
6.2.5 TEE_ResetOperation ... 146
6.2.6 TEE_SetOperationKey ... 147
6.2.7 TEE_SetOperationKey2 ... 149
6.2.8 TEE_CopyOperation .. 150

6.3 Message Digest Functions .. 151
6.3.1 TEE_DigestUpdate .. 151
6.3.2 TEE_DigestDoFinal .. 152

6.4 Symmetric Cipher Functions ... 153
6.4.1 TEE_CipherInit ... 153
6.4.2 TEE_CipherUpdate .. 155
6.4.3 TEE_CipherDoFinal ... 156

6.5 MAC Functions .. 157
6.5.1 TEE_MACInit.. 157
6.5.2 TEE_MACUpdate ... 158
6.5.3 TEE_MACComputeFinal .. 159
6.5.4 TEE_MACCompareFinal .. 160

6.6 Authenticated Encryption Functions ... 161
6.6.1 TEE_AEInit ... 161
6.6.2 TEE_AEUpdateAAD .. 162
6.6.3 TEE_AEUpdate .. 163
6.6.4 TEE_AEEncryptFinal ... 164
6.6.5 TEE_AEDecryptFinal ... 165

6.7 Asymmetric Functions ... 166
6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt ... 166
6.7.2 TEE_AsymmetricSignDigest .. 168
6.7.3 TEE_AsymmetricVerifyDigest .. 170

6.8 Key Derivation Functions .. 172
6.8.1 TEE_DeriveKey .. 172

6.9 Random Data Generation Function .. 174
6.9.1 TEE_GenerateRandom .. 174

6.10 Cryptographic Algorithms Specification .. 175
6.10.1 List of Algorithm Identifiers ... 175
6.10.2 Object Types .. 181
6.10.3 Elliptic Curve Types ... 182

6.11 Object or Operation Attributes ... 183

7 Time API .. 185
7.1 Data Types .. 185

7.1.1 TEE_Time .. 185
7.2 Time Functions .. 186

7.2.1 TEE_GetSystemTime .. 186
7.2.2 TEE_Wait ... 187
7.2.3 TEE_GetTAPersistentTime .. 188
7.2.4 TEE_SetTAPersistentTime .. 190
7.2.5 TEE_GetREETime ... 190

8 TEE Arithmetical API .. 191

TEE Internal Core API Specification – Public Release v1.1.1 7/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.1 Introduction .. 191
8.2 Error Handling and Parameter Checking .. 191
8.3 Data Types .. 192

8.3.1 TEE_BigInt ... 192
8.3.2 TEE_BigIntFMMContext .. 193
8.3.3 TEE_BigIntFMM ... 193

8.4 Memory Allocation and Size of Objects .. 194
8.4.1 TEE_BigIntSizeInU32 .. 194
8.4.2 TEE_BigIntFMMContextSizeInU32 .. 195
8.4.3 TEE_BigIntFMMSizeInU32 .. 195

8.5 Initialization Functions ... 196
8.5.1 TEE_BigIntInit .. 196
8.5.2 TEE_BigIntInitFMMContext .. 197
8.5.3 TEE_BigIntInitFMM .. 198

8.6 Converter Functions .. 199
8.6.1 TEE_BigIntConvertFromOctetString .. 199
8.6.2 TEE_BigIntConvertToOctetString .. 200
8.6.3 TEE_BigIntConvertFromS32 .. 200
8.6.4 TEE_BigIntConvertToS32 .. 201

8.7 Logical Operations .. 202
8.7.1 TEE_BigIntCmp.. 202
8.7.2 TEE_BigIntCmpS32 ... 202
8.7.3 TEE_BigIntShiftRight ... 203
8.7.4 TEE_BigIntGetBit ... 204
8.7.5 TEE_BigIntGetBitCount ... 204

8.8 Basic Arithmetic Operations .. 205
8.8.1 TEE_BigIntAdd ... 205
8.8.2 TEE_BigIntSub ... 206
8.8.3 TEE_BigIntNeg... 207
8.8.4 TEE_BigIntMul ... 208
8.8.5 TEE_BigIntSquare ... 208
8.8.6 TEE_BigIntDiv .. 209

8.9 Modular Arithmetic Operations .. 210
8.9.1 TEE_BigIntMod .. 210
8.9.2 TEE_BigIntAddMod .. 211
8.9.3 TEE_BigIntSubMod .. 212
8.9.4 TEE_BigIntMulMod .. 213
8.9.5 TEE_BigIntSquareMod .. 214
8.9.6 TEE_BigIntInvMod ... 215

8.10 Other Arithmetic Operations .. 216
8.10.1 TEE_BigIntRelativePrime ... 216
8.10.2 TEE_BigIntComputeExtendedGcd .. 217
8.10.3 TEE_BigIntIsProbablePrime .. 218

8.11 Fast Modular Multiplication Operations ... 219
8.11.1 TEE_BigIntConvertToFMM .. 219
8.11.2 TEE_BigIntConvertFromFMM .. 220
8.11.3 TEE_BigIntComputeFMM .. 221

Annex A Panicked Function Identification .. 222

Annex B Deprecated Functions, Identifiers, and Values .. 227
B.1 Deprecated Functions ... 227

B.1.1 TEE_GetObjectInfo – Deprecated ... 227

8/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.2 TEE_RestrictObjectUsage – Deprecated .. 229
B.1.3 TEE_CopyObjectAttributes – Deprecated ... 230
B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated .. 231

B.2 Deprecated Identifiers ... 232

Annex C Normative References for Algorithms .. 235

Functions... 239

Functions by Category ... 241

TEE Internal Core API Specification – Public Release v1.1.1 9/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures

Figure 2-1: Trusted Application Interactions with the Trusted OS .. 21

Figure 7-1: Persistent Time Status State Machine ... 188

10/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables

Table 1-1: Normative References ... 13

Table 1-2: Terminology and Definitions .. 14

Table 1-3: Abbreviations ... 17

Table 1-4: Revision History .. 18

Table 2-1: Handle Types .. 28

Table 3-1: UUID Usage Reservations .. 31

Table 3-2: Return Code Formats and Ranges ... 32

Table 3-3: API Return Codes ... 33

Table 4-1: Parameter Type Constants ... 39

Table 4-2: Login Type Constants ... 39

Table 4-3: Origin Code Constants .. 39

Table 4-4: Property Set Pseudo-Handle Constants ... 40

Table 4-5: Memory Access Rights Constants .. 40

Table 4-6: TA Interface Functions .. 41

Table 4-7: Effect of Client Operation on TA Interface .. 42

Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called...................................... 49

Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returns 50

Table 4-10: Property Sets ... 52

Table 4-11: Trusted Application Standard Configuration Properties .. 64

Table 4-12: Standard Client Properties .. 66

Table 4-13: Client Identities .. 66

Table 4-14: Implementation Properties .. 68

Table 4-15: Interpretation of params[i] on Entry to Internal Client API .. 76

Table 4-16: Effects of Internal Client API on params[i] .. 76

Table 4-17: Valid Hint Values ... 84

Table 5-1: Values of gpd.tee.trustedStorage.rollbackDetection.protectionLevel 91

Table 5-2: Object Storage Constants ... 94

Table 5-3: Data Flag Constants .. 94

Table 5-4: Usage Constants ... 94

Table 5-4b: Miscellaneous Constants [formerly Table 5-8] .. 94

Table 5-5: Handle Flag Constants .. 95

Table 5-6: Operation Constants ... 95

Table 5-7: Operation States ... 95

Table 5-8: [moved – now Table 5-4b] ... 95

TEE Internal Core API Specification – Public Release v1.1.1 11/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizes .. 103

Table 5-10: TEE_PopulateTransientObject Supported Attributes .. 108

Table 5-11: TEE_CopyObjectAttributes1 Parameter Types ... 112

Table 5-12: TEE_GenerateKey Parameters .. 114

Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of TEE_CreatePersistentObject 120

Table 5-14: Examples of TEE_OpenPersistentObject Sharing Rules .. 123

Table 6-1: Supported Cryptographic Algorithms .. 134

Table 6-2: ECC Cryptographic Algorithms ... 135

Table 6-3: Possible TEE_OperationMode Values .. 136

Table 6-4: TEE_AllocateOperation Allowed Modes .. 139

Table 6-5: Public Key Allowed Modes .. 147

Table 6-6: Key-Pair Parts for Operation Modes ... 148

Table 6-6b: Symmetric Encrypt/Decrypt Operation Parameters .. 153

Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameters .. 166

Table 6-8: Asymmetric Sign Operation Parameters ... 168

Table 6-9: Asymmetric Verify Operation Parameters ... 170

Table 6-10: Asymmetric Derivation Operation Parameters .. 172

Table 6-11: List of Algorithm Identifiers .. 175

Table 6-12: Structure of Algorithm Identifier or Object Type Identifier ... 178

Table 6-12b: Algorithm Subtype Identifier .. 180

Table 6-13: List of Object Types ... 181

Table 6-14: List of Supported ECC Curves .. 182

Table 6-15: Object or Operation Attributes ... 183

Table 6-16: Attribute Format Definitions ... 184

Table 6-17: Partial Structure of Attribute Identifier ... 184

Table 6-18: Attribute Identifier Flags .. 184

Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property .. 186

Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property 189

Table A-1: Function Identification Values ... 222

Table B-1: Deprecated Object Identifier ... 232

Table B-2: Deprecated Algorithm Identifiers... 232

Table C-1: Normative References for Algorithms ... 235

12/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside

a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the

requirements defined in the GlobalPlatform TEE System Architecture [Sys Arch] specification, i.e. it is

accessible from a Rich Execution Environment (REE) through the GlobalPlatform TEE Client API (described

in GlobalPlatform TEE Client API Specification [Client API]) but is specifically protected against malicious

attacks and only runs code trusted in integrity and authenticity.

The APIs defined in this document target the C language and provide the following set of functionalities to TA

developers:

 Basic OS-like functionalities, such as memory management, timer, and access to configuration

properties

 Communication means with Client Applications (CAs) running in the Rich Execution Environment

 Trusted Storage facilities

 Cryptographic facilities

 Time management facilities

The scope of this document is the development of Trusted Applications in the C language and their interactions

with the TEE Client API [Client API]. It does not cover other possible language bindings or the run-time

installation and management of Trusted Applications.

1.1 Audience

This document is suitable for software developers implementing Trusted Applications running inside the TEE

which need to expose an externally visible interface to Client Applications and to use resources made available

through the TEE Internal Core API, such as cryptographic capabilities and Trusted Storage.

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework,

the TEE APIs, and the communications infrastructure required to access Trusted Applications.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work

product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For

additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please

visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held

responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the

evidence, validity, or scope of any such IPR.

https://www.globalplatform.org/specificationsipdisclaimers.asp

TEE Internal Core API Specification – Public Release v1.1.1 13/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.3 References

See also Annex C: Normative References for Algorithms.

Table 1-1: Normative References

Standard / Specification Description Ref

GPD_SPE_007 GlobalPlatform Device Technology

TEE Client API Specification

[Client API]

GPD_SPE_009 GlobalPlatform Device Technology

TEE System Architecture

[Sys Arch]

GPD_SPE_025 GlobalPlatform Device Technology

TEE TA Debug Specification

[Debug]

GPD_SPE_027

GPD_SPE_120

GlobalPlatform Device Technology

TEE Management Administration Framework

[TEE Mgmt Fmwk]

ISO/IEC 9899:1999 Programming languages – C [C99]

NIST Recommended

Elliptic Curves

Recommended Elliptic Curves for Federal Government

Use

[NIST Re Cur]

NIST SP800-56B Recommendation for Pair-Wise Key Establishment

Schemes Using Integer Factorization Cryptography

[NIST SP800-56B]

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies

[RFC 2045]

RFC 2119 Key words for use in RFCs to Indicate Requirement

Levels

[RFC 2119]

RFC 4122 A Universally Unique IDentifier (UUID) URN

Namespace

[RFC 4122]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, and MAY in this

document (refer to [RFC 2119]):

 SHALL indicates an absolute requirement, as does MUST.

 SHALL NOT indicates an absolute prohibition, as does MUST NOT.

 SHOULD indicates a recommendation.

 MAY indicates an option.

14/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 1-2: Terminology and Definitions

Term Definition

Cancellation Flag An indicator that a Client has requested cancellation of an operation.

Client Either of the following:

 a Client Application using the TEE Client API

 a Trusted Application acting as a client of another Trusted

Application, using the Internal Client API

Client Application (CA) An application running outside of the Trusted Execution Environment

making use of the TEE Client API to access facilities provided by

Trusted Applications inside the Trusted Execution Environment.

Contrast Trusted Application (TA).

Client Properties A set of properties associated with the Client of a Trusted Application.

Command A message (including a Command Identifier and four Operation

Parameters) send by a Client to a Trusted Application to initiate an

operation.

Command Identifier A 32-bit integer identifying a Command.

Cryptographic Key Object An object containing key material.

Cryptographic Key-Pair Object An object containing material associated with both keys of a key-pair.

Cryptographic Operation

Handle

An opaque reference that identifies a particular cryptographic operation.

Cryptographic Operation Key The key to be used for a particular operation.

Data Object An object containing a data stream but no key material.

Data Stream Data associated with a persistent object (excluding Object Attributes

and metadata).

Function Number Identifies a function within a specification. With the Specification

Number, forms a unique identifier for a function. May be displayed when

a panic occurs or in debug messages where supported.

Implementation A particular implementation of the Trusted OS.

Initialized Describes a transient object whose attributes have been populated.

Instance A particular execution of a Trusted Application, having physical memory

space that is separated from the physical memory space of all other TA

instances.

Key Size The key size associated with a Cryptographic Object; values are limited

by the key algorithm used.

Key Usage Flags Indicators of the operations permitted with a Cryptographic Object.

Memory Reference Parameter An Operation Parameter that carries a pointer to a client-owned memory

buffer.

Contrast Value Parameter.

Metadata Additional data associated with a Cryptographic Object: Key Size and

Key Usage Flags.

TEE Internal Core API Specification – Public Release v1.1.1 15/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Multi Instance Trusted

Application

Denotes a Trusted Application for which each session opened by a

client is directed to a separate TA instance.

Object Attribute Small amounts of data used to store key material in a structured way.

Object Handle An opaque reference that identifies a particular object.

Object Identifier A variable-length binary buffer identifying a persistent object.

Operation Parameter One of four data items passed in a Command, which can contain

integer values or references to client-owned shared memory blocks.

Panic An exception that kills a whole TA instance as a result of calling one of

the API functions.

Parameter Annotation Denotes the pattern of usage of a function parameter or pair of function

parameters.

Persistent Object An object identified by an Object Identifier and including a Data Stream.

Contrast Transient Object.

Property An immutable value identified by a name.

Property Set Any of the following:

 The configuration properties of a Trusted Application

 Properties associated with a Client Application by the Rich Execution

Environment

 Properties describing characteristics of a TEE Implementation

REE Time A time value that is as trusted as the REE.

Rich Execution Environment

(REE)

An environment that is provided and governed by a Rich OS, potentially

in conjunction with other supporting operating systems and hypervisors;

it is outside of the TEE. This environment and applications running on it

are considered un-trusted.

Contrast Trusted Execution Environment (TEE).

Rich OS Typically an OS providing a much wider variety of features than that of

the OS running inside the TEE. It is very open in its ability to accept

applications. It will have been developed with functionality and

performance as key goals, rather than security. Due to the size and

needs of the Rich OS it will run in an execution environment outside of

the TEE hardware (often called an REE – Rich Execution Environment)

with much lower physical security boundaries. From the TEE viewpoint,

everything in the REE has to be considered un-trusted, though from the

Rich OS point of view there may be internal trust structures.

Contrast Trusted OS.

Session Logically connects multiple commands invoked on a Trusted

Application.

Single Instance Trusted

Application

Denotes a Trusted Application for which all sessions opened by clients

are directed to a single TA instance.

Specification Number Identifies the specification within which a function is defined. May be

displayed when a panic occurs or in debug messages where supported.

16/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Storage Identifier A 32-bit identifier for a Trusted Storage Space that can be accessed by

a Trusted Application.

System Time A time value that can be used to compute time differences and

operation deadlines.

TA Persistent Time A time value set by the Trusted Application that persists across platform

reboots and whose level of trust can be queried.

Task The entity that executes any code executed in a Trusted Application.

Transient Object An object containing attributes but no data stream, which is reclaimed

when closed or when the TA instance is destroyed.

Contrast Persistent Object.

Trusted Application (TA) An application running inside the Trusted Execution Environment that

provides security related functionality to Client Applications outside of

the TEE or to other Trusted Applications inside the Trusted Execution

Environment.

Contrast Client Application (CA).

Trusted Application

Configuration Properties

A set of properties associated with the installation of a Trusted

Application.

Trusted Core Framework or

“Framework”

The part of the Trusted OS responsible for implementing the Trusted

Core Framework API1 that provides OS-like facilities to Trusted

Applications and a way for the Trusted OS to interact with the Trusted

Applications.

Trusted Execution Environment

(TEE)

An execution environment that runs alongside but isolated from an REE.

A TEE has security capabilities and meets certain security-related

requirements: It protects TEE assets from general software attacks,

defines rigid safeguards as to data and functions that a program can

access, and resists a set of defined threats. There are multiple

technologies that can be used to implement a TEE, and the level of

security achieved varies accordingly.

Contrast Rich Execution Environment (REE).

Trusted OS An operating system running in the TEE providing the TEE Internal Core

API to Trusted Applications.

Trusted Storage Spaces Storage spaces accessible only to Trusted Applications.

Uninitialized Describes a transient object allocated with a certain object type and

maximum size but with no attributes.

Universally Unique Identifier

(UUID)

An identifier as specified in RFC 4122 [RFC 4122].

Value Parameter An Operation Parameter that carries two 32-bit integers.

Contrast Memory Reference Parameter.

1 The Trusted Core Framework API is described in Chapter 4.

TEE Internal Core API Specification – Public Release v1.1.1 17/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.5 Abbreviations and Notations

Table 1-3: Abbreviations

Term Definition

AAD Additional Authenticated Data

AE Authenticated Encryption

AES Advanced Encryption Standard

API Application Programming Interface

CA Client Application

CMAC Cipher-based MAC

CRT Chinese Remainder Theorem

CTS CipherText Stealing

DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ETSI European Telecommunications Standards Institute

FMM Fast Modular Multiplication

gcd Greatest Common Divisor

HMAC Hash-based Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPR Intellectual Property Rights

ISO International Organization for Standardization

IV Initialization Vector

MAC Message Authentication Code

MD5 Message Digest 5

MGF Mask Generating Function

NIST National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

OS Operating System

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

18/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

REE Rich Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF

RSA Rivest, Shamir, Adleman asymmetric algorithm

SHA Secure Hash Algorithm

TA Trusted Application

TEE Trusted Execution Environment

UTC Coordinated Universal Time

UTF Unicode Transformation Format

UUID Universally Unique Identifier

XTS XEX-based Tweaked Codebook mode with ciphertext stealing (CTS)

1.6 Revision History

Table 1-4: Revision History

Date Version Description

December 2011 1.0 Initial Public Release, as “TEE Internal API Specification”.

June 2014 1.1 Public Release, as “TEE Internal Core API Specification”.

June 2016 1.1.1 Public Release, showing all non-trivial changes since v1.1.

Significant changes include:

 Many parameters were defined as size_t in v1.0 then changed to
uint32_t in v1.1, and have now been reverted.

 Improved clarity of specification with regard to TEE_GenerateKey

parameter checking. Reverted over-prescriptive requirements for

parameter vetting, re-enabling practical prime checking.

 Clarification of invalid storage ID handling with regard to
TEE_CreatePersistentObject and
TEE_OpenPersistentObject.

 Clarified which algorithms may use an IV.

 Clarified the availability of TEE_GetPropertyAsBinaryBlock().

 Clarified mismatches between Table 6-12 and elsewhere.

 Deprecated incorrectly defined algorithm identifiers and defined a

distinct set.

 Corrected an error in TEE_BigIntComputeExtendedGcd() range

validation.

 Clarified operation of TEEC_OpenSession with NULL
TEEC_Operation.

 Clarified relationship of specification with FIPS 186-2 and FIPS 186-4.

 (continues)

TEE Internal Core API Specification – Public Release v1.1.1 19/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Date Version Description

June 2016

(continued)

1.1.1 Clarified uniqueness of gpd.tee.deviceID in case of multiple TEEs

on a device.

 Corrected details of when TEE_HANDLE_FLAG_INITIALIZED is set.

 Clarified the security of the location of operation parameters that the TA

is acting on.

 Clarified the handling and validation of storage identifiers.

 Clarified the protection level relationships with anti-rollback, and the

way anti-rollback violation is signaled to a TA.

 Clarified the data retention requirement for an unused “b” attribute

value.

 Clarified the acceptable bit size for some security operations.

 Relaxed attribute restrictions such that
TEE_PopulateTransientObject and TEE_GenerateKey are

aligned.

 Clarified the handling of ACCESS_WRITE_META.

20/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Overview of the TEE Internal Core API Specification

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside

a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the

requirements defined in [Sys Arch], i.e. it is accessible from a Rich Execution Environment (REE) through

the GlobalPlatform TEE Client API [Client API] but is specifically protected against malicious attacks and runs

only code trusted in integrity and authenticity.

A TEE provides the Trusted Applications an execution environment with defined security boundaries, a set of

security enabling capabilities, and means to communicate with Client Applications running in the Rich

Execution Environment. This document specifies how to use these capabilities and communication means for

Trusted Applications developed using the C programming language. It does not cover how Trusted

Applications are installed or managed and does not cover other language bindings.

Sections below provide an overview of the TEE Internal Core API specification.

 Section 2.1 describes Trusted Applications and their operations and interactions with other TEE

components.

 Section 2.2 gives an overview of the TEE Internal Core APIs that provide core secure services to the

Trusted Applications.

 Section 2.3 describes error handling, including how program/normal errors and panic situations are

handled by the all TEE internal specifications.

 Section 2.4 describes different opaque handle types used in the specification. These opaque handles

refer to objects created by the API implementation for a TA instance.

 Section 2.5 describes TEE properties that refer to configuration parameters, permissions, or

implementation characteristics.

TEE Internal Core API Specification – Public Release v1.1.1 21/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1 Trusted Applications

A Trusted Application (TA) is a program that runs in a Trusted Execution Environment (TEE) and exposes

security services to its Clients.

A Trusted Application is command-oriented. Clients access a Trusted Application by opening a session with

the Trusted Application and invoking commands within the session. When a Trusted Application receives a

command, it parses the messages associated with the command, performs any required processing, and then

sends a response back to the client.

A Client typically runs in the Rich Execution Environment and communicates with a Trusted Application using

the TEE Client API [Client API]. It is then called a “Client Application”. It is also possible for a Trusted

Application to act as a client of another Trusted Application, using the Internal Client API (see section 4.9).

The term “Client” covers both cases.

2.1.1 TA Interface

Each Trusted Application exposes an interface (the TA interface) composed of a set of entry point functions

that the Trusted Core Framework implementation calls to inform the TA about life-cycle changes and to relay

communication between Clients and the TA. Once the Trusted Core Framework has called one of the TA entry

points, the TA can make use of the TEE Internal Core API to access the facilities of the Trusted OS, as

illustrated in Figure 2-1. For more information on the TA interface, see section 4.3.

Each Trusted Application is identified by a Universally Unique Identifier (UUID) as specified in [RFC 4122].

Each Trusted Application also comes with a set of Trusted Application Configuration Properties. These

properties are used to configure the Trusted OS facilities exposed to the Trusted Application. Properties can

also be used by the Trusted Application itself as a means of configuration.

Figure 2-1: Trusted Application Interactions with the Trusted OS

TEE Internal Core APIcalls

implements

calls

 implements
Trusted

Application
TA Interface

Trusted OS
Trusted Core

Framework

22/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1.2 Instances, Sessions, Tasks, and Commands

When a Client creates a session with a Trusted Application, it connects to an Instance of that Trusted

Application. A Trusted Application instance has physical memory space which is separated from the physical

memory space of all other Trusted Application instances. The Trusted Application instance memory space

holds the Trusted Application instance heap and writable global and static data.

All code executed in a Trusted Application is said to be executed by Tasks. A Task keeps a record of its

execution history (typically realized with a stack) and current execution state. This record is collectively called

a Task context. A Task MUST be created each time the Trusted OS calls an entry point of the Trusted

Application. Once the entry point has returned, an Implementation may recycle a Task to call another entry

point but this MUST appear like a completely new Task was created to call the new entry point.

A Session is used to logically connect multiple commands invoked in a Trusted Application. Each session has

its own state, which typically contains the session context and the context(s) of the Task(s) executing the

session.

A Command is issued within the context of a session and contains a Command Identifier, which is a 32-bit

integer, and four Operation Parameters, which can contain integer values or references to client-owned

shared memory blocks.

It is up to the Trusted Application to define the combinations of commands and their parameters that are valid

to execute. This is outside the scope of this specification.

2.1.3 Sequential Execution of Entry Points

All entry point calls within a given Trusted Application instance are called in sequence, i.e. no more than one

entry point is executed at any point in time. The Trusted Core Framework implementation MUST guarantee

that a commenced entry point call is completed before any new entry point call is allowed to begin execution.

If there is more than one entry point call to complete at any point in time, all but one call MUST be queued by

the Framework. The order in which the Framework queues and picks enqueued calls for execution is

implementation-defined.

It is not possible to execute multiple concurrent commands within a session. The TEE guarantees that a

pending command has completed before a new command is executed.

Since all entry points of a given Trusted Application instance are called in sequence, there is no need to use

any dedicated synchronization mechanisms to maintain consistency of any Trusted Application instance

memory. The sequential execution of entry points inherently guarantees this consistency.

2.1.4 Cancellations

Clients can request the cancellation of open-session and invoke-command operations at any time.

If an operation is requested to be cancelled and has not reached the Trusted Application yet but has been

queued, then the operation is simply retired from the queue.

If the operation has already been transmitted to the Trusted Application, then the task running the operation is

put in the cancelled state. This has an effect on a few “cancellable” functions, such as TEE_Wait, but this

effect may also be masked by the Trusted Application if it does not want to be affected by client cancellations.

See section 4.10 for more details on how a Trusted Application can handle cancellation requests and mask

their effect.

TEE Internal Core API Specification – Public Release v1.1.1 23/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.1.5 Unexpected Client Termination

When the client of a Trusted Application dies or exits abruptly and when it can be properly detected, then this

MUST appear to the Trusted Application as if the client requests cancellation of all pending operations and

gracefully closes all its client sessions. It MUST be indistinguishable from a clean session closing.

More precisely, the REE SHOULD detect when a Client Application dies or exits. When this happens, the REE

MUST initiate a termination process that MUST result in the following sequence of events for all Trusted

Application instances that are serving a session with the terminating client:

 If an operation is pending in the closing session, it MUST appear as if the client had requested its

cancellation.

 When no operation remains pending in the session, the session MUST be closed.

If a TA client is a TA itself, this sequence of events MUST happen when the client TA panics or exits due to

the termination of its own Client Application.2

2.1.6 Instance Types

At least two Trusted Application instance types MUST be supported: Multi Instance and Single Instance.

Whether a Trusted Application is Multi Instance or Single Instance is part of its configuration properties and

MUST be enforced by the Trusted OS. See section 4.5 for more information on configuration properties.

 For a Multi Instance Trusted Application, each session opened by a client is directed to a separate

Trusted Application instance, created on demand when the session is opened and destroyed when the

session closes. By definition, every instance of such a Trusted Application accepts and handles one

and only one session at a given time.

 For a Single Instance Trusted Application, all sessions opened by the clients are directed to a

single Trusted Application instance. From the Trusted Application point of view, all sessions share the

same Trusted Application instance memory space, which means for example that memory

dynamically allocated for one session is accessible in all other sessions. It is also configurable

whether a Single Instance Trusted Application accepts multiple concurrent sessions or not.

2.1.7 Configuration, Development, and Management

Trusted Applications as discussed in this document are developed using the C language. The way Trusted

Applications are compiled and linked is implementation-dependent.

The TEE Management Framework The Remote Administration specification [TEE Mgmt Fmwk] defines a

mechanism by which Trusted Applications can be configured and installed in a TEE. The scope of this

specification does not include configuration, installation, de-installation, signing, verification, or any other life-

cycle or deployment aspects.

2 Panics are discussed in section 2.3.3.

24/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2 TEE Internal Core APIs

The TEE Internal Core APIs are a specified set of APIs that are required to be available on a GlobalPlatform

TEE implementation. The Trusted OS implements TEE Internal Core APIs that are used by Trusted

Applications to develop secure tasks. These APIs provide building blocks to TAs by offering them a set of core

services. These core APIs are further classified into four broad categories described below.

[Note: Sections 2.2.2 through 2.2.5 were previously sections 2.5 through 2.8.]

2.2.1 Trusted Core Framework API

This specification defines an API that provides OS functionality – integration, scheduling, communication,

memory management, and system information retrieval interfaces – and channels communications from Client

Applications or other Trusted Applications to the Trusted Application.

2.2.2 Trusted Storage API for Data and Keys

This specification defines an API that defines Trusted Storage for keys or general-purpose data. This API

provides access to the following facilities:

 Trusted Storage for general-purpose data and key material with guarantees on the confidentiality and

integrity of the data stored and atomicity of the operations that modify the storage

o The Trusted Storage may be backed by non-secure resources as long as suitable cryptographic

protection is applied, which MUST be as strong as the means used to protect the TEE code and

data itself.

o The Trusted Storage MUST be bound to a particular device, which means that it MUST be

accessible or modifiable only by authorized TAs running in the same TEE and on the same device

as when the data was created.

o See [Sys Arch] §2.2 for more details on the security requirements for the Trusted Storage.

 Ability to hide sensitive key material from the TA itself

 Association of data and key: Any key object can be associated with a data stream and pure data

objects contain only the data stream and no key material.

 Separation of storage among different TAs:

o Each TA has access to its own storage space that is shared among all the instances of that TA but

separated from the other TAs.

TEE Internal Core API Specification – Public Release v1.1.1 25/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.2.3 Cryptographic Operations API

This specification defines an API that provides the following cryptographic facilities:

 Generation and derivation of keys and key-pairs

 Support for the following types of cryptographic algorithms:

o Digests

o Symmetric Ciphers

o Message Authentication Codes (MAC)

o Authenticated Encryption algorithms such as AES-CCM and AES-GCM

o Asymmetric Encryption and Signature

o Key Exchange algorithms

 Pre-allocation of cryptographic operations and key containers so that resources can be allocated

ahead of time and reused for multiple operations and with multiple keys over time

2.2.4 Time API

This specification defines an API to access three sources of time:

 The System Time has an arbitrary non-persistent origin. It may use a secure dedicated hardware

timer or be based on the REE timers.

 The TA Persistent Time is real-time and persistent but its origin is individually controlled by each TA.

This allows each TA to independently synchronize its time with the external source of trusted time of

its choice. The TEE itself is not required to have a defined trusted source of time.

 The REE Time is real-time but SHOULD NOT be more trusted than the REE and the user.

The level of trust that a Trusted Application can put in System Time and its TA Persistent Time is

implementation-defined as a given Implementation may not include fully trustable hardware sources of time

and hence may have to rely on untrusted real-time clocks and timers managed by the Rich Execution

Environment. However, when a more trustable source of time is available, it is expected that it will be exposed

to Trusted Applications through this Time API. Note that a Trusted Application can programmatically determine

the level of protection of time sources by querying implementation properties

gpd.tee.systemTime.protectionLevel and gpd.tee.TAPersistentTime.protectionLevel.

2.2.5 TEE Arithmetical API

The TEE Arithmetical API is a low-level API that complements the Cryptographic API when a Trusted

Application needs to implement asymmetric algorithms, modes, or paddings not supported by the

Cryptographic API.

The API provides arithmetical functions to work on big numbers and prime field elements. It provides operations

including regular arithmetic, modular arithmetic, primality test, and fast modular multiplication that can be

based on the Montgomery reduction or a similar technique.

26/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.3 Error Handling

2.3.1 Normal Errors

The TEE Internal Core API functions usually return a return code of type TEE_Result to indicate errors to

the caller. This is used to denote “normal” run-time errors that the TA code is expected to catch and handle,

such as out-of-memory conditions or short buffers.

Routines defined in this specification SHOULD only return the return codes defined in their definition in this

specification. Where return codes are defined they SHOULD only be returned with the meaning defined by this

specification: Errors which are detected for which no return code has been defined SHALL cause the routine

to panic.

2.3.2 Programmer Errors

There are a number of conditions in this specification that can only occur as a result of Programmer Error,

i.e. they are triggered by incorrect use of the API by a Trusted Application, such as wrong parameters, wrong

state, invalid pointers, etc., rather than by run-time errors such as out-of-memory conditions.

Some Programmer Errors are explicitly tagged as “Panic Reasons” and MUST be reliably detected by an

Implementation. These errors make it impossible to produce the result of the function and require that the

API panic the calling TA instance, which kills the instance. If such a Panic Reason occurs, it MUST NOT go

undetected and, e.g. produce incorrect results or corrupt TA data.

However, it is accepted that some Programmer Errors cannot be realistically detected at all times and that

precise behavior cannot be specified without putting too much of a burden on the implementation. In case of

such a Programmer Error, an Implementation is therefore not required to gracefully handle the error or even

to behave consistently, but the Implementation SHOULD still make a best effort to detect the error and panic

the calling TA. In any case, a Trusted Application MUST NOT be able to use a Programmer Error on purpose

to circumvent the security boundaries enforced by an Implementation.

In general, incorrect handles—i.e. handles not returned by the API, already closed, with the wrong owner, type,

or state—are definite Panic Reasons while incorrect pointers are imprecise Programmer Errors.

Any routine defined by this specification MAY generate a panic if it detects a relevant hardware failure or is

passed invalid arguments that could have been detected by the programmer, even if no panics are listed for

that routine.

TEE Internal Core API Specification – Public Release v1.1.1 27/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.3.3 Panics

A Panic is an instance-wide uncatchable exception that kills a whole TA instance as a result of calling one of

the API functions. It SHOULD happen when the Implementation detects an avoidable Programmer Error and

there is no specifically defined error code which covers the problem. In addition the Trusted Application itself

may request a panic by calling the function TEE_Panic.

When a Panic occurs, the Trusted Core Framework kills the panicking TA instance and does the following:

 It discards all client entry point calls queued on the TA instance and closes all sessions opened by

Clients.

 It closes all resources that the TA instance opened, including all handles and all memory, and

destroys the instance. Note that multiple instances can reference a common resource, for example an

object. If an instance sharing a resource is destroyed, the Framework does not destroy the shared

resource immediately, but will wait until no other instances reference the resource before reclaiming it.

After a Panic, no TA function of the instance is ever called again, not even TA_DestroyEntryPoint.

From the client’s point of view, when a Trusted Application panics, the client commands MUST return the error
TEE_ERROR_TARGET_DEAD with the an origin value of TEE_ORIGIN_TEE until the session is closed. (For

details about return origins, see the function TEE_InvokeTACommand in section 4.9.3 or the function
TEEC_InvokeCommand in [Client API] §4.5.9.)

When a Panic occurs, an Implementation in a non-production environment, such as in a development or

pre-production state, is encouraged to issue precise diagnostic information using the mechanisms defined in

[Debug] (or an implementation-specific alternative) to help the developer understand the Programmer Error.

Diagnostic information SHOULD NOT be exposed outside of a secure development environment.

The debug API defined mechanism [Debug] passes a panic code among the information it returns. This SHALL

either be the panic code passed to TEE_Panic or any standard or implementation-specific error code which

best indicates the reason for the panic.

28/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.4 Opaque Handles

This specification makes use of handles that opaquely refer to objects created by the API Implementation for

a particular TA instance. A handle is only valid in the context of the TA instance that creates it and MUST

always be associated with a type.

The special value TEE_HANDLE_NULL, which MUST always be 0, is used to denote the absence of a handle.

It is typically used when an error occurs or sometimes to trigger a special behavior in some function. For

example, the function TEE_SetOperationKey clears the operation key if passed TEE_HANDLE_NULL. In

general, the “close”-like functions do nothing if they are passed the NULL handle.

Other than the particular case of TEE_HANDLE_NULL, this specification does not define any constraint on the

actual value of a handle.

Passing an invalid handle, i.e. a handle not returned by the API, already closed, or of the wrong type, is always

a Programmer Error, except sometimes for the specific value TEE_HANDLE_NULL. When a handle is

dereferenced by the API, the Implementation MUST always check its validity and panic the TA instance if it is

not valid.

This specification defines a C type for each high-level type of handle. The following types are defined:

Table 2-1: Handle Types

Handle Type Handle Purpose

TEE_TASessionHandle Handle on sessions opened by a TA on another TA

TEE_PropSetHandle Handle on a property set or a property enumerator

TEE_ObjectHandle Handle on a cryptographic object

TEE_ObjectEnumHandle Handle on a persistent object enumerator

TEE_OperationHandle Handle on a cryptographic operation

These C types are defined as pointers on undefined structures. For example, TEE_TASessionHandle is

defined as struct __TEE_TASessionHandle*. This is just a means to leverage the C language type-

system to help separate different handle types. It does not mean that an Implementation has to define the

structure, and handles do not need to represent addresses.

TEE Internal Core API Specification – Public Release v1.1.1 29/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2.5 Properties

This specification makes use of Properties to represent configuration parameters, permissions, or

implementation characteristics.

A property is an immutable value identified by a name, which is a Unicode string. The property value can be

retrieved in a variety of formats: Unicode string, binary block, 32-bit integer, Boolean, and Identity.

Property names and values are intended to be rather small with a few hundreds of characters at most, although

the specification defines no limit on the size of names or values.

In this specification, Unicode strings are always encoded in zero-terminated UTF-8, which means that a

Unicode string cannot contain the U+0000 code point.

The value of a property is immutable: A Trusted Application can only retrieve it and cannot modify it. The value

is set and controlled by the Implementation and MUST be trustable by the Trusted Applications.

The following Property Sets are exposed in the API:

 Each Trusted Application can access its own configuration properties. Some of these parameters

affect the behavior of the TEE Implementation itself. Others can be used to configure the behavior of

the TAs that this TA connects to.

 A TA instance can access a set of properties for each of its Clients. When the Client is a Trusted

Application, the property set contains the configuration properties of that Trusted Application.

Otherwise, it contains properties set by the Rich Execution Environment.

 Finally, a TA can access properties describing characteristics of the TEE Implementation itself.

Property names are case-sensitive and have a hierarchical structure with levels in the hierarchy separated by

the dot character “.”. Property names SHOULD use the reverse domain name convention to minimize the risk

of collisions between properties defined by different organization, although this cannot really be enforced by

an Implementation. For example, the ACME company SHOULD use the “com.acme.” prefix and properties

standardized at ISO will use the “org.iso.” namespace.

This specification reserves the “gpd.” namespace and defines the meaning of a few properties in this

namespace. Any Implementation MUST refuse to define properties in this namespace unless they are defined

in the GlobalPlatform specifications meet this specification.

[Note: The content of sections 2.5 through 2.8 of this specification in versions 1.0 and 1.1 has been moved to

sections 2.2.2 through 2.2.5.]

30/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 Common Definitions

This chapter specifies the header file, common data types, constants, and parameter annotations used

throughout the specification.

3.1 Header File

The header file for the TEE Internal Core API MUST have the name “tee_internal_api.h”.

#include "tee_internal_api.h"

3.2 Data Types

3.2.1 Basic Types

This specification makes use of the integer and Boolean C types as defined in the C99 standard

(ISO/IEC 9899:1999) [C99]. The following basic types are used:

 uint32_t: Unsigned 32-bit integer

 int32_t: Signed 32-bit integer

 uint16_t: Unsigned 16-bit integer

 int16_t: Signed 16-bit integer

 uint8_t: Unsigned 8-bit integer

 int8_t: Signed 8-bit integer

 bool: Boolean type with the values true and false

 char: Character; used to denote a byte in a zero-terminated string encoded in UTF-8

3.2.2 Bit Numbering

In this specification, bits in integers are numbered from 0 (least-significant bit) to 7, 15, or 31 (most-significant

bit), depending on the size of the integer.

3.2.3 TEE_Result, TEEC_Result

typedef uint32_t TEE_Result;

TEE_Result is the type used for return codes from the APIs.

For compatibility with [Client API], the following alias of this type is also defined:

typedef TEE_Result TEEC_Result;

TEE Internal Core API Specification – Public Release v1.1.1 31/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.4 TEE_UUID, TEEC_UUID

typedef struct

{

 uint32_t timeLow;

 uint16_t timeMid;

 uint16_t timeHiAndVersion;

 uint8_t clockSeqAndNode[8];

} TEE_UUID;

TEE_UUID is the Universally Unique Resource Identifier type as defined in [RFC 4122]. This type is used to

identify Trusted Applications and clients.

UUIDs can be directly hard-coded in the Trusted Application code. For example, the UUID 79B77788-9789-
4a7a-A2BE-B60155EEF5F3 can be hard-coded using the following code:

static const TEE_UUID myUUID =

{

 0x79b77788, 0x9789, 0x4a7a,

 { 0xa2, 0xbe, 0xb6, 0x1, 0x55, 0xee, 0xf5, 0xf3 }

};

For compatibility with [Client API], the following alias of this type is also defined:

typedef TEE_UUID TEEC_UUID;

Universally Unique Resource Identifiers come in a number of different versions. The following reservations of

usage are made:

Table 3-1: UUID Usage Reservations

Version Reservation

UUID v5 When the GPD TEE Management Administration Framework ([TEE Mgmt Fmwk]) is

supported by a TEE, then TA and Security Domain (SD) UUIDs UUID’s using version 5 must

conform to the requirements of that specification.

32/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3 Constants

3.3.1 Return Code Ranges and Format

The format of return codes and the reserved ranges are defined in Table 3-2.

Table 3-2: Return Code Formats and Ranges

Range Value Format Notes

TEE_SUCCESS 0x00000000

Reserved for use in GlobalPlatform

specifications, providing non-error

information

0x00000001 – 0x6FFFFFFF The return code may

identify the specification, as

discussed following the

table.

Reserved for implementation-specific

return code providing non-error information

0x70000000 – 0x7FFFFFFF

Reserved for implementation-specific

errors

0x80000000 – 0x8FFFFFFF

Reserved for future use in GlobalPlatform

specifications

0x90000000 – 0xEFFFFFFF

Reserved for TEE API defined errors 0xF0000000 – 0xFFFEFFFF The return code may

identify the specification, as

discussed following the

table.

Client API defined Errors (TEEC_*)

Note that some return codes from this

and other specifications have incorrectly

been defined in this range and are

therefore grandfathered in.

0xFFFF0000 – 0xFFFFFFFF

An error code is a return code that denotes some failure: These are the return codes above 0x7FFFFFFF.

Return codes in specified ranges in Table 3-2 MAY include the specification number as a 3 digit BCD (Binary

Coded Decimal) value in nibbles 7 through 5 (where the high nibble is considered nibble 8).

For example, GPD_SPE_123 may define return codes as follows:

 Specification unique non-error return codes may be numbered 0x01230000 to 0x0123FFFF.

 Specification unique error codes may be numbered 0xF1230000 to 0xF123FFFF.

TEE Internal Core API Specification – Public Release v1.1.1 33/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3.2 Return Codes

Table 3-3 lists return codes that are used throughout the APIs.

Table 3-3: API Return Codes

Constant Names and Aliases Value

TEE_SUCCESS TEEC_SUCCESS 0x00000000

TEE_ERROR_CORRUPT_OBJECT 0xF0100001

TEE_ERROR_CORRUPT_OBJECT_2 0xF0100002

TEE_ERROR_STORAGE_NOT_AVAILABLE 0xF0100003

TEE_ERROR_STORAGE_NOT_AVAILABLE_2 0xF0100004

TEE_ERROR_GENERIC TEEC_ERROR_GENERIC 0xFFFF0000

TEE_ERROR_ACCESS_DENIED TEEC_ERROR_ACCESS_DENIED 0xFFFF0001

TEE_ERROR_CANCEL TEEC_ERROR_CANCEL 0xFFFF0002

TEE_ERROR_ACCESS_CONFLICT TEEC_ERROR_ACCESS_CONFLICT 0xFFFF0003

TEE_ERROR_EXCESS_DATA TEEC_ERROR_EXCESS_DATA 0xFFFF0004

TEE_ERROR_BAD_FORMAT TEEC_ERROR_BAD_FORMAT 0xFFFF0005

TEE_ERROR_BAD_PARAMETERS TEEC_ERROR_BAD_PARAMETERS 0xFFFF0006

TEE_ERROR_BAD_STATE TEEC_ERROR_BAD_STATE 0xFFFF0007

TEE_ERROR_ITEM_NOT_FOUND TEEC_ERROR_ITEM_NOT_FOUND 0xFFFF0008

TEE_ERROR_NOT_IMPLEMENTED TEEC_ERROR_NOT_IMPLEMENTED 0xFFFF0009

TEE_ERROR_NOT_SUPPORTED TEEC_ERROR_NOT_SUPPORTED 0xFFFF000A

TEE_ERROR_NO_DATA TEEC_ERROR_NO_DATA 0xFFFF000B

TEE_ERROR_OUT_OF_MEMORY TEEC_ERROR_OUT_OF_MEMORY 0xFFFF000C

TEE_ERROR_BUSY TEEC_ERROR_BUSY 0xFFFF000D

TEE_ERROR_COMMUNICATION TEEC_ERROR_COMMUNICATION 0xFFFF000E

TEE_ERROR_SECURITY TEEC_ERROR_SECURITY 0xFFFF000F

TEE_ERROR_SHORT_BUFFER TEEC_ERROR_SHORT_BUFFER 0xFFFF0010

TEE_ERROR_EXTERNAL_CANCEL TEEC_ERROR_EXTERNAL_CANCEL 0xFFFF0011

TEE_ERROR_OVERFLOW 0xFFFF300F

TEE_ERROR_TARGET_DEAD TEEC_ERROR_TARGET_DEAD 0xFFFF3024

TEE_ERROR_STORAGE_NO_SPACE 0xFFFF3041

TEE_ERROR_MAC_INVALID 0xFFFF3071

TEE_ERROR_SIGNATURE_INVALID 0xFFFF3072

TEE_ERROR_TIME_NOT_SET 0xFFFF5000

TEE_ERROR_TIME_NEEDS_RESET 0xFFFF5001

34/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4 Parameter Annotations

This specification uses a set of patterns on the function parameters. Instead of repeating this pattern again on

each occurrence, these patterns are referred to with Parameter Annotations. It is expected that this will also

help with systematically translating the APIs into languages other than the C language.

The following sub-sections list all the parameter annotations used in the specification.

Note that these annotations cannot be expressed in the C language. However, the [in], [inbuf],

[instring], [instringopt], and [ctx] annotations can make use of the const C keyword. This keyword

is omitted in the specification of the functions to avoid mixing the formal annotations and a less expressive C

keyword. However, the C header file of a compliant Implementation SHOULD use the const keyword when

these annotations appear.

3.4.1 [in], [out], and [inout]

The annotation [in] applies to a parameter that has a pointer type on a structure, a base type, or more

generally a buffer of a size known in the context of the API call. If the size needs to be clarified, the syntax

[in(size)] is used.

When this the [in] annotation is present on a parameter, it means that the API Implementation uses the pointer

only for reading and does not accept shared memory.

When a Trusted Application calls an API function that defines contains a parameter annotated with [in], the

parameter MUST be entirely readable by the Trusted Application and MUST be entirely owned by the calling

Trusted Application instance, as defined in section 4.11.1. In particular, this means that the parameter

MUST NOT reside in a block of shared memory owned by a client of the Trusted Application. The

Implementation MUST check these conditions and if they are not satisfied, the API call MUST panic the calling

Trusted Application instance.

The annotation [out] and [inout] are equivalent to [in] but for write access and read-and-write access

respectively.

Note that, as described in section 4.11.1, the NULL pointer MUST never be accessible to a Trusted

Application. This means that a Trusted Application MUST NOT pass the NULL pointer in an [in] parameter,

except perhaps if the buffer size is zero.

See the function TEE_CheckMemoryAccessRights in section 4.11.1 for more details about shared memory

and the NULL pointer. See the function TEE_Panic in section 4.8.1 for information about Panics.

3.4.2 [outopt]

The [outopt] annotation is equivalent to [out] except that the caller can set the parameter to NULL, in which

case the result MUST be discarded.

3.4.3 [inbuf]

The [inbuf] annotation applies to a pair of parameters of type void* and uint32_t size_t. It means

that the parameters describe an input data buffer. The entire buffer MUST be readable by the Trusted

Application and there is no restriction on the owner of the buffer: It can reside in shared memory or in private

memory.

The Implementation MUST check that the buffer is entirely readable and MUST panic the calling Trusted

Application instance if that is not the case.

Because the NULL pointer is never readable, a Trusted Application cannot pass NULL in the first void*
parameter unless the second uint32_t size_t parameter is set to 0.

TEE Internal Core API Specification – Public Release v1.1.1 35/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.4 [outbuf]

The [outbuf] annotation applies to a pair of parameters of type void* and uint32_t* size_t*, herein

referenced with the names buffer and size. It is used by API functions to return an output data buffer. The

data buffer MUST be allocated by the calling Trusted Application and passed in the buffer parameter.

Because the size of the output buffer cannot generally be determined in advance, the following convention is

used:

 On entry, *size contains the number of bytes actually allocated in buffer. The buffer with this

number of bytes MUST be entirely writable by the Trusted Application, otherwise the Implementation

MUST panic the calling Trusted Application instance. In any case, the implementation MUST NOT

write beyond this limit.

 On exit:

o If the output fits in the output buffer, then the Implementation MUST write the output in buffer
and MUST update *size with the actual size of the output in bytes.

o If the output does not fit in the output buffer, then the implementation MUST update *size with

the required number of bytes and MUST return TEE_ERROR_SHORT_BUFFER. It is implementation-

dependent whether the output buffer is left untouched or contains part of the output. In any case,

the TA SHOULD consider that its content is undefined after the function returns.

When the function returns TEE_ERROR_SHORT_BUFFER, it MUST NOT have performed the actual requested

operation. It MUST just return the size of the output data.

Note that if the caller sets *size to 0, the function will always return TEE_ERROR_SHORT_BUFFER unless

the actual output data is empty. In this case, the parameter buffer can take any value, e.g. NULL, as it

will not be accessed by the Implementation. If *size is set to a non-zero value on entry, then buffer cannot

be NULL because the buffer starting from the NULL address is never writable.

There is no restriction on the owner of the buffer: It can reside in shared memory or in private memory.

The parameter size MUST be considered as [inout]. That is, size MUST be readable and writable by

the Trusted Application. The parameter size MUST NOT be NULL and MUST NOT reside in shared

memory. The Implementation MUST check these conditions and panic the calling Trusted Application instance

if they are not satisfied.

3.4.5 [outbufopt]

The [outbufopt] annotation is equivalent to [outbuf] but if the parameter size is set to NULL, then the

function MUST behave as if the output buffer was not large enough to hold the entire output data and the

output data MUST be discarded. In this case, the parameter buffer is ignored, but SHOULD normally be

set to NULL, too.

Note the difference between passing a size pointer set to NULL and passing a size that points to 0.

Assuming the function does not fail for any other reasons:

 If size is set to NULL, the function performs the operation, returns TEE_SUCCESS, and the output

data is discarded.

 If size points to 0, the function does not perform the operation. It just updates *size with the

output size and returns TEE_ERROR_SHORT_BUFFER.

36/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4.6 [instring] and [instringopt]

The [instring] annotation applies to a single [in] parameter, which MUST contain a zero-terminated string

of char characters. Because the buffer is [in], it cannot reside in shared memory.

The [instringopt] annotation is equivalent to [instring] but the parameter can be set to NULL to denote

the absence of a string.

3.4.7 [outstring] and [outstringopt]

The [outstring] annotation is equivalent to [outbuf], but the output data is specifically a zero-terminated

string of char characters. The size of the buffer MUST account for the zero terminator. The buffer may reside

in shared memory.

The [outstringopt] annotation is equivalent to [outstring] but with [outbufopt] instead of [outbuf],

which means that size can be set to NULL to discard the output.

3.4.8 [ctx]

The [ctx] annotation applies to a void* parameter. It means that the parameter is not accessed by the

Implementation, but will merely be stored to be provided to the Trusted Application later. Although a Trusted

Application typically uses such parameters to store pointers to allocated structures, they can contain any value.

TEE Internal Core API Specification – Public Release v1.1.1 37/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 Trusted Core Framework API

This chapter defines the Trusted Core Framework API, defining OS-like APIs and infrastructure. It contains

the following sections:

 Section 4.1, Data Types

 Section 4.2, Constants

Common definitions used throughout the chapter.

 Section 4.3, TA Interface

Defines the entry points that each TA MUST define.

 Section 4.4, Property Access Functions

Defines the generic functions to access properties. These functions can be used to access TA

Configuration Properties, Client Properties, and Implementation Properties.

 Section 4.5, Trusted Application Configuration Properties

Defines the standard Trusted Application Configuration Properties.

 Section 4.6, Client Properties

Defines the standard Client Properties.

 Section 4.7, Implementation Properties

Defines the standard Implementation Properties.

 Section 4.8, Panics

Defines the function TEE_Panic.

 Section 4.9, Internal Client API

Defines the Internal Client API that allows a Trusted Application to act as a Client of another Trusted

Application.

 Section 4.10, Cancellation Functions

Defines how a Trusted Application can handle client cancellation requests, acknowledge them, and

mask or unmask the propagated effects of cancellation requests on cancellable functions.

 Section 4.11, Memory Management Functions

Defines how to check the access rights to memory buffers, how to access global variables, how to

allocate memory (similar to malloc), and a few utility functions to fill or copy memory blocks.

38/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1 Data Types

4.1.1 TEE_Identity

typedef struct

{

 uint32_t login;

 TEE_UUID uuid;

} TEE_Identity;

The TEE_Identity structure defines the full identity of a Client:

 login is one of the TEE_LOGIN_XXX constants. (See section 4.2.2.)

 uuid contains the client UUID or Nil (as defined in [RFC 4122]) if not applicable.

4.1.2 TEE_Param

typedef union

{

 struct

 {

 void* buffer; uint32_t size_t size;

 } memref;

 struct

 {

 uint32_t a, b;

 } value;

} TEE_Param;

This union describes one parameter passed by the Trusted Core Framework to the entry points
TA_OpenSessionEntryPoint or TA_InvokeCommandEntryPoint or by the TA to the functions
TEE_OpenTASession or TEE_InvokeTACommand.

Which of the field value or memref to select is determined by the parameter type specified in the argument
paramTypes passed to the entry point. See section 4.3.6.1 and section 4.9.4 for more details on how this

type is used.

4.1.3 TEE_TASessionHandle

typedef struct __TEE_TASessionHandle* TEE_TASessionHandle;

TEE_TASessionHandle is an opaque handle on a TA Session. These handles are returned by the function
TEE_OpenTASession specified in section 4.9.1.

4.1.4 TEE_PropSetHandle

typedef struct __TEE_PropSetHandle* TEE_PropSetHandle;

TEE_PropSetHandle is an opaque handle on a property set or enumerator. These handles either are

returned by the function TEE_AllocatePropertyEnumerator specified in section 4.4.7 or are one of the

pseudo-handles defined in section 4.2.4.

TEE Internal Core API Specification – Public Release v1.1.1 39/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Constants

4.2.1 Parameter Types

Table 4-1: Parameter Type Constants

Constant Name Constant Value

TEE_PARAM_TYPE_NONE 0

TEE_PARAM_TYPE_VALUE_INPUT 1

TEE_PARAM_TYPE_VALUE_OUTPUT 2

TEE_PARAM_TYPE_VALUE_INOUT 3

TEE_PARAM_TYPE_MEMREF_INPUT 5

TEE_PARAM_TYPE_MEMREF_OUTPUT 6

TEE_PARAM_TYPE_MEMREF_INOUT 7

4.2.2 Login Types

Table 4-2: Login Type Constants

Constant Name Constant Value

TEE_LOGIN_PUBLIC 0x00000000

TEE_LOGIN_USER 0x00000001

TEE_LOGIN_GROUP 0x00000002

TEE_LOGIN_APPLICATION 0x00000004

TEE_LOGIN_APPLICATION_USER 0x00000005

TEE_LOGIN_APPLICATION_GROUP 0x00000006

Reserved for future GlobalPlatform defined login types 0x00000007 – 0x7FFFFFFF

Reserved for implementation-specific login types 0x80000000 – 0xEFFFFFFF

TEE_LOGIN_TRUSTED_APP 0xF0000000

Reserved for future GlobalPlatform defined login types 0xF0000001 – 0xFFFFFFFF

4.2.3 Origin Codes

Table 4-3: Origin Code Constants

Constant Names Constant Value

TEE_ORIGIN_API TEEC_ORIGIN_API 0x00000001

TEE_ORIGIN_COMMS TEEC_ORIGIN_COMMS 0x00000002

TEE_ORIGIN_TEE TEEC_ORIGIN_TEE 0x00000003

TEE_ORIGIN_TRUSTED_APP TEEC_ORIGIN_TRUSTED_APP 0x00000004

40/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.4 Property Set Pseudo-Handles

Table 4-4: Property Set Pseudo-Handle Constants

Constant Name Constant Value

Reserved 0x00000000 – 0xEFFFFFFF

Reserved for implementation-specific property sets 0xF0000000 – 0xFFFEFFFF

Reserved for future GlobalPlatform use 0xFFFF0000 – 0xFFFFFFFC

TEE_PROPSET_TEE_IMPLEMENTATION (TEE_PropSetHandle)0xFFFFFFFD

TEE_PROPSET_CURRENT_CLIENT (TEE_PropSetHandle)0xFFFFFFFE

TEE_PROPSET_CURRENT_TA (TEE_PropSetHandle)0xFFFFFFFF

4.2.5 Memory Access Rights

Table 4-5: Memory Access Rights Constants

Constant Name Constant Value

TEE_MEMORY_ACCESS_READ 0x00000001

TEE_MEMORY_ACCESS_WRITE 0x00000002

TEE_MEMORY_ACCESS_ANY_OWNER 0x00000004

TEE Internal Core API Specification – Public Release v1.1.1 41/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3 TA Interface

Each Trusted Application MUST provide the Implementation with a number of functions, collectively called the

“TA interface”. These functions are the entry points called by the Trusted Core Framework to create the

instance, notify the instance that a new client is connecting, notify the instance when the client invokes a

command, etc. These entry points cannot be registered dynamically by the Trusted Application code: They

MUST be bound to the framework before the Trusted Application code is started.

Table 4-6 lists the functions in the TA interface.

Table 4-6: TA Interface Functions

TA Interface Function (Entry Point) Description

TA_CreateEntryPoint This is the Trusted Application constructor. It is called once

and only once in the life-time of the Trusted Application

instance. If this function fails, the instance is not created.

TA_DestroyEntryPoint This is the Trusted Application destructor. The Trusted Core

Framework calls this function just before the Trusted

Application instance is terminated. The Framework MUST

guarantee that no sessions are open when this function is

called. When TA_DestroyEntryPoint returns, the

Framework MUST collect all resources claimed by the Trusted

Application instance.

TA_OpenSessionEntryPoint This function is called whenever a client attempts to connect to

the Trusted Application instance to open a new session. If this

function returns an error, the connection is rejected and no

new session is opened.

In this function, the Trusted Application can attach an opaque
void* context to the session. This context is recalled in all

subsequent TA calls within the session.

TA_CloseSessionEntryPoint This function is called when the client closes a session and

disconnects from the Trusted Application instance. The

Implementation guarantees that there are no active commands

in the session being closed. The session context reference is

given back to the Trusted Application by the Framework.

It is the responsibility of the Trusted Application to deallocate

the session context if memory has been allocated for it.

TA_InvokeCommandEntryPoint This function is called whenever a client invokes a Trusted

Application command. The Framework gives back the session

context reference to the Trusted Application in this function

call.

42/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 4-7 summarizes client operations and the resulting Trusted Application effect.

Table 4-7: Effect of Client Operation on TA Interface

Client Operation Trusted Application Effect

TEEC_OpenSession

or

TEE_OpenTASession

If a new Trusted Application instance is needed to handle the

session, TA_CreateEntryPoint is called.

Then, TA_OpenSessionEntryPoint is called.

TEEC_InvokeCommand

or

TEE_InvokeTACommand

TA_InvokeCommandEntryPoint is called.

TEEC_CloseSession

or

TEE_CloseTASession

TA_CloseSessionEntryPoint is called.

For a multi-instance TA or for a single-instance,

non keep-alive TA, if the session closed was the last session

on the instance, then TA_DestroyEntryPoint is called.

Otherwise, the instance is kept until the TEE shuts down.

TEEC_RequestCancellation

or

The function TEE_OpenTASession or
TEE_InvokeTACommand is cancelled.

See section 4.10 for details on the effect of cancellation

requests.

Client terminates unexpectedly From the point of view of the TA instance, the behavior

MUST be identical to the situation where the client does not

terminate unexpectedly but, for all opened sessions:

 requests the cancellation of all pending operations in that

session,

 waits for the completion of all these operations in that

session,

 and finally closes that session.

Note that there is no way for the TA to distinguish between

the client gracefully cancelling all its operations and closing

all its sessions and the Implementation taking over when the

client dies unexpectedly.

TEE Internal Core API Specification – Public Release v1.1.1 43/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Interface Operation Parameters

When a Client opens a session on a Trusted Application or invokes a command, it can send Operation

Parameters to the Trusted Application. The parameters encode the data associated with the operation. Up to

four parameters can be sent in an operation. If these are insufficient, then one of the parameters may be used

to carry further parameter data via a Memory Reference.

Each parameter can be individually typed by the Client as a Value Parameter, carrying two 32-bit integers, or

a Memory Reference Parameter, carrying a pointer to a client-owned memory buffer. Each parameter is also

tagged with a direction of data flow (input, output, or both input and output). For output Memory References,

there is a built-in mechanism for the Trusted Applications to report the necessary size of the buffer in case of

a too-short buffer. See section 4.3.6 for more information about the handling of parameters in the TA interface.

Note that Memory Reference Parameters typically point to memory owned by the client and shared with the

Trusted Application for the duration of the operation. This is especially useful in the case of REE Clients to

minimize the number of memory copies and the data footprint in case a Trusted Application needs to deal with

large data buffers, for example to process a multimedia stream protected by DRM.

Security Considerations

The fact that Memory References may use memory directly shared with the client implies that the Trusted

Application needs to be especially careful when handling such data: Even if the client is not allowed to access

the shared memory buffer during an operation on this buffer, the Trusted OS usually cannot enforce this

restriction. A badly-designed or rogue client may well change the content of the shared memory buffer at any

time, even between two consecutive memory accesses by the Trusted Application. This means that the

Trusted Application needs to be carefully written to avoid any security problem if this happens. If values in the

buffer are security critical, the Trusted Application SHOULD always read data only once from a shared buffer

and then validate it. It MUST NOT assume that data written to the buffer can be read unchanged later on.

Error Handling

All TA interface functions except TA_DestroyEntryPoint and TA_CloseSessionEntryPoint return a

return code of type TEE_Result. The behavior of the Framework when an entry point returns an error depends

on the entry point called:

 If TA_CreateEntryPoint returns an error, the Trusted Application instance is not created.

 If TA_OpenSessionEntryPoint returns an error code, the client connection is rejected.

Additionally, the error code is propagated to the client as described below.

 If TA_InvokeCommandEntryPoint returns an error code, this error code is propagated to the client.

 TA_CloseSessionEntryPoint and TA_DestroyEntryPoint cannot return an error.

TA_OpenSessionEntryPoint and TA_InvokeCommandEntryPoint return codes are propagated to the

client via the TEE Client API (see [Client API]) or the Internal Client API (see section 4.9) with the origin set to
TEEC_ORIGIN_TRUSTED_APP.

Client Properties

When a Client connects to a Trusted Application, the Framework associates the session with Client Properties.

Trusted Applications can retrieve the identity and properties of their client by calling one of the property access

functions with the TEE_PROPSET_CURRENT_CLIENT. The standard Client Properties are fully specified in

section 4.6.

44/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The TA_EXPORT keyword

Depending on the compiler used and the targeted platform, a TA entry point may need to be decorated with

an annotation such as __declspec(dllexport) or similar. This annotation MUST be defined in the TEE

Internal Core API header file as TA_EXPORT and placed between the entry point return type and function

name as shown in the specification of each entry point.

4.3.1 TA_CreateEntryPoint

TEE_Result TA_EXPORT TA_CreateEntryPoint(void);

Description

The function TA_CreateEntryPoint is the Trusted Application’s constructor, which the Framework calls

when it creates a new instance of the Trusted Application.

To register instance data, the implementation of this constructor can use either global variables or the function
TEE_SetInstanceData (described in section 4.11.2).

Specification Number: 10 Function Number: 0x102

Return Code

 TEE_SUCCESS: If the instance is successfully created, the function MUST return TEE_SUCCESS.

 Any other value: If any other code is returned, then the instance is not created, and no other entry

points of this instance will be called. The Framework MUST reclaim all resources and dereference all

objects related to the creation of the instance.

If this entry point was called as a result of a client opening a session, the return code is returned to the

client and the session is not opened.

Panic Reasons

 If the Implementation detects any error which cannot be represented by any defined or implementation

defined error code.

TEE Internal Core API Specification – Public Release v1.1.1 45/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.2 TA_DestroyEntryPoint

void TA_EXPORT TA_DestroyEntryPoint(void);

Description

The function TA_DestroyEntryPoint is the Trusted Application’s destructor, which the Framework calls

when the instance is being destroyed.

When the function TA_DestroyEntryPoint is called, the Framework guarantees that no client session is

currently open. Once the call to TA_DestroyEntryPoint has been completed, no other entry point of this

instance will ever be called.

Note that when this function is called, all resources opened by the instance are still available. It is only after

the function returns that the Implementation MUST start automatically reclaiming resources left open.

After this function returns, the Implementation MUST consider the instance destroyed and MUST reclaim all

resources left open by the instance.

Specification Number: 10 Function Number: 0x103

Panic Reasons

 If the Implementation detects any error.

4.3.3 TA_OpenSessionEntryPoint

TEE_Result TA_EXPORT TA_OpenSessionEntryPoint(

 uint32_t paramTypes,

 [inout] TEE_Param params[4],

 [out][ctx] void** sessionContext);

Description

The Framework calls the function TA_OpenSessionEntryPoint when a client requests to open a session

with the Trusted Application. The open session request may result in a new Trusted Application instance being

created as defined by the gpd.ta.singleInstance property described in section 4.5.

The client can specify parameters in an open operation which are passed to the Trusted Application instance

in the arguments paramTypes and params. These arguments can also be used by the Trusted Application

instance to transfer response data back to the client. See section 4.3.6 for a specification of how to handle the

operation parameters.

If this function returns TEE_SUCCESS, the client is connected to a Trusted Application instance and can invoke

Trusted Application commands. When the client disconnects, the Framework will eventually call the
TA_CloseSessionEntryPoint entry point.

If the function returns any error, the Framework rejects the connection and returns the return code and the

current content of the parameters to the client. The return origin is then set to TEEC_ORIGIN_TRUSTED_APP.

The Trusted Application instance can register a session data pointer by setting *sessionContext. The value

of this pointer is not interpreted by the Framework, and is simply passed back to other TA_ functions within

this session. Note that *sessionContext may be set with a pointer to a memory allocated by the Trusted

Application instance or with anything else, such as an integer, a handle, etc. The Framework will not

automatically free *sessionContext when the session is closed; the Trusted Application instance is

responsible for freeing memory if required.

46/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

During the call to TA_OpenSessionEntryPoint the client may request to cancel the operation. See

section 4.10 for more details on cancellations. If the call to TA_OpenSessionEntryPoint returns
TEE_SUCCESS, the client MUST consider the session as successfully opened and explicitly close it if

necessary.

Parameters

 paramTypes: The types of the four parameters. See section 4.3.6.1 for more information.

 params: A pointer to an array of four parameters. See section 4.3.6.2 for more information.

 sessionContext: A pointer to a variable that can be filled by the Trusted Application instance with

an opaque void* data pointer

Specification Number: 10 Function Number: 0x105

Return Value

 TEE_SUCCESS: If the session is successfully opened

 Any other value: If the session could not be opened

o The return code may be one of the pre-defined codes, or may be a new return code defined by the

Trusted Application implementation itself. In any case, the Implementation MUST report the return

code to the client with the origin TEEC_ORIGIN_TRUSTED_APP.

Panic Reasons

 If the Implementation detects any error which cannot be expressed by any defined or implementation

defined error code.

4.3.4 TA_CloseSessionEntryPoint

void TA_EXPORT TA_CloseSessionEntryPoint(

 [ctx] void* sessionContext);

Description

The Framework calls the function TA_CloseSessionEntryPoint to close a client session.

The Trusted Application implementation is responsible for freeing any resources consumed by the session

being closed. Note that the Trusted Application cannot refuse to close a session, but can hold the closing until

it returns from TA_CloseSessionEntryPoint. This is why this function cannot return a return code.

Parameters

 sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the

function TA_OpenSessionEntryPoint for this session.

Specification Number: 10 Function Number: 0x101

Return Value

This function can return no success or error code.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 47/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.5 TA_InvokeCommandEntryPoint

TEE_Result TA_EXPORT TA_InvokeCommandEntryPoint(

 [ctx] void* sessionContext,

 uint32_t commandID,

 uint32_t paramTypes,

 [inout] TEE_Param params[4]);

Description

The Framework calls the function TA_InvokeCommandEntryPoint when the client invokes a command

within the given session.

The Trusted Application can access the parameters sent by the client through the paramTypes and params

arguments. It can also use these arguments to transfer response data back to the client. See section 4.3.6 for

a specification of how to handle the operation parameters.

During the call to TA_InvokeCommandEntryPoint the client may request to cancel the operation. See

section 4.10 for more details on cancellations.

A command is always invoked within the context of a client session. Thus, any client property (see section 4.6)

can be accessed by the command implementation.

Parameters

 sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the

function TA_OpenSessionEntryPoint

 commandID: A Trusted Application-specific code that identifies the command to be invoked

 paramTypes: The types of the four parameters. See section 4.3.6.1 for more information.

 params: A pointer to an array of four parameters. See section 4.3.6.2 for more information.

Specification Number: 10 Function Number: 0x104

Return Value

 TEE_SUCCESS: If the command is successfully executed, the function MUST return this value.

 Any other value: If the invocation of the command fails for any reason

o The return code may be one of the pre-defined codes, or may be a new return code defined by the

Trusted Application implementation itself. In any case, the Implementation MUST report the return

code to the client with the origin TEEC_ORIGIN_TRUSTED_APP.

Panic Reasons

 If the Implementation detects any error which cannot be expressed by any defined or implementation

defined error code.

48/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6 Operation Parameters in the TA Interface

When a client opens a session or invokes a command within a session, it can transmit operation parameters

to the Trusted Application instance and receive response data back from the Trusted Application instance.

Arguments paramTypes and params are used to encode the operation parameters and their types which

are passed to the Trusted Application instance. While executing the open session or invoke command entry

points, the Trusted Application can also write in params to encode the response data.

4.3.6.1 Content of paramTypes Argument

The argument paramTypes encodes the type of each of the four parameters passed to an entry point. The

content of paramTypes is implementation-dependent.

Each parameter type can take one of the TEE_PARAM_TYPE_XXX values listed in Table 4-1 on page 39. The

type of each parameter determines whether the parameter is used or not, whether it is a Value or a Memory

Reference, and the direction of data flow between the Client and the Trusted Application instance: Input (Client

to Trusted Application instance), Output (Trusted Application instance to Client), or both Input and Output. The

parameter type is set to TEE_PARAM_TYPE_NONE when no parameters are passed by the client in either
TEEC_OpenSession or TEEC_InvokeCommand; this includes when the operation parameter itself is set to
NULL.

The following macros are available to decode paramTypes:

#define TEE_PARAM_TYPES(t0,t1,t2,t3) \

 ((t0) | ((t1) << 4) | ((t2) << 8) | ((t3) << 12))

#define TEE_PARAM_TYPE_GET(t, i) (((t) >> (i*4)) & 0xF)

The macro TEE_PARAM_TYPES can be used to construct a value that you can compare against an incoming
paramTypes to check the type of all the parameters in one comparison, as in the following example:

if (paramTypes !=
 TEE_PARAM_TYPES(
 TEE_PARAM_TYPE_MEMREF_INPUT,
 TEE_PARAM_TYPE_MEMREF_OUTPUTOUPUT,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE))
{
 /* Bad parameter types */
 return TEE_ERROR_BAD_PARAMETERS;
}

The macro TEE_PARAM_TYPE_GET can be used to extract the type of a given parameter from paramTypes

if you need more fine-grained type checking.

TEE Internal Core API Specification – Public Release v1.1.1 49/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.2 Initial Content of params Argument

When the Framework calls the Trusted Application entry point, it initializes the content of params[i] as

described in Table 4-8.

Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called

Value of type[i] Content of params[i] when the Entry Point is Called

TEE_PARAM_TYPE_NONE

TEE_PARAM_TYPE_VALUE_OUTPUT

Filled with zeroes.

TEE_PARAM_TYPE_VALUE_INPUT

TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b contain the

two integers sent by the client

TEE_PARAM_TYPE_MEMREF_INPUT

TEE_PARAM_TYPE_MEMREF_OUTPUT

TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.buffer is a pointer to memory buffer

shared by the client. This can be NULL.

params[i].memref.size describes the size of the buffer. If
buffer is NULL, size is guaranteed to be zero.

Note that if the Client is a Client Application that uses the TEE Client API ([Client API]), the Trusted Application

cannot distinguish between a registered and a temporary Memory Reference. Both are encoded as one of the
TEE_PARAM_TYPE_MEMREF_XXX types and a pointer to the data is passed to the Trusted Application.

Security Warning: For a Memory Reference Parameter, the buffer may concurrently exist within the client

and Trusted Application instance memory spaces. It MUST therefore be assumed that the client is able to

make changes to the content of this buffer asynchronously at any moment. It is a security risk to assume

otherwise.

Any Trusted Application which implements functionality that needs some guarantee that the contents of a

buffer are constant SHOULD copy the contents of a shared buffer into Trusted Application instance-owned

memory.

To determine whether a given buffer is a Memory Reference or a buffer owned by the Trusted Application

itself, the function TEE_CheckMemoryAccessRights defined in section 4.11.1 can be used.

50/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.3 Behavior of the Framework when the Trusted Application Returns

When the Trusted Application entry point returns, the Framework reads the content of each params[i] to

determine what response data to send to the client, as described in Table 4-9.

Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returns

Value of type[i] Behavior of the Framework when Entry Point Returns

TEE_PARAM_TYPE_NONE

TEE_PARAM_TYPE_VALUE_INPUT

TEE_PARAM_TYPE_MEMREF_INPUT

The content of params[i] is ignored.

TEE_PARAM_TYPE_VALUE_OUTPUT

TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b contain

the two integers sent to the client.

TEE_PARAM_TYPE_MEMREF_OUTPUT

TEE_PARAM_TYPE_MEMREF_INOUT

The Framework reads params[i].memref.size:

 If it is equal or less than the original value of size, it is

considered as the actual size of the memory buffer. In

this case, the Framework assumes that the Trusted

Application has not written beyond this actual size and

only this actual size will be synchronized with the client.

 If it is greater than the original value of size, it is

considered as a request for a larger buffer. In this case,

the Framework assumes that the Trusted Application

has not written anything in the buffer and no data will be

synchronized.

TEE Internal Core API Specification – Public Release v1.1.1 51/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.6.4 Memory Reference and Memory Synchronization

Note that if a parameter is a Memory Reference, the memory buffer may be released or unmapped immediately

after the operation completes. Also, some implementations may explicitly synchronize the contents of the

memory buffer before the operation starts and after the operation completes.

As a consequence:

 The Trusted Application MUST NOT access the memory buffer after the operation completes. In

particular, it cannot be used as a long-term communication means between the client and the Trusted

Application instance. A Memory Reference MUST be accessed only during the lifetime of the

operation.

 The Trusted Application MUST NOT attempt to write into a memory buffer of type
TEE_PARAM_TYPE_MEMREF_INPUT.

o It is a Programmer Error to attempt to do this but the Implementation is not required to detect this

and the access may well be just ignored.

 For a Memory Reference Parameter marked as OUTPUT or INOUT, the Trusted Application can write

in the entire range described by the initial content of params[i].memref.size. However, the

Implementation MUST only guarantee that the client will observe the modifications below the final

value of size and only if the final value is equal or less than the original value.

For example, assume the original value of size is 100:

o If the Trusted Application does not modify the value of size, the complete buffer is synchronized

and the client is guaranteed to observe all the changes.

o If the Trusted Application writes 50 in size, then the client is only guaranteed to observe the

changes within the range from index 0 to index 49.

o If the Trusted Application writes 200 in size, then no data is guaranteed to be synchronized with

the client. However, the client will receive the new value of size. The Trusted Application can

typically use this feature to tell the client that the Memory Reference was too small and request that

the client retry with a Memory Reference of at least 200 bytes.

Failure to comply with these constraints will result in undefined behavior and is a Programmer Error.

52/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 Property Access Functions

This section defines a set of functions to access individual properties in a property set, to convert them into a

variety of types (printable strings, integers, Booleans, binary blocks, etc.), and to enumerate the properties in

a property set. These functions can be used to access TA Configuration Properties, Client Properties, and

Implementation Properties.

The property set is passed to each function in a pseudo-handle parameter. Table 4-10 lists the defined property

sets.

Table 4-10: Property Sets

Pseudo-Handle Meaning

TEE_PROPSET_CURRENT_TA The configuration properties for the current Trusted

Application. See section 4.5 for a definition of these

properties.

TEE_PROPSET_CURRENT_CLIENT The properties of the current client. This pseudo-handle is

valid only in the context of the following entry points:

 TA_OpenSessionEntryPoint

 TA_InvokeCommandEntryPoint

 TA_CloseSessionEntryPoint

See section 4.6 for a definition of these properties.

TEE_PROPSET_TEE_IMPLEMENTATION The properties of the TEE Implementation itself. See

section 4.7.

Properties can be retrieved and converted using TEE_GetPropertyAsXXX access functions (described in

the following sections).

Additionally, a property may be retrieved and converted into one and only one of the following types:

A property may be retrieved and converted into a printable string or into one and only one of the following

types:

 Binary block

 32-bit unsigned integer

 Boolean

 UUID

 Identity (a pair composed of a login method and a UUID)

Retrieving as a String

While implementations have latitude on how they set and store properties internally, a property that is retrieved

via the function TEE_GetPropertyAsString MUST always be converted into a printable string encoded in

UTF-8.

To ensure consistency between the representation of a property as one of the above types and its

representation as a printable string encoded in UTF-8, the following conversion rules apply:

TEE Internal Core API Specification – Public Release v1.1.1 53/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Binary block

is converted into a string that is consistent with a Base64 encoding of the binary block as defined in

RFC 2045 ([RFC 2045]) section 6.8 but with the following tolerance:

o An Implementation is allowed not to encode the final padding ‘=’ characters.

o An implementation is allowed to insert characters that are not in the Base64 character set.

 32-bit unsigned integer

is converted into a string that is consistent with the following syntax:

integer: decimal-integer

 | hexadecimal-integer

 | binary-integer

decimal-integer: [0-9,_]+{K,M}?

hexadecimal-integer: 0[x,X][0-9,a-f,A-F,_]+

binary-integer: 0[b,B][0,1,_]+

Note that the syntax allows returning the integer either in decimal, hexadecimal, or binary format, that

the representation can mix cases and can include underscores to separate groups of digits, and finally

that the decimal representation may use ‘K’ or ‘M’ to denote multiplication by 1024 or 1048576

respectively.

For example, here are a few acceptable representations of the number 1024: “1K”, “0X400”,

“0b100_0000_0000”.

 Boolean

is converted into a string equal to “true” or “false” case-insensitive, depending on the value of the

Boolean.

 UUID

is converted into a string that is consistent with the syntax defined in [RFC 4122]. Note that this string

may mix character cases.

 Identity

is converted into a string consistent with the following syntax:

identity: integer (':' uuid)?

where:

 The integer is consistent with the integer syntax described above

 If the identity UUID is Nil, then it can be omitted from the string representation of the property

Enumerating Properties

Properties in a property set can also be enumerated. For this:

 Allocate a property enumerator using the function TEE_AllocatePropertyEnumerator.

 Start the enumeration by calling TEE_StartPropertyEnumerator, passing the pseudo-handle on

the desired property set.

 Call the functions TEE_GetProperty[AsXXX] with the enumerator handle and a NULL name.

An enumerator provides the properties in an arbitrary order. In particular, they are not required to be sorted by

name although a given implementation may ensure this.

54/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.1 TEE_GetPropertyAsString

TEE_Result TEE_GetPropertyAsString(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [outstring] char* valueBuffer, uint32_t* size_t*

valueBufferLen);

Description

The TEE_GetPropertyAsString function performs a lookup in a property set to retrieve an individual

property and convert its value into a printable string.

When the lookup succeeds, the implementation MUST convert the property into a printable string and copy

the result into the buffer described by valueBuffer and valueBufferLen.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and it MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL

 valueBuffer, valueBufferLen: Output buffer for the property value

Specification Number: 10 Function Number: 0x207

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

TEE Internal Core API Specification – Public Release v1.1.1 55/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.2 TEE_GetPropertyAsBool

TEE_Result TEE_GetPropertyAsBool(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [out] bool* value);

Description

The TEE_GetPropertyAsBool function retrieves a single property in a property set and converts its value

to a Boolean.

If a property cannot be viewed as a Boolean, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL.

 value: A pointer to the variable that will contain the value of the property on success or false on

error.

Specification Number: 10 Function Number: 0x205

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_BAD_FORMAT: If the property value cannot be converted to a Boolean

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

56/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.3 TEE_GetPropertyAsU32

TEE_Result TEE_GetPropertyAsU32(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [out] uint32_t* value);

Description

The TEE_GetPropertyAsU32 function retrieves a single property in a property set and converts its value to

a 32-bit unsigned integer.

If a property cannot be viewed as a 32-bit unsigned integer, this function MUST return
TEE_ERROR_BAD_FORMAT.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL.

 value: A pointer to the variable that will contain the value of the property on success, or zero on

error.

Specification Number: 10 Function Number: 0x208

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_BAD_FORMAT: If the property value cannot be converted to an unsigned 32-bit integer

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

TEE Internal Core API Specification – Public Release v1.1.1 57/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.4 TEE_GetPropertyAsBinaryBlock

TEE_Result TEE_GetPropertyAsBinaryBlock(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [outbuf] void* valueBuffer, uint32_t* size_t*

valueBufferLen);

Description

The function TEE_GetPropertyAsBinaryBlock retrieves an individual property and converts its value into

a binary block.

If a property cannot be viewed as a binary block, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL.

 valueBuffer, valueBufferLen: Output buffer for the binary block

Specification Number: 10 Function Number: 0x204

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_BAD_FORMAT: If the property cannot be retrieved as a binary block

 TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

58/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.5 TEE_GetPropertyAsUUID

TEE_Result TEE_GetPropertyAsUUID(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [out] TEE_UUID* value);

Description

The function TEE_GetPropertyAsUUID retrieves an individual property and converts its value into a UUID.

If a property cannot be viewed as a UUID, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL.

 value: A pointer filled with the UUID. MUST NOT be NULL.

Specification Number: 10 Function Number: 0x209

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_BAD_FORMAT: If the property cannot be converted into a UUID

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

TEE Internal Core API Specification – Public Release v1.1.1 59/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.6 TEE_GetPropertyAsIdentity

TEE_Result TEE_GetPropertyAsIdentity(

 TEE_PropSetHandle propsetOrEnumerator,

 [instringopt] char* name,

 [out] TEE_Identity* value);

Description

The function TEE_GetPropertyAsIdentity retrieves an individual property and converts its value into a
TEE_Identity.

If a property cannot be viewed as an identity, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

 propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property

enumerator

 name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its

content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.

o Otherwise, name MUST NOT be NULL.

 value: A pointer filled with the identity. MUST NOT be NULL.

Specification Number: 10 Function Number: 0x206

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

 TEE_ERROR_BAD_FORMAT: If the property value cannot be converted into an Identity

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

60/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.7 TEE_AllocatePropertyEnumerator

TEE_Result TEE_AllocatePropertyEnumerator(

 [out] TEE_PropSetHandle* enumerator);

Description

The function TEE_AllocatePropertyEnumerator allocates a property enumerator object. Once a handle

on a property enumerator has been allocated, it can be used to enumerate properties in a property set using

the function TEE_StartPropertyEnumerator.

Parameters

 enumerator: A pointer filled with an opaque handle on the property enumerator on success and with
TEE_HANDLE_NULL on error

Specification Number: 10 Function Number: 0x201

Return Value

 TEE_SUCCESS: In case of success

 TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the property enumerator

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

TEE Internal Core API Specification – Public Release v1.1.1 61/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.8 TEE_FreePropertyEnumerator

void TEE_FreePropertyEnumerator(

 TEE_PropSetHandle enumerator);

Description

The function TEE_FreePropertyEnumerator deallocates a property enumerator object.

Parameters

 enumerator: A handle on the enumerator to free

Specification Number: 10 Function Number: 0x202

Panic Reasons

 If the Implementation detects any error.

4.4.9 TEE_StartPropertyEnumerator

void TEE_StartPropertyEnumerator(

 TEE_PropSetHandle enumerator,

 TEE_PropSetHandle propSet);

Description

The function TEE_StartPropertyEnumerator starts to enumerate the properties in an enumerator.

Once an enumerator is attached to a property set:

 Properties can be retrieved using one of the TEE_GetPropertyAsXXX functions, passing the

enumerator handle as the property set and NULL as the name.

 The function TEE_GetPropertyName can be used to retrieve the name of the current property in the

enumerator.

 The function TEE_GetNextProperty can be used to advance the enumeration to the next property

in the property set.

Parameters

 enumerator: A handle on the enumerator

 propSet: A pseudo-handle on the property set to enumerate. MUST be one of the
TEE_PROPSET_XXX pseudo-handles.

Specification Number: 10 Function Number: 0x20C

Panic Reasons

 If the Implementation detects any error.

62/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.10 TEE_ResetPropertyEnumerator

void TEE_ResetPropertyEnumerator(

 TEE_PropSetHandle enumerator);

Description

The function TEE_ResetPropertyEnumerator resets a property enumerate to its state immediately after

allocation. If an enumeration is currently started, it is abandoned.

Parameters

 enumerator: A handle on the enumerator to reset

Specification Number: 10 Function Number: 0x20B

Panic Reasons

 If the Implementation detects any error.

4.4.11 TEE_GetPropertyName

TEE_Result TEE_GetPropertyName(

 TEE_PropSetHandle enumerator,

 [outstring] void* nameBuffer, uint32_t* size_t* nameBufferLen

);

Description

The function TEE_GetPropertyName gets the name of the current property in an enumerator.

The property name MUST be the valid UTF-8 encoding of a Unicode string containing no U+0000 code points.

Parameters

 enumerator: A handle on the enumerator

 nameBuffer, nameBufferLen: The buffer filled with the name

Specification Number: 10 Function Number: 0x20A

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If there is no current property either because the enumerator has not

started or because it has reached the end of the property set

 TEE_ERROR_SHORT_BUFFER: If the name buffer is not large enough to contain the property name

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

TEE Internal Core API Specification – Public Release v1.1.1 63/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.12 TEE_GetNextProperty

TEE_Result TEE_GetNextProperty(

 TEE_PropSetHandle enumerator);

Description

The function TEE_GetNextProperty advances the enumerator to the next property.

Parameters

 enumerator: A handle on the enumerator

Specification Number: 10 Function Number: 0x203

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the enumerator has reached the end of the property set or if it has

not started

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

64/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5 Trusted Application Configuration Properties

Each Trusted Application is associated with Configuration Properties that are accessible using the generic

Property Access Functions and the TEE_PROPSET_CURRENT_TA pseudo-handle. This section defines a few

standard configuration properties that affect the behavior of the Implementation. Other configuration properties

can be defined:

 either by the Implementation to configure implementation-defined behaviors,

 or by the Trusted Application itself for its own configuration purposes.

The way properties are actually configured and attached to a Trusted Application is beyond the scope of the

specification.

Table 4-11 defines the standard configuration properties for Trusted Applications.

Table 4-11: Trusted Application Standard Configuration Properties

Property Name Type Meaning

gpd.ta.appID UUID The identifier of the Trusted Application.

gpd.ta.singleInstance Boolean Whether the Implementation SHALL create a single TA

instance for all the client sessions (if true) or SHALL

create a separate instance for each client session

(if false).

gpd.ta.multiSession Boolean Whether the Trusted Application instance supports multiple

sessions.

This property is ignored when gpd.ta.singleinstance

is set to false. for multi-instance Trusted Applications.

gpd.ta.instanceKeepAlive Boolean Whether the Trusted Application instance context SHALL

be preserved when there are no sessions connected to the

instance. The instance context is defined as all writable

data within the memory space of the Trusted Application

instance, including the instance heap.

This property is meaningful only when the
gpd.ta.singleInstance is set to true.

When this property is set to false, then the TA instance

MUST be created when one or more sessions are opened

on the TA and it MUST be destroyed when there are no

more sessions opened on the instance.

When this property is set to true, then the TA instance is

terminated only when the TEE shuts down, which includes

when the device goes through a system-wide global power

cycle. Note that the TEE MUST NOT shut down whenever

the REE does not shut down and keeps a restorable state,

including when it goes through transitions into lower power

states (hibernation, suspend, etc.).

The exact moment when a keep-alive single instance is

created is implementation-defined but it MUST be no later

than the first session opening.

TEE Internal Core API Specification – Public Release v1.1.1 65/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning

gpd.ta.dataSize Integer Maximum estimated amount of dynamic data in bytes

configured for the Trusted Application. The memory blocks

allocated through TEE_Malloc are drawn from this

space, as well as the task stacks. How this value precisely

relates to the exact number and sizes of blocks that can be

allocated is implementation-dependent.

gpd.ta.stackSize Integer Maximum stack size in bytes available to any task in the

Trusted Application at any point in time. This corresponds

to the stack size used by the TA code itself and does not

include stack space possibly used by the Trusted Core

Framework. For example, if this property is set to “512”,

then the Framework MUST guarantee that, at any time, the

TA code can consume up to 512 bytes of stack and still be

able to call any functions in the API.

gpd.ta.version String Version number of this Trusted Application.

gpd.ta.description String Optional description of the Trusted Application

66/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.6 Client Properties

This section defines the standard Client Properties, accessible using the generic Property Access Functions

and the TEE_PROPSET_CURRENT_CLIENT pseudo-handle. Other non-standard client properties can be

defined by specific implementations, but they MUST be defined outside the “gpd.” namespace.

Note that Client Properties can be accessed only in the context of a TA entry point associated with a client, i.e.

in one of the following entry point functions: TA_OpenSessionEntryPoint,
TA_InvokeCommandEntryPoint, or TA_CloseSessionEntryPoint.

Table 4-12 defines the standard Client Properties.

Table 4-12: Standard Client Properties

Property Name Type Meaning

gpd.client.identity Identity Identity of the current client. This can be conveniently

retrieved using the function
TEE_GetPropertyAsIdentity (see section 4.4.6).

A Trusted Application can use the client identity to perform

access control. For example, it can refuse to open a session

for a client that is not identified.

As shown in Table 4-13, the client identifier and the client properties that the Trusted Application can retrieve

depend on the nature of the client and the method it has used to connect.

Table 4-13: Client Identities

Login Method Meaning

TEE_LOGIN_PUBLIC The client is in the Rich Execution Environment and is neither

identified nor authenticated. The client has no identity and the

UUID is the Nil UUID as defined in [RFC 4122].

TEE_LOGIN_APPLICATION The Client Application has been identified by the Rich

Execution Environment independently of the identity of the

user executing the application. The nature of this identification

and the corresponding UUID is REE-specific.

TEE_LOGIN_USER The Client Application has been identified by the Rich

Execution Environment and the client UUID reflects the actual

user that runs the calling application independently of the

actual application.

TEE_LOGIN_GROUP The client UUID reflects a group identity that is executing the

calling application. The notion of group identity and the

corresponding UUID is REE-specific.

TEE_LOGIN_APPLICATION_USER The client UUID identifies both the calling application and the

user that is executing it.

TEE_LOGIN_APPLICATION_GROUP The client UUID identifies both the calling application and a

group that is executing it.

TEE Internal Core API Specification – Public Release v1.1.1 67/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Login Method Meaning

TEE_LOGIN_TRUSTED_APP The client is another Trusted Application. The client identity

assigned to this session is the UUID of the calling Trusted

Application.

The client properties are all the configuration properties of the

calling Trusted Application.

The range 0x80000000–0xEFFFFFFF

is reserved for implementation-defined

login methods.

The meaning of the Client UUID and the associated client

properties are implementation-defined. If the Trusted

Application does not support the particular implementation, it

SHOULD assume that the client has minimum rights, i.e.

rights equivalent to the login method TEE_LOGIN_PUBLIC.

The ranges 0x00000000-0x7FFFFFFF
and 0xF0000000-0xFFFFFFFF are

reserved for standard login methods

defined by GlobalPlatform.

Client properties are meant to be managed by either the Rich OS or the Trusted OS and these MUST ensure

that a Client cannot tamper with its own properties in the following sense:

 The property gpd.client.identity MUST always be determined by the Trusted OS and the

determination of whether it is equal to TEE_LOGIN_TRUSTED_APP or not MUST be as trustworthy as

the Trusted OS itself.

 When gpd.client.identity is equal to TEE_LOGIN_TRUSTED_APP then the Trusted OS MUST

ensure that the remaining properties are equal to the properties of the calling TA up to the same level

of trustworthiness that the target TA places in the Trusted OS.

 When gpd.client.identity is not equal to TEE_LOGIN_TRUSTED_APP, then the Rich OS is

responsible for ensuring that the Client Application cannot tamper with its own properties.

Note that if a Client wants to transmit a property that is not synthesized by the Rich OS or Trusted OS, such

as a password, then it MUST use a parameter to the session open operation or in subsequent commands.

68/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.7 Implementation Properties

The implementation properties can be retrieved by the generic Property Access Functions with the
TEE_PROPSET_TEE_IMPLEMENTATION pseudo-handle.

Table 4-14 defines the standard implementation properties.

Table 4-14: Implementation Properties

Property Name Type Meaning

gpd.tee.apiversion String The version number of the API implementation.

Its value for this version of the specification is

the string “1.1”.

gpd.tee.description String A description of the implementation. The

content of this property is implementation-

dependent but typically contains a version and

build number of the implementation as well as

other configuration information.

Note that implementations are free to define

their own non-standard identification property

names, provided they are not in the “gpd.”

namespace

gpd.tee.deviceID UUID A device identifier that MUST be globally

unique among all GlobalPlatform TEEs

whatever the manufacturer, vendor, or

integration. If there are multiple GlobalPlatform

TEEs on one device, each TEE SHALL have a

unique gpd.tee.deviceID.

Implementer’s Note

It is acceptable to derive this device identifier

from statistically unique secret or public

information, such as a Hardware Unique Key,

die identifiers, etc. However, note that this

property is intended to be public and exposed

to any software running on the device, not only

to Trusted Applications. The derivation MUST

therefore be carefully designed so that it

does not compromise secret information.

gpd.tee.systemTime.protectionLevel Integer The protection level provided by the system

time implementation. See the function
TEE_GetSystemTime in section 7.2.1 for

more details.

gpd.tee.TAPersistentTime.
protectionLevel

Integer The protection level provided for the

TA Persistent Time. See the function
TEE_GetTAPersistentTime in section 7.2.3

for more details.

TEE Internal Core API Specification – Public Release v1.1.1 69/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning

gpd.tee.arith.maxBigIntSize Integer Maximum size in bits of the big integers for all

the functions in the TEE Arithmetical API

specified in Chapter 8. Beyond this limit, some

of the functions MAY panic due to insufficient

pre-allocated resources or hardware

limitations.

gpd.tee.cryptography.ecc Boolean If set to True, then the Elliptic Curve

Cryptographic (ECC) algorithms shown in

Table 6-2 are supported.

gpd.tee.trustedStorage.
antiRollback.protectionLevel

Integer Indicates the level of protection from rollback of

Trusted Storage supplied by the

implementation:

0 (or missing): No anti rollback protection

100: Anti rollback mechanism for the Trusted

Storage is enforced at the REE level.

1000: Anti rollback mechanism for the

Trusted Storage is based on TEE-controlled

hardware. This hardware MUST be out of

reach of software attacks from the REE.

If an active TA attempts to access material

held in Trusted Storage that has been rolled

back, it will receive an error equivalent to a

corrupted object.

Users may still be able to roll back the Trusted

Storage but this MUST be detected by the

Implementation

gpd.tee.trustedos.implementation.
version

String The detailed version number of the TEE

implementation.

The value of this property MUST change

whenever anything changes in the code

forming the Trusted OS which provides the

TEE, i.e. any patch MUST change this string.

gpd.tee.trustedos.implementation.
binaryversion

binary A binary value which is equivalent to
gpd.tee.trustedos.implementation.
version. May be derived from some form of

certificate indicating the software has been

signed, a measurement of the image, a

checksum, a direct binary conversion of
gpd.tee.trustedos.implementation.
version, or any other binary value which the

TEE manufacturer chooses to provide. The

Trusted OS manufacturer’s documentation

SHALL state the format of this value.

The value of this property MUST change

whenever anything changes in the code

forming the Trusted OS which provides the

TEE, i.e. any patch MUST change this string.

70/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Property Name Type Meaning

gpd.tee.trustedos.manufacturer String Name of the manufacturer of the Trusted OS.

gpd.tee.firmware.implementation.
version

String The detailed version number of the firmware

which supports the Trusted OS

implementation. This includes all privileged

software involved in the secure booting and

support of the TEE apart from the secure OS

and Trusted Applications.

The value of this property MUST change

whenever anything changes in this code, i.e.

any patch MUST change this string. The value

of this property MAY be the empty string if

there is no such software.

gpd.tee.firmware.implementation.
binaryversion

Binary A binary value which is equivalent to
gpd.tee.firmware.implementation.
version. May be derived from some form of

certificate indicating the firmware has been

signed, a measurement of the image, a

checksum, a direct binary conversion of
gpd.tee.firmware.implementation.
version, or any other binary value which the

Trusted OS manufacturer chooses to provide.

The Trusted OS manufacturer’s documentation

SHALL state the format of this value.

The value of this property MUST change

whenever anything changes in this code, i.e.

any patch MUST change this string. The value

of this property MAY be a zero length value if

there is no such firmware.

gpd.tee.firmware.manufacturer String Name of the manufacturer of the firmware

which supports the Trusted OS or the empty

string if there is no such firmware.

TEE Internal Core API Specification – Public Release v1.1.1 71/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.8 Panics

4.8.1 TEE_Panic

void TEE_Panic(TEE_Result panicCode);

Description

The TEE_Panic function raises a Panic in the Trusted Application instance.

When a Trusted Application calls the TEE_Panic function, the current instance MUST be destroyed and all

the resources opened by the instance MUST be reclaimed. All sessions opened from the panicking instance

on another TA MUST be gracefully closed and all cryptographic objects and operations MUST be closed

properly.

When an instance panics, its clients receive the return code TEE_ERROR_TARGET_DEAD of origin
TEE_ORIGIN_TEE until they close their session. This applies to Rich Execution Environment clients calling

through the TEE Client API (see [Client API]) and to Trusted Execution Environment clients calling through the

Internal Client API (see section 4.9).

When this routine is called, an Implementation in a non-production environment, such as in a development or

pre-production state, SHALL display the supplied panicCode using the mechanisms defined in [Debug] (or an

implementation-specific alternative) to help the developer understand the Programmer Error. Diagnostic

information SHOULD NOT be exposed outside of a secure development environment.

Once an instance is panicked, no TA entry point is ever called again for this instance, not even
TA_DestroyEntryPoint. The caller cannot expect that the TEE_Panic function will return.

Parameters

 panicCode: An informative panic code defined by the TA. May be displayed in traces if traces are

available.

Specification Number: 10 Function Number: 0x301

72/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9 Internal Client API

This API allows a Trusted Application to act as a client to another Trusted Application.

4.9.1 TEE_OpenTASession

TEE_Result TEE_OpenTASession(

 [in] TEE_UUID* destination,

 uint32_t cancellationRequestTimeout,

 uint32_t paramTypes,

 [inout] TEE_Param params[4],

 [out] TEE_TASessionHandle* session,

 [out] uint32_t* returnOrigin);

Description

The function TEE_OpenTASession opens a new session with a Trusted Application.

The destination Trusted Application is identified by its UUID passed in destination. This UUID can be

hardcoded in the caller code. An initial set of four parameters can be passed during the operation. See

section 4.9.4 for a detailed specification of how these parameters are passed in the paramTypes and params

arguments.

The result of this function is returned both in the return code and the return origin, stored in the variable pointed

to by returnOrigin:

 If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it

could reach the target Trusted Application. The possible return codes are listed in “Return Code

Value” below.

 If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return value depends on

the protocol exposed by the target Trusted Application. However, if TEE_SUCCESS is returned, it

always means that the session was successfully opened and if the function returns a value different

from TEE_SUCCESS, it means that the session opening failed.

When the session is successfully opened, i.e. when the function returns TEE_SUCCESS, a valid session handle

is written into *session. Otherwise, the value TEE_HANDLE_NULL is written into *session.

Parameters

 destination: A pointer to a TEE_UUID structure containing the UUID of the destination Trusted

Application

 cancellationRequestTimeout: Timeout in milliseconds or the special value
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE MUST act as

though a cancellation request for the operation had been sent.

 paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details.

 params: The parameters passed in the operation. See section 4.9.4 for more details. These are

updated only if the returnOrigin is TEE_ORIGIN_TRUSTED_APP.

 session: A pointer to a variable that will receive the client session handle. The pointer MUST NOT

be NULL. The value is set to TEE_HANDLE_NULL upon error.

 returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if

the return origin is not needed.

TEE Internal Core API Specification – Public Release v1.1.1 73/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: 10 Function Number: 0x403

Return Code

 TEE_SUCCESS: In case of success; the session was successfully opened.

 Any other value: The opening failed.

If the return origin is different from TEE_ORIGIN_TRUSTED_APP, one of the following return codes can

be returned:

o TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to open the session

o TEE_ERROR_ITEM_NOT_FOUND: If no Trusted Application matches the requested destination UUID

o TEE_ERROR_ACCESS_DENIED: If access to the destination Trusted Application is denied

o TEE_ERROR_BUSY: If the destination Trusted Application does not allow more than one session at

a time and already has a session in progress

o TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the

operation

If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed

by the destination Trusted Application.

Panic Reasons

 If the Implementation detects any error which cannot be represented by any defined or implementation

defined error code.

4.9.2 TEE_CloseTASession

void TEE_CloseTASession(TEE_TASessionHandle session);

Description

The function TEE_CloseTASession closes a client session.

Parameters

 session: An opened session handle

Specification Number: 10 Function Number: 0x401

Panic Reasons

 If the Implementation detects any error.

74/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9.3 TEE_InvokeTACommand

TEE_Result TEE_InvokeTACommand(

 TEE_TASessionHandle session,

 uint32_t cancellationRequestTimeout,

 uint32_t commandID,

 uint32_t paramTypes,

 [inout] TEE_Param params[4],

 [out] uint32_t* returnOrigin);

Description

The function TEE_InvokeTACommand invokes a command within a session opened between the client

Trusted Application instance and a destination Trusted Application instance.

The parameter session MUST reference a valid session handle opened by TEE_OpenTASession.

Up to four parameters can be passed during the operation. See section 4.9.4 for a detailed specification of

how these parameters are passed in the paramTypes and params arguments.

The result of this function is returned both in the return value and the return origin, stored in the variable pointed

to by returnOrigin:

If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it could

reach the destination Trusted Application. The possible return codes are listed in “Return Code Value” below.

If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return value is determined by the

protocol exposed by the destination Trusted Application. It is recommended that the Trusted Application

developer choose TEE_SUCCESS (0) to indicate success in their protocol, as this makes it possible to

determine success or failure without looking at the return origin.

Parameters

 session: An opened session handle

 cancellationRequestTimeout: Timeout in milliseconds or the special value
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE MUST act as

though a cancellation request for the operation had been sent.

 commandID: The identifier of the Command to invoke. The meaning of each Command Identifier

MUST be defined in the protocol exposed by the target Trusted Application.

 paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details.

 params: The parameters passed in the operation. See section 4.9.4 for more details.

 returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if

the return origin is not needed.

Specification Number: 10 Function Number: 0x402

Return Code

 If the return origin is different from TEE_ORIGIN_TRUSTED_APP, one of the following return codes can

be returned:

o TEE_SUCCESS: In case of success

o TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation

TEE Internal Core API Specification – Public Release v1.1.1 75/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the

operation

 If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed

by the destination Trusted Application.

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

76/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.9.4 Operation Parameters in the Internal Client API

The functions TEE_OpenTASession and TEE_InvokeTACommand take paramTypes and params as

arguments. The calling Trusted Application can use these arguments to pass up to four parameters.

Each of the parameters has a type, which is one of the TEE_PARAM_TYPE_XXX values listed in Table 4-1 on

page 39. The content of paramTypes SHOULD be built using the macro TEE_PARAM_TYPES (see

section 4.3.6.1).

Unless all parameter types are set to TEE_PARAM_TYPE_NONE, params MUST NOT be NULL and MUST

point to an array of four TEE_Param elements. Each of the params[i] is interpreted as follows.

When the operation starts, the Framework reads the parameters as described in Table 4-15.

Table 4-15: Interpretation of params[i] on Entry to Internal Client API

Parameter Type Interpretation of params[i]

TEE_PARAM_TYPE_NONE

TEE_PARAM_TYPE_VALUE_OUTPUT

Ignored.

TEE_PARAM_TYPE_VALUE_INPUT

TEE_PARAM_TYPE_VALUE_INOUT

Contains two integers in params[i].value.a and
params[i].value.b.

TEE_PARAM_TYPE_MEMREF_INPUT

TEE_PARAM_TYPE_MEMREF_OUTPUT

TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.buffer and
params[i].memref.size MUST be initialized with a

memory buffer that is accessible with the access rights

described in the type. The buffer can be NULL, in which

case size MUST be set to 0.

During the operation, the destination Trusted Application can update the contents of the OUTPUT or INOUT

Memory References.

When the operation completes, the Framework updates the structure params[i] as described in Table 4-16.

Table 4-16: Effects of Internal Client API on params[i]

Parameter Type Effects on params[i]

TEE_PARAM_TYPE_NONE

TEE_PARAM_TYPE_VALUE_INPUT

TEE_PARAM_TYPE_MEMREF_INPUT

Unchanged.

TEE_PARAM_TYPE_VALUE_OUTPUT

TEE_PARAM_TYPE_VALUE_INOUT

params[i].value.a and params[i].value.b are

updated with the value sent by the destination Trusted

Application.

TEE_PARAM_TYPE_MEMREF_OUTPUT

TEE_PARAM_TYPE_MEMREF_INOUT

params[i].memref.size is updated to reflect the actual

or requested size of the buffer.

TEE Internal Core API Specification – Public Release v1.1.1 77/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10 Cancellation Functions

This section defines functions for Trusted Applications to handle cancellation requested by a Client Application.

When a Client Application requests cancellation using the function TEEC_RequestCancellation of

[Client API], the implementation MUST do the following:

 If the operation has not reached the TA yet but has been queued in the TEE, then it MUST be retired

from the queue and fail with the return code TEEC_ERROR_CANCEL and the origin
TEEC_ORIGIN_TEE.

 If the operation has been transmitted to the Trusted Application, the implementation MUST set the

Cancellation Flag of the task executing the command.

 If the Trusted Application has unmasked the effects of cancellation by using the function
TEE_UnmaskCancellation, and if the task is engaged in a cancellable function when the

Cancellation Flag is set, then that cancellable function is interrupted. The Trusted Application can

detect that the function has been interrupted because it returns TEE_ERROR_CANCEL. It can then

execute cleanup code and possibly fail the current client operation, although it may well report a

success.

o Note that this version of the specification defines a single cancellable function, which is the
TEE_Wait function. Future versions may define other cancellable functions, in particular in the

domain of user interactions.

o The functions TEE_OpenTASession and TEE_InvokeTACommand, while not cancellable per se,

MUST transmit cancellation requests: If the Cancellation Flag is set and the effects of cancellation

are not masked, then the Trusted Core Framework MUST consider that the cancellation of the

corresponding operation is requested.

 When the Cancellation Flag is set for a given task, the function TEE_GetCancellationFlag MUST

return true, but only in the case the cancellations are not masked. This allows the Trusted

Application to poll the Cancellation Flag, for example, when it is engaged in a lengthy active

computation not using cancellable functions such as TEE_Wait.

4.10.1 TEE_GetCancellationFlag

bool TEE_GetCancellationFlag(void);

Description

The TEE_GetCancellationFlag function determines whether the current task’s Cancellation Flag is set. If

cancellations are masked, this function MUST return false. This function cannot panic.

Specification Number: 10 Function Number: 0x501

Return Value

 false if the Cancellation Flag is not set or if cancellations are masked

 true if the Cancellation Flag is set and cancellations are not masked

78/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.10.2 TEE_UnmaskCancellation

bool TEE_UnmaskCancellation(void);

Description

The TEE_UnmaskCancellation function unmasks the effects of cancellation for the current task.

When cancellation requests are unmasked, the Cancellation Flag interrupts cancellable functions such as
TEE_Wait and requests the cancellation of operations started with TEE_OpenTASession or
TEE_InvokeTACommand.

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to

cope with the effects of cancellation requests.

Specification Number: 10 Function Number: 0x503

Return Value

 true if cancellations were masked prior to calling this function

 false otherwise

Panic Reasons

 If the Implementation detects any error.

4.10.3 TEE_MaskCancellation

bool TEE_MaskCancellation(void);

Description

The TEE_MaskCancellation function masks the effects of cancellation for the current task.

When cancellation requests are masked, the Cancellation Flag does not have an effect on the cancellable

functions and cannot be retrieved using TEE_GetCancellationFlag.

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to

cope with the effects of cancellation requests.

Specification Number: 10 Function Number: 0x502

Return Value

 true if cancellations were masked prior to calling this function

 false otherwise

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 79/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11 Memory Management Functions

This section defines the following functions:

 A function to check the access rights of a given buffer. This can be used in particular to check if the

buffer belongs to shared memory.

 Access to an instance data register, which provides a possibly more efficient alternative to using read-

write C global variables

 A malloc facility

 A few utilities to copy and fill data blocks

4.11.1 TEE_CheckMemoryAccessRights

TEE_Result TEE_CheckMemoryAccessRights(

 uint32_t accessFlags,

 void* buffer, uint32_t size_t size);

Description

The TEE_CheckMemoryAccessRights function causes the Implementation to examine a buffer of memory

specified in the parameters buffer and size and to determine whether the current Trusted Application

instance has the access rights requested in the parameter accessFlags. If the characteristics of the buffer

are compatible with accessFlags, then the function returns TEE_SUCCESS. Otherwise, it returns
TEE_ERROR_ACCESS_DENIED. Note that the buffer SHOULD NOT be accessed by the function, but the

Implementation SHOULD check the access rights based on the address of the buffer and internal memory

management information.

The parameter accessFlags can contain one or more of the following flags:

 TEE_MEMORY_ACCESS_READ: Check that the buffer is entirely readable by the current Trusted

Application instance.

 TEE_MEMORY_ACCESS_WRITE: Check that the buffer is entirely writable by the current Trusted

Application instance.

 TEE_MEMORY_ACCESS_ANY_OWNER:

o If this flag is not set, then the function checks that the buffer is not shared, i.e. whether it can be

safely passed in an [in] or [out] parameter.

o If this flag is set, then the function does not check ownership. It returns TEE_SUCCESS if the

Trusted Application instance has read or write access to the buffer, independently of whether the

buffer resides in memory owned by a Client or not.

 All other flags are reserved for future use and SHOULD be set to 0.

The result of this function is valid until:

 The allocated memory area containing the supplied buffer is passed to TEE_Realloc or TEE_Free.

 One of the entry points of the Trusted Application returns.

 Actors outside of the TEE change the memory access rights when the memory is shared with an

outside entity.

In the first these two situations, the access rights of a given buffer MAY change and the Trusted Application

SHOULD call the function TEE_CheckMemoryAccessRights again.

80/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

When this function returns TEE_SUCCESS, and as long as this result is still valid, the Implementation MUST

guarantee the following properties:

 For the flag TEE_MEMORY_ACCESS_READ and TEE_MEMORY_ACCESS_WRITE, the Implementation

MUST guarantee that subsequent read or write accesses by the Trusted Application wherever in the

buffer will succeed and will not panic.

 When the flag TEE_MEMORY_ACCESS_ANY_OWNER is not set, the Implementation MUST guarantee

that the memory buffer is owned either by the Trusted Application instance or by a more trusted

component, and cannot be controlled, modified, or observed by a less trusted component, such as the

Client of the Trusted Application. This means that the Trusted Application can assume the following

guarantees:

o Read-after-read consistency: If the Trusted Application performs two successive read accesses

to the buffer at the same address and if, between the two read accesses, it performs no write,

either directly or indirectly through the API to that address, then the two reads MUST return the

same result.

o Read-after-write consistency: If the Trusted Application writes some data in the buffer and

subsequently reads the same address and if it performs no write, either directly or indirectly

through the API to that address in between, the read MUST return the data.

o Non-observability: If the Trusted Application writes some data in the buffer, then the data

MUST NOT be observable by components less trusted than the Trusted Application itself.

Note that when true memory sharing is implemented between Clients and the Trusted Application, the Memory

Reference Parameters passed to the TA entry points will typically not satisfy these requirements. In this case,

the function TEE_CheckMemoryAccessRights MUST return TEE_ERROR_ACCESS_DENIED. The code

handling such buffers has to be especially careful to avoid security issues brought by this lack of guarantees.

For example, it can read each byte in the buffer only once and refrain from writing temporary data in the buffer.

Additionally, the Implementation MUST guarantee that some types of memory blocks have a minimum set of

access rights:

 The following blocks MUST allow read and write accesses, MUST be owned by the Trusted

Application instance, and SHOULD NOT allow code execution:

o All blocks returned by TEE_Malloc or TEE_Realloc

o All the local and global non-const C variables

o The TEE_Param structures passed to the entry points TA_OpenSessionEntryPoint and
TA_InvokeCommandEntryPoint. This applies to the immediate contents of the TEE_Param

structures, but not to the pointers contained in the fields of such structures, which can of course

point to memory owned by the client. Note that this also means that these TEE_Param structures

MUST NOT directly point to the corresponding structures in the TEE Client API (see [Client API]) or

the Internal Client API (see section 4.9). The Implementation MUST perform a copy into a safe

TA-owned memory buffer before passing the structures to the entry points.

 The following blocks MUST allow read accesses, MUST be owned by the Trusted Application

instance, and SHOULD NOT allow code execution:

o All const local or global C variables

 The following blocks MAY allow read accesses, MUST be owned by the Trusted Application instance,

and MUST allow code execution:

o The code of the Trusted Application itself

TEE Internal Core API Specification – Public Release v1.1.1 81/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 When a particular parameter passed in the structure TEE_Param to a TA entry point is a Memory

Reference as specified in its parameter type, then this block, as described by the initial values of the

fields buffer and size in that structure, MUST allow read and/or write accesses as specified in

the parameter type. As noted above, this buffer is not required to reside in memory owned by the TA

instance.

Finally, any Implementation MUST also guarantee that the NULL pointer cannot be dereferenced. If a Trusted

Application attempts to read one byte at the address NULL, it MUST panic. This guarantee MUST extend to a

segment of addresses starting at NULL, but the size of this segment is implementation-dependent.

Parameters

 accessFlags: The access flags to check

 buffer, size: The description of the buffer to check

Specification Number: 10 Function Number: 0x601

Return Code

 TEE_SUCCESS: If the entire buffer allows the requested accesses

 TEE_ERROR_ACCESS_DENIED: If at least one byte in the buffer is not accessible with the requested

accesses

Panic Reasons

This function MUST NOT panic for any reason.

82/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.2 TEE_SetInstanceData

void TEE_SetInstanceData(

 [ctx] void* instanceData);

Description

The TEE_SetInstanceData and TEE_GetInstanceData functions provide an alternative to writable

global data (writable variables with global scope and writable static variables with global or function scope).

While an Implementation MUST support C global variables, using these functions may be sometimes more

efficient, especially if only a single instance data variable is required.

These two functions can be used to register and access an instance variable. Typically this instance variable

can be used to hold a pointer to a Trusted Application-defined memory block containing any writable data that

needs instance global scope, or writable static data that needs instance function scope.

The value of this pointer is not interpreted by the Framework, and is simply passed back to other
TA_ functions within this session. Note that *instanceData may be set with a pointer to a buffer allocated

by the Trusted Application instance or with anything else, such as an integer, a handle, etc. The Framework

will not automatically free *instanceData when the session is closed; the Trusted Application instance is

responsible for freeing memory if required.

An equivalent session context variable for managing session global and static data exists for sessions (see
TA_OpenSessionEntryPoint, TA_InvokeCommandEntryPoint, and TA_CloseSessionEntryPoint in

section 4.3).

This function sets the Trusted Application instance data pointer. The data pointer can then be retrieved by the

Trusted Application instance by calling the TEE_GetInstanceData function.

Parameters

 instanceData: A pointer to the global Trusted Application instance data. This pointer may be NULL.

Specification Number: 10 Function Number: 0x609

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 83/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.3 TEE_GetInstanceData

[ctx] void* TEE_GetInstanceData(void);

Description

The TEE_GetInstanceData function retrieves the instance data pointer set by the Trusted Application using

the TEE_SetInstanceData function.

Specification Number: 10 Function Number: 0x603

Return Value

The value returned is the previously set pointer to the Trusted Application instance data, or NULL if no instance

data pointer has yet been set.

Panic Reasons

 If the Implementation detects any error.

84/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.4 TEE_Malloc

void* TEE_Malloc(

 uint32_t size_t size,

 uint32_t hint);

Description

The TEE_Malloc function allocates space for an object whose size in bytes is specified in the parameter
size.

The pointer returned is guaranteed to be aligned such that it may be assigned as a pointer to any of the basic

C types.

The parameter hint is a hint to the allocator. The valid values for the hint are defined in Table 4-17. This

parameter allows Trusted Applications to refer to various pools of memory or to request special characteristics

for the allocated memory by using an implementation-defined hint. Future versions of this specification may

introduce additional standard hints.

Table 4-17: Valid Hint Values

Name Hint Value Meaning

TEE_MALLOC_FILL_ZERO 0x00000000 Guarantees that the returned block of memory

is filled with zeroes

Reserved 0x00000001-0x7FFFFFFF Reserved for future versions of this

specification.

Implementation defined 0x80000000-0xFFFFFFFF Reserved for implementation-defined hints.

The hint MUST be attached to the allocated block and SHOULD be used when the block is reallocated with
TEE_Realloc.

If the space cannot be allocated, given the current hint value (for example because the hint value is not

implemented), a NULL pointer SHALL be returned.

Parameters

 size: The size of the buffer to be allocated.

 hint: A hint to the allocator. See Table 4-17 for valid values.

Specification Number: 10 Function Number: 0x604

Return Value

Upon successful completion, with size not equal to zero, the function returns a pointer to the allocated space.

If the space cannot be allocated, given the current hint value, a NULL pointer is returned.

If the size of the requested space is zero:

 The value returned is undefined but guaranteed to be different from NULL. This non-NULL value

ensures that the hint can be associated with the returned pointer for use by TEE_Realloc.

 The Trusted Application MUST NOT access the returned pointer. The Trusted Application SHOULD

panic if the memory pointed to by such a pointer is accessed for either read or write.

TEE Internal Core API Specification – Public Release v1.1.1 85/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons

 If the Implementation detects any error.

4.11.5 TEE_Realloc

void* TEE_Realloc(

 [in] void* buffer,

 uint32_t newSize);

Description

The TEE_Realloc function changes the size of the memory object pointed to by buffer to the size specified

by newSize.

The content of the object remains unchanged up to the lesser of the new and old sizes. Space in excess of

the old size contains unspecified content.

If the new size of the memory object requires movement of the object, the space for the previous instantiation

of the object is deallocated. If the space cannot be allocated, the original object remains allocated, and this

function returns a NULL pointer.

If buffer is NULL, TEE_Realloc is equivalent to TEE_Malloc for the specified size. The associated hint

applied SHALL be the default value defined in TEE_Malloc.

It is a Programmer Error if buffer does not match a pointer previously returned by TEE_Malloc or
TEE_Realloc, or if the space has previously been deallocated by a call to TEE_Free or TEE_Realloc.

If the hint initially provided when the block was allocated with TEE_Malloc is 0, then the extended space is

filled with zeroes. In general, the function TEE_Realloc SHOULD allocate the new memory buffer using

exactly the same hint as for the buffer initially allocated with TEE_Malloc. In any case, it MUST NOT

downgrade the security or performance characteristics of the buffer.

Note that any pointer returned by TEE_Malloc or TEE_Realloc and not yet freed or reallocated can be

passed to TEE_Realloc. This includes the special non-NULL pointer returned when an allocation for 0 bytes

is requested.

Parameters

 buffer: The pointer to the object to be reallocated

 newSize: The new size required for the object

Specification Number: 10 Function Number: 0x608

Return Value

Upon successful completion, TEE_Realloc returns a pointer to the (possibly moved) allocated space.

If there is not enough available memory, TEE_Realloc returns a NULL pointer and the original buffer is still

allocated and unchanged.

Panic Reasons

 If the Implementation detects any error.

86/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.6 TEE_Free

void TEE_Free(void *buffer);

Description

The TEE_Free function causes the space pointed to by buffer to be deallocated; that is, made available

for further allocation.

If buffer is a NULL pointer, TEE_Free does nothing. Otherwise, it is a Programmer Error if the argument

does not match a pointer previously returned by the TEE_Malloc or TEE_Realloc, or if the space has been

deallocated by a call to TEE_Free or TEE_Realloc.

Parameters

 buffer: The pointer to the memory block to be freed

Specification Number: 10 Function Number: 0x602

Panic Reasons

 If the Implementation detects any error.

4.11.7 TEE_MemMove

void TEE_MemMove(

 [outbuf(size)] void* dest,

 [inbuf(size)] void* src,

 uint32_t size);

Description

The TEE_MemMove function copies size bytes from the buffer pointed to by src into the buffer pointed to

by dest.

Copying takes place as if the size bytes from the buffer pointed to by src are first copied into a temporary

array of size bytes that does not overlap the buffers pointed to by dest and src, and then the size
bytes from the temporary array are copied into the buffer pointed to by dest.

Parameters

 dest: A pointer to the destination buffer

 src: A pointer to the source buffer

 size: The number of bytes to be copied

Specification Number: 10 Function Number: 0x607

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 87/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.8 TEE_MemCompare

int32_t TEE_MemCompare(

 [inbuf(size)] void* buffer1,

 [inbuf(size)] void* buffer2,

 uint32_t size);

Description

The TEE_MemCompare function compares the first size bytes of the buffer pointed to by buffer1 to the

first size bytes of the buffer pointed to by buffer2.

Parameters

 buffer1: A pointer to the first buffer

 buffer2: A pointer to the second buffer

 size: The number of bytes to be compared

Specification Number: 10 Function Number: 0x605

Return Value

The sign of a non-zero return value is determined by the sign of the difference between the values of the first

pair of bytes (both interpreted as type uint8_t) that differ in the objects being compared.

 If the first byte that differs is higher in buffer1, then return an integer greater than zero.

 If the first size bytes of the two buffers are identical, then return zero.

 If the first byte that differs is higher in buffer2, then return an integer lower than zero.

Panic Reasons

 If the Implementation detects any error.

88/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.11.9 TEE_MemFill

void TEE_MemFill(

 [outbuf(size)] void* buffer,

 uint32_t x,

 uint32_t size);

Description

The TEE_MemFill function writes the byte x (converted to a uint8_t) into the first size bytes of the

buffer pointed to by buffer.

Parameters

 buffer: A pointer to the destination buffer

 x: The value to be set

 size: The number of bytes to be set

Specification Number: 10 Function Number: 0x606

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 89/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 Trusted Storage API for Data and Keys

This chapter includes the following sections:

5.1 Summary of Features and Design .. 89
5.2 Trusted Storage and Rollback Detection .. 91
5.3 Data Types .. 92
5.4 Constants .. 94
5.5 Generic Object Functions .. 96
5.6 Transient Object Functions ... 103
5.7 Persistent Object Functions .. 117
5.8 Persistent Object Enumeration Functions ... 126
5.9 Data Stream Access Functions ... 130

5.1 Summary of Features and Design

This section provides a summary of the features and design of the Trusted Storage API.

 Each TA has access to a set of Trusted Storage Spaces, identified by 32-bit Storage Identifiers.

o The current version of this specification defines a single Trusted Storage Space for each TA, which

is its own private storage space. The objects in this storage space are accessible only to the TA

that created them and are not visible to other TAs.

o Other storage identifiers may be defined in future versions of this specification or by an

Implementation, e.g. to refer to storage spaces shared among multiple TAs or for communicating

between boot-time entities and run-time Trusted Applications.

 A Trusted Storage Space contains Persistent Objects. Each persistent object is identified by an

Object Identifier, which is a variable-length binary buffer from 0 to 64 bytes. Object identifiers can

contain any bytes, including bytes corresponding to non-printable characters.

 A persistent object can be a Cryptographic Key Object, a Cryptographic Key-Pair Object, or a

Data Object.

 Each persistent object has a type, which precisely defines the content of the object. For example,

there are object types for AES keys, RSA key-pairs, data objects, etc.

 All persistent objects have an associated Data Stream. Persistent data objects have only a data

stream. Persistent cryptographic objects (that is, keys or key-pairs) have a data stream, Object

Attributes, and metadata.

o The Data Stream is entirely managed in the TA memory space. It can be loaded into a

TA-allocated buffer when the object is opened or stored from a TA-allocated buffer when the object

is created. It can also be accessed as a stream, so it can be used to store large amounts of data

accessed by small chunks.

o Object Attributes are used for small amounts of data (typically a few tens or hundreds of bytes).

They can be stored in a memory pool that is separated from the TA instance and some attributes

may be hidden from the TA itself. Attributes are used to store the key material in a structured way.

For example, an RSA key-pair has an attribute for the modulus, the public exponent, the private

exponent, etc. When an object is created, all mandatory Object Attributes MUST be specified and

optional attributes MAY be specified.

90/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that an Implementation is allowed to store more information in an object than the visible

attributes. For example, some data might be pre-computed and stored internally to accelerate

subsequent cryptographic operations.

o The metadata associated with each cryptographic object includes:

 Key Size in bits. The precise meaning depends on the key algorithm. For example, AES key

can have 128 bits, 192 bits, or 256 bits; RSA keys can have 1024 bits or 2048 bits or any other

supported size, etc.

 Key Usage Flags, which define the operations permitted with the key as well as whether the

sensitive parts of the key material can be retrieved by the TA or not.

 A TA can also allocate Transient Objects. Compared to persistent objects:

o Transient objects are held in memory and are automatically wiped and reclaimed when they are

closed or when the TA instance is destroyed.

o Transient objects contain only attributes and no data stream.

o A transient object can be uninitialized, in which case it is an object container allocated with a

certain object type and maximum size but with no attributes. A transient object becomes initialized

when its attributes are populated. Note that persistent objects are always created initialized. This

means that when the TA wants to generate or derive a persistent key, it has to first use a transient

object then write the attributes of a transient object into a persistent object.

o Transient objects have no identifier, they are only manipulated through object handles.

o Currently, transient objects are used for cryptographic keys and key-pairs.

 Any function that accesses a persistent object handle MAY return a status of
TEE_ERROR_CORRUPT_OBJECT or TEE_ERROR_CORRUPT_OBJECT_2, which indicates that corruption

of the object has been detected. Before this status is returned, the Implementation SHALL delete the

corrupt object and SHALL close the associated handle; subsequent use of the handle SHALL cause a

panic.

 Any function that accesses a persistent object MAY return a status of
TEE_ERROR_STORAGE_NOT_AVAILABLE or TEE_ERROR_STORAGE_NOT_AVAILABLE_2, which

indicates that the storage system in which the object is stored is not accessible for some reason.

 Persistent and transient objects are manipulated through opaque Object Handles.

o Some functions accept both types of object handles. For example, a cryptographic operation can

be started with either a transient key handle or a persistent key handle.

o Some functions accept only handles on transient objects. For example, populating the attributes of

an object works only with a transient object because it requires an uninitialized object and

persistent objects are always fully initialized.

o Finally, the file-like API functions to access the data stream work only with persistent objects

because transient objects have no data stream.

Cryptographic operations are described in Chapter 6.

TEE Internal Core API Specification – Public Release v1.1.1 91/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2 Trusted Storage and Rollback Detection

The Trusted Storage MUST provide a minimum level of protection against rollback attacks on persistent

objects; however it is accepted that the actually physical storage may be in an unsecure area and so is

vulnerable to actions from outside of the TEE.

The level of protection trust that a Trusted Application can assume from put on the rollback detection

mechanism of the Trusted Storage is implementation defined but can be discovered programmatically by

querying the implementation property:

gpd.tee.trustedStorage.rollbackDetection.protectionLevel

Typically, an implementation may rely on the REE for that purpose (protection level 100) or on hardware assets

controlled by the TEE (protection level 1000).

Table 5-1: Values of gpd.tee.trustedStorage.rollbackDetection.protectionLevel

Property Value Meaning

100 Rollback detection mechanism for the Trusted Storage is enforced at the REE

level.

1000 Rollback detection mechanism for the Trusted Storage is based on TEE-controlled

hardware. This hardware MUST be out of reach of software attacks from the REE.

Users may still be able to roll back the Trusted Storage but this MUST be detected

by the Implementation.

92/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3 Data Types

5.3.1 TEE_Attribute

An array of this type is passed whenever a set of attributes is specified as argument to a function of the API.

typedef struct {

 uint32_t attributeID;

 union

 {

 struct

 {

 [inbuf] void* buffer; uint32_t size_t length;

 } ref;

 struct

 {

 uint32_t a, b;

 } value;

 } content;

} TEE_Attribute;

An attribute can be either a buffer attribute or a value attribute. This is determined by bit [29] of the attribute

identifier. If this bit is set to 0, then the attribute is a buffer attribute and the field ref MUST be selected.

If the bit is set to 1, then it is a value attribute and the field value MUST be selected.

When an array of attributes is passed to a function, either to populate an object or to specify operation

parameters, and if an attribute identifier is present twice in the array, then only the first occurrence is used.

5.3.2 TEE_ObjectInfo

typedef struct {

 uint32_t objectType;

 uint32_t objectSizekeySize;

 uint32_t maxObjectSizemaxKeySize;

 uint32_t objectUsage;

 uint32_t dataSize;

 uint32_t dataPosition;

 uint32_t handleFlags;

} TEE_ObjectInfo;

See the documentation of function TEE_GetObjectInfo1 in section 5.5.1 for a description of this structure.

TEE Internal Core API Specification – Public Release v1.1.1 93/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3.3 TEE_Whence

typedef enum

{

 TEE_DATA_SEEK_SET = 0,

 TEE_DATA_SEEK_CUR = 1,

 TEE_DATA_SEEK_END = 2

} TEE_Whence;

This structure enumerates the possible start offset when moving a data position in the data stream associated

with a persistent object.

5.3.4 TEE_ObjectHandle

typedef struct __TEE_ObjectHandle* TEE_ObjectHandle;

TEE_ObjectHandle is an opaque handle on an object.a cryptographic object. TEE_ObjectHandle is an

opaque handle on a cryptographic object. These handles are returned by the functions

TEE_AllocateTransientObject (section 5.6.1), TEE_OpenPersistentObject (section 5.7.1), and
TEE_CreatePersistentObject (section 5.7.2).

5.3.5 TEE_ObjectEnumHandle

typedef struct __TEE_ObjectEnumHandle* TEE_ObjectEnumHandle;

TEE_ObjectEnumHandle is an opaque handle on an object enumerator. These handles are returned by the

function TEE_AllocatePersistentObjectEnumerator specified in section 5.8.1.

94/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4 Constants

5.4.1 Constants Used in Trusted Storage API for Data and Keys

The following tables pertain to the Trusted Storage API for Data and Keys (Chapter 5).

Table 5-2: Object Storage Constants

Constant Name Value

Reserved 0x00000000

TEE_STORAGE_PRIVATE 0x00000001

Reserved for future use 0x00000002-0x7FFFFFFF

Reserved for implementation defined storage 0x80000000-0xFFFFFFFF

Table 5-3: Data Flag Constants

Constant Name Value

TEE_DATA_FLAG_ACCESS_READ 0x00000001

TEE_DATA_FLAG_ACCESS_WRITE 0x00000002

TEE_DATA_FLAG_ACCESS_WRITE_META 0x00000004

TEE_DATA_FLAG_SHARE_READ 0x00000010

TEE_DATA_FLAG_SHARE_WRITE 0x00000020

TEE_DATA_FLAG_OVERWRITE 0x00000400

TEE_DATA_FLAG_EXCLUSIVE

(deprecated, replace with TEE_DATA_FLAG_OVERWRITE)

0x00000400

Table 5-4: Usage Constants

Constant Name Value

TEE_USAGE_EXTRACTABLE 0x00000001

TEE_USAGE_ENCRYPT 0x00000002

TEE_USAGE_DECRYPT 0x00000004

TEE_USAGE_MAC 0x00000008

TEE_USAGE_SIGN 0x00000010

TEE_USAGE_VERIFY 0x00000020

TEE_USAGE_DERIVE 0x00000040

Table 5-4b: Miscellaneous Constants [formerly Table 5-8]

Constant Name Value

TEE_DATA_MAX_POSITION 0xFFFFFFFF

TEE_OBJECT_ID_MAX_LEN 64

TEE Internal Core API Specification – Public Release v1.1.1 95/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4.2 Constants Used in Cryptographic Operations API

The following tables pertain to the Cryptographic Operations API (Chapter 6).

Table 5-5: Handle Flag Constants

Constant Name Value

TEE_HANDLE_FLAG_PERSISTENT 0x00010000

TEE_HANDLE_FLAG_INITIALIZED 0x00020000

TEE_HANDLE_FLAG_KEY_SET 0x00040000

TEE_HANDLE_FLAG_EXPECT_TWO_KEYS 0x00080000

Table 5-6: Operation Constants

Constant Name Value

TEE_OPERATION_CIPHER 1

TEE_OPERATION_MAC 3

TEE_OPERATION_AE 4

TEE_OPERATION_DIGEST 5

TEE_OPERATION_ASYMMETRIC_CIPHER 6

TEE_OPERATION_ASYMMETRIC_SIGNATURE 7

TEE_OPERATION_KEY_DERIVATION 8

Reserved for future use 0x00000009-0x7FFFFFFF

Implementation defined 0x80000000-0xFFFFFFFF

Table 5-7: Operation States

Constant Name Value

TEE_OPERATION_STATE_INITIAL 0x00000000

TEE_OPERATION_STATE_ACTIVE 0x00000001

Reserved for future use 0x00000002-0x7FFFFFFF

Implementation defined 0x80000000-0xFFFFFFFF

Table 5-8: [moved – now Table 5-4b]

96/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5 Generic Object Functions

These functions can be called on both transient and persistent object handles.

5.5.1 TEE_GetObjectInfo1

TEE_Result TEE_GetObjectInfo1(

 TEE_ObjectHandle object,

 [out] TEE_ObjectInfo* objectInfo);

Description

This function replaces the TEE_GetObjectInfo function, whose use is deprecated.

The TEE_GetObjectInfo1 function returns the characteristics of an object. It fills in the following fields in

the structure TEE_ObjectInfo (section 5.3.2):

 objectType: The parameter objectType passed when the object was created

 objectSizekeySize: The current size in bits of the object as determined by its attributes. This will

always be less than or equal to maxObjectSize.maxKeySize. Set to 0 for uninitialized and data

only objects.

 maxObjectSizemaxKeySize: The maximum objectSize keySize which this object can

represent.

o For a persistent object, set to objectSize keySize

o For a transient object, set to the parameter maxObjectSize maxKeySize passed to
TEE_AllocateTransientObject

 objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4.

 dataSize

o For a persistent object, set to the current size of the data associated with the object

o For a transient object, always set to 0

 dataPosition

o For a persistent object, set to the current position in the data for this handle. Data positions for

different handles on the same object may differ.

o For a transient object, set to 0

 handleFlags: A bit vector containing one or more of the following flags:

o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object

o TEE_HANDLE_FLAG_INITIALIZED

 For a persistent object, always set

 For a transient object, initially cleared, then set when the object becomes initialized

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object

Parameters

 object: Handle of the object

 objectInfo: Pointer to a structure filled with the object information

TEE Internal Core API Specification – Public Release v1.1.1 97/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: 10 Function Number: 0x706

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid opened object handle.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

98/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.2 TEE_RestrictObjectUsage1

TEE_Result TEE_RestrictObjectUsage1(

 TEE_ObjectHandle object,

 uint32_t objectUsage);

Description

This function replaces the TEE_RestrictObjectInfo function, whose use is deprecated.

The TEE_RestrictObjectUsage1 function restricts the object usage flags of an object handle to contain at

most the flags passed in the objectUsage parameter.

For each bit in the parameter objectUsage:

 If the bit is set to 1, the corresponding usage flag in the object is left unchanged.

 If the bit is set to 0, the corresponding usage flag in the object is cleared.

For example, if the usage flags of the object are set to TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and

if objectUsage is set to TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining

usage flag in the object after calling the function TEE_RestrictObjectUsage1 is TEE_USAGE_ENCRYPT.

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent

object.

A transient object’s object usage flags are reset to 1 using the TEE_ResetTransientObject function.

For a persistent object, setting the object usage MUST be an atomic operation.

Parameters

 object: Handle on an object

 objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_XXX

constants defined in Table 5-4

Specification Number: 10 Function Number: 0x707

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid opened object handle.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 99/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.3 TEE_GetObjectBufferAttribute

TEE_Result TEE_GetObjectBufferAttribute(

 TEE_ObjectHandle object,

 uint32_t attributeID,

 [outbuf] void* buffer, uint32_t* size_t* size);

Description

The TEE_GetObjectBufferAttribute function extracts one buffer attribute from an object.

The attribute is identified by the argument attributeID. The precise meaning of this parameter depends on

the container type and size and is defined in section 6.11.

Bit [29] of the attribute identifier MUST be set to 0 ; i.e. it MUST denote a buffer attribute.

They There are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17):

 Public object attributes can always be extracted whatever the status of the container.

 Protected attributes can be extracted only if the object’s key usage contains the
TEE_USAGE_EXTRACTABLE flag.

See section 6.11 for a definition of all available object attributes, their formats, and their level of protection.

To ensure that the buffer is large enough to receive the expected value, the caller should allocate a buffer

which is at least as large as used in TEE_InitRefAttribute().

Note: It is recommended that TA writers do not rely on implementations stripping leading zeros from bignum

attributes. However, calling TEE_GetObjectBufferAttribute() with a NULL buffer is guaranteed to return

a size sufficient to hold the attribute.

Parameters

 object: Handle of the object

 attributeID: Identifier of the attribute to retrieve

 buffer, size: Output buffer to get the content of the attribute

Specification Number: 10 Function Number: 0x702

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the attribute is not found on this object

 TEE_ERROR_SHORT_BUFFER: If buffer is NULL or too small to contain the key part

 TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid opened object handle.

 The object is not initialized.

 Bit [29] of attributeID is not set to 0, so the attribute is not a buffer attribute.

100/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Bit [28] of attributeID is set to 0, denoting a protected attribute, and the object usage does not

contain the TEE_USAGE_EXTRACTABLE flag.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 101/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.4 TEE_GetObjectValueAttribute

TEE_Result TEE_GetObjectValueAttribute(

 TEE_ObjectHandle object,

 uint32_t attributeID,

 [outopt] uint32_t* a,

 [outopt] uint32_t* b);

Description

The TEE_GetObjectValueAttribute function extracts a value attribute from an object.

The attribute is identified by the argument attributeID. The precise meaning of this parameter depends on

the container type and size and is defined in section 6.11.

Bit [29] of the attribute identifier MUST be set to 1, i.e. it MUST denote a value attribute.

They are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17):

 Public object attributes can always be extracted whatever the status of the container.

 Protected attributes can be extracted only if the object’s key usage contains the
TEE_USAGE_EXTRACTABLE flag.

See section 6.11 for a definition of all available object attributes and their level of protection.

Where the format of the attribute (see Table 6-16) does not define a meaning for b, the value returned for b

is implementation defined.

Parameters

 object: Handle of the object

 attributeID: Identifier of the attribute to retrieve

 a, b: Pointers on the placeholders filled with the attribute fields a and b. Each can be NULL if the

corresponding field is not of interest to the caller.

Specification Number: 10 Function Number: 0x704

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the attribute is not found on this object

 TEE_ERROR_ACCESS_DENIED: Deprecated: Handled by a panic

 TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid opened object handle.

 The object is not initialized.

 Bit [29] of attributeID is not set to 1, so the attribute is not a value attribute.

 Bit [28] of attributeID is set to 0, denoting a protected attribute, and the object usage does not

contain the TEE_USAGE_EXTRACTABLE flag.

102/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

5.5.5 TEE_CloseObject

void TEE_CloseObject(TEE_ObjectHandle object);

Description

The TEE_CloseObject function closes an opened object handle. The object can be persistent or transient.

For transient objects, TEE_CloseObject is equivalent to TEE_FreeTransientObject.

This function will operate correctly even if the object or the containing storage is corrupt.

Parameters

 object: Handle on the object to close. If set to TEE_HANDLE_NULL, does nothing.

Specification Number: 10 Function Number: 0x701

Panic Reasons

 object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 103/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6 Transient Object Functions

5.6.1 TEE_AllocateTransientObject

TEE_Result TEE_AllocateTransientObject(

 uint32_t objectType,

 uint32_t maxObjectSizemaxKeySize,

 [out] TEE_ObjectHandle* object);

Description

The TEE_AllocateTransientObject function allocates an uninitialized transient object, i.e. a container

for attributes. Transient objects are used to hold a cryptographic object (key or key-pair). The object type and

the maximum key size MUST be specified so that all the container resources can be pre-allocated.

As allocated, the container is uninitialized. It can be initialized by subsequently importing the object material,

generating an object, deriving an object, or loading an object from the Trusted Storage.

The initial value of the key usage associated with the container is 0xFFFFFFFF, which means that it contains

all usage flags. You can use the function TEE_RestrictObjectUsage1 to restrict the usage of the container.

The returned handle is used to refer to the newly-created container in all subsequent functions that require an

object container: key management and operation functions. The handle remains valid until the container is

deallocated using the function TEE_FreeTransientObject.

As shown in Table 5-9, the object type determines the possible object size to be passed to
TEE_AllocateTransientObject, which is not necessarily the size of the object to allocate. In particular, for

key objects the size to be passed is the one of the appropriate key sizes described in Table 5-9.

Note that a compliant Implementation MUST implement all the keys, algorithms, and key sizes described in

Table 5-9 except the elliptic curve cryptographic types which are optional; support for other sizes or algorithms

is implementation-defined.

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizes3

Object Type Possible Key Sizes

TEE_TYPE_AES 128, 192, or 256 bits

TEE_TYPE_DES Always 64 bits including the parity bits. This gives an effective key

size of 56 bits

TEE_TYPE_DES3 128 or 192 bits including the parity bits. This gives effective key

sizes of 112 or 168 bits

TEE_TYPE_HMAC_MD5 Between 64 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA1 Between 80 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA224 Between 112 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA256 Between 192 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA384 Between 256 and 1024 bits, multiple of 8 bits

3 WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with
time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate Government guidelines.

104/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Possible Key Sizes

TEE_TYPE_HMAC_SHA512 Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_RSA_PUBLIC_KEY The number of bits in the modulus.

256, 512, 768, 1024, 1536 and 2048 bit keys MUST be supported.

Support for other key sizes including bigger key sizes is

implementation-dependent. Minimum key size is 256 bits.4

TEE_TYPE_RSA_KEYPAIR Same as for RSA public key size.

TEE_TYPE_DSA_PUBLIC_KEY Depends on Algorithm:

TEE_ALG_DSA_SHA1: Between 512 and 1024 bits, multiple of 64 bits

TEE_ALG_DSA_SHA224: 2048 bits

TEE_ALG_DSA_SHA256: 2048 or 3072 bits

TEE_TYPE_DSA_KEYPAIR Same as for DSA public key size.

TEE_TYPE_DH_KEYPAIR From 256 to 2048 bits, multiple of 8 bits.

TEE_TYPE_ECDSA_PUBLIC_KEY Conditional: If ECC is supported, then all the curves curve sizes

defined in Table 6-14 MUST be supported.

TEE_TYPE_ECDSA_KEYPAIR Conditional: If ECC is supported, then MUST be same value as for

ECDSA public key size (for values, see Table 6-14).

TEE_TYPE_ECDH_PUBLIC_KEY Conditional: If ECC is supported, then all the curves curve sizes

defined in Table 6-14 MUST be supported.

TEE_TYPE_ECDH_KEYPAIR Conditional: If ECC is supported, then MUST be same value as for

ECDH ECH public key size (for values, see Table 6-14).

TEE_TYPE_GENERIC_SECRET Multiple of 8 bits, up to 4096 bits. This type is intended for secret

data that has been derived from is not directly used as a key in a

cryptographic operation, but participates in a key derivation scheme.

TEE_TYPE_DATA 0 – All data is in the associated data stream.

Parameters

 objectType: Type of uninitialized object container to be created (see Table 6-13).

 maxKeySize: maxObjectSize: Key Size of the object. Valid values depend on the object type and

are defined in Table 5-9 above.

 object: Filled with a handle on the newly created key container

Specification Number: 10 Function Number: 0x801

Return Code

 TEE_SUCCESS: On success

 TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to allocate the object handle

4 Note that using RSA keys smaller than 1024 bits is nowadays considered insecure but may be required for legacy
protocols.

TEE Internal Core API Specification – Public Release v1.1.1 105/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 TEE_ERROR_NOT_SUPPORTED: If the key size is not supported or the object type is not supported.

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

106/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.2 TEE_FreeTransientObject

void TEE_FreeTransientObject(

 TEE_ObjectHandle object);

Description

The TEE_FreeTransientObject function deallocates a transient object previously allocated with
TEE_AllocateTransientObject. After this function has been called, the object handle is no longer valid

and all resources associated with the transient object MUST have been reclaimed.

If the object is initialized, the object attributes are cleared before the object is deallocated.

This function does nothing if object is TEE_HANDLE_NULL.

Parameters

 object: Handle on the object to free

Specification Number: 10 Function Number: 0x803

Panic Reasons

 object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL.

 If the Implementation detects any other error.

5.6.3 TEE_ResetTransientObject

void TEE_ResetTransientObject(

 TEE_ObjectHandle object);

Description

The TEE_ResetTransientObject function resets a transient object to its initial state after allocation.

If the object is currently initialized, the function clears the object of all its material. The object is then uninitialized

again.

In any case, the function resets the key usage of the container to 0xFFFFFFFFF.

This function does nothing if object is set to TEE_HANDLE_NULL.

Parameters

 object: Handle on a transient object to reset

Specification Number: 10 Function Number: 0x808

Panic Reasons

 object is not a valid opened object handle and is not equal to TEE_HANDLE_NULL.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 107/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.4 TEE_PopulateTransientObject

TEE_Result TEE_PopulateTransientObject(

 TEE_ObjectHandle object,

 [in] TEE_Attribute* attrs, uint32_t attrCount);

Description

The TEE_PopulateTransientObject function populates an uninitialized object container with object

attributes passed by the TA in the attrs parameter.

When this function is called, the object MUST be uninitialized. If the object is initialized, the caller MUST first

clear it using the function TEE_ResetTransientObject.

Note that if the object type is a key-pair, then this function sets both the private and public attributes parts of

the key-pair.

As shown in Table 5-10, the interpretation of the attrs parameter depends on the object type. The values

of all attributes are copied into the object so that the attrs array and all the memory buffers it points to may

be freed after this routine returns without affecting the object.

108/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-10: TEE_PopulateTransientObject Supported Attributes

Object Type Attributes

TEE_TYPE_AES For all secret key objects, the TEE_ATTR_SECRET_VALUE MUST

be provided.

For TEE_TYPE_DES and TEE_TYPE_DES3, the buffer associated

with this attribute MUST include parity bits.

TEE_TYPE_DES

TEE_TYPE_DES3

TEE_TYPE_HMAC_MD5

TEE_TYPE_HMAC_SHA1

TEE_TYPE_HMAC_SHA224

TEE_TYPE_HMAC_SHA256

TEE_TYPE_HMAC_SHA384

TEE_TYPE_HMAC_SHA512

TEE_TYPE_GENERIC_SECRET

TEE_TYPE_RSA_PUBLIC_KEY The following attributes parts MUST be provided:

TEE_ATTR_RSA_MODULUS

TEE_ATTR_RSA_PUBLIC_EXPONENT

TEE_TYPE_RSA_KEYPAIR The following attributes parts MUST be provided:

TEE_ATTR_RSA_MODULUS

TEE_ATTR_RSA_PUBLIC_EXPONENT

TEE_ATTR_RSA_PRIVATE_EXPONENT

The CRT parameters are optional. If any of these attributes parts is

provided, then all of them MUST be provided:

TEE_ATTR_RSA_PRIME1

TEE_ATTR_RSA_PRIME2

TEE_ATTR_RSA_EXPONENT1

TEE_ATTR_RSA_EXPONENT2

TEE_ATTR_RSA_COEFFICIENT

TEE_TYPE_ECDSA_PUBLIC_KEY Conditional: If ECC is supported, then the following attributes parts

MUST be provided:

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDSA_KEYPAIR Conditional: If ECC is supported, then the following attributes parts

MUST be provided:

TEE_ATTR_ECC_PRIVATE_VALUE

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_CURVE

TEE Internal Core API Specification – Public Release v1.1.1 109/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Attributes

TEE_TYPE_ECDH_PUBLIC_KEY Conditional: If ECC is supported, then the following attributes parts

MUST be provided:

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDH_KEYPAIR Conditional: If ECC is supported, then the following attributes parts

MUST be provided:

TEE_ATTR_ECC_PRIVATE_VALUE

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_CURVE

TEE_TYPE_DSA_PUBLIC_KEY The following attributes parts MUST be provided:

TEE_ATTR_DSA_PRIME

TEE_ATTR_DSA_SUBPRIME

TEE_ATTR_DSA_BASE

TEE_ATTR_DSA_PUBLIC_VALUE

TEE_TYPE_DSA_KEYPAIR The following attributes parts MUST be provided:

TEE_ATTR_DSA_PRIME

TEE_ATTR_DSA_SUBPRIME

TEE_ATTR_DSA_BASE

TEE_ATTR_DSA_PRIVATE_VALUE

TEE_ATTR_DSA_PUBLIC_VALUE

TEE_TYPE_DH_KEYPAIR The following attributes parts MUST be provided:

TEE_ATTR_DH_PRIME

TEE_ATTR_DH_BASE

TEE_ATTR_DH_PUBLIC_VALUE

TEE_ATTR_DH_PRIVATE_VALUE

Optionally, TEE_ATTR_DH_SUBPRIME may be provided, too.The

following parameters can optionally be passed:

TEE_ATTR_DH_SUBPRIME (q)

If present, constrains the private value x to be in the range

[2, q-2], and a mismatch will cause a

TEE_ERROR_BAD_PARAMETERS error.

TEE_ATTR_DH_X_BITS (l)

If present, constrains the private value x to have l bits, and a

mismatch will cause a TEE_ERROR_BAD_PARAMETERS error.

If neither of these optional parts is specified, then the only constraint

on x is that it is less than p-1.

110/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

All mandatory attributes MUST be specified, otherwise the routine will panic.

If attribute values are larger than the maximum size specified when the object was created, the Implementation

SHALL panic.

The Implementation can attempt to detect whether the attribute values are consistent; for example, if the

numbers supposed to be prime are indeed prime. However, it is not required to do these checks fully and

reliably. If it detects invalid attributes, it MUST return the error code TEE_ERROR_BAD_PARAMETERS and

MUST NOT panic. If it does not detect any inconsistencies, it MUST be able to later proceed with all operations

associated with the object without error. In this case, it is not required to make sensible computations, but all

computations MUST terminate and output some result.

Only the attributes specified in Table 5-10 associated with the object’s type are valid. The presence of any

other attribute in the attribute list is an error and will cause the routine to panic.

Parameters

 object: Handle on an already created transient and uninitialized object

 attrs, attrCount: Array of object attributes

Specification Number: 10 Function Number: 0x807

Return Code

 TEE_SUCCESS: In case of success. In this case, the content of the object MUST be initialized.

 TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute value is detected. In this case,

the content of the object MUST remain uninitialized.

Panic Reasons

 object is not a valid opened object handle that is transient and uninitialized.

 Some mandatory attribute is missing.

 An attribute which is not defined for the object’s type is present in attrs

 An attribute value is too big to fit within the maximum object size specified when the object was

created.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 111/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute

void TEE_InitRefAttribute(

 [out] TEE_Attribute* attr,

 uint32_t attributeID,

 [inbuf] void* buffer, uint32_t size_t length);

void TEE_InitValueAttribute(

 [out] TEE_Attribute* attr,

 uint32_t attributeID,

 uint32_t a,

 uint32_t b);

Description

The TEE_InitRefAttribute and TEE_InitValueAttribute helper functions can be used to populate

a single attribute either with a reference to a buffer or with integer values.

For example, the following code can be used to initialize a DH key generation:

TEE_Attribute attrs[3];
TEE_InitRefAttribute(&attrs[0], TEE_ATTR_DH_PRIME, &p, len);
TEE_InitRefAttribute(&attrs[1], TEE_ATTR_DH_BASE, &g, len);
TEE_InitValueAttribute(&attrs[2], TEE_ATTR_DH_X_BITS, xBits, 0);
TEE_GenerateKey(key, 1024, attrs, sizeof(attrs)/sizeof(TEE_Attribute));

Note that in the case of TEE_InitRefAttribute, only the buffer pointer is copied, not the content of the

buffer. This means that the attribute structure maintains a pointer back to the supplied buffer. It is the

responsibility of the TA author to ensure that the contents of the buffer maintain their value until the attributes

array is no longer in use.

Parameters

 attr: attribute structure (defined in section 5.3.1) to initialize

 attributeID: Identifier of the attribute to populate, defined in section 6.11

 buffer, length: Input buffer that holds the content of the attribute. Assigned to the corresponding

members of the attribute structure defined in section 5.3.1.

 a: unsigned integer value to assign to the a member of the attribute structure defined in section 5.3.1

 b: unsigned integer value to assign to the b member of the attribute structure defined in

section 5.3.1

InitRefAttribute: Specification Number: 10 Function Number: 0x805

InitValueAttribute: Specification Number: 10 Function Number: 0x806

Panic Reasons

 Bit [29] of attributeID describing whether the attribute identifier is a value or reference (as

discussed in Table 6-17) is not consistent with the function.

 If the Implementation detects any other error.

112/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.6 TEE_CopyObjectAttributes1

TEE_Result TEE_CopyObjectAttributes1(

 TEE_ObjectHandle destObject,

 TEE_ObjectHandle srcObject);

Description

This function replaces the TEE_CopyObjectAttributes function, whose use is deprecated.

The TEE_CopyObjectAttributes1 function populates an uninitialized object handle with the attributes of

another object handle; that is, it populates the attributes of destObject with the attributes of srcObject.

It is most useful in the following situations:

 To extract the public key attributes from a key-pair object

 To copy the attributes from a persistent object into a transient object

destObject MUST refer to an uninitialized object handle and MUST therefore be a transient object.

The source and destination objects MUST have compatible types and sizes in the following sense:

 The type of destObject MUST be a subtype of srcObject, i.e. one of the conditions listed in

Table 5-11 MUST be true.

Table 5-11: TEE_CopyObjectAttributes1 Parameter Types

Type of srcObject Type of destObject

Any Equal to type of srcObject

TEE_TYPE_RSA_KEYPAIR TEE_TYPE_RSA_PUBLIC_KEY

TEE_TYPE_DSA_KEYPAIR TEE_TYPE_DSA_PUBLIC_KEY

TEE_TYPE_ECDSA_KEYPAIR (optional) TEE_TYPE_ECDSA_PUBLIC_KEY (optional)

TEE_TYPE_ECDH_KEYPAIR (optional) TEE_TYPE_ECDH_PUBLIC_KEY (optional)

 The size of srcObject MUST be less than or equal to the maximum size of destObject.

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject
except that the attributes are taken from srcObject instead of from parameters.

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and

the object usage of srcObject.

Parameters

 destObject: Handle on an uninitialized transient object

 srcObject: Handle on an initialized object

Specification Number: 10 Function Number: 0x802

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the persistent object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

TEE Internal Core API Specification – Public Release v1.1.1 113/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons

 srcObject is not initialized.

 destObject is initialized.

 The type and size of srcObject and destObject are not compatible.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

114/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.7 TEE_GenerateKey

TEE_Result TEE_GenerateKey(

 TEE_ObjectHandle object,

 uint32_t keySize,

 [in] TEE_Attribute* params, uint32_t paramCount);

Description

The TEE_GenerateKey function generates a random key or a key-pair and populates a transient key object

with the generated key material.

The size of the desired key is passed in the keySize parameter and MUST be less than or equal to the

maximum key size specified when the transient object was created. The valid values for key size are defined

in Table 5-9.

As shown in Table 5-12, the generation algorithm can take parameters depending on the object type.

Table 5-12: TEE_GenerateKey Parameters

Object Type Details

TEE_TYPE_AES No parameter is necessary. The function generates the attribute
TEE_ATTR_SECRET_VALUE. The generated value SHALL be the full

key size.
TEE_TYPE_DES

TEE_TYPE_DES3

TEE_TYPE_HMAC_MD5

TEE_TYPE_HMAC_SHA1

TEE_TYPE_HMAC_SHA224

TEE_TYPE_HMAC_SHA256

TEE_TYPE_HMAC_SHA384

TEE_TYPE_HMAC_SHA512

TEE_TYPE_GENERIC_SECRET

TEE_TYPE_RSA_KEYPAIR No parameter is required.

The TEE_ATTR_RSA_PUBLIC_EXPONENT attribute may be specified; if

omitted, the default value is 65537.

Key generation SHALL follow the rules defined in [NIST SP800-56B].

The function generates and populates the following attributes:

TEE_ATTR_RSA_MODULUS

TEE_ATTR_RSA_PUBLIC_EXPONENT (if not specified)

TEE_ATTR_RSA_PRIVATE_EXPONENT

TEE_ATTR_RSA_PRIME1

TEE_ATTR_RSA_PRIME2

TEE_ATTR_RSA_EXPONENT1

TEE_ATTR_RSA_EXPONENT2

TEE_ATTR_RSA_COEFFICIENT

TEE Internal Core API Specification – Public Release v1.1.1 115/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Object Type Details

TEE_TYPE_DSA_KEYPAIR The following domain parameters MUST be passed to the function:

TEE_ATTR_DSA_PRIME

TEE_ATTR_DSA_SUBPRIME

TEE_ATTR_DSA_BASE

The function generates and populates the following attributes:

TEE_ATTR_DSA_PUBLIC_VALUE

TEE_ATTR_DSA_PRIVATE_VALUE

TEE_TYPE_DH_KEYPAIR The following domain parameters MUST be passed to the function:

TEE_ATTR_DH_PRIME

TEE_ATTR_DH_BASE

The following parameters can optionally be passed:

TEE_ATTR_DH_SUBPRIME (q): If present, constrains the private

value x to be in the range [2, q-2]

TEE_ATTR_DH_X_BITS (l) If present, constrains the private value x

to have l bits

If neither of these optional parts is specified, then the only

constraint on x is that it is less than p-1.

The function generates and populates the following attributes:

TEE_ATTR_DH_PUBLIC_VALUE

TEE_ATTR_DH_PRIVATE_VALUE

TEE_ATTR_DH_X_BITS (number of bits in x)

TEE_TYPE_ECDSA_KEYPAIR The following domain parameters MUST be passed to the function:

TEE_ATTR_ECC_CURVE

The function generates and populates the following attributes:

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_PRIVATE_VALUE

TEE_TYPE_ECDH_KEYPAIR The following domain parameters MUST be passed to the function:

TEE_ATTR_ECC_CURVE

The function generates and populates the following attributes:

TEE_ATTR_ECC_PUBLIC_VALUE_X

TEE_ATTR_ECC_PUBLIC_VALUE_Y

TEE_ATTR_ECC_PRIVATE_VALUE

Once the key material has been generated, the transient object is populated exactly as in the function
TEE_PopulateTransientObject except that the key material is randomly generated internally instead of

being passed by the caller.

Parameters

 object: Handle on an uninitialized transient key to populate with the generated key

 keySize: Requested key size. MUST be less than or equal to the maximum key size specified when

the object container was created. MUST be a valid value as defined in Table 5-9.

116/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 params, paramCount: Parameters for the key generation. The values of all parameters are copied

into the object so that the params array and all the memory buffers it points to may be freed after this

routine returns without affecting the object.

Specification Number: 10 Function Number: 0x804

Return Code

 TEE_SUCCESS: On success

 TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute is detected. The checks that

are performed depend on the implementation.

Panic Reasons

 object is not a valid opened object handle that is transient and uninitialized.

 keySize is not supported or is too large.

 A mandatory parameter is missing.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 117/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7 Persistent Object Functions

5.7.1 TEE_OpenPersistentObject

TEE_Result TEE_OpenPersistentObject(

 uint32_t storageID,

 [in(objectIDLength)] void* objectID, uint32_t size_t

objectIDLen,

 uint32_t flags,

 [out] TEE_ObjectHandle* object);

Description

The TEE_OpenPersistentObject function opens a handle on an existing persistent object. It returns a

handle that can be used to access the object’s attributes and data stream.

The storageID parameter indicates which Trusted Storage Space to access. Possible values are defined

in Table 5-2.

The flags parameter is a set of flags that controls the access rights and sharing permissions with which the

object handle is opened. The value of the flags parameter is constructed by a bitwise-inclusive OR of flags

from the following list:

 Access control flags:

o TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the

Trusted Application to call the function TEE_ReadObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows

the Trusted Application to call the functions TEE_WriteObjectData and
TEE_TruncateObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right.

This allows the Trusted Application to call the functions
TEE_CloseAndDeletePersistentObject and TEE_RenamePersistentObject.

 Sharing permission control flags:

o TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with

read access.

o TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created with

write access.

 Other flags are reserved for future use and SHALL be set to 0.

Multiple handles may be opened on the same object simultaneously, but sharing MUST be explicitly allowed

as described in section 5.7.3.

The initial data position in the data stream is set to 0.

Every Trusted Storage implementation is expected to return TEE_ERROR_CORRUPT_OBJECT if a Trusted

Application attempts to open an object and the TEE determines that its contents (or those of the storage itself)

have been tampered with or rolled back.

Parameters

 storageID: The storage to use. Valid values are defined in Table 5-2.

 objectID, objectIDLen: The object identifier. Note that this buffer cannot reside in shared

memory.

118/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 flags: The flags which determine the settings under which the object is opened.

 object: A pointer to the handle, which contains the opened handle upon successful completion.

If this function fails for any reason, the value pointed to by object is set to TEE_HANDLE_NULL.

When the object handle is no longer required, it MUST be closed using a call to the
TEE_CloseObject function.

Specification Number: 10 Function Number: 0x903

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the storage denoted by storageID does not exist or if the object

identifier cannot be found in the storage

 TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while

opening the object

 TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation

 TEE_ERROR_CORRUPT_OBJECT: If the storage or object is corrupt

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible. It may be associated with the device but unplugged, busy, or inaccessible for

some other reason.

Panic Reasons

 objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 119/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2 TEE_CreatePersistentObject

TEE_Result TEE_CreatePersistentObject(

 uint32_t storageID,

 [in(objectIDLength)] void* objectID, uint32_t size_t

objectIDLen,

 uint32_t flags,

 TEE_ObjectHandle attributes,

 [inbuf] void* initialData, uint32_t size_t

initialDataLen,

 [out] TEE_ObjectHandle* object);

Description

The TEE_CreatePersistentObject function creates a persistent object with initial attributes and an initial

data stream content, and optionally returns either a handle on the created object, or TEE_HANDLE_NULL upon

failure.

The storageID parameter indicates which Trusted Storage Space to access. Possible values are defined

in Table 5-2.

The flags parameter is a set of flags that controls the access rights, sharing permissions, and object creation

mechanism with which the object handle is opened. The value of the flags parameter is constructed by a

bitwise-inclusive OR of flags from the following list:

 Access control flags:

o TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the

Trusted Application to call the function TEE_ReadObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows

the Trusted Application to call the functions TEE_WriteObjectData and
TEE_TruncateObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right.

This allows the Trusted Application to call the functions
TEE_CloseAndDeletePersistentObject and TEE_RenamePersistentObject.

 Sharing permission control flags:

o TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with

read access.

o TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created with

write access.

 TEE_DATA_FLAG_OVERWRITE: As summarized in Table 5-13:

o If this flag is present and the object exists, then the object is deleted and re-created as an atomic

operation: that is the TA sees either the old object or the new one.

o If the flag is absent and the object exists, then the function SHALL return

TEE_ERROR_ACCESS_CONFLICT.

 Other flags are reserved for future use and SHALL be set to 0.

The attributes of the newly created persistent object are taken from attributes, which can be another

persistent object or an initialized transient object. The attributes argument can also be NULL for a pure

data object. The object type, size, and usage are copied from attributes.

120/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

To create a pure data object, the attributes argument can also be NULL. If attributes is NULL, the

object type SHALL be set to TEE_TYPE_DATA to create a pure data object.

Multiple handles may be opened on the same object simultaneously, but sharing MUST be explicitly allowed

as described in section 5.7.3.

The initial data position in the data stream is set to 0.

Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of
TEE_CreatePersistentObject

TEE_DATA_FLAG_OVERWRITE
in flags

Object
Exists

Object Created? Return Code

Absent No Yes TEE_SUCCESS

Absent Yes No TEE_ERROR_ACCESS_CONFLICT

Present No Yes TEE_SUCCESS

Present Yes Deleted and re-created

as an atomic operation

TEE_SUCCESS

Parameters

 storageID: The storage to use. Valid values are defined in Table 5-2.

 objectID, objectIDLen: The object identifier. Note that this cannot reside in shared memory.

 flags: The flags which determine the settings under which the object is opened

 attributes: A handle on a persistent object or an initialized transient object from which to take the

persistent object attributes. Can be TEE_HANDLE_NULL if the persistent object contains no attribute;

for example, if it is a pure data object.

 initialData, initialDataLen: The initial data content of the persistent object

 object: A pointer to the handle, which contains the opened handle upon successful completion. If

this function fails for any reason, the value pointed to by object is set to TEE_HANDLE_NULL. When

the object handle is no longer required, it MUST be closed using a call to the TEE_CloseObject

function.

Specification Number: 10 Function Number: 0x902

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the storage denoted by storageID does not exist

 TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while

opening the object

 TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation

 TEE_ERROR_STORAGE_NO_SPACE: If insufficient space is available to create the persistent object

 TEE_ERROR_CORRUPT_OBJECT: If the storage is corrupt

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible. It may be associated with the device but unplugged, busy, or inaccessible for

some other reason.

TEE Internal Core API Specification – Public Release v1.1.1 121/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Panic Reasons

 objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN.

 attributes is not TEE_HANDLE_NULL and is not a valid handle on an initialized object containing

the type and attributes of the persistent object to create.

 Specified storageID is invalid

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

122/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.3 Persistent Object Sharing Rules

Multiple handles may be opened on the same object simultaneously using the functions
TEE_OpenPersistentObject or TEE_CreatePersistentObject, but sharing MUST be explicitly

allowed. More precisely, at any one time the following constraints apply: If more than one handle is opened on

the same object, and if any of these object handles was opened with the flag TEE_DATA_FLAG_ACCESS_READ,

then all the object handles MUST have been opened with the flag TEE_DATA_FLAG_SHARE_READ. There is a

corresponding constraint with the flags TEE_DATA_FLAG_ACCESS_WRITE and
TEE_DATA_FLAG_SHARE_WRITE. Accessing an object with ACCESS_WRITE_META write-meta rights is

exclusive and can never be shared.

When one of the functions TEE_OpenPersistentObject or TEE_CreatePersistentObject is called

and if opening the object would violate these constraints, then the function returns the return code
TEE_ERROR_ACCESS_CONFLICT.

Any bits in flags not defined in Table 5-3 of section 5.4 are reserved for future use and MUST be set to

zero.

The examples in Table 5-14 illustrate the behavior of the TEE_OpenPersistentObject function when called

twice on the same object. Note that for readability, the flag names used in Table 5-14 have been abbreviated

by removing the ‘TEE_DATA_FLAG_’ prefix from their name, and any non-TEE_SUCCESS return codes have

been shortened by removing the ‘TEE_ERROR_’ prefix.

TEE Internal Core API Specification – Public Release v1.1.1 123/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 5-14: Examples of TEE_OpenPersistentObject Sharing Rules

Value of flags for

First Open/Create

Value of flags for

Second
Open/Create

Return Code of
Second
Open/Create

Comments

ACCESS_READ ACCESS_READ ACCESS_CONFLICT The object handles have not

been opened with the flag
SHARE_READ. Only the first call

will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ ACCESS_CONFLICT Not all the object handles have

been opened with the flag
SHARE_READ. Only the first call

will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ |
SHARE_READ

TEE_SUCCESS All the object handles have been

opened with the flag
SHARE_READ.

ACCESS_READ ACCESS_WRITE ACCESS_CONFLICT Objects are not opened with

share flags. Only the first call will

succeed.

ACCESS_WRITE_META ACCESS_READ |
SHARE_READ |
ACCESS_WRITE |
SHARE_WRITE

ACCESS_CONFLICT The write-meta flag indicates an

exclusive access to the object.

Only the first Open/Create will

succeed.

ACCESS_WRITE_META
| (Anything)

(Anything) ACCESS_CONFLICT The write-meta flag indicates an

exclusive access to the object.

Only the first Open/Create will

succeed.

ACCESS_READ |
SHARE_READ |
SHARE_WRITE

ACCESS_WRITE |
SHARE_READ |
SHARE_WRITE

TEE_SUCCESS All the object handles have been

opened with the share flags.

ACCESS_READ |
SHARE_READ |
ACCESS_WRITE |
SHARE_WRITE

ACCESS_WRITE_META ACCESS_CONFLICT The write-meta flag indicates an

exclusive access to the object.

Only the first call will succeed.

SHARE_READ ACCESS_WRITE |
SHARE_WRITE

ACCESS_CONFLICT An object can be opened with

only share flags, which locks the

access to an object against a

given mode. Here the first call

prevents subsequent accesses in

write mode.

0 ACCESS_READ |
SHARE_READ

ACCESS_CONFLICT An object can be opened with no

flag set, which completely locks

all subsequent attempts to

access the object. Only the first

call will succeed.

124/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.4 TEE_CloseAndDeletePersistentObject1

TEE_Result TEE_CloseAndDeletePersistentObject1(TEE_ObjectHandle object);

Description

This function replaces the TEE_CloseAndDeletePersistentObject function, whose use is

deprecated.

The TEE_CloseAndDeletePersistentObject1 function marks an object for deletion and closes the object

handle.

The object handle MUST have been opened with the write-meta access right, which means access to the

object is exclusive.

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open

handles for the object exist. This SHALL be the case even if the object or the storage containing it have become

corrupted.

The only reason this routine can fail is if the storage area containing the object becomes inaccessible (e.g. the

user removes the media holding the object). In this case TEE_ERROR_STORAGE_NOT_AVAILABLE SHALL be

returned.

If object is TEE_HANDLE_NULL, the function does nothing.

Parameters

 object: The object handle

Specification Number: 10 Function Number: 0x905

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object opened with the write-meta access right.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 125/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.5 TEE_RenamePersistentObject

TEE_Result TEE_RenamePersistentObject(

 TEE_ObjectHandle object,

 [in(newObjectIDLen)] void* newObjectID, uint32_t size_t

newObjectIDLen);

Description

The function TEE_RenamePersistentObject changes the identifier of an object. The object handle MUST

have been opened with the write-meta access right, which means access to the object is exclusive.

Renaming an object is an atomic operation; either the object is renamed or nothing happens.

Parameters

 object: The object handle

 newObjectID, newObjectIDLen: A buffer containing the new object identifier. The identifier

contains arbitrary bytes, including the zero byte. The identifier length MUST be less than or equal to
TEE_OBJECT_ID_MAX_LEN and can be zero. The buffer containing the new object identifier cannot

reside in shared memory.

Specification Number: 10 Function Number: 0x904

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ACCESS_CONFLICT: If an object with the same identifier already exists

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object that has been opened with the write-meta access

right.

 newObjectID resides in shared memory.

 newObjectIDLen is more than TEE_OBJECT_ID_MAX_LEN.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

126/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8 Persistent Object Enumeration Functions

5.8.1 TEE_AllocatePersistentObjectEnumerator

TEE_Result TEE_AllocatePersistentObjectEnumerator(

 [out] TEE_ObjectEnumHandle* objectEnumerator);

Description

The TEE_AllocatePersistentObjectEnumerator function allocates a handle on an object enumerator.

Once an object enumerator handle has been allocated, it can be reused for multiple enumerations.

Parameters

 objectEnumerator: A pointer filled with the newly-allocated object enumerator handle on success.

Set to TEE_HANDLE_NULL in case of error.

Specification Number: 10 Function Number: 0xA01

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to allocate the enumerator handle

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

5.8.2 TEE_FreePersistentObjectEnumerator

void TEE_FreePersistentObjectEnumerator(

 TEE_ObjectEnumHandle objectEnumerator);

Description

The TEE_FreePersistentObjectEnumerator function deallocates all resources associated with an object

enumerator handle. After this function is called, the handle is no longer valid.

Parameters

 objectEnumerator: The handle to close. If objectEnumerator is TEE_HANDLE_NULL, then this

function does nothing.

Specification Number: 10 Function Number: 0xA02

Panic Reasons

 objectEnumerator is not a valid handle on an object enumerator.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 127/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.3 TEE_ResetPersistentObjectEnumerator

void TEE_ResetPersistentObjectEnumerator(

 TEE_ObjectEnumHandle objectEnumerator);

Description

The TEE_ResetPersistentObjectEnumerator function resets an object enumerator handle to its initial

state after allocation. If an enumeration has been started, it is stopped.

This function does nothing if objectEnumerator is TEE_HANDLE_NULL.

Parameters

 objectEnumerator: The handle to reset

Specification Number: 10 Function Number: 0xA04

Panic Reasons

 objectEnumerator is not TEE_HANDLE_NULL and is not a valid handle on an object enumerator.

 If the Implementation detects any other error.

128/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.4 TEE_StartPersistentObjectEnumerator

TEE_Result TEE_StartPersistentObjectEnumerator(

 TEE_ObjectEnumHandle objectEnumerator,

 uint32_t storageID);

Description

The TEE_StartPersistentObjectEnumerator function starts the enumeration of all the persistent objects

in a given Trusted Storage. The object information can be retrieved by calling the function
TEE_GetNextPersistentObject repeatedly.

The enumeration does not necessarily reflect a given consistent state of the storage: During the enumeration,

other TAs or other instances of the TA may create, delete, or rename objects. It is not guaranteed that all

objects will be returned if objects are created or destroyed while the enumeration is in progress.

To stop an enumeration, the TA can call the function TEE_ResetPersistentObjectEnumerator, which

detaches the enumerator from the Trusted Storage. The TA can call the function
TEE_FreePersistentObjectEnumerator to completely deallocate the object enumerator.

If this function is called on an enumerator that has already been started, the enumeration is first reset then

started.

Parameters

 objectEnumerator: A valid handle on an object enumerator

 storageID: The identifier of the storage in which the objects MUST be enumerated. Possible values

are defined in Table 5-2.

Specification Number: 10 Function Number: 0xA05

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If the storage does not exist or if there is no object in the specified

storage

 TEE_ERROR_CORRUPT_OBJECT: If the storage is corrupt

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 objectEnumerator is not a valid handle on an object enumerator.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 129/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.5 TEE_GetNextPersistentObject

TEE_Result TEE_GetNextPersistentObject(

 TEE_ObjectEnumHandle objectEnumerator,

 [out] TEE_ObjectInfo* objectInfo,

 [out(TEE_OBJECT_ID_MAX_LEN)] void* objectID,
 [out] uint32_t* size_t*

objectIDLen);

Description

The TEE_GetNextPersistentObject function gets the next object in an enumeration and returns

information about the object: type, size, identifier, etc.

If there are no more objects in the enumeration or if there is no enumeration started, then the function returns
TEE_ERROR_ITEM_NOT_FOUND.

If while enumerating objects a corrupt object is detected, then its object ID SHALL be returned in objectID,
objectInfo shall be zeroed, and the function SHALL return TEE_ERROR_CORRUPT_OBJECT.

Parameters

 objectEnumerator: A handle on the object enumeration

 objectInfo: A pointer to a TEE_ObjectInfo filled with the object information as specified in the

function TEE_GetObjectInfo1 in section 5.5.1. It may be NULL.

 objectID: Pointer to an array able to hold at least TEE_OBJECT_ID_MAX_LEN bytes. On exit the

object identifier is written to this location

 objectIDLen: Filled with the size of the object identifier (from 0 to TEE_OBJECT_ID_MAX_LEN)

Specification Number: 10 Function Number: 0xA03

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_ITEM_NOT_FOUND: If there are no more elements in the object enumeration or if no

enumeration is started on this handle

 TEE_ERROR_CORRUPT_OBJECT: If the storage or returned object is corrupt

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 objectEnumerator is not a valid handle on an object enumerator.

 objectID is NULL.

 objectIDLen is NULL.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

130/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9 Data Stream Access Functions

These functions can be used to access the data stream of persistent objects. They work like a file API.

5.9.1 TEE_ReadObjectData

TEE_Result TEE_ReadObjectData(

 TEE_ObjectHandle object,

 [out] void* buffer,

 uint32_t size_t size,

 [out] uint32_t* count);

Description

The TEE_ReadObjectData function attempts to read size bytes from the data stream associated with the

object object into the buffer pointed to by buffer.

The object handle MUST have been opened with the read access right.

The bytes are read starting at the position in the data stream currently stored in the object handle. The handle’s

position is incremented by the number of bytes actually read.

On completion TEE_ReadObjectData sets the number of bytes actually read in the uint32_t pointed to

by count. The value written to *count may be less than size if the number of bytes until the end-of-

stream is less than size. It is set to 0 if the position at the start of the read operation is at or beyond the

end-of-stream. These are the only cases where *count may be less than size.

No data transfer can occur past the current end of stream. If an attempt is made to read past the end-of-stream,

the TEE_ReadObjectData function stops reading data at the end-of-stream and returns the data read up to

that point. This is still a success. The position indicator is then set at the end-of-stream. If the position is at, or

past, the end of the data when this function is called, then no bytes are copied to *buffer and *count is

set to 0.

Parameters

 object: The object handle

 buffer: A pointer to the memory which, upon successful completion, contains the bytes read

 size: The number of bytes to read

 count: A pointer to the variable which upon successful completion contains the number of bytes read

Specification Number: 10 Function Number: 0xB01

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object opened with the read access right.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 131/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.2 TEE_WriteObjectData

TEE_Result TEE_WriteObjectData(

 TEE_ObjectHandle object,

 [in] void* buffer, uint32_t size_t size);

Description

The TEE_WriteObjectData function writes size bytes from the buffer pointed to by buffer to the data

stream associated with the open object handle object.

The object handle MUST have been opened with the write access permission.

If the current data position points before the end-of-stream, then size bytes are written to the data stream,

overwriting bytes starting at the current data position. If the current data position points beyond the stream’s

end, then the data stream is first extended with zero bytes until the length indicated by the data position

indicator is reached, and then size bytes are written to the stream. Thus, the size of the data stream can be

increased as a result of this operation.

If the operation would move the data position indicator to beyond its maximum possible value, then

TEE_ERROR_OVERFLOW is returned and the operation fails.

The data position indicator is advanced by size. The data position indicators of other object handles opened

on the same object are not changed.

Writing in a data stream is atomic; either the entire operation completes successfully or no write is done.

Parameters

 object: The object handle

 buffer: The buffer containing the data to be written

 size: The number of bytes to write

Specification Number: 10 Function Number: 0xB04

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available

 TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would

be greater than TEE_DATA_MAX_POSITION

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object opened with the write access right.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

132/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.3 TEE_TruncateObjectData

TEE_Result TEE_TruncateObjectData(

 TEE_ObjectHandle object,

 uint32_t size);

Description

The function TEE_TruncateObjectData changes the size of a data stream. If size is less than the current

size of the data stream then all bytes beyond size are removed. If size is greater than the current size of

the data stream then the data stream is extended by adding zero bytes at the end of the stream.

The object handle MUST have been opened with the write access permission.

This operation does not change the data position of any handle opened on the object. Note that if the current

data position of such a handle is beyond size, the data position will point beyond the object data’s end after

truncation.

Truncating a data stream is atomic: Either the data stream is successfully truncated or nothing happens.

Parameters

 object: The object handle

 size: The new size of the data stream

Specification Number: 10 Function Number: 0xB03

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to perform the operation

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object opened with the write access right.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 133/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.4 TEE_SeekObjectData

TEE_Result TEE_SeekObjectData(

 TEE_ObjectHandle object,

 int32_t offset,

 TEE_Whence whence);

Description

The TEE_SeekObjectData function sets the data position indicator associated with the object handle.

The parameter whence controls the meaning of offset:

 If whence is TEE_DATA_SEEK_SET, the data position is set to offset bytes from the beginning of

the data stream.

 If whence is TEE_DATA_SEEK_CUR, the data position is set to its current position plus offset.

 If whence is TEE_DATA_SEEK_END, the data position is set to the size of the object data plus
offset.

The TEE_SeekObjectData function may be used to set the data position beyond the end of stream; this

does not constitute an error. However, the data position indicator does have a maximum value which is
TEE_DATA_MAX_POSITION. If the value of the data position indicator resulting from this operation would be

greater than TEE_DATA_MAX_POSITION, the error TEE_ERROR_OVERFLOW is returned.

If an attempt is made to move the data position before the beginning of the data stream, the data position is

set at the beginning of the stream. This does not constitute an error.

Parameters

 object: The object handle

 offset: The number of bytes to move the data position. A positive value moves the data position

forward; a negative value moves the data position backward.

 whence: The position in the data stream from which to calculate the new position

Specification Number: 10 Function Number: 0xB02

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would

be greater than TEE_DATA_MAX_POSITION

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 object is not a valid handle on a persistent object.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

134/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6 Cryptographic Operations API

This part of the Cryptographic API defines how to actually perform cryptographic operations:

 Cryptographic operations can be pre-allocated for a given operation type, algorithm, and key size.

Resulting Cryptographic Operation Handles can be reused for multiple operations.

 When required by the operation, the Cryptographic Operation Key can be set up independently and

reused for multiple operations. Note that some cryptographic algorithms, such as AES-XTS, require

two keys.

 An operation may be in two states: initial state where nothing is going on and active state where an

operation is in progress

 The cryptographic algorithms listed in Table 6-1 are supported in this specification.

Table 6-1: Supported Cryptographic Algorithms5

Algorithm Type Supported Algorithm

Digests MD5

SHA-1

SHA-256

SHA-224

SHA-384

SHA-512

Symmetric ciphers DES

Triple-DES with double-length and triple-length keys

AES

Message Authentication Codes

(MACs)

DES-MAC

AES-MAC

AES-CMAC

HMAC with one of the supported digests

Authenticated Encryption (AE) AES-CCM with support for Additional Authenticated Data (AAD)

AES-GCM with support for Additional Authenticated Data (AAD)

Asymmetric Encryption Schemes RSA PKCS1-V1.5

RSA OAEP

Asymmetric Signature Schemes DSA

RSA PKCS1-V1.5

RSA PSS

Key Exchange Algorithms Diffie-Hellman

5 WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with
time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate Government guidelines.

TEE Internal Core API Specification – Public Release v1.1.1 135/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 In addition, the algorithms in Table 6-2 are supported if the tee.cryptography.ecc property is set

to True.

Table 6-2: ECC Cryptographic Algorithms

Algorithm Type Supported Algorithm

Asymmetric Signature Schemes ECDSA

Key Exchange Algorithms ECDH

 Digest, symmetric ciphers, MACs, and AE operations are always multi-stage, i.e. data can be provided

in successive chunks to the API. On the other hand, asymmetric operations are always single stage.

Note that signature and verification operations operate on a digest computed by the caller.

 Operation states can be copied from one operation handle into an uninitialized operation handle. This

allows the TA to duplicate or fork a multi-stage operation, for example.

136/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1 Data Types

6.1.1 TEE_OperationMode

The enumeration TEE_OperationMode lists the modes for all the cryptographic operations.

typedef enum {

 TEE_MODE_ENCRYPT = 0,

 TEE_MODE_DECRYPT = 1,

 TEE_MODE_SIGN = 2,

 TEE_MODE_VERIFY = 3,

 TEE_MODE_MAC = 4,

 TEE_MODE_DIGEST = 5,

 TEE_MODE_DERIVE = 6

} TEE_OperationMode;

Table 6-3: Possible TEE_OperationMode Values

Name Comment

TEE_MODE_ENCRYPT Encryption mode

TEE_MODE_DECRYPT Decryption mode

TEE_MODE_SIGN Signature generation mode

TEE_MODE_VERIFY Signature verification mode

TEE_MODE_MAC MAC mode

TEE_MODE_DIGEST Digest mode

TEE_MODE_DERIVE Key derivation mode

6.1.2 TEE_OperationInfo

typedef struct {

 uint32_t algorithm;

 uint32_t operationClass;

 uint32_t mode;

 uint32_t digestLength;

 uint32_t maxKeySize;

 uint32_t keySize;

 uint32_t requiredKeyUsage;

 uint32_t handleState;

} TEE_OperationInfo;

See the documentation of function TEE_GetOperationInfo in section 6.2.3 for a description of this

structure.

TEE Internal Core API Specification – Public Release v1.1.1 137/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.1.3 TEE_OperationInfoMultiple

typedef struct {

 uint32_t keySize;

 uint32_t requiredKeyUsage;

} TEE_OperationInfoKey;

typedef struct {

 uint32_t algorithm;

 uint32_t operationClass;

 uint32_t mode;

 uint32_t digestLength;

 uint32_t maxKeySize;

 uint32_t handleState;

 uint32_t operationState;

 uint32_t numberOfKeys;

 TEE_OperationInfoKey keyInformation[];

} TEE_OperationInfoMultiple;

See the documentation of function TEE_GetOperationInfoMultiple in section 6.2.4 for a description of

this structure.

The buffer size to allocate to hold details of N keys is given by

sizeof(TEE_OperationInfoMultiple) + N * sizeof(TEE_OperationInfoKey)

6.1.4 TEE_OperationHandle

typedef struct __TEE_OperationHandle* TEE_OperationHandle;

TEE_OperationHandle is an opaque handle on a cryptographic operation. These handles are returned by

the function TEE_AllocateOperation specified in section 6.2.1.

138/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2 Generic Operation Functions

These functions are common to all the types of cryptographic operations, which are:

 Digests

 Symmetric ciphers

 MACs

 Authenticated Encryptions

 Asymmetric operations

 Key Derivations

6.2.1 TEE_AllocateOperation

TEE_Result TEE_AllocateOperation(

 TEE_OperationHandle* operation,

 uint32_t algorithm,

 uint32_t mode,

 uint32_t maxKeySize);

Description

The TEE_AllocateOperation function allocates a handle for a new cryptographic operation and sets the

mode and algorithm type. If this function does not return with TEE_SUCCESS then there is no valid handle

value.

Once a cryptographic operation has been created, the implementation MUST guarantee that all resources

necessary for the operation are allocated and that any operation with a key of at most maxKeySize bits can

be performed. For algorithms that take multiple keys, for example the AES XTS algorithm, the maxKeySize

parameter specifies the size of the largest key. It is up to the implementation to properly allocate space for

multiple keys if the algorithm so requires.

The parameter algorithm MUST be one of the constants defined in section 6.10.1.

The parameter mode MUST be one of the constants defined in section 6.1.1. It MUST be compatible with the

algorithm as defined by Table 6-4.

The parameter maxKeySize MUST be a valid value as defined in Table 5-9 for the algorithm, for algorithms

referenced in Table 5-9. For all other algorithms, the maxKeySize parameter may have any value.

The operation is placed in initial state.

TEE Internal Core API Specification – Public Release v1.1.1 139/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-4: TEE_AllocateOperation Allowed Modes

Algorithm Possible Modes

TEE_ALG_AES_ECB_NOPAD

TEE_MODE_ENCRYPT

TEE_MODE_DECRYPT

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

TEE_ALG_AES_CTS

TEE_ALG_AES_XTS

TEE_ALG_AES_CCM

TEE_ALG_AES_GCM

TEE_ALG_DES_ECB_NOPAD

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD

TEE_ALG_DES3_CBC_NOPAD

TEE_ALG_DES_CBC_MAC_NOPAD

TEE_MODE_MAC

TEE_ALG_AES_CBC_MAC_NOPAD

TEE_ALG_AES_CBC_MAC_PKCS5

TEE_ALG_AES_CMAC

TEE_ALG_DES_CBC_MAC_PKCS5

TEE_ALG_DES3_CBC_MAC_NOPAD

TEE_ALG_DES3_CBC_MAC_PKCS5

TEE_ALG_RSASSA_PKCS1_V1_5_MD5

TEE_MODE_SIGN

TEE_MODE_VERIFY

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

TEE_ALG_RSASSA_PKCS1_V1_5_SHA256

TEE_ALG_RSASSA_PKCS1_V1_5_SHA384

TEE_ALG_RSASSA_PKCS1_V1_5_SHA512

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

140/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Algorithm Possible Modes

TEE_ALG_DSA_SHA1

TEE_MODE_SIGN

TEE_MODE_VERIFY

TEE_ALG_DSA_SHA224

TEE_ALG_DSA_SHA256

TEE_ALG_ECDSA_SHA1

TEE_ALG_ECDSA_SHA224

TEE_ALG_ECDSA_SHA256

TEE_ALG_ECDSA_SHA384

TEE_ALG_ECDSA_SHA512

(if supported)

TEE_ALG_RSAES_PKCS1_V1_5

TEE_MODE_ENCRYPT

TEE_MODE_DECRYPT

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

TEE_ALG_RSA_NOPAD

TEE_ALG_DH_DERIVE_SHARED_SECRET

TEE_MODE_DERIVE

TEE_ALG_ECDH_P192__DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P224_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P256_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P384_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P521_DERIVE_SHARED_SECRET

(if supported)

TEE_ALG_MD5

TEE_MODE_DIGEST

TEE_ALG_SHA1

TEE_ALG_SHA224

TEE_ALG_SHA256

TEE_ALG_SHA384

TEE_ALG_SHA512

TEE_ALG_HMAC_MD5

TEE_MODE_MAC

TEE_ALG_HMAC_SHA1

TEE_ALG_HMAC_SHA224

TEE_ALG_HMAC_SHA256

TEE_ALG_HMAC_SHA384

TEE_ALG_HMAC_SHA512

TEE Internal Core API Specification – Public Release v1.1.1 141/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that all algorithms listed in Table 6-4 MUST be supported by any compliant Implementation with the

exception of the elliptic curve algorithms which are marked as optional, but a particular implementation may

also support more implementation-defined algorithms, modes, or key sizes.

Parameters

 operation: Reference to generated operation handle

 algorithm: One of the cipher algorithms enumerated in section 6.1.1

 mode: The operation mode

 maxKeySize: Maximum key size in bits for the operation – must be a valid value for the algorithm as

defined in Table 5-9.

Specification Number: 10 Function Number: 0xC01

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the operation

 TEE_ERROR_NOT_SUPPORTED: If the mode is not compatible with the algorithm or key size or if the

algorithm is not one of the listed algorithms or if maxKeySize is not appropriate for the algorithm.

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

142/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.2 TEE_FreeOperation

void TEE_FreeOperation(TEE_OperationHandle operation);

Description

The TEE_Free Operation function deallocates all resources associated with an operation handle. After this

function is called, the operation handle is no longer valid. All cryptographic material in the operation is

destroyed.

Parameters

 operation: Reference to operation handle

Specification Number: 10 Function Number: 0xC03

Panic Reasons

 operation is not a valid handle on an operation.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 143/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.3 TEE_GetOperationInfo

void TEE_GetOperationInfo(

 TEE_OperationHandle operation,

 [out] TEE_OperationInfo* operationInfo);

Description

The TEE_GetOperationInfo function returns information about an operation handle. It fills the following

fields in the structure operationInfo (defined in section 6.1.2):

 algorithm, mode, maxKeySize: The parameters passed to the function
TEE_AllocateOperation

 operationClass: One of the constants from Table 5-6, describing the kind of operation.

 keySize: If a key is programmed in the operation, the actual size of this key. If multiple keys are

required by this type of operation, then this value SHALL be set to 0.

 requiredKeyUsage: A bit vector that describes the necessary bits in the object usage for
TEE_SetOperationKey or TEE_SetOperationKey2 to succeed without panicking. Set to 0 for a

digest operation. If multiple keys are required by this type of operation, then this value SHALL be set

to 0.

 digestLength: For a MAC, AE, or Digest digest, describes the number of bytes in the digest or tag

 handleState: A bit vector describing the current state of the operation. Can contain any combination

of the following flags or 0 if no flags are appropriate:

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using
TEE_SetOperationKey2. This happens only if algorithm is set to TEE_ALG_AES_XTS. In this

case keySize and requiredKeyUsage are both set to 0 ; the required information can be

retrieved using the TEE_GetOperationInfoMultiple routine defined in section 6.2.4.

o TEE_HANDLE_FLAG_KEY_SET: Set if the operation key has been set. Always set for digest

operations.

o TEE_HANDLE_FLAG_INITIALIZED: Set for multi-stage operations and, i.e. all but
TEE_OPERATION_ASYMMETRIC_XXX operation classes, whether the operation has been initialized

using one of the TEE_XXXInit functions. This flag is always set for Digest operations.

Parameters

 operation: Handle on the operation

 operationInfo: Pointer to a structure filled with the operation information

Specification Number: 10 Function Number: 0xC04

Panic Reasons

 operation is not a valid opened operation handle.

 If the Implementation detects any other error.

144/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.4 TEE_GetOperationInfoMultiple

TEE_Result TEE_GetOperationInfoMultiple(

 TEE_OperationHandle operation,

 [outbuf] TEE_OperationInfoMultiple* operationInfoMultiple, uint32_t size_t*

 operationSize);

Description

The TEE_GetOperationInfoMultiple function returns information about an operation handle. It fills the

following fields in the structure operationInfoMultiple (defined in section 6.1.3):

 algorithm, mode, maxKeySize: The parameters passed to the function
TEE_AllocateOperation

 operationClass: One of the constants from Table 5-6, describing the kind of operation.

 digestLength: For a MAC, AE, or Digest digest, describes the number of bytes in the digest or tag

 handleState: A bit vector describing the current state of the operation. Contains one or more of the

following flags:

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using
TEE_SetOperationKey2. This happens only if algorithm is set to TEE_ALG_AES_XTS.

o TEE_HANDLE_FLAG_KEY_SET: Set if all required operation keys have been set. Always set for

digest operations.

o TEE_HANDLE_FLAG_INITIALIZED: For multi-stage operations, i.e. all but
TEE_OPERATION_ASYMMETRIC_XXX operation classes, whether the operation has been initialized

using one of the TEE_XXXInit functions. This flag is always set for Digest operations.

 operationState: One of the values from Table 5-7. This is set to OPERATION_STATE_ACTIVE if the

operation is in active state and to OPERATION_STATE_INITIAL if the operation is in initial state.

 numberOfKeys: This is set to the number of keys required by this operation. It indicates the number of

TEE_OperationInfoKey structures which follow. May be 0 for an operation which requires no keys.

 keyInformation: This array contains numberOfKeys entries, each of which defines the details for

one key used by the operation, in the order they are defined. For each element:

o keySize: If a key is programmed in the operation, the actual size of this key, otherwise 0.

o requiredKeyUsage: A bit vector that describes the necessary bits in the object usage for
TEE_SetOperationKey or TEE_SetOperationKey2 to succeed without panicking.

Parameters

 operation: Handle on the operation

 operationInfoMultiple, operationSize: Buffer filled with the operation information. The

number of keys which can be contained is given by:

(*operationSize–sizeof(TEE_OperationInfoMultiple))/sizeof(TEE_OperationInfoKey)+1

Specification Number: 10 Function Number: 0xC08

Return Code

 TEE_SUCCESS: In case of success

TEE Internal Core API Specification – Public Release v1.1.1 145/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 TEE_ERROR_SHORT_BUFFER: If the operationInfo buffer is not large enough to hold a

TEE_OperationInfoMultiple (defined in section 6.1.3) structure containing the required number

of keys.

Panic Reasons

 operation is not a valid opened operation handle.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

146/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.5 TEE_ResetOperation

void TEE_ResetOperation(TEE_OperationHandle operation);

Description

For a multi-stage operation, the TEE_ResetOperation function resets the operation to initial state before

initialization, but after the key has been set.

This function can be called on any operation and at any time after the key is set, but is meaningful only for the

multi-stage operations, i.e. symmetric ciphers, MACs, AEs, and digests.

When such a multi-stage operation is active, i.e. when it has been initialized but not yet successfully finalized,

then the operation is reset to initial state. The operation key(s) are not cleared.

Parameters

 operation: Handle on the operation

Specification Number: 10 Function Number: 0xC05

Panic Reasons

 operation is not a valid opened operation handle.

 The key has not been set yet.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 147/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.6 TEE_SetOperationKey

TEE_Result TEE_SetOperationKey(

 TEE_OperationHandle operation,

 TEE_ObjectHandle key);

Description

The TEE_SetOperationKey function programs the key of an operation; that is, it associates an operation

with a key.

The key material is copied from the key object handle into the operation. After the key has been set, there is

no longer any link between the operation and the key object. The object handle can be closed or reset and this

will not affect the operation. This copied material exists until the operation is freed using TEE_FreeOperation

or another key is set into the operation.

This function accepts handles on both transient key objects and persistent key objects.

The operation MUST be in initial state before the operation and remains in initial state afterwards.

The key object type and size MUST be compatible with the type and size of the operation. The operation mode

MUST be compatible with key usage:

 In general, the operation mode MUST be allowed in the object usage.

 For the TEE_ALG_RSA_NOPAD algorithm:

o The only supported modes are TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT.

o For TEE_MODE_ENCRYPT, the object usage MUST contain both the TEE_USAGE_ENCRYPT and
TEE_USAGE_VERIFY flags.

o For TEE_MODE_DECRYPT, the object usage MUST contain both the TEE_USAGE_DECRYPT and
TEE_USAGE_SIGN flags.

 For a public key object, the allowed operation modes depend on the type of key and are specified in

Table 6-5.

Table 6-5: Public Key Allowed Modes

Key Type Allowed Operation Modes

TEE_TYPE_RSA_PUBLIC_KEY TEE_MODE_VERIFY or TEE_MODE_ENCRYPT

TEE_TYPE_DSA_PUBLIC_KEY TEE_MODE_VERIFY

TEE_TYPE_ECDSA_PUBLIC_KEY (optional) TEE_MODE_VERIFY

TEE_TYPE_ECDH_PUBLIC_KEY (optional) TEE_MODE_DERIVE

148/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 If the object is a key-pair then the key parts used in the operation depend on the operation mode as

defined in Table 6-6.

Table 6-6: Key-Pair Parts for Operation Modes

Operation Mode Key Parts Used

TEE_MODE_VERIFY Public

TEE_MODE_SIGN Private

TEE_MODE_ENCRYPT Public

TEE_MODE_DECRYPT Private

TEE_MODE_DERIVE Public and Private

If key is set to TEE_HANDLE_NULL, then the operation key is cleared.

If a key is present in the operation then it is cleared and all key material copied into the operation is destroyed

before the new key is inserted.

Parameters

 operation: Operation handle

 key: A handle on a key object

Specification Number: 10 Function Number: 0xC06

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 operation is not a valid opened operation handle.

 key is not TEE_HANDLE_NULL and is not a valid handle on a key object.

 key is not initialized.

 The operation expects no key (digest mode) or two keys (AES-XTS algorithm).

 The type, size, or usage of key is not compatible with the algorithm, mode, or size of the
operation.

 operation is not in initial state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 149/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.7 TEE_SetOperationKey2

TEE_Result TEE_SetOperationKey2(

 TEE_OperationHandle operation,

 TEE_ObjectHandle key1,

 TEE_ObjectHandle key2);

Description

The TEE_SetOperationKey2 function initializes an existing operation with two keys. This is used only for

the algorithm TEE_ALG_AES_XTS.

This function works like TEE_SetOperationKey except that two keys are set instead of a single key.

key1 and key2 MUST both be non-NULL or both NULL.

Parameters

 operation: Operation handle

 key1: A handle on a key object

 key2: A handle on a key object

Specification Number: 10 Function Number: 0xC07

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_CORRUPT_OBJECT: If the key1 object is corrupt. The object handle is closed.

 TEE_ERROR_CORRUPT_OBJECT_2: If the key2 object is corrupt. The object handle is closed.

 TEE_ERROR_STORAGE_NOT_AVAILABLE: If the key1 object is stored in a storage area which is

currently inaccessible.

 TEE_ERROR_STORAGE_NOT_AVAILABLE_2: If the key2 object is stored in a storage area which is

currently inaccessible.

Panic Reasons

 operation is not a valid opened operation handle.

 key1 and key2 are not both TEE_HANDLE_NULL and key1 or key2 or both are not valid handles

on a key object.

 key1 and/or key2 are not initialized.

 The operation expects no key (digest mode) or a single key (all but AES-XTS algorithm).

 The type, size, or usage of key1 or key2 is not compatible with the algorithm, mode, or size of the
operation.

 operation is not in initial state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

150/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.2.8 TEE_CopyOperation

void TEE_CopyOperation(

 TEE_OperationHandle dstOperation,

 TEE_OperationHandle srcOperation);

Description

The TEE_CopyOperation function copies an operation state from one operation handle into another

operation handle. This also copies the key material associated with the source operation.

The state of srcOperation including the key material currently set up is copied into dstOperation.

This function is useful in the following use cases:

 “Forking” a digest operation after feeding some amount of initial data

 Computing intermediate digests

The algorithm and mode of dstOperation MUST be equal to the algorithm and mode of srcOperation.

The state of srcOperation (initial/active) is copied to dstOperation.

If srcOperation has no key programmed, then the key in destOperation is cleared. If there is a key

programmed in srcOperation, then the maximum key size of dstOperation MUST be greater than or

equal to the actual key size of srcOperation.

Parameters

 dstOperation: Handle on the destination operation

 srcOperation: Handle on the source operation

Specification Number: 10 Function Number: 0xC02

Panic Reasons

 dstOperation or srcOperation is not a valid opened operation handle.

 The algorithm or mode differ in dstOperation and srcOperation.

 srcOperation has a key and its size is greater than the maximum key size of dstOperation.

 Hardware or cryptographic algorithm failure.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 151/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3 Message Digest Functions

6.3.1 TEE_DigestUpdate

void TEE_DigestUpdate(

 TEE_OperationHandle operation,

 [inbuf] void* chunk, uint32_t size_t chunkSize);

Description

The TEE_DigestUpdate function accumulates message data for hashing. The message does not have to

be block aligned. Subsequent calls to this function are possible.

The operation may be in either initial or active state and becomes active.

Parameters

 operation: Handle of a running Message Digest operation

 chunk, chunkSize: Chunk of data to be hashed

Specification Number: 10 Function Number: 0xD02

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_DIGEST.

 Input data exceeds maximum length for algorithm.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

152/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.3.2 TEE_DigestDoFinal

TEE_Result TEE_DigestDoFinal(

 TEE_OperationHandle operation,

 [inbuf] void* chunk, uint32_t size_t chunkLen,

 [outbuf] void* hash, uint32_t size_t *hashLen);

Description

The TEE_DigestDoFinal function finalizes the message digest operation and produces the message hash.

Afterwards the Message Digest operation is reset to initial state and can be reused.

The input operation may be in either initial or active state.

Parameters

 operation: Handle of a running Message Digest operation

 chunk, chunkLen: Last chunk of data to be hashed

 hash, hashLen: Output buffer filled with the message hash

Specification Number: 10 Function Number: 0xD01

Return Code

 TEE_SUCCESS: On success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is too small. In this case, the operation is not

finalized.

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_DIGEST.

 Input data exceeds maximum length for algorithm.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 153/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4 Symmetric Cipher Functions

These functions define the way to perform symmetric cipher operations, such as AES. They cover both block

ciphers and stream ciphers.

6.4.1 TEE_CipherInit

void TEE_CipherInit(

 TEE_OperationHandle operation,

 [inbuf] void* IV, uint32_t size_t IVLen);

Description

The TEE_CipherInit function starts the symmetric cipher operation.

The operation MUST have been associated with a key.

If the operation is in active state, it is reset and then initialized.

If the operation is in initial state, it is moved to active state.

Parameters

 operation: A handle on an opened cipher operation setup with a key

 IV, IVLen: Buffer containing the operation Initialization Vector or the initial counter value as

appropriate (as indicated in the following table).

Table 6-6b: Symmetric Encrypt/Decrypt Operation Parameters

Algorithm IV Required Meaning of IV

TEE_ALG_AES_ECB_NOPAD No

TEE_ALG_AES_CBC_NOPAD Yes

TEE_ALG_AES_CTR Yes Initial Counter Value

TEE_ALG_AES_CTS Yes

TEE_ALG_AES_XTS Yes Tweak value

TEE_ALG_AES_CCM Yes Nonce value

TEE_ALG_AES_GCM Yes Nonce value

TEE_ALG_DES_ECB_NOPAD No

TEE_ALG_DES_CBC_NOPAD Yes

TEE_ALG_DES3_ECB_NOPAD No

TEE_ALG_DES3_CBC_NOPAD Yes

Specification Number: 10 Function Number: 0xE02

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_CIPHER.

 No key is programmed in the operation.

154/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 The Initialization Vector does not have the length required by the algorithm.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 155/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4.2 TEE_CipherUpdate

TEE_Result TEE_CipherUpdate(

 TEE_OperationHandle operation,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t size_t *destLen);

Description

The TEE_CipherUpdate function encrypts or decrypts input data.

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless

one or more calls of this function have supplied sufficient input data, no output is generated. The cipher

operation is finalized with a call to TEE_CipherDoFinal.

The operation MUST be in active state.

Parameters

 operation: Handle of a running Cipher operation

 srcData, srcLen: Input data buffer to be encrypted or decrypted

 destData, destLen: Output buffer

Specification Number: 10 Function Number: 0xE03

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output. In this

case, the input is not fed into the algorithm.

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_CIPHER.

 The operation has not been started yet with TEE_CipherInit or has already been finalized.

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

156/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.4.3 TEE_CipherDoFinal

TEE_Result TEE_CipherDoFinal(

 TEE_OperationHandle operation,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbufopt] void* destData, uint32_t size_t *destLen);

Description

The TEE_CipherDoFinal function finalizes the cipher operation, processing data that has not been

processed by previous calls to TEE_CipherUpdate as well as data supplied in srcData. The operation

handle can be reused or re-initialized.

The operation MUST be in active state and is set to initial state afterwards.

Parameters

 operation: Handle of a running Cipher operation

 srcData, srcLen: Reference to final chunk of input data to be encrypted or decrypted

 destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it

is known to be empty.

Specification Number: 10 Function Number: 0xE01

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_CIPHER.

 The operation has not been started yet with TEE_CipherInit or has already been finalized.

 The total length of the input is not a multiple of a block size when the algorithm of the operation is a

symmetric block cipher which does not specify padding.

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 157/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5 MAC Functions

These functions are used to perform MAC (Message Authentication Code) operations, such as HMAC or AES-

CMAC operations.

These functions are not used for Authenticated Encryption algorithms, which MUST use the functions defined

in section 6.6.

6.5.1 TEE_MACInit

void TEE_MACInit(

 TEE_OperationHandle operation,

 [inbuf] void* IV, uint32_t size_t IVLen);

Description

The TEE_MACInit function initializes a MAC operation.

The operation MUST have been associated with a key.

If the operation is in active state, it is reset and then initialized.

If the operation is in initial state, it moves to active state.

If the MAC algorithm does not require an IV, the parameters IV, IVLen are ignored.

Parameters

 operation: Operation handle

 IV, IVLen: Input buffer containing the operation Initialization Vector, if applicable

Specification Number: 10 Function Number: 0xF03

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_MAC.

 No key is programmed in the operation.

 The Initialization Vector does not have the length required by the algorithm.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

158/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.2 TEE_MACUpdate

void TEE_MACUpdate(

 TEE_OperationHandle operation,

 [inbuf] void* chunk, uint32_t size_t chunkSize);

Description

The TEE_MACUpdate function accumulates data for a MAC calculation.

Input data does not have to be a multiple of the block size. Subsequent calls to this function are possible.
TEE_MACComputeFinal or TEE_MACCompareFinal are called to complete the MAC operation.

The operation MUST be in active state.

Parameters

 operation: Handle of a running MAC operation

 chunk, chunkSize: Chunk of the message to be MACed

Specification Number: 10 Function Number: 0xF04

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_MAC.

 The operation has not been started yet with TEE_MACInit or has already been finalized.

 Input data exceeds maximum length for algorithm.

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 159/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.3 TEE_MACComputeFinal

TEE_Result TEE_MACComputeFinal(

 TEE_OperationHandle operation,

 [inbuf] void* message, uint32_t size_t messageLen,

 [outbuf] void* mac, uint32_t size_t *macLen);

Description

The TEE_MACComputeFinal function finalizes the MAC operation with a last chunk of message, and

computes the MAC. Afterwards the operation handle can be reused or re-initialized with a new key.

The operation MUST be in active state and moves to initial state afterwards.

Parameters

 operation: Handle of a MAC operation

 message, messageLen: Input buffer containing a last message chunk to MAC

 mac, macLen: Output buffer filled with the computed MAC

Specification Number: 10 Function Number: 0xF02

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the computed MAC

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_MAC.

 The operation has not been started yet with TEE_MACInit or has already been finalized.

 Input data exceeds maximum length for algorithm.

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

160/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.5.4 TEE_MACCompareFinal

TEE_Result TEE_MACCompareFinal(

 TEE_OperationHandle operation,

 [inbuf] void* message, uint32_t size_t messageLen,

 [inbuf] void* mac, uint32_t size_t macLen);

Description

The TEE_MACCompareFinal function finalizes the MAC operation and compares the MAC with the buffer

passed to the function. Afterwards the operation handle can be reused and initialized with a new key.

The operation MUST be in active state and moves to initial state afterwards.

Parameters

 operation: Handle of a MAC operation

 message, messageLen: Input buffer containing the last message chunk to MAC

 mac, macLen: Input buffer containing the MAC to check

Specification Number: 10 Function Number: 0xF01

Return Code

 TEE_SUCCESS: If the computed MAC corresponds to the MAC passed in the parameter mac

 TEE_ERROR_MAC_INVALID: If the computed MAC does not correspond to the value passed in the

parameter mac

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_MAC.

 The operation has not been started yet with TEE_MACInit or has already been finalized.

 Input data exceeds maximum length for algorithm.

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 161/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6 Authenticated Encryption Functions

These functions are used for Authenticated Encryption operations, i.e. the TEE_ALG_AES_CCM and
TEE_ALG_AES_GCM algorithms.

6.6.1 TEE_AEInit

TEE_Result TEE_AEInit(

 TEE_OperationHandle operation,

 [inbuf] void* nonce, uint32_t size_t nonceLen,

 uint32_t tagLen,

 uint32_t AADLen,

 uint32_t payloadLen);

Description

The TEE_AEInit function initializes an Authentication Encryption operation.

The operation must be initial state and remains in the initial state afterwards.

Parameters

 operation: A handle on the operation

 nonce, nonceLen: The operation nonce or IV

 tagLen: Size in bits of the tag

o For AES-GCM, can be 128, 120, 112, 104, or 96

o For AES-CCM, can be 128, 112, 96, 80, 64, 48, or 32

 AADLen: Length in bytes of the AAD

o Used only for AES-CCM. Ignored for AES-GCM.

 payloadLen: Length in bytes of the payload

o Used only for AES-CCM. Ignored for AES-GCM.

Specification Number: 10 Function Number: 0x1003

Return Code

 TEE_SUCCESS: On success

 TEE_ERROR_NOT_SUPPORTED: If the tag length is not supported by the algorithm

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_AE.

 No key is programmed in the operation.

 The nonce length is not compatible with the length required by the algorithm.

 operation is not in initial state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

162/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.2 TEE_AEUpdateAAD

void TEE_AEUpdateAAD(

 TEE_OperationHandle operation,

 [inbuf] void* AADdata, uint32_t size_t AADdataLen);

Description

The TEE_AEUpdateAAD function feeds a new chunk of Additional Authentication Data (AAD) to the AE

operation. Subsequent calls to this function are possible.

The operation may be in either initial or active state and enters active state afterwards.

Parameters

 operation: Handle on the AE operation

 AADdata, AADdataLen: Input buffer containing the chunk of AAD

Specification Number: 10 Function Number: 0x1005

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_AE.

 The operation has not started yet.

 The AAD length has already been reached (AES-CCM only).

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 163/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.3 TEE_AEUpdate

TEE_Result TEE_AEUpdate(

 TEE_OperationHandle operation,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t size_t *destLen);

Description

The TEE_AEUpdate function accumulates data for an Authentication Encryption operation.

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless

one or more calls of this function have supplied sufficient input data, no output is generated.

Warning: when using this routine to decrypt the returned data may be corrupt since the integrity check is not

performed until all the data has been processed. If this is a concern then only use the

TEE_AEDecryptFinal_AEFinal routine.

The operation may be in either initial or active state and enters active state afterwards.

Parameters

 operation: Handle of a running AE operation

 srcData, srcLen: Input data buffer to be encrypted or decrypted

 destData, destLen: Output buffer

Specification Number: 10 Function Number: 0x1004

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_AE.

 The operation has not started yet.

 The required AAD length has not been provided yet (AES-CCM only).

 The payload length has already been reached (AES-CCM only).

 operation is not in active state.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

164/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.4 TEE_AEEncryptFinal

TEE_Result TEE_AEEncryptFinal(

 TEE_OperationHandle operation,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t* size_t* destLen,

 [outbuf] void* tag, uint32_t* size_t* tagLen);

Description

The TEE_AEEncryptFinal function processes data that has not been processed by previous calls to
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and computes the tag.

The operation handle can be reused or newly initialized.

The operation may be in either initial or active state and enters initial state afterwards.

Parameters

 operation: Handle of a running AE operation

 srcData, srcLen: Reference to final chunk of input data to be encrypted

 destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it

is known to be empty.

 tag, tagLen: Output buffer filled with the computed tag

Specification Number: 10 Function Number: 0x1002

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output or tag buffer is not large enough to contain the output

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_AE.

 The operation has not started yet.

 The required AAD and payload have not been provided.

 Hardware or cryptographic algorithm failure.

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

TEE Internal Core API Specification – Public Release v1.1.1 165/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.6.5 TEE_AEDecryptFinal

TEE_Result TEE_AEDecryptFinal(

 TEE_OperationHandle operation,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t size_t *destLen,

 [in] void* tag, uint32_t size_t tagLen);

Description

The TEE_AEDecryptFinal function processes data that has not been processed by previous calls to
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and compares the

computed tag with the tag supplied in the parameter tag.

The operation handle can be reused or newly initialized.

The operation may be in either initial or active state and enters initial state afterwards.

Parameters

 operation: Handle of a running AE operation

 srcData, srcLen: Reference to final chunk of input data to be decrypted

 destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it

is known to be empty.

 tag, tagLen: Input buffer containing the tag to compare

Specification Number: 10 Function Number: 0x1001

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output

 TEE_ERROR_MAC_INVALID: If the computed tag does not match the supplied tag

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_AE.

 The operation has not started yet.

 The required AAD and payload have not been provided.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

166/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7 Asymmetric Functions

These functions allow the encryption and decryption of data using asymmetric algorithms, signatures of

digests, and verification of signatures.

Note that asymmetric encryption is always “single-stage”, which differs from symmetric ciphers which are

always “multi-stage”.

6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt

TEE_Result TEE_AsymmetricEncrypt(

 TEE_OperationHandle operation,

 [in] TEE_Attribute* params, uint32_t paramCount,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t size_t *destLen);

TEE_Result TEE_AsymmetricDecrypt(

 TEE_OperationHandle operation,

 [in] TEE_Attribute* params, uint32_t paramCount,

 [inbuf] void* srcData, uint32_t size_t srcLen,

 [outbuf] void* destData, uint32_t size_t *destLen);

Description

The TEE_AsymmetricEncrypt function encrypts a message within an asymmetric operation, and the
TEE_AsymmetricDecrypt function decrypts the result.

These functions can be called only with an operation of the following algorithms:

 TEE_ALG_RSAES_PKCS1_V1_5

 TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

 TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

 TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

 TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

 TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

 TEE_ALG_RSA_NOPAD

The parameters params, paramCount contain the operation parameters listed in Table 6-7.

Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_XXX TEE_ATTR_RSA_OAEP_LABEL: This parameter is

optional. If not present, an empty label is assumed.

TEE Internal Core API Specification – Public Release v1.1.1 167/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters

 operation: Handle on the operation, which MUST have been suitably set up with an operation key

 params, paramCount: Optional operation parameters

 srcData, srcLen: Input buffer

 destData, destLen: Output buffer

TEE_AsymmetricDecrypt: Specification Number: 10 Function Number: 0x1101

TEE_AsymmetricEncrypt: Specification Number: 10 Function Number: 0x1102

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold the result

 TEE_ERROR_BAD_PARAMETERS: If the length of the input buffer is not consistent with the algorithm or

key size. Refer to Table 5-9 for algorithm references and supported sizes.

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_CIPHER.

 No key is programmed in the operation.

 The mode is not compatible with the function.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

168/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7.2 TEE_AsymmetricSignDigest

TEE_Result TEE_AsymmetricSignDigest(

 TEE_OperationHandle operation,

 [in] TEE_Attribute* params, uint32_t paramCount,

 [inbuf] void* digest, uint32_t size_t digestLen,

 [outbuf] void* signature, uint32_t size_t *signatureLen

);

Description

The TEE_AsymmetricSignDigest function signs a message digest within an asymmetric operation.

Note that only an already hashed message can be signed.

This function can be called only with an operation of the following algorithms:

 TEE_ALG_RSASSA_PKCS1_V1_5_MD5

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA256

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA384

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA512

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

 TEE_ALG_DSA_SHA1

 TEE_ALG_DSA_SHA224

 TEE_ALG_DSA_SHA256

 TEE_ALG_ECDSA_SHA1_P192 (if supported)

 TEE_ALG_ECDSA_SHA224_P224 (if supported)

 TEE_ALG_ECDSA_SHA256_P256 (if supported)

 TEE_ALG_ECDSA_SHA384_P384 (if supported)

 TEE_ALG_ECDSA_SHA512_P521 (if supported)

The parameters params, paramCount contain the operation parameters listed in Table 6-8.

Table 6-8: Asymmetric Sign Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_XXX TEE_ATTR_RSA_PSS_SALT_LENGTH: Number of bytes

in the salt. This parameter is optional. If not present, the

salt length is equal to the hash length.

TEE Internal Core API Specification – Public Release v1.1.1 169/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Where a hash algorithm is specified in the algorithm, digestLen SHALL be equal to the digest length of this

hash algorithm.

Parameters

 operation: Handle on the operation, which MUST have been suitably set up with an operation key

 params, paramCount: Optional operation parameters

 digest, digestLen: Input buffer containing the input message digest

 signature, signatureLen: Output buffer written with the signature of the digest

Specification Number: 10 Function Number: 0x1103

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the signature buffer is not large enough to hold the result

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE.

 No key is programmed in the operation.

 The operation mode is not TEE_MODE_SIGN.

 digestLen is not equal to the hash size of the algorithm

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

170/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.7.3 TEE_AsymmetricVerifyDigest

TEE_Result TEE_AsymmetricVerifyDigest(

 TEE_OperationHandle operation,

 [in] TEE_Attribute* params, uint32_t paramCount,

 [inbuf] void* digest, uint32_t size_t digestLen,

 [inbuf] void* signature, uint32_t size_t signatureLen);

Description

The TEE_AsymmetricVerifyDigest function verifies a message digest signature within an asymmetric

operation.

This function can be called only with an operation of the following algorithms:

 TEE_ALG_RSASSA_PKCS1_V1_5_MD5

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA256

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA384

 TEE_ALG_RSASSA_PKCS1_V1_5_SHA512

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

 TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

 TEE_ALG_DSA_SHA1

 TEE_ALG_DSA_SHA224

 TEE_ALG_DSA_SHA256

 TEE_ALG_ECDSA_SHA1_P192 (if supported)

 TEE_ALG_ECDSA_SHA224_P224 (if supported)

 TEE_ALG_ECDSA_SHA256_P256 (if supported)

 TEE_ALG_ECDSA_SHA384_P384 (if supported)

 TEE_ALG_ECDSA_SHA512 P521 (if supported)

The parameters params, paramCount contain the operation parameters listed in Table 6-9.

Table 6-9: Asymmetric Verify Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_XXX TEE_ATTR_RSA_PSS_SALT_LENGTH: Number of

bytes in the salt. This parameter is optional. If not

present, the salt length is equal to the hash length.

TEE Internal Core API Specification – Public Release v1.1.1 171/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Where a hash algorithm is specified in the algorithm, digestLen SHALL be equal to the digest length of this

hash algorithm.

Parameters

 operation: Handle on the operation, which MUST have been suitably set up with an operation key

 params, paramCount: Optional operation parameters

 digest, digestLen: Input buffer containing the input message digest

 signature, signatureLen: Input buffer containing the signature to verify

Specification Number: 10 Function Number: 0x1104

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SIGNATURE_INVALID: If the signature is invalid

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE.

 No key is programmed in the operation.

 The operation mode is not TEE_MODE_VERIFY.

 digestLen is not equal to the hash size of the algorithm

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error which is not explicitly associated with a defined return

code for this function.

172/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.8 Key Derivation Functions

6.8.1 TEE_DeriveKey

void TEE_DeriveKey(

 TEE_OperationHandle operation,

 [in] TEE_Attribute* params, uint32_t paramCount,

 TEE_ObjectHandle derivedKey);

Description

The TEE_DeriveKey function takes one of the Asymmetric Derivation Operation Parameters in Table 6-10

as input, and outputs a key object.

The TEE_DeriveKey function can only be used with algorithms defined in Table 6-10.

The parameters params, paramCount contain the operation parameters listed in Table 6-10.

Table 6-10: Asymmetric Derivation Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_DH_DERIVE_SHARED_SECRET TEE_ATTR_DH_PUBLIC_VALUE: Public

key part of the other party. This parameter

is mandatory.

TEE_ALG_ECDH_NIST_P192_DERIVE_SHARED_SECRET

 TEE_ALG_ECDH_NIST_P224_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P256_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P384_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P521_DERIVE_SHARED_SECRET

(if supported)

TEE_ATTR_ECC_PUBLIC_VALUE_X,
TEE_ATTR_ECC_PUBLIC_VALUE_Y:

Public key part of the other party. These

parameters are This parameter is

mandatory.

The derivedKey handle MUST refer to an object with type TEE_TYPE_GENERIC_SECRET.

The caller MUST have set the private part of the operation DH key using the TEE_SetOperationKey

function.

The caller MUST pass the other party’s public key as a parameter of the TEE_DeriveKey function.

On completion the derived key is placed into the TEE_ATTR_SECRET_VALUE attribute of the derivedKey

handle.

Parameters

 operation: Handle on the operation, which MUST have been suitably set up with an operation key

 params, paramCount: Operation parameters

 derivedKey: Handle on an uninitialized transient object to be filled with the derived key

Specification Number: 10 Function Number: 0x1201

Panic Reasons

 operation is not a valid operation handle of class TEE_OPERATION_KEY_DERIVATION.

 The object derivedKey is too small for the generated value.

TEE Internal Core API Specification – Public Release v1.1.1 173/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 No key is programmed in the operation.

 A mandatory parameter is missing.

 The operation mode is not TEE_MODE_DERIVE.

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

174/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.9 Random Data Generation Function

6.9.1 TEE_GenerateRandom

void TEE_GenerateRandom(

 [out] void* randomBuffer,

 uint32_t size_t randomBufferLen);

Description

The TEE_GenerateRandom function generates random data.

Parameters

 randomBuffer: Reference to generated random data

 randomBufferLen: Byte length of requested random data

Specification Number: 10 Function Number: 0x1301

Panic Reasons

 Hardware or cryptographic algorithm failure

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 175/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10 Cryptographic Algorithms Specification

This section specifies the cryptographic algorithms, key types, and key parts supported in the Cryptographic

Operations API.

Note that for the “NOPAD” symmetric algorithms, it is the responsibility of the TA to do the padding.

6.10.1 List of Algorithm Identifiers

Table 6-11 provides an exhaustive list of all algorithm identifiers specified in the Cryptographic Operations API.

Note that the algorithm identifiers have the structure defined in Table 6-12. (Normative references for the

algorithms may be found in Annex C.)

Implementations MAY define their own algorithms. Such algorithms MUST have implementation-defined

algorithm identifiers, and those identifiers MUST use the structure defined in Table 6-12.

Table 6-11: List of Algorithm Identifiers

Name

Algorithm Identifier

Identifier

Value

Comments

TEE_ALG_AES_ECB_NOPAD 0x10000010

TEE_ALG_AES_CBC_NOPAD 0x10000110

TEE_ALG_AES_CTR 0x10000210 The counter MUST be encoded as

a 16-byte buffer in big-endian form.

Between two consecutive blocks,

the counter MUST be incremented

by 1. If it reaches the limit of all

128 bits set to 1, it MUST wrap

around to 0.

TEE_ALG_AES_CTS 0x10000310

TEE_ALG_AES_XTS 0x10000410

TEE_ALG_AES_CBC_MAC_NOPAD 0x30000110

TEE_ALG_AES_CBC_MAC_PKCS5 0x30000510

TEE_ALG_AES_CMAC 0x30000610

TEE_ALG_AES_CCM 0x40000710

TEE_ALG_AES_GCM 0x40000810

TEE_ALG_DES_ECB_NOPAD 0x10000011

TEE_ALG_DES_CBC_NOPAD 0x10000111

TEE_ALG_DES_CBC_MAC_NOPAD 0x30000111

TEE_ALG_DES_CBC_MAC_PKCS5 0x30000511

TEE_ALG_DES3_ECB_NOPAD 0x10000013 Triple DES MUST be understood as

Encrypt-Decrypt-Encrypt mode with

two or three keys.

TEE_ALG_DES3_CBC_NOPAD 0x10000113

TEE_ALG_DES3_CBC_MAC_NOPAD 0x30000113

176/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name

Algorithm Identifier

Identifier

Value

Comments

TEE_ALG_DES3_CBC_MAC_PKCS5 0x30000513

TEE_ALG_RSASSA_PKCS1_V1_5_MD5 0x70001830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1 0x70002830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224 0x70003830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA256 0x70004830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA384 0x70005830

TEE_ALG_RSASSA_PKCS1_V1_5_SHA512 0x70006830

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1 0x70212930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224 0x70313930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256 0x70414930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384 0x70515930

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512 0x70616930

TEE_ALG_RSAES_PKCS1_V1_5 0x60000130

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1 0x60210230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224 0x60310230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256 0x60410230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384 0x60510230

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512 0x60610230

TEE_ALG_RSA_NOPAD 0x60000030

TEE_ALG_DSA_SHA1 0x70002131

TEE_ALG_DSA_SHA224 0x70003131

TEE_ALG_DSA_SHA256 0x70004131

TEE_ALG_DH_DERIVE_SHARED_SECRET 0x80000032

TEE_ALG_MD5 0x50000001

TEE_ALG_SHA1 0x50000002

TEE_ALG_SHA224 0x50000003

TEE_ALG_SHA256 0x50000004

TEE_ALG_SHA384 0x50000005

TEE_ALG_SHA512 0x50000006

TEE_ALG_HMAC_MD5 0x30000001

TEE_ALG_HMAC_SHA1 0x30000002

TEE_ALG_HMAC_SHA224 0x30000003

TEE_ALG_HMAC_SHA256 0x30000004

TEE Internal Core API Specification – Public Release v1.1.1 177/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name

Algorithm Identifier

Identifier

Value

Comments

TEE_ALG_HMAC_SHA384 0x30000005

TEE_ALG_HMAC_SHA512 0x30000006

TEE_ALG_ECDSA_SHA1_P192 0x70001042 If supported

TEE_ALG_ECDSA_SHA224_P224 0x70002042 If supported

TEE_ALG_ECDSA_SHA256_P256 0x70003042 If supported

TEE_ALG_ECDSA_SHA384_P384 0x70004042 If supported

TEE_ALG_ECDSA_SHA512_P521 0x70005042 If supported

TEE_ALG_ECDH_P192_DERIVE_SHARED_SECRET 0x80001042
0x80000042

If supported

TEE_ALG_ECDH_P224_DERIVE_SHARED_SECRET 0x80002042 If supported

TEE_ALG_ECDH_P256_DERIVE_SHARED_SECRET 0x80003042 If supported

TEE_ALG_ECDH_P384_DERIVE_SHARED_SECRET 0x80004042 If supported

TEE_ALG_ECDH_P521_DERIVE_SHARED_SECRET 0x80005042 If supported

178/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-12: Structure of Algorithm Identifier or Object Type Identifier

Bits Function Values

Bits [31:28] Specifies the algorithm

class, and which

determines which the

cryptographic functions

that can be called

0x1: Block cipher

0x3: MAC

0x4: Authenticated Encryption cipher

0x5: Digest

0x6: Asymmetric cipher

0x7: Asymmetric signature

0x8: Key derivation

0xA: Object handle

Note:

 Algorithm Identifiers (bits 31:28 <> 0xA) are listed in

Table 6-11.

 Object Type Identifiers (bits 31:28 = 0xA) are listed in

Table 6-13.

Bits [27:24] Not used

Bits [27:25] Reserved Should Be Zero.

Bit [24] Object Type Key Pair

Indicator

If an Algorithm Identifier (bits 31:28 <> 0xA), then Should Be

Zero.

If an Object Type Identifier (bits 31:28 = 0xA), then:

If object is a key pair, then 0x1.

Otherwise Should Be Zero.

Bits [23:20] Defines the internal

hash used by the MGF

for RSA OAEP (for

signature algorithms,

equal to the message

digest)

If bits 19:16 indicate use of MGF, then bits 23:20 define the

digest mode, using the values in Table 6-12b.

Otherwise Should Be Zero.

Bits [19:16] Define the MGF for

RSA PSS and RSA

OAEP algorithms

or

Define the elliptic curve

used in ECC methods

if supported

Indicates whether the

algorithm uses MGF

If the algorithm uses MGF, then 0x1.

Otherwise Should Be Zero.

TEE Internal Core API Specification – Public Release v1.1.1 179/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Bits Function Values

Bits [15:12] Defines the message

digest for asymmetric

signature algorithms

If bits 31:28 are 0x7, then:

If bits 7:0 are 0x42, then this is an ECC algorithm. The key

material specifies the curve type, and the algorithm ID

specifies the supplied hash size:

0x1 SHA-1

0x2 SHA-224

0x3 SHA-256

0x4 SHA-384

0x5 SHA-512

Otherwise bits 15:12 define the digest mode, using the values

in Table 6-12b.

Bits [11:8] May define the

chaining mode or

padding

Bits [7:0] Identifies the

underlying main

algorithm itself

0x00: Generic Secret Key object

0x01: MD5

0x02: SHA-1

0x03: SHA-224

0x04: SHA-256

0x05: SHA-384

0x06: SHA-512

0x01 – 0x06: See Table 6-12b.

0x10: AES

0x11: DES

0x12: DES2 (only for key generation) Deprecated

0x13: DES3

0x30: RSA

0x31: DSA

0x32: DH

When used to define

Algorithms in Table 6-11:

0x42: ECC (if supported)

Else (when used to define

Objects in Table 6-13):

0x41: ECDSA (if supported)

0x42: ECDH (if supported)

0xBE: Object is invalid

0xBF: No appropriate algorithm

Algorithm numbers above 0xC0 are reserved for

implementation-specific algorithms.

180/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 6-12b: Algorithm Subtype Identifier

Value Subtype

0x01 MD5

0x02 SHA-1

0x03 SHA-224

0x04 SHA-256

0x05 SHA-384

0x06 SHA-512

TEE Internal Core API Specification – Public Release v1.1.1 181/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10.2 Object Types

Object handles are a special class of algorithm handle and follow the rules in Table 6-12 but only use the

object type, object type key pair indicator, and algorithm fields.

Table 6-13: List of Object Types

Name Identifier

TEE_TYPE_AES 0xA0000010

TEE_TYPE_DES 0xA0000011

TEE_TYPE_DES3 0xA0000013

TEE_TYPE_HMAC_MD5 0xA0000001

TEE_TYPE_HMAC_SHA1 0xA0000002

TEE_TYPE_HMAC_SHA224 0xA0000003

TEE_TYPE_HMAC_SHA256 0xA0000004

TEE_TYPE_HMAC_SHA384 0xA0000005

TEE_TYPE_HMAC_SHA512 0xA0000006

TEE_TYPE_RSA_PUBLIC_KEY 0xA0000030

TEE_TYPE_RSA_KEYPAIR 0xA1000030

TEE_TYPE_DSA_PUBLIC_KEY 0xA0000031

TEE_TYPE_DSA_KEYPAIR 0xA1000031

TEE_TYPE_DH_KEYPAIR 0xA1000032

TEE_TYPE_ECDSA_PUBLIC_KEY 0xA0000041

TEE_TYPE_ECDSA_KEYPAIR 0xA1000041

TEE_TYPE_ECDH_PUBLIC_KEY 0xA0000042

TEE_TYPE_ECDH_KEYPAIR 0xA1000042

TEE_TYPE_GENERIC_SECRET 0xA0000000

TEE_TYPE_CORRUPTED_OBJECT 0xA00000BE

TEE_TYPE_DATA 0xA00000BF

Object types using implementation-specific algorithms are defined by the implementation.

The TEE_TYPE_CORRUPTED_OBJECT is used solely in the deprecated TEE_GetObjectInfo function to

indicate that the object on which it is being invoked has been corrupted in some way.

The TEE_TYPE_DATA is used to represent objects which have no cryptographic attributes, just a data stream.

182/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.10.3 Elliptic Curve Types

If elliptic curve cryptography (ECC) is supported then the curve to be used is defined as follows. All curve

definitions come from http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf [NIST Re Cur].

Note that if ECC is supported, then all the curves defined in the following table SHALL be implemented.

Table 6-14: List of Supported ECC Curves

Name Identifier Size

TEE_ECC_CURVE_NIST_P192 0x00000001 192 bits

TEE_ECC_CURVE_NIST_P224 0x00000002 224 bits

TEE_ECC_CURVE_NIST_P256 0x00000003 256 bits

TEE_ECC_CURVE_NIST_P384 0x00000004 384 bits

TEE_ECC_CURVE_NIST_P521 0x00000005 521 bits

Reserved for future use 0x00000006 - 0x7FFFFFFF

Implementation defined 0x80000000 - 0xFFFFFFFF

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

TEE Internal Core API Specification – Public Release v1.1.1 183/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6.11 Object or Operation Attributes

Table 6-15: Object or Operation Attributes

Name Value Protection Type Format
(Table
6-16)

Comment

TEE_ATTR_SECRET_VALUE 0xC0000000 Protected Ref binary Used for all

secret keys for

symmetric

ciphers,

MACs, and

HMACs

TEE_ATTR_RSA_MODULUS 0xD0000130 Public Ref bignum

TEE_ATTR_RSA_PUBLIC_EXPONENT 0xD0000230 Public Ref bignum

TEE_ATTR_RSA_PRIVATE_EXPONENT 0xC0000330 Protected Ref bignum

TEE_ATTR_RSA_PRIME1 0xC0000430 Protected Ref bignum Usually

referred to as

p.

TEE_ATTR_RSA_PRIME2 0xC0000530 Protected Ref bignum q

TEE_ATTR_RSA_EXPONENT1 0xC0000630 Protected Ref bignum dp

TEE_ATTR_RSA_EXPONENT2 0xC0000730 Protected Ref bignum dq

TEE_ATTR_RSA_COEFFICIENT 0xC0000830 Protected Ref bignum iq

TEE_ATTR_DSA_PRIME 0xD0001031 Public Ref bignum p

TEE_ATTR_DSA_SUBPRIME 0xD0001131 Public Ref bignum q

TEE_ATTR_DSA_BASE 0xD0001231 Public Ref bignum g

TEE_ATTR_DSA_PUBLIC_VALUE 0xD0000131 Public Ref bignum y

TEE_ATTR_DSA_PRIVATE_VALUE 0xC0000231 Protected Ref bignum x

TEE_ATTR_DH_PRIME 0xD0001032 Public Ref bignum p

TEE_ATTR_DH_SUBPRIME 0xD0001132 Public Ref bignum q

TEE_ATTR_DH_BASE 0xD0001232 Public Ref bignum g

TEE_ATTR_DH_X_BITS 0xF0001332 Public Value int l

TEE_ATTR_DH_PUBLIC_VALUE 0xD0000132 Public Ref bignum y

TEE_ATTR_DH_PRIVATE_VALUE 0xC0000232 Protected Ref bignum x

TEE_ATTR_RSA_OAEP_LABEL 0xD0000930 Public Ref binary

TEE_ATTR_RSA_PSS_SALT_LENGTH 0xF0000A30 Public Value int

TEE_ATTR_ECC_PUBLIC_VALUE_X 0xD0000141 Public Ref bignum

TEE_ATTR_ECC_PUBLIC_VALUE_Y 0xD0000241 Public Ref bignum

TEE_ATTR_ECC_PRIVATE_VALUE 0xC0000341 Protected Ref bignum d

184/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Protection Type Format
(Table
6-16)

Comment

TEE_ATTR_ECC_CURVE 0xF0000441 Public Value int Identifier value

from

Table 6-14

Table 6-16: Attribute Format Definitions

Format Description

binary An array of unsigned octets

bignum An unsigned bignum in big-endian binary format.

Leading zero bytes are allowed.

int Values attributes represented in a single integer returned/read from argument a.

Additional attributes may be defined for use with implementation defined algorithms.

Implementer’s Notes

Selected bits of the attribute identifiers are explained in Table 6-17.

Table 6-17: Partial Structure of Attribute Identifier

Bit Function Values

Bit [29] Defines whether the attribute is a buffer or value attribute 0: buffer attribute

1: value attribute

Bit [28] Defines whether the attribute is protected or public 0: protected attribute

1: public attribute

A protected attribute cannot be extracted unless the object has the TEE_USAGE_EXTRACTABLE flag.

Table 6-18 defines constants that reflect setting bit [29] and bit [28], respectively, intended to help decode

attribute identifiers.

Table 6-18: Attribute Identifier Flags

Name Value

TEE_ATTR_FLAG_VALUE 0x20000000

TEE_ATTR_FLAG_PUBLIC 0x10000000

TEE Internal Core API Specification – Public Release v1.1.1 185/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7 Time API

This API provides access to three sources of time:

 System Time

o The origin of this system time is arbitrary and implementation-dependent. Different TA instances

may even have different system times. The only guarantee is that the system time is not reset or

rolled back during the life of a given TA instance, so it can be used to compute time differences and

operation deadlines, for example. The system time MUST NOT be affected by transitions through

low power states.

o System time is related to the function TEE_Wait, which waits for a given timeout or cancellation.

o The level of trust that a Trusted Application can put on the system time is implementation defined

but can be discovered programmatically by querying the implementation property

gpd.tee.systemTime.protectionLevel. Typically, an implementation may rely on the REE

timer (protection level 100) or on a dedicated secure timer hardware (protection level 1000).

o System time MUST advance within plus or minus15% of the passage of real time in the outside

world including while the device is in low power states, to ensure that appropriate security levels

are maintained when, for example, system time is used to implement dictionary attack protection.

This accuracy also applies to timeout values where they are specified in individual routines.

 TA Persistent Time, a real-time source of time

o The origin of this time is set individually by each Trusted Application and MUST persist across

reboots.

o The level of trust on the TA Persistent Time can be queried through the property

gpd.tee.TAPersistentTime.protectionLevel.

 REE Time

o This is as trusted as the REE itself and may also be tampered by the user.

All time functions use a millisecond resolution and split the time in the two fields of the structure TEE_Time:

one field for the seconds and one field for the milliseconds within this second.

7.1 Data Types

7.1.1 TEE_Time

typedef struct

{

 uint32_t seconds;

 uint32_t millis;

} TEE_Time;

When used to return a time value, this structure can represent times up to 06:28:15 UTC on Sun, 7 February

2106.

186/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2 Time Functions

7.2.1 TEE_GetSystemTime

void TEE_GetSystemTime(

 [out] TEE_Time* time);

Description

The TEE_GetSystemTime function retrieves the current system time.

The system time has an arbitrary implementation-defined origin that can vary across TA instances. The

minimum guarantee is that the system time MUST be monotonic for a given TA instance.

Implementations are allowed to use the REE timers to implement this function but may also better protect the

system time. A TA can discover the level of protection implementation by querying the implementation property
gpd.tee.systemTime.protectionLevel. Possible values are listed in Table 7-1.

Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property

Value Meaning

100 System time based on REE-controlled timers. Can be tampered by the REE.

The implementation MUST still guarantee that the system time is monotonic, i.e. successive

calls to TEE_GetSystemTime MUST return increasing values of the system time.

1000 System time based on a TEE-controlled secure timer.

The REE cannot interfere with the system time. It may still interfere with the scheduling of

TEE tasks, but is not able to hide delays from a TA calling TEE_GetSystemTime.

Parameters

 time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC

Specification Number: 10 Function Number: 0x1402

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 187/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.2 TEE_Wait

TEE_Result TEE_Wait(uint32_t timeout);

Description

The TEE_Wait function waits for the specified number of milliseconds or waits forever if timeout equals
TEE_TIMEOUT_INFINITE (0xFFFFFFFF).

When this function returns success, the implementation MUST guarantee that the difference between two calls

to TEE_GetSystemTime before and after the call to TEE_Wait is greater than or equal to the requested

timeout. However, there may be additional implementation-dependent delays due to the scheduling of TEE

tasks.

This function is cancellable, i.e. if the current task’s cancelled flag is set and the TA has unmasked the effects

of cancellation, then this function returns earlier than the requested timeout with the return code
TEE_ERROR_CANCEL. See section 4.10 for more details about cancellations.

Parameters

 timeout: The number of milliseconds to wait, or TEE_TIMEOUT_INFINITE

Specification Number: 10 Function Number: 0x1405

Return Code

 TEE_SUCCESS: On success

 TEE_ERROR_CANCEL: If the wait has been cancelled

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

188/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.3 TEE_GetTAPersistentTime

TEE_Result TEE_GetTAPersistentTime(

 [out] TEE_Time* time);

Description

The TEE_GetTAPersistentTime function retrieves the persistent time of the Trusted Application, expressed

as a number of seconds and milliseconds since the arbitrary origin set by calling
TEE_SetTAPersistentTime.

This function can return the following statuses (as well as other status values discussed in “Return Code”):

 TEE_SUCCESS means the persistent time is correctly set and has been retrieved into the parameter
time.

 TEE_ERROR_TIME_NOT_SET is the initial status and means the persistent time has not been set. The

Trusted Application MUST set its persistent time by calling the function
TEE_SetTAPersistentTime.

 TEE_ERROR_TIME_NEEDS_RESET means the persistent time has been set but may have been

corrupted and MUST no longer be trusted. In such a case it is recommended that the Trusted

Application resynchronize the persistent time by calling the function TEE_SetTAPersistentTime.

Until the persistent time has been reset, the status TEE_ERROR_TIME_NEEDS_RESET will always be

returned.

Initially the time status is TEE_ERROR_TIME_NOT_SET. Once a Trusted Application has synchronized its

persistent time by calling TEE_SetTAPersistentTime, the status can be TEE_SUCCESS or
TEE_ERROR_TIME_NEEDS_RESET. Once the status has become TEE_ERROR_TIME_NEEDS_RESET it will

keep this status until the persistent time is re-synchronized by calling TEE_SetTAPersistentTime.

Figure 7-1 shows the state machine of the persistent time status.

Figure 7-1: Persistent Time Status State Machine

TEE_ERROR_TIME_NEEDS_RESET

TEE_SUCCESS

TEE_ERROR_TIME_NOT_SET

TEE_SetTAPersistentTime

TEE_SetTAPersistentTime

Corruption

The meaning of the status TEE_ERROR_TIME_NEEDS_RESET depends on the protection level provided by the

hardware implementation and the underlying real-time clock (RTC). This protection level can be queried by

retrieving the implementation property gpd.tee.TAPersistentTime.protectionLevel, which can have

one of the values listed in Table 7-2.

TEE Internal Core API Specification – Public Release v1.1.1 189/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property

Value Meaning

100 Persistent time based on an REE-controlled real-time clock and on the TEE Trusted Storage

for the storage of origins.

The implementation MUST guarantee that rollback of persistent time is detected to the fullest

extent allowed by the Trusted Storage.

1000 Persistent time based on a TEE-controlled real-time clock and the TEE Trusted Storage. The

real-time clock MUST be out of reach of software attacks from the REE.

Users may still be able to provoke a reset of the real-time clock but this MUST be detected by

the Implementation.

The number of seconds in the TA Persistent Time may exceed the range of the uint32_t integer type. In

this case, the function MUST return the error TEE_ERROR_OVERFLOW, but still computes the TA Persistent

Time as specified above, except that the number of seconds is truncated to 32 bits before being written to
time->seconds. For example, if the Trusted Application sets its persistent time to 232-100 seconds, then

after 100 seconds, the TA Persistent Time is 232, which is not representable with a uint32_t. In this case,

the function TEE_GetTAPersistentTime MUST return TEE_ERROR_OVERFLOW and set time->seconds
to 0 (which is 232 truncated to 32 bits).

Parameters

 time: A pointer to the TEE_Time structure to be set to the current TA Persistent Time. If an error

other than TEE_ERROR_OVERFLOW is returned, this structure is filled with zeroes.

Specification Number: 10 Function Number: 0x1403

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_TIME_NOT_SET

 TEE_ERROR_TIME_NEEDS_RESET

 TEE_ERROR_OVERFLOW: The number of seconds in the TA Persistent Time overflows the range of a
uint32_t. The field time->seconds is still set to the TA Persistent Time truncated to 32 bits

(i.e. modulo 232).

 TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

190/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7.2.4 TEE_SetTAPersistentTime

TEE_Result TEE_SetTAPersistentTime(

 [in] TEE_Time* time);

Description

The TEE_SetTAPersistentTime function sets the persistent time of the current Trusted Application.

Only the persistent time for the current Trusted Application is modified, not the persistent time of other Trusted

Applications. This will affect all instances of the current Trusted Application. The modification is atomic and

persistent across device reboots.

Parameters

 time: Filled with the persistent time of the current TA

Specification Number: 10 Function Number: 0x1404

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation

 TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to complete the operation

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

7.2.5 TEE_GetREETime

void TEE_GetREETime(

 [out] TEE_Time* time);

Description

The TEE_GetREETime function retrieves the current REE system time. This function retrieves the current

time as seen from the point of view of the REE, expressed in the number of seconds since midnight on

January 1, 1970, UTC.

In normal operation, the value returned SHOULD correspond to the real time, but it SHOULD NOT be

considered as trusted, as it may be tampered by the user or the REE software.

Parameters

 time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC

Specification Number: 10 Function Number: 0x1401

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 191/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8 TEE Arithmetical API

8.1 Introduction

All asymmetric cryptographic functions are implemented by using arithmetical functions, where operands are

typically elements of finite fields or in mathematical structures containing finite field elements. The

Cryptographic Operations API hides the complexity of the mathematics that is behind these operations. A

developer who needs some cryptographic service does not need to know anything about the internal

implementation.

However in practice developer may face the following difficulties: the API does not support the desired

algorithm; or the API supports the algorithm, but with the wrong encodings, options, etc. The purpose of the

TEE Arithmetical API is to provide building blocks so that the developer can implement missing asymmetric

algorithms. In other words the arithmetical API can be used to implement a plug-in into the Cryptographic

Operations API. Allowing the possibility of expanding the Cryptographic Operations API means that some of

its functions can be left as optional to implement. Furthermore and to ease the design of speed efficient

algorithms, the arithmetical API also gives access to a Fast Modular Multiplication primitive, referred to as

FMM.

This specification mandates that all functions within the TEE Arithmetical API MUST work when input and

output TEE_BigInt values are within the interval [-2M+1, 2M-1] (limits included), where M is an

implementation-defined number of bits. Every Implementation MUST ensure that M is at least 2048. The exact

value of M can be retrieved as the implementation property gpd.tee.arith.maxBigIntSize.

Throughout this chapter:

 The notation “n-bit integer” refers to an integer that can take values in the range [-2n+1, 2n-1], including

limits.

 The notation “magnitude(src)” denotes the minimum number of required bits to represent the

absolute value of the big integer src in a natural binary representation. The developer may query the

magnitude of a big integer by using the function TEE_BigIntGetBitCount(src), as described in

section 8.7.5.

8.2 Error Handling and Parameter Checking

This low level arithmetical API performs very few checks on the parameters given to the functions. Most

functions will return undefined results when called inappropriately but will not generate any error return codes.

Some functions in the API MAY work for inputs larger than indicated by the implementation property
gpd.tee.arith.maxBigIntSize. This is however not guaranteed. When a function does not support a

given bigInt size beyond this limit, it MUST panic and not produce invalid results.

192/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.3 Data Types

This specification version has three data types for the arithmetical operations. These are TEE_BigInt,
TEE_BigIntFMM, and TEE_BigIntFMMContext. Before using the arithmetic operations, the TA developer

MUST allocate and initialize the memory for the input and output operands This API provides entry points to

determine the correct sizes of the needed memory allocations.

8.3.1 TEE_BigInt

The TEE_BigInt type is a placeholder for the memory structure of the TEE core internal representation of a

large multi-precision integer.

typedef uint32_t TEE_BigInt;

The following constraints are put on the internal representation of the TEE_BigInt:

1) The size of the representation MUST be a multiple of 4 bytes.

2) The extra memory within the representation to store metadata MUST NOT exceed 8 bytes.

3) The representation MUST be stored 32-bit aligned in memory.

Exactly how a multi-precision integer is represented internally is implementation-specific but it MUST be stored

within a structure of the maximum size given by the macro TEE_BigIntSizeInU32 (see section 8.4.1).

By defining a TEE_BigInt as a uint32_t for the TA, we allow the TA developer to allocate static space

for multiple occurrences of TEE_BigInt at compile time which obey constraints 1 and 3. The allocation can

be done with code similar to this:

uint32_t twoints[2 * TEE_BigIntSizeInU32(1024)];
TEE_BigInt* first = twoints;
TEE_BigInt* second = twoints + TEE_BigIntSizeInU32(1024);

/* Or if we do it dynamically */
TEE_BigInt* op1;
op1 = TEE_Malloc(TEE_BigIntSizeInU32(1024) * sizeof(TEE_BigInt), 0);
/* use op1 */
TEE_Free(op1);

Conversions from an external representation to the internal TEE_BigInt representation and vice versa can

be done by using functions from section 8.6.

Most functions in the TEE Arithmetical API take one or more TEE_BigInt pointers as parameters; for

example, func(TEE_BigInt *op1, TEE_BigInt *op2). When describing the parameters and what the

function does, this specification will refer to the integer represented in the structure to which the pointer op1
points, by simply writing op1. It will be clear from the context when the pointer value is referred to and when

the integer value is referred to.

TEE Internal Core API Specification – Public Release v1.1.1 193/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.3.2 TEE_BigIntFMMContext

Usually, such a fast modular multiplication requires some additional data or derived numbers. That extra data

is stored in a context that MUST be passed to the fast modular multiplication function. The
TEE_BigIntFMMContext is a placeholder for the TEE core internal representation of the context that is used

in the fast modular multiplication operation.

typedef uint32_t TEE_BigIntFMMContext;

The following constraints are put on the internal representation of the TEE_BigIntFMMContext:

1) The size of the representation MUST be a multiple of 4 bytes.

2) The representation MUST be stored 32-bit aligned in memory.

Exactly how this context is represented internally is implementation-specific but it MUST be stored within a

structure of the size given by the function TEE_BigIntFMMContextSizeInU32 (see section 8.4.2).

Similarly to TEE_BigInt, we expose this type as a uint32_t to the TA, which helps TEE_Malloc to align

the structure correctly when allocating space for a TEE_BigIntFMMContext*.

8.3.3 TEE_BigIntFMM

Some implementations may have support for faster modular multiplication algorithms such as Montgomery or

Barrett multiplication for use in modular exponentiation. Typically, those algorithms require some

transformation of the input before the multiplication can be carried out. The TEE_BigIntFMM is a placeholder

for the memory structure that holds an integer in such a transformed representation.

typedef uint32_t TEE_BigIntFMM;

The following constraints are put on the internal representation of the TEE_BigIntFMM:

1) The size of the representation MUST be a multiple of 4 bytes.

2) The representation MUST be stored 32-bit aligned in memory.

Exactly how this transformed representation is stored internally is implementation-specific but it MUST be

stored within a structure of the maximum size given by the function TEE_BigIntFMMSizeInU32 (see

section 8.4.3).

Similarly to TEE_BigInt, we expose this type as a uint32_t to the TA, which helps TEE_Malloc to align

the structure correctly when allocating space for a TEE_BigIntFMM*.

194/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.4 Memory Allocation and Size of Objects

It is the responsibility of the Trusted Application to allocate and free memory for all TEE arithmetical objects,

including all operation contexts, used in the Trusted Application. Once the arithmetical objects are allocated,

the functions in the TEE Arithmetical API will never fail because of out-of-resources.

TEE implementer’s note: Implementations of the TEE Arithmetical API SHOULD utilize memory from one or

more pre-allocated pools to store intermediate results during computations to ensure that the functions do not

fail because of lack of resources. All memory resources used internally MUST be thread-safe. Such a pool of

scratch memory could be:

 Internal memory of a hardware accelerator module

 Allocated from mutex protected system-wide memory

 Allocated from the heap of the TA instance, i.e. by using TEE_Malloc or TEE_Realloc

If the implementation uses a memory pool of temporary storage for intermediate results or if it uses hardware

resources such as accelerators for some computations, the implementation MUST either wait for the resource

to become available or, for example in case of a busy hardware accelerator, resort to other means such as a

software implementation.

8.4.1 TEE_BigIntSizeInU32

#define TEE_BigIntSizeInU32(n) ((((n)+31)/32)+2)

Description

The TEE_BigIntSizeInU32 macro calculates the size of the array of uint32_t values needed to represent

an n-bit integer. This is defined as a macro (thereby mandating the maximum size of the internal

representation) rather than as a function so that TA developers can use the macro in a static compile-time

declaration of an array. Note that the implementation of the internal arithmetic functions assumes that memory

pointed to by the TEE_BigInt* is 32-bit aligned.

Parameters

 n: maximum number of bits to be representable

TEE Internal Core API Specification – Public Release v1.1.1 195/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.4.2 TEE_BigIntFMMContextSizeInU32

uint32_tsize_t TEE_BigIntFMMContextSizeInU32(uint32_tsize_t modulusSizeInBits

);

Description

The TEE_BigIntFMMContextSizeInU32 function returns the size of the array of uint32_t values needed

to represent a fast modular context using a given modulus size. This function MUST never fail.

Parameters

 modulusSizeInBits: Size of modulus in bits

Specification Number: 10 Function Number: 0x1502

Return Value

Number of bytes needed to store a TEE_BigIntFMMContext given a modulus of length
modulusSizeInBits.

Panic Reasons

 If the Implementation detects any error.

8.4.3 TEE_BigIntFMMSizeInU32

uint32_tsize_t TEE_BigIntFMMSizeInU32(uint32_tsize_t modulusSizeInBits);

Description

The TEE_BigIntFMMSizeInU32 function returns the size of the array of uint32_t values needed to

represent an integer in the fast modular multiplication representation, given the size of the modulus in bits.

This function MUST never fail.

Normally from a mathematical point of view, this function would have needed the context to compute the exact

required size. However, it is beneficial to have a function that does not take an initialized context as a parameter

and thus the implementation may overstate the required memory size. It is nevertheless likely that a given

implementation of the fast modular multiplication can calculate a very reasonable upper-bound estimate based

on the modulus size.

Parameters

 modulusSizeInBits: Size of modulus in bits

Specification Number: 10 Function Number: 0x1501

Return Value

Number of bytes needed to store a TEE_BigIntFMM given a modulus of length modulusSizeInBits

Panic Reasons

 If the Implementation detects any error.

196/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5 Initialization Functions

These functions initialize the arithmetical objects after the TA has allocated the memory to store them. The

Trusted Application MUST call the corresponding initialization function after it has allocated the memory for

the arithmetical object.

8.5.1 TEE_BigIntInit

void TEE_BigIntInit(

 [out] TEE_BigInt *bigInt,

 uint32_t size_t len);

Description

The TEE_BigIntInit function initializes bigInt and sets its represented value to zero. This function

assumes that bigInt points to a memory area of len uint32_t. This can be done for example with the

following memory allocation:

TEE_BigInt *a;
size_t uint32_t len;
len = (size_t) TEE_BigIntSizeInU32(bitSize);
a = (TEE_BigInt *)TEE_Malloc(len * sizeof(TEE_BigInt), 0);
ret = TEE_BigIntInit(a, len);

Parameters

 bigInt: A pointer to the TEE_BigInt to be initialized

 len: The size in uint32_t of the memory pointed to by bigInt

Specification Number: 10 Function Number: 0x1601

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 197/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5.2 TEE_BigIntInitFMMContext

void TEE_BigIntInitFMMContext(

 [out] TEE_BigIntFMMContext *context,

 uint32_t size_t len,

 [in] TEE_BigInt *modulus);

Description

The TEE_BigIntInitFMMContext function calculates the necessary prerequisites for the fast modular

multiplication and stores them in a context. This function assumes that context points to a memory area of
len uint32_t. This can be done for example with the following memory allocation:

TEE_BigIntFMMContext* ctx;
size_t uint32_t len = (size_t) TEE_BigIntFMMContextSizeInU32(bitsize);
ctx=(TEE_BigIntFMMContext *)TEE_Malloc(len * sizeof(TEE_BigIntFFMContext), 0);
/*Code for initializing modulus*/
…
TEE_BigIntInitFMMContext(ctx, len, modulus);

Even though a fast multiplication might be mathematically defined for any modulus, normally there are

restrictions in order for it to be fast on a computer. This specification mandates that all implementations MUST

work for all odd moduli larger than 2 and less than 2 to the power of the implementation defined property
gpd.tee.arith.maxBigIntSize.

Parameters

 context: A pointer to the TEE_BigIntFMMContext to be initialized

 len: The size in uint32_t of the memory pointed to by context

 modulus: The modulus, an odd integer larger than 2 and less than 2 to the power of
gpd.tee.arith.maxBigIntSize

Specification Number: 10 Function Number: 0x1603

Panic Reasons

 If the Implementation detects any error.

198/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.5.3 TEE_BigIntInitFMM

void TEE_BigIntInitFMM(

 [in] TEE_BigIntFMM *bigIntFMM,

 uint32_t size_t len);

Description

The TEE_BigIntInitFMM function initializes bigIntFMM and sets its represented value to zero. This

function assumes that bigIntFMM points to a memory area of len uint32_t. This can be done for example

with the following memory allocation:

TEE_BigIntFMM *a;
uint32_t size_t len;
len = (size_t) TEE_BigIntFMMSizeInU32(modulusSizeinBits);
a = (TEE_BigIntFMM *)TEE_Malloc(len * sizeof(TEE_BigIntFMM), 0);
TEE_BigIntInitFMM(a, len);

Parameters

 bigIntFMM: A pointer to the TEE_BigIntFMM to be initialized

 len: The size in uint32_t of the memory pointed to by bigIntFMM

Specification Number: 10 Function Number: 0x1602

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 199/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6 Converter Functions

TEE_BigInt contains the internal representation of a multi-precision integer. However in many use cases

some integer data comes from external sources or integers; for example, a local device gets an ephemeral

Diffie-Hellman public key during a key agreement procedure. In this case the ephemeral key is expected to be

in octet string format, which is a big-endian radix 256 representation for unsigned numbers. For example

0x123456789abcdef has the following octet string representation:

 {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef}

This section provides functions to convert to and from such alternative representations.

8.6.1 TEE_BigIntConvertFromOctetString

TEE_Result TEE_BigIntConvertFromOctetString(

 [out] TEE_BigInt *dest,

 [inbuf] uint8_t *buffer, uint32_t size_t bufferLen,

 int32_t sign);

Description

The TEE_BigIntConvertFromOctetString function converts a bufferLen byte octet string buffer into

a TEE_BigInt format. The octet string is in most significant byte first representation. The input parameter
sign will set the sign of dest. It will be set to negative if sign<0 and to positive if sign>=0.

Parameters

 dest: Pointer to a TEE_BigInt to hold the result

 buffer: Pointer to the buffer containing the octet string representation of the integer

 bufferLen: The length of *buffer in bytes

 sign: The sign of dest is set to the sign of sign.

Specification Number: 10 Function Number: 0x1701

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OVERFLOW: If memory allocation for the dest is too small

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

200/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6.2 TEE_BigIntConvertToOctetString

TEE_Result TEE_BigIntConvertToOctetString(

 [outbuf] void* buffer, uint32_t size_t *bufferLen,

 [in] TEE_BigInt *bigInt);

Description

The TEE_BigIntConvertToOctetString function converts the absolute value of an integer in
TEE_BigInt format into an octet string. The octet string is written in a most significant byte first representation.

Parameters

 buffer, bufferLen: Output buffer where converted octet string representation of the integer is

written

 bigInt: Pointer to the integer that will be converted to an octet string

Specification Number: 10 Function Number: 0x1703

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_SHORT_BUFFER: If the output buffer is too small to contain the octet string

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

8.6.3 TEE_BigIntConvertFromS32

void TEE_BigIntConvertFromS32(

 [out] TEE_BigInt *dest,

 int32_t shortVal);

Description

The TEE_BigIntConvertFromS32 function sets *dest to the value shortVal.

Parameters

 dest: Pointer to a TEE_BigInt to store the result

 shortVal: Input value

Specification Number: 10 Function Number: 0x1702

Result Size

The result MUST have memory allocation for holding a 32-bit signed value.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 201/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.6.4 TEE_BigIntConvertToS32

TEE_Result TEE_BigIntConvertToS32(

 [out] int32_t *dest,

 [in] TEE_BigInt *src);

Description

The TEE_BigIntConvertToS32 function sets *dest to the value of src, including the sign of src. If src
does not fit within an int32_t, the value of *dest is undefined.

Parameters

 dest: Pointer to an int32_t to store the result

 src: Pointer to the input value

Specification Number: 10 Function Number: 0x1704

Return Code

 TEE_SUCCESS: In case of success

 TEE_ERROR_OVERFLOW: If src does not fit within an int32_t

Panic Reasons

 If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

202/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7 Logical Operations

8.7.1 TEE_BigIntCmp

int32_t TEE_BigIntCmp(

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntCmp function checks whether op1>op2, op1==op2, or op1<op2.

Parameters

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1801

Return Value

This function returns a negative number if op1<op2, 0 if op1==op2, and a positive number if op1>op2.

Panic Reasons

 If the Implementation detects any error.

8.7.2 TEE_BigIntCmpS32

int32_t TEE_BigIntCmpS32(

 [in] TEE_BigInt *op,

 int32_t shortVal);

Description

The TEE_BigIntCmpS32 function checks whether op>shortVal, op==shortVal, or op<shortVal.

Parameters

 op: Pointer to the first operand

 shortVal: Pointer to the second operand

Specification Number: 10 Function Number: 0x1802

Return Value

This function returns a negative number if op<shortVal, 0 if op==shortVal, and a positive number if
op>shortVal.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 203/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.3 TEE_BigIntShiftRight

void TEE_BigIntShiftRight(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op

 uint32_t size_t bits);

Description

The TEE_BigIntShiftRight function computes |dest| = |op| >> bits and dest will have the

same sign as op.6 If bits is greater than the bit length of op then the result is zero. dest and op MAY

point to the same memory region.

Parameters

 dest: Pointer to TEE_BigInt to hold the shifted result

 op: Pointer to the operand to be shifted

 bits: Number of bits to shift

Specification Number: 10 Function Number: 0x1805

Panic Reasons

 If the Implementation detects any error.

6 The notation |x| means the absolute value of x.

204/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.7.4 TEE_BigIntGetBit

bool TEE_BigIntGetBit(

 [in] TEE_BigInt *src,

 uint32_t bitIndex);

Description

The TEE_BigIntGetBit function returns the bitIndexth bit of the natural binary representation of |src|.

A true return value indicates a “1” and a false return value indicates a “0” in the bitIndexth position.

If bitIndex is larger than the number of bits in op, the return value is false, thus indicating a “0”.

Parameters

 src: Pointer to the integer

 bitIndex: The offset of the bit to be read, starting at offset 0 for the least significant bit

Specification Number: 10 Function Number: 0x1803

Return Value

The Boolean value of the bitIndexth bit in |src|. True represents a “1” and false represents a “0”.

Panic Reasons

 If the Implementation detects any error.

8.7.5 TEE_BigIntGetBitCount

uint32_t TEE_BigIntGetBitCount(

 [in] TEE_BigInt *src);

Description

The TEE_BigIntGetBitCount function returns the number of bits in the natural binary representation of
|src|; that is, the magnitude of src.

Parameters

 src: Pointer to the integer

Specification Number: 10 Function Number: 0x1804

Return Value

The number of bits in the natural binary representation of |src|. If src equals zero, it will return 0.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 205/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8 Basic Arithmetic Operations

This section describes basic arithmetical operations addition, subtraction, negation, multiplication, squaring,

and division.

8.8.1 TEE_BigIntAdd

void TEE_BigIntAdd(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntAdd function computes dest = op1 + op2. All or some of dest, op1, and op2 MAY

point to the same memory region.

Parameters

 dest: Pointer to TEE_BigInt to store the result op1 + op2

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1901

Result Size

Depending on the sign of op1 and op2, the result may be larger or smaller than op1 and op2. For the

worst case, dest MUST have memory allocation for holding max(magnitude(op1), magnitude(op2))+1

bits.7

Panic Reasons

 If the Implementation detects any error.

7 The magnitude function is defined in section 8.7.5.

206/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.2 TEE_BigIntSub

void TEE_BigIntSub(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntSub function computes dest = op1 – op2. All or some of dest, op1, and op2 MAY

point to the same memory region.

Parameters

 dest: Pointer to TEE_BigInt to store the result op1 – op2

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1906

Result Size

Depending on the sign of op1 and op2, the result may be larger or smaller than op1 and op2. For the

worst case, the result MUST have memory allocation for holding max(magnitude(op1),
magnitude(op2))+1 bits.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 207/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.3 TEE_BigIntNeg

void TEE_BigIntNeg(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op);

Description

The TEE_BigIntNeg function negates an operand: dest = -op. dest and op MAY point to the same

memory region.

Parameters

 dest: Pointer to TEE_BigInt to store the result -op

 op: Pointer to the operand to be negated

Specification Number: 10 Function Number: 0x1904

Result Size

The result MUST have memory allocation for magnitude(op) bits.

Panic Reasons

 If the Implementation detects any error.

208/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.4 TEE_BigIntMul

void TEE_BigIntMul(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntMul function computes dest = op1 * op2. All or some of dest, op1, and op2 MAY

point to the same memory region.

Parameters

 dest: Pointer to TEE_BigInt to store the result op1 * op2

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1903

Result Size

The result MUST have memory allocation for (magnitude(op1) + magnitude(op2)) bits.

Panic Reasons

 If the Implementation detects any error.

8.8.5 TEE_BigIntSquare

void TEE_BigIntSquare(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op);

Description

The TEE_BigIntSquare function computes dest = op * op. dest and op MAY point to the same

memory region.

Parameters

 dest: Pointer to TEE_BigInt to store the result op * op

 op: Pointer to the operand to be squared

Specification Number: 10 Function Number: 0x1905

Result Size

The result MUST have memory allocation for 2*magnitude(op) bits.

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 209/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.8.6 TEE_BigIntDiv

void TEE_BigIntDiv(

 [out] TEE_BigInt *dest_q,

 [out] TEE_BigInt *dest_r,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntDiv function computes dest_r and dest_q such that op1 = dest_q * op2 +
dest_r. It will round dest_q towards zero and dest_r will have the same sign as op1.

Example:

op1 op2 dest_q dest_r Expression

 53 7 7 4 53 = 7*7 + 4

 -53 7 -7 -4 -53 = (-7)*7 + (-4)

 53 -7 -7 +4 53 = (-7)*(-7) + 4

 -53 -7 7 -4 -53 = 7*(-7) + (-4)

To call TEE_BigIntDiv with op2 equal to zero is considered a programming error and will cause the

Trusted Application to panic.

The memory pointed to by dest_q and dest_r MUST NOT overlap. However it is possible that
dest_q==op1, dest_q==op2, dest_r==op1, dest_r==op2, when dest_q and dest_r do not overlap.

If a NULL pointer is passed for either dest_q or dest_r, the implementation MAY take advantage of the

fact that it is only required to calculate either dest_q or dest_r.

Parameters

 dest_q: Pointer to a TEE_BigInt to store the quotient. dest_q can be NULL.

 dest_r: Pointer to a TEE_BigInt to store the remainder. dest_r can be NULL.

 op1: Pointer to the first operand, the dividend

 op2: Pointer to the second operand, the divisor

Specification Number: 10 Function Number: 0x1902

Result Sizes

The quotient, dest_q, MUST have memory allocation for 0 bytes if |op1| <= |op2| and
magnitude(op1) – magnitude(op2) if |op1| > |op2|.

The remainder dest_r MUST have memory allocation to hold magnitude(op2) bits.

Panic Reasons

 op2 == 0

 If the Implementation detects any other error.

210/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9 Modular Arithmetic Operations

To reduce the number of tests the modular functions needs to perform on entrance and to speed up the

performance, all modular functions (except TEE_BigIntMod) assume that input operands are normalized, i.e.

non-negative and smaller than the modulus, and the modulus SHALL be greater than one, otherwise it is a

Programmer Error and the behavior of these functions are undefined. This normalization can be done by using

the reduction function in section 8.9.1.

8.9.1 TEE_BigIntMod

void TEE_BigIntMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntMod function computes dest = op (mod n) such that 0 <= dest < n. dest and op
MAY point to the same memory region but n MUST point to a unique memory region. For negative op the

function follows the normal convention that -1 = (n-1) mod n.

Parameters

 dest: Pointer to TEE_BigInt to hold the result op (mod n). The result dest will be in the

interval [0, n-1].

 op: Pointer to the operand to be reduced mod n

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A03

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.8

Panic Reasons

 n<2

 If the Implementation detects any other error.

8 The magnitude function is defined in section 8.7.5.

TEE Internal Core API Specification – Public Release v1.1.1 211/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.2 TEE_BigIntAddMod

void TEE_BigIntAddMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntAddMod function computes dest = (op1 + op2) (mod n). All or some of dest, op1,

and op2 MAY point to the same memory region but n MUST point to a unique memory region.

Parameters

 dest: Pointer to TEE_BigInt to hold the result (op1 + op2) (mod n)

 op1: Pointer to the first operand. Operand MUST be in the interval [0,n-1].

 op2: Pointer to the second operand. Operand MUST be in the interval [0,n-1].

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A01

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons

 n<2

 If the Implementation detects any other error.

212/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.3 TEE_BigIntSubMod

void TEE_BigIntSubMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntSubMod function computes dest = (op1 - op2) (mod n). All or some of dest, op1,

and op2 MAY point to the same memory region but n MUST point to a unique memory region.

Parameters

 dest: Pointer to TEE_BigInt to hold the result (op1 - op2) (mod n)

 op1: Pointer to the first operand. Operand MUST be in the interval [0,n-1] .

 op2: Pointer to the second operand. Operand MUST be in the interval [0,n-1] .

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A06

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons

 n<2

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 213/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.4 TEE_BigIntMulMod

void TEE_BigIntMulMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntMulMod function computes dest = (op1 * op2) (mod n). All or some of dest, op1,

and op2 MAY point to the same memory region but n MUST point to a unique memory region.

Parameters

 dest: Pointer to TEE_BigInt to hold the result (op1 * op2) (mod n)

 op1: Pointer to the first operand. Operand MUST be in the interval [0,n-1].

 op2: Pointer to the second operand. Operand MUST be in the interval [0,n-1].

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A04

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons

 n<2

 If the Implementation detects any other error.

214/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.5 TEE_BigIntSquareMod

void TEE_BigIntSquareMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntSquareMod function computes dest = (op * op) (mod n). dest and op1 MAY point

to the same memory region but n MUST point to a unique memory region.

Parameters

 dest: Pointer to TEE_BigInt to hold the result (op * op) (mod n)

 op: Pointer to the operand. Operand MUST be in the interval [0,n-1].

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A05

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons

 n<2

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 215/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.9.6 TEE_BigIntInvMod

void TEE_BigIntInvMod(

 [out] TEE_BigInt *dest,

 [in] TEE_BigInt *op,

 [in] TEE_BigInt *n);

Description

The TEE_BigIntInvMod function computes dest such that dest * op = 1 (mod n). dest and op
MAY point to the same memory region. This function assumes that gcd(op,n) is equal to 1, which can be

checked by using the function in section 8.10.1. If gcd(op,n) is greater than 1 then the result is unreliable.

Parameters

 dest: Pointer to TEE_BigInt to hold the result (op^-1) (mod n)

 op: Pointer to the operand. Operand MUST be in the interval [1,n-1].

 n: Pointer to the modulus. Modulus MUST be larger than 1.

Specification Number: 10 Function Number: 0x1A02

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons

 n<2

 op = 0

 If the Implementation detects any other error.

216/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10 Other Arithmetic Operations

8.10.1 TEE_BigIntRelativePrime

bool TEE_BigIntRelativePrime(

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntRelativePrime function determines whether gcd(op1, op2)==1. op1 and op2 MAY

point to the same memory region.

Parameters

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1B03

Return Value

 true if gcd(op1, op2)==1

 false otherwise

 if any error is detected by the Implementation.

TEE Internal Core API Specification – Public Release v1.1.1 217/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10.2 TEE_BigIntComputeExtendedGcd

void TEE_BigIntComputeExtendedGcd(

 [out] TEE_BigInt *gcd,

 [out] TEE_BigInt *u,

 [out] TEE_BigInt *v,

 [in] TEE_BigInt *op1,

 [in] TEE_BigInt *op2);

Description

The TEE_BigIntComputeExtendedGcd function computes the greatest common divisor of the input

parameters op1 and op2. Furthermore it computes the coefficients u and v such that u*op1+v*op2==gcd.

op1 and op2 MAY point to the same memory region. u, v, or both can be NULL. If both are NULL then the

function only computes the gcd of op1 and op2.

Parameters

 gcd: Pointer to TEE_BigInt to hold the greatest common divisor of op1 and op2

 u: Pointer to TEE_BigInt to hold the first coefficient

 v: Pointer to TEE_BigInt to hold the second coefficient

 op1: Pointer to the first operand

 op2: Pointer to the second operand

Specification Number: 10 Function Number: 0x1B01

Result Sizes

 The gcd result MUST be able to hold max(magnitude(op1), magnitude(op2)) bits.9

o If op1 != 0, then the absolute value of v is in the range [0, |op1/gcd|-1].

o If op2 != 0, then the absolute value of u is in the range [0, |op2/gcd|-1].

 The absolute value of u is in the range [0, |op2/gcd|-1].10

 The absolute value of v is in the range [0, |op1/gcd|-1].

Panic Reasons

 If the Implementation detects any error.

9 The magnitude function is defined in section 8.7.5.

10 The notation |x| means the absolute value of x.

218/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.10.3 TEE_BigIntIsProbablePrime

int32_t TEE_BigIntIsProbablePrime(

 [in] TEE_BigInt *op,

 uint32_t confidenceLevel);

Description

The TEE_BigIntIsProbablePrime function performs a probabilistic primality test on op. The parameter
confidenceLevel is used to specify the probability of a non-conclusive answer. If the function cannot

guarantee that op is prime or composite, it MUST iterate the test until the probability that op is composite is

less than 2^(-confidenceLevel). Values smaller than 80 for confidenceLevel will not be recognized

and will default to 80. The maximum honored value of confidenceLevel is implementation-specific, but

MUST be at least 80.

The algorithm for performing the primality test is implementation-specific, but its correctness and efficiency

MUST be equal to or better than the Miller-Rabin test.

Parameters

 op: Candidate number that is tested for primality

 confidenceLevel: The desired confidence level for a non-conclusive test. This parameter (usually)

maps to the number of iterations and thus to the running time of the test. Values smaller than 80 will

be treated as 80.

Specification Number: 10 Function Number: 0x1B02

Return Value

 0: If op is a composite number

 1: If op is guaranteed to be prime

 -1: If the test is non-conclusive but the probability that op is composite is less than

2^(-confidenceLevel)

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 219/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11 Fast Modular Multiplication Operations

This part of the API allows the implementer of the TEE Internal Core API to give the TA developer access to

faster modular multiplication routines, possibly hardware accelerated. These functions MAY be implemented

using Montgomery or Barrett or any other suitable technique for fast modular multiplication. If no such support

is possible the functions in this section MAY be implemented using regular multiplication and modular

reduction. The data type TEE_BigIntFMM is used to represent the integers during repeated multiplications

such as when calculating a modular exponentiation. The internal representation of the TEE_BigIntFMM is

implementation-specific.

8.11.1 TEE_BigIntConvertToFMM

void TEE_BigIntConvertToFMM(

 [out] TEE_BigIntFMM *dest,

 [in] TEE_BigInt *src,

 [in] TEE_BigInt *n,

 [in] TEE_BigIntFMMContext *context);

Description

The TEE_BigIntConvertToFMM function converts src into a representation suitable for doing fast modular

multiplication. If the operation is successful, the result will be written in implementation-specific format into the

buffer dest, which MUST have been allocated by the TA and initialized using TEE_BigIntInitFMM.

Parameters

 dest: Pointer to an initialized TEE_BigIntFMM memory area

 src: Pointer to the TEE_BigInt to convert

 n: Pointer to the modulus

 context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext

Specification Number: 10 Function Number: 0x1C03

Panic Reasons

 If the Implementation detects any error.

220/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11.2 TEE_BigIntConvertFromFMM

void TEE_BigIntConvertFromFMM(

 [out] TEE_BigInt *dest,

 [in] TEE_BigIntFMM *src,

 [in] TEE_BigInt *n,

 [in] TEE_BigIntFMMContext *context);

Description

The TEE_BigIntConvertFromFMM function converts src in the fast modular multiplication representation

back to a TEE_BigInt representation.

Parameters

 dest: Pointer to an initialized TEE_BigInt memory area to hold the converted result

 src: Pointer to a TEE_BigIntFMM holding the value in the fast modular multiplication representation

 n: Pointer to the modulus

 context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext

Specification Number: 10 Function Number: 0x1C02

Panic Reasons

 If the Implementation detects any error.

TEE Internal Core API Specification – Public Release v1.1.1 221/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8.11.3 TEE_BigIntComputeFMM

void TEE_BigIntComputeFMM(

 [out] TEE_BigIntFMM *dest,

 [in] TEE_BigIntFMM *op1,

 [in] TEE_BigIntFMM *op2,

 [in] TEE_BigInt *n,

 [in] TEE_BigIntFMMContext *context);

Description

The TEE_BigIntComputeFMM function calculates dest = op1 * op2 in the fast modular multiplication

representation. The pointers dest, op1, and op2 MUST each point to a TEE_BigIntFMM which has

been previously initialized with the same modulus and context as used in this function call; otherwise the

result is undefined. All or some of dest, op1, and op2 MAY point to the same memory region.

Parameters

 dest: Pointer to TEE_BigIntFMM to hold the result op1 * op2 in the fast modular multiplication

representation

 op1: Pointer to the first operand

 op2: Pointer to the second operand

 n: Pointer to the modulus

 context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext

Specification Number: 10 Function Number: 0x1C01

Panic Reasons

 If the Implementation detects any error.

222/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex A Panicked Function Identification

If this specification is used in conjunction with the TEE TA Debug Specification ([Debug]), then the specification

number is 10 and the values listed in Table A-1 MUST be associated with the function declared.

Table A-1: Function Identification Values

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

TA Interface TA_CloseSessionEntryPoint 0x101 257

 TA_CreateEntryPoint 0x102 258

 TA_DestroyEntryPoint 0x103 259

 TA_InvokeCommandEntryPoint 0x104 260

 TA_OpenSessionEntryPoint 0x105 261

Property Access TEE_AllocatePropertyEnumerator 0x201 513

 TEE_FreePropertyEnumerator 0x202 514

 TEE_GetNextProperty 0x203 515

 TEE_GetPropertyAsBinaryBlock 0x204 516

 TEE_GetPropertyAsBool 0x205 517

 TEE_GetPropertyAsIdentity 0x206 518

 TEE_GetPropertyAsString 0x207 519

 TEE_GetPropertyAsU32 0x208 520

 TEE_GetPropertyAsUUID 0x209 521

 TEE_GetPropertyName 0x20A 522

 TEE_ResetPropertyEnumerator 0x20B 523

 TEE_StartPropertyEnumerator 0x20C 524

Panic Function TEE_Panic 0x301 769

Internal Client API TEE_CloseTASession 0x401 1025

 TEE_InvokeTACommand 0x402 1026

 TEE_OpenTASession 0x403 1027

Cancellation TEE_GetCancellationFlag 0x501 1281

 TEE_MaskCancellation 0x502 1282

 TEE_UnmaskCancellation 0x503 1283

TEE Internal Core API Specification – Public Release v1.1.1 223/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Memory Management TEE_CheckMemoryAccessRights 0x601 1537

 TEE_Free 0x602 1538

 TEE_GetInstanceData 0x603 1539

 TEE_Malloc 0x604 1540

 TEE_MemCompare 0x605 1541

 TEE_MemFill 0x606 1542

 TEE_MemMove 0x607 1543

 TEE_Realloc 0x608 1544

 TEE_SetInstanceData 0x609 1545

Generic Object TEE_CloseObject 0x701 1793

 TEE_GetObjectBufferAttribute 0x702 1794

 TEE_GetObjectInfo (deprecated) 0x703 1795

 TEE_GetObjectValueAttribute 0x704 1796

 TEE_RestrictObjectUsage (deprecated) 0x705 1797

 TEE_GetObjectInfo1 0x706 1798

 TEE_RestrictObjectUsage1 0x707 1799

Transient Object TEE_AllocateTransientObject 0x801 2049

 TEE_CopyObjectAttributes (deprecated) 0x802 2050

 TEE_FreeTransientObject 0x803 2051

 TEE_GenerateKey 0x804 2052

 TEE_InitRefAttribute 0x805 2053

 TEE_InitValueAttribute 0x806 2054

 TEE_PopulateTransientObject 0x807 2055

 TEE_ResetTransientObject 0x808 2056

 TEE_CopyObjectAttributes1 0x809 2057

Persistent Object TEE_CloseAndDeletePersistentObject
(deprecated)

0x901 2305

 TEE_CreatePersistentObject 0x902 2306

 TEE_OpenPersistentObject 0x903 2307

 TEE_RenamePersistentObject 0x904 2308

 TEE_CloseAndDeletePersistentObject1 0x905 2309

224/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Persistent Object

Enumeration

TEE_AllocatePersistentObjectEnumerator 0xA01 2561

TEE_FreePersistentObjectEnumerator 0xA02 2562

 TEE_GetNextPersistentObject 0xA03 2563

 TEE_ResetPersistentObjectEnumerator 0xA04 2564

 TEE_StartPersistentObjectEnumerator 0xA05 2565

Data Stream Access TEE_ReadObjectData 0xB01 2817

 TEE_SeekObjectData 0xB02 2818

 TEE_TruncateObjectData 0xB03 2819

 TEE_WriteObjectData 0xB04 2820

Generic Operation TEE_AllocateOperation 0xC01 3073

 TEE_CopyOperation 0xC02 3074

 TEE_FreeOperation 0xC03 3075

 TEE_GetOperationInfo 0xC04 3076

 TEE_ResetOperation 0xC05 3077

 TEE_SetOperationKey 0xC06 3078

 TEE_SetOperationKey2 0xC07 3079

 TEE_GetOperationInfoMultiple 0xC08 3080

Message Digest TEE_DigestDoFinal 0xD01 3329

 TEE_DigestUpdate 0xD02 3330

Symmetric Cipher TEE_CipherDoFinal 0xE01 3585

 TEE_CipherInit 0xE02 3586

 TEE_CipherUpdate 0xE03 3587

MAC TEE_MACCompareFinal 0xF01 3841

 TEE_MACComputeFinal 0xF02 3842

 TEE_MACInit 0xF03 3843

 TEE_MACUpdate 0xF04 3844

Authenticated

Encryption

TEE_AEDecryptFinal 0x1001 4097

TEE_AEEncryptFinal 0x1002 4098

 TEE_AEInit 0x1003 4099

 TEE_AEUpdate 0x1004 4100

 TEE_AEUpdateAAD 0x1005 4101

TEE Internal Core API Specification – Public Release v1.1.1 225/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Asymmetric TEE_AsymmetricDecrypt 0x1101 4353

 TEE_AsymmetricEncrypt 0x1102 4354

 TEE_AsymmetricSignDigest 0x1103 4355

 TEE_AsymmetricVerifyDigest 0x1104 4356

Key Derivation TEE_DeriveKey 0x1201 4609

Random Data

Generation

TEE_GenerateRandom 0x1301 4865

Time TEE_GetREETime 0x1401 5121

 TEE_GetSystemTime 0x1402 5122

 TEE_GetTAPersistentTime 0x1403 5123

 TEE_SetTAPersistentTime 0x1404 5124

 TEE_Wait 0x1405 5125

Memory Allocation

and Size of Objects

TEE_BigIntFMMContextSizeInU32 0x1501 5377

TEE_BigIntFMMSizeInU32 0x1502 5378

Initialization TEE_BigIntInit 0x1601 5633

 TEE_BigIntInitFMM 0x1602 5634

 TEE_BigIntInitFMMContext 0x1603 5635

Converter TEE_BigIntConvertFromOctetString 0x1701 5889

 TEE_BigIntConvertFromS32 0x1702 5890

 TEE_BigIntConvertToOctetString 0x1703 5891

 TEE_BigIntConvertToS32 0x1704 5892

Logical Operation TEE_BigIntCmp 0x1801 6145

 TEE_BigIntCmpS32 0x1802 6146

 TEE_BigIntGetBit 0x1803 6147

 TEE_BigIntGetBitCount 0x1804 6148

 TEE_BigIntShiftRight 0x1805 6149

Basic Arithmetic TEE_BigIntAdd 0x1901 6401

 TEE_BigIntDiv 0x1902 6402

 TEE_BigIntMul 0x1903 6403

 TEE_BigIntNeg 0x1904 6404

 TEE_BigIntSquare 0x1905 6405

 TEE_BigIntSub 0x1906 6406

226/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Category Function
Function
Number in
hexadecimal

Function
Number
in decimal

Modular Arithmetic TEE_BigIntAddMod 0x1A01 6657

 TEE_BigIntInvMod 0x1A02 6658

 TEE_BigIntMod 0x1A03 6659

 TEE_BigIntMulMod 0x1A04 6660

 TEE_BigIntSquareMod 0x1A05 6661

 TEE_BigIntSubMod 0x1A06 6662

Other Arithmetic TEE_BigIntComputeExtendedGcd 0x1B01 6913

 TEE_BigIntIsProbablePrime 0x1B02 6914

 TEE_BigIntRelativePrime 0x1B03 6915

Fast Modular

Multiplication

TEE_BigIntComputeFMM 0x1C01 7169

TEE_BigIntConvertFromFMM 0x1C02 7170

 TEE_BigIntConvertToFMM 0x1C03 7171

TEE Internal Core API Specification – Public Release v1.1.1 227/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Annex B Deprecated Functions, Identifiers, and
Values

B.1 Deprecated Functions

The functions in this section are deprecated and have been replaced by new functions as noted in their

descriptions. These functions will be removed at some future major revision of this specification. Note that

while new TA code SHOULD use the new functions, the old functions SHALL be present in an implementation

until removed from the specification.

B.1.1 TEE_GetObjectInfo – Deprecated

void TEE_GetObjectInfo(

 TEE_ObjectHandle object,

 [out] TEE_ObjectInfo* objectInfo);

Description

Use of this function is deprecated – new code SHOULD use the TEE_GetObjectInfo1 function instead.

The TEE_GetObjectInfo function returns the characteristics of an object. It fills in the following fields in the

structure TEE_ObjectInfo:

 objectType: The parameter objectType passed when the object was created. If the object is

corrupt then this field is set to TEE_TYPE_CORRUPTED_OBJECT and the rest of the fields are set to 0.

 keySize: Set to 0 for an uninitialized object

 maxKeySize

o For a persistent object, set to keySize

o For a transient object, set to the parameter maxKeySize passed to
TEE_AllocateTransientObject

 objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4. Initially set to
0xFFFFFFFF.

 dataSize

o For a persistent object, set to the current size of the data associated with the object

o For a transient object, always set to 0

 dataPosition

o For a persistent object, set to the current position in the data for this handle. Data positions for

different handles on the same object may differ.

o For a transient object, set to 0

 handleFlags: A bit vector containing one or more of the following flags:

o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object

o TEE_HANDLE_FLAG_INITIALIZED

 For a persistent object, always set

 For a transient object, initially cleared, then set when the object becomes initialized

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object

228/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters

 object: Handle of the object

 objectInfo: Pointer to a structure filled with the object information

Specification Number: 10 Function Number: 0x703

Panic Reasons

 object is not a valid opened object handle.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 229/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.2 TEE_RestrictObjectUsage – Deprecated

void TEE_RestrictObjectUsage(

 TEE_ObjectHandle object,

 uint32_t objectUsage);

Description

Use of this function is deprecated – new code SHOULD use the TEE_RestrictObjectUsage1 function

instead.

The TEE_RestrictObjectUsage function restricts the object usage flags of an object handle to contain at

most the flags passed in the objectUsage parameter.

For each bit in the parameter objectUsage:

 If the bit is set to 1, the corresponding usage flag in the object is left unchanged.

 If the bit is set to 0, the corresponding usage flag in the object is cleared.

For example, if the usage flags of the object are set to TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and

if objectUsage is set to TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining

usage flag in the object after calling the function TEE_RestrictObjectUsage is TEE_USAGE_ENCRYPT.

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent

object.

A transient object’s object usage flags are reset using the TEE_ResetTransientObject function. For a

transient object, resetting the object also clears all the key material stored in the container.

For a persistent object, setting the object usage MUST be an atomic operation.

If the supplied object is persistent and corruption is detected then this function does nothing and returns. The

object handle is not closed since the next use of the handle will return the corruption and delete it.

Parameters

 object: Handle on an object

 objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_XXX

constants defined in Table 5-4

Specification Number: 10 Function Number: 0x705

Panic Reasons

 object is not a valid opened object handle.

 If the Implementation detects any other error.

230/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.3 TEE_CopyObjectAttributes – Deprecated

void TEE_CopyObjectAttributes(

 TEE_ObjectHandle destObject,

 TEE_ObjectHandle srcObject);

Description

Use of this function is deprecated – new code SHOULD use the TEE_CopyObjectAttributes1 function

instead.

The TEE_CopyObjectAttributes function populates an uninitialized object handle with the attributes of

another object handle; that is, it populates the attributes of destObject with the attributes of srcObject.

It is most useful in the following situations:

 To extract the public key attributes from a key-pair object

 To copy the attributes from a persistent object into a transient object

destObject MUST refer to an uninitialized object handle and MUST therefore be a transient object.

The source and destination objects MUST have compatible types and sizes in the following sense:

 The type of destObject MUST be a subtype of srcObject, i.e. one of the conditions listed in

Table 5-11 MUST be true.

 The size of srcObject MUST be less than or equal to the maximum size of destObject.

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject
except that the attributes are taken from srcObject instead of from parameters.

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and

the object usage of srcObject.

If the source object is corrupt then this function copies no attributes and leaves the target object uninitialized.

Parameters

 destObject: Handle on an uninitialized transient object

 srcObject: Handle on an initialized object

Specification Number: 10 Function Number: 0x802

Panic Reasons

 srcObject is not initialized.

 destObject is initialized.

 The type and size of srcObject and destObject are not compatible.

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 231/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated

void TEE_CloseAndDeletePersistentObject(TEE_ObjectHandle object);

Description

Use of this function is deprecated – new code SHOULD use the TEE_CloseAndDeletePersistentObject1

function instead.

The TEE_CloseAndDeletePersistentObject function marks an object for deletion and closes the object

handle.

The object handle MUST have been opened with the write-meta access right, which means access to the

object is exclusive.

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open

handles for the object exist. This SHALL be the case even if the object or the storage containing it have become

corrupted.

If the storage containing the object is unavailable then this routine SHALL panic.

If object is TEE_HANDLE_NULL, the function does nothing.

Parameters

 object: The object handle

Specification Number: 10 Function Number: 0x901

Panic Reasons

 object is not a valid handle on a persistent object opened with the write-meta access right.

 If the storage containing the object is now inaccessible

 If the Implementation detects any other error.

TEE Internal Core API Specification – Public Release v1.1.1 232/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

B.2 Deprecated Identifiers

A typo introduced an incorrect object identifier. The deprecated identifier will be removed at some future major revision of this specification. Note that while

new TA code SHOULD use the new identifier, the old identifier SHALL be recognized in an implementation until removed from the specification.

Table B-1: Deprecated Object Identifier

Identifier in v1.1 Replacement Identifier

TEE_TYPE_CORRUPTED* TEE_TYPE_CORRUPTED_OBJECT

* As the value of the deprecated identifier was not previously formally defined, that value SHOULD be the same as the value of the Replacement

Identifier. This value can be found in Table 6-13.

Table B-2 lists deprecated algorithm identifiers and their replacements. The deprecated identifiers will be removed at some future major revision of this

specification. Note that while new TA code SHOULD use the new identifiers, the old identifiers SHALL be recognized in an implementation until removed

from the specification.

Table B-2: Deprecated Algorithm Identifiers

Identifier in v1.1 Replacement Identifier

DSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE_ALG_DSA_2048_SHA224* TEE_ALG_DSA_SHA224

TEE_ALG_DSA_2048_SHA256* TEE_ALG_DSA_SHA256

TEE_ALG_DSA_3072_SHA256* TEE_ALG_DSA_SHA256

In some cases an incomplete identifier was used for DSA algorithms.

ALG_DSA_SHA1* TEE_ALG_DSA_SHA1

ALG_DSA_SHA224* TEE_ALG_DSA_SHA224

ALG_DSA_SHA256* TEE_ALG_DSA_SHA256

In some cases the ECDSA algorithm was not sufficiently defined and did not indicate digest size.

TEE_ALG_ECDSA* TEE_ALG_ECDSA_SHA512

TEE Internal Core API Specification – Public Release v1.1.1 233/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Identifier in v1.1 Replacement Identifier

ECDSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE_ALG_ECDSA_P192* TEE_ALG_ECDSA_SHA1

TEE_ALG_ECDSA_P224* TEE_ALG_ECDSA_SHA224

TEE_ALG_ECDSA_P256* TEE_ALG_ECDSA_SHA256

TEE_ALG_ECDSA_P384* TEE_ALG_ECDSA_SHA384

TEE_ALG_ECDSA_P521* TEE_ALG_ECDSA_SHA512

A number of algorithm identifier declarations mistakenly included “_NIST” and/or the curve type. The curve type can be found in the key material._

TEE_ALG_ECDH_NIST_P192_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_P192_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P224_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_P224_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P256_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_P256_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P384_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_P284_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_NIST_P521_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_P521_DERIVE_SHARED_SECRET

A number of algorithm identifiers were declared without the clarification they were associated with shared secret derivation

TEE_ALG_ECDH_P192 TEE_ALG_ECDH_P192_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P224 TEE_ALG_ECDH_P_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P256 TEE_ALG_ECDH_P2_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P384 TEE_ALG_ECDH_P_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P521 TEE_ALG_ECDH_P_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P192_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P224_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P256_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P384_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH_P521_DERIVE_SHARED_SECRET+ TEE_ALG_ECDH_DERIVE_SHARED_SECRET

TEE Internal Core API Specification – Public Release v1.1.1 234/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

* As the values of the deprecated algorithm identifiers were not previously formally defined, those values SHOULD be the same as the values of the

Replacement Identifier. In each case, this value can be found in Table 6-11.

+ As the values of the deprecated algorithm identifiers were not previously formally defined. those values SHOULD be the same as the values of the

deprecated TEE_ALG_ECDH_Pxxx equivalent. In each case, the particular value can be found in Table 6-11.

TEE Internal Core API Specification – Public Release v1.1.1 235/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Annex C Normative References for Algorithms

This annex provides normative references for the algorithms discussed earlier in this document.

Table C-1: Normative References for Algorithms

Name References URL

TEE_ALG_AES_ECB_NOPAD

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

FIPS 197 (AES)

NIST SP800-38A (ECB,

CBC, CTR)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

TEE_ALG_AES_CTS FIPS 197 (AES)

NIST SP800-38A

Addendum (CTS = CBC-

CS3)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-

nist_sp800-38A.pdfhttp://csrc.nist.gov/publications/nistpubs/800-

38a/addendum-to-nist_sp800-8A.pdf

TEE_ALG_AES_XTS IEEE Std 1619-2007 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=449343

1

TEE_ALG_AES_CCM FIPS 197 (AES)

RFC 3610 (CCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://tools.ietf.org/html/rfc3610

TEE_ALG_AES_GCM FIPS 197 (AES)

NIST 800-38D (GCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

TEE_ALG_DES_ECB_NOPAD

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD

TEE_ALG_DES3_CBC_NOPAD

FIPS 46 (DES, 3DES)

FIPS 81 (ECB, CBC)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

http://www.itl.nist.gov/fipspubs/fip81.htm

TEE_ALG_AES_CBC_MAC_NOPAD

TEE_ALG_AES_CBC_MAC_PKCS5

TEE_ALG_DES_CBC_MAC_NOPAD

TEE_ALG_DES_CBC_MAC_PKCS5

TEE_ALG_DES3_CBC_MAC_NOPAD

TEE_ALG_DES3_CBC_MAC_PKCS5

FIPS 46 (DES, 3DES)

FIPS 197 (AES)

RFC 1423 (PKCS5 Pad)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://tools.ietf.org/html/rfc1423

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3610
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc1423

TEE Internal Core API Specification – Public Release v1.1.1 236/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL

TEE_ALG_AES_CMAC FIPS 197 (AES)

NIST SP800-38B (CMAC)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

TEE_ALG_RSASSA_PKCS1_V1_5_MD5

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

TEE_ALG_RSASSA_PKCS1_V1_5_SHA256

TEE_ALG_RSASSA_PKCS1_V1_5_SHA384

TEE_ALG_RSASSA_PKCS1_V1_5_SHA512

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

PKCS #1 (RSA, PKCS1

v1.5, PSS)

RFC 1321 (MD5)

FIPS 180-4 (SHA-1,

SHA-2)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://tools.ietf.org/html/rfc1321

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_DSA_SHA1

TEE_ALG_DSA_2048_SHA224

TEE_ALG_DSA_2048_SHA256

TEE_ALG_DSA_3072_SHA256

FIPS 180-4 (SHA-1)

FIPS 186-2 (DSA)*

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

TEE_ALG_RSAES_PKCS1_V1_5

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

PKCS #1 (RSA,

PKCS1 v1.5, OAEP)

FIPS 180-4 (SHA-1,

SHA-2)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_RSA_NOPAD PKCS #1 (RSA primitive) ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

TEE_ALG_DH_DERIVE_SHARED_SECRET PKCS #3 ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps

TEE_ALG_MD5 RFC 1321 http://tools.ietf.org/html/rfc1321

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps
http://tools.ietf.org/html/rfc1321

TEE Internal Core API Specification – Public Release v1.1.1 237/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL

TEE_ALG_SHA1

TEE_ALG_SHA224

TEE_ALG_SHA256

TEE_ALG_SHA384

TEE_ALG_SHA512

FIPS 180-4 http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_HMAC_MD5

TEE_ALG_HMAC_SHA1

RFC 2202 http://tools.ietf.org/html/rfc2202

TEE_ALG_HMAC_SHA224

TEE_ALG_HMAC_SHA256

TEE_ALG_HMAC_SHA384

TEE_ALG_HMAC_SHA512

RFC 4231 http://tools.ietf.org/html/rfc4231

TEE_ALG_ECDSA_SHA1_P192

TEE_ALG_ECDSA_SHA224_P224

TEE_ALG_ECDSA_SHA256_P256

TEE_ALG_ECDSA_SHA384_P384

TEE_ALG_ECDSA_SHA512_P521

FIPS 186-4*

ANSI X9.62

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

TEE_ALG_ECDH _P192_DERIVE_SHARED_
SECRET

TEE_ALG_ECDH_P224_DERIVE_SHARED_
SECRET

TEE_ALG_ECDH_P256_DERIVE_SHARED_
SECRET

TEE_ALG_ECDH_P384_DERIVE_SHARED_
SECRET

TEE_ALG_ECDH_P521_DERIVE_SHARED_
SECRET

NIST SP800-56A,

Cofactor Static Unified

Model

FIPS 186-4* (curve

definitions)

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

56Ar2.pdf

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-

56A_Revision1_Mar08-2007.pdf

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc2202
http://tools.ietf.org/html/rfc4231
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

TEE Internal Core API Specification – Public Release v1.1.1 238/242

 Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Name References URL

* This specification follows a superset of both FIPS 186-2 and

FIPS 186-4. Available key sizes are defined in this specification and so

no key size exclusions in FIPS 186-2 or FIPS 186-4 apply to this

specification. Otherwise, when applied to this specification, if

FIPS 186-4 conflicts with FIPS 186-2, then FIPS 186-4 is taken as

definitive.

TEE Internal Core API Specification – Public Release v1.1.1 239/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Functions

TA_CloseSessionEntryPoint, 46

TA_CreateEntryPoint, 44

TA_DestroyEntryPoint, 45

TA_InvokeCommandEntryPoint, 47

TA_OpenSessionEntryPoint, 45

TEE_AEDecryptFinal, 164

TEE_AEEncryptFinal, 163

TEE_AEInit, 160

TEE_AEUpdate, 162

TEE_AEUpdateAAD, 161

TEE_AllocateOperation, 137

TEE_AllocatePersistentObjectEnumerator, 125

TEE_AllocatePropertyEnumerator, 60

TEE_AllocateTransientObject, 103

TEE_AsymmetricDecrypt, 165

TEE_AsymmetricEncrypt, 165

TEE_AsymmetricSignDigest, 167

TEE_AsymmetricVerifyDigest, 169

TEE_BigIntAdd, 203

TEE_BigIntAddMod, 209

TEE_BigIntCmp, 200

TEE_BigIntCmpS32, 200

TEE_BigIntComputeExtendedGcd, 215

TEE_BigIntComputeFMM, 219

TEE_BigIntConvertFromFMM, 218

TEE_BigIntConvertFromOctetString, 197

TEE_BigIntConvertFromS32, 198

TEE_BigIntConvertToFMM, 217

TEE_BigIntConvertToOctetString, 198

TEE_BigIntConvertToS32, 199

TEE_BigIntDiv, 207

TEE_BigIntFMMContextSizeInU32, 193

TEE_BigIntFMMSizeInU32, 193

TEE_BigIntGetBit, 202

TEE_BigIntGetBitCount, 202

TEE_BigIntInit, 194

TEE_BigIntInitFMM, 196

TEE_BigIntInitFMMContext, 195

TEE_BigIntInvMod, 213

TEE_BigIntIsProbablePrime, 216

TEE_BigIntMod, 208

TEE_BigIntMul, 206

TEE_BigIntMulMod, 211

TEE_BigIntNeg, 205

TEE_BigIntRelativePrime, 214

TEE_BigIntShiftRight, 201

TEE_BigIntSizeInU32 (macro), 192

TEE_BigIntSquare, 206

TEE_BigIntSquareMod, 212

TEE_BigIntSub, 204

TEE_BigIntSubMod, 210

TEE_CheckMemoryAccessRights, 79

TEE_CipherDoFinal, 155

TEE_CipherInit, 152

TEE_CipherUpdate, 154

TEE_CloseAndDeletePersistentObject
(deprecated), 229

TEE_CloseAndDeletePersistentObject1, 123

TEE_CloseObject, 102

TEE_CloseTASession, 73

TEE_CopyObjectAttributes (deprecated), 228

TEE_CopyObjectAttributes1, 111

TEE_CopyOperation, 149

TEE_CreatePersistentObject, 118

TEE_DeriveKey, 171

TEE_DigestDoFinal, 151

TEE_DigestUpdate, 150

TEE_Free, 86

TEE_FreeOperation, 141

TEE_FreePersistentObjectEnumerator, 125

TEE_FreePropertyEnumerator, 61

TEE_FreeTransientObject, 105

TEE_GenerateKey, 113

TEE_GenerateRandom, 173

TEE_GetCancellationFlag, 77

TEE_GetInstanceData, 83

TEE_GetNextPersistentObject, 128

TEE_GetNextProperty, 63

TEE_GetObjectBufferAttribute, 99

TEE_GetObjectInfo (deprecated), 225

TEE_GetObjectInfo1, 96

TEE_GetObjectValueAttribute, 101

TEE_GetOperationInfo, 142

TEE_GetOperationInfoMultiple, 143

TEE_GetPropertyAsBinaryBlock, 57

TEE_GetPropertyAsBool, 55

TEE_GetPropertyAsIdentity, 59

TEE_GetPropertyAsString, 54

TEE_GetPropertyAsU32, 56

TEE_GetPropertyAsUUID, 58

TEE_GetPropertyName, 62

TEE_GetREETime, 188

240/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE_GetSystemTime, 184

TEE_GetTAPersistentTime, 186

TEE_InitRefAttribute, 110

TEE_InitValueAttribute, 110

TEE_InvokeTACommand, 74

TEE_MACCompareFinal, 159

TEE_MACComputeFinal, 158

TEE_MACInit, 156

TEE_MACUpdate, 157

TEE_Malloc, 84

TEE_MaskCancellation, 78

TEE_MemCompare, 87

TEE_MemFill, 88

TEE_MemMove, 86

TEE_OpenPersistentObject, 116

TEE_OpenTASession, 72

TEE_Panic, 71

TEE_PopulateTransientObject, 106

TEE_ReadObjectData, 129

TEE_Realloc, 85

TEE_RenamePersistentObject, 124

TEE_ResetOperation, 145

TEE_ResetPersistentObjectEnumerator, 126

TEE_ResetPropertyEnumerator, 62

TEE_ResetTransientObject, 105

TEE_RestrictObjectUsage (deprecated), 227

TEE_RestrictObjectUsage1, 98

TEE_SeekObjectData, 132

TEE_SetInstanceData, 82

TEE_SetOperationKey, 146

TEE_SetOperationKey2, 148

TEE_SetTAPersistentTime, 188

TEE_StartPersistentObjectEnumerator, 127

TEE_StartPropertyEnumerator, 61

TEE_TruncateObjectData, 131

TEE_UnmaskCancellation, 78

TEE_Wait, 185

TEE_WriteObjectData, 130

TEE Internal Core API Specification – Public Release v1.1.1 241/242

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Functions by Category

Asymmetric

TEE_AsymmetricDecrypt, 165
TEE_AsymmetricEncrypt, 165
TEE_AsymmetricSignDigest, 167
TEE_AsymmetricVerifyDigest, 169

Authenticated Encryption

TEE_AEDecryptFinal, 164
TEE_AEEncryptFinal, 163
TEE_AEInit, 160
TEE_AEUpdate, 162
TEE_AEUpdateAAD, 161

Basic Arithmetic

TEE_BigIntAdd, 203
TEE_BigIntDiv, 207
TEE_BigIntMul, 206
TEE_BigIntNeg, 205
TEE_BigIntSquare, 206
TEE_BigIntSub, 204

Cancellation

TEE_GetCancellationFlag, 77
TEE_MaskCancellation, 78
TEE_UnmaskCancellation, 78

Converter

TEE_BigIntConvertFromOctetString, 197
TEE_BigIntConvertFromS32, 198
TEE_BigIntConvertToOctetString, 198
TEE_BigIntConvertToS32, 199

Data Stream Access

TEE_ReadObjectData, 129
TEE_SeekObjectData, 132
TEE_TruncateObjectData, 131
TEE_WriteObjectData, 130

Deprecated

TEE_CloseAndDeletePersistentObject, 229
TEE_CopyObjectAttributes, 228
TEE_GetObjectInfo, 225
TEE_RestrictObjectUsage, 227

Fast Modular Multiplication

TEE_BigIntComputeFMM, 219
TEE_BigIntConvertFromFMM, 218
TEE_BigIntConvertToFMM, 217

Generic Object

TEE_CloseObject, 102
TEE_GetObjectBufferAttribute, 99
TEE_GetObjectInfo (deprecated), 225
TEE_GetObjectInfo1, 96
TEE_GetObjectValueAttribute, 101
TEE_RestrictObjectUsage (deprecated), 227
TEE_RestrictObjectUsage1, 98

Generic Operation

TEE_AllocateOperation, 137
TEE_CopyOperation, 149
TEE_FreeOperation, 141
TEE_GetOperationInfo, 142
TEE_GetOperationInfoMultiple, 143
TEE_ResetOperation, 145
TEE_SetOperationKey, 146
TEE_SetOperationKey2, 148

Initialization

TEE_BigIntInit, 194
TEE_BigIntInitFMM, 196
TEE_BigIntInitFMMContext, 195

Internal Client API

TEE_CloseTASession, 73
TEE_InvokeTACommand, 74
TEE_OpenTASession, 72

Key Derivation

TEE_DeriveKey, 171

Logical Operation

TEE_BigIntCmp, 200
TEE_BigIntCmpS32, 200
TEE_BigIntGetBit, 202
TEE_BigIntGetBitCount, 202
TEE_BigIntShiftRight, 201

MAC

TEE_MACCompareFinal, 159
TEE_MACComputeFinal, 158
TEE_MACInit, 156
TEE_MACUpdate, 157

Memory Allocation and Size of Objects

TEE_BigIntFMMContextSizeInU32, 193
TEE_BigIntFMMSizeInU32, 193
TEE_BigIntSizeInU32 (macro), 192

Memory Management

TEE_CheckMemoryAccessRights, 79
TEE_Free, 86
TEE_GetInstanceData, 83
TEE_Malloc, 84
TEE_MemCompare, 87
TEE_MemFill, 88
TEE_MemMove, 86
TEE_Realloc, 85
TEE_SetInstanceData, 82

Message Digest

TEE_DigestDoFinal, 151
TEE_DigestUpdate, 150

Modular Arithmetic

TEE_BigIntAddMod, 209
TEE_BigIntInvMod, 213
TEE_BigIntMod, 208

242/242 TEE Internal Core API Specification – Public Release v1.1.1

Copyright 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE_BigIntMulMod, 211
TEE_BigIntSquareMod, 212
TEE_BigIntSubMod, 210

Other Arithmetic

TEE_BigIntComputeExtendedGcd, 215
TEE_BigIntIsProbablePrime, 216
TEE_BigIntRelativePrime, 214

Panic Function

TEE_Panic, 71

Persistent Object

TEE_CloseAndDeletePersistentObject
(deprecated), 229

TEE_CloseAndDeletePersistentObject1, 123
TEE_CreatePersistentObject, 118
TEE_OpenPersistentObject, 116
TEE_RenamePersistentObject, 124

Persistent Object Enumeration

TEE_AllocatePersistentObjectEnumerator, 125
TEE_FreePersistentObjectEnumerator, 125
TEE_GetNextPersistentObject, 128
TEE_ResetPersistentObjectEnumerator, 126
TEE_StartPersistentObjectEnumerator, 127

Property Access

TEE_AllocatePropertyEnumerator, 60
TEE_FreePropertyEnumerator, 61
TEE_GetNextProperty, 63
TEE_GetPropertyAsBinaryBlock, 57
TEE_GetPropertyAsBool, 55
TEE_GetPropertyAsIdentity, 59
TEE_GetPropertyAsString, 54
TEE_GetPropertyAsU32, 56
TEE_GetPropertyAsUUID, 58

TEE_GetPropertyName, 62
TEE_ResetPropertyEnumerator, 62
TEE_StartPropertyEnumerator, 61

Random Data Generation

TEE_GenerateRandom, 173

Symmetric Cipher

TEE_CipherDoFinal, 155
TEE_CipherInit, 152
TEE_CipherUpdate, 154

TA Interface

TA_CloseSessionEntryPoint, 46
TA_CreateEntryPoint, 44
TA_DestroyEntryPoint, 45
TA_InvokeCommandEntryPoint, 47
TA_OpenSessionEntryPoint, 45

Time

TEE_GetREETime, 188
TEE_GetSystemTime, 184
TEE_GetTAPersistentTime, 186
TEE_SetTAPersistentTime, 188
TEE_Wait, 185

Transient Object

TEE_AllocateTransientObject, 103
TEE_CopyObjectAttributes (deprecated), 228
TEE_CopyObjectAttributes1, 111
TEE_FreeTransientObject, 105
TEE_GenerateKey, 113
TEE_InitRefAttribute, 110
TEE_InitValueAttribute, 110
TEE_PopulateTransientObject, 106
TEE_ResetTransientObject, 105

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Overview of the TEE Internal Core API Specification
	2.1 Trusted Applications
	2.1.1 TA Interface
	2.1.2 Instances, Sessions, Tasks, and Commands
	2.1.3 Sequential Execution of Entry Points
	2.1.4 Cancellations
	2.1.5 Unexpected Client Termination
	2.1.6 Instance Types
	2.1.7 Configuration, Development, and Management

	2.2 TEE Internal Core APIs
	2.2.1 Trusted Core Framework API
	2.2.2 Trusted Storage API for Data and Keys
	2.2.3 Cryptographic Operations API
	2.2.4 Time API
	2.2.5 TEE Arithmetical API

	2.3 Error Handling
	2.3.1 Normal Errors
	2.3.2 Programmer Errors
	2.3.3 Panics

	2.4 Opaque Handles
	2.5 Properties

	3 Common Definitions
	3.1 Header File
	3.2 Data Types
	3.2.1 Basic Types
	3.2.2 Bit Numbering
	3.2.3 TEE_Result, TEEC_Result
	3.2.4 TEE_UUID, TEEC_UUID

	3.3 Constants
	3.3.1 Return Code Ranges and Format
	3.3.2 Return Codes

	3.4 Parameter Annotations
	3.4.1 [in], [out], and [inout]
	3.4.2 [outopt]
	3.4.3 [inbuf]
	3.4.4 [outbuf]
	3.4.5 [outbufopt]
	3.4.6 [instring] and [instringopt]
	3.4.7 [outstring] and [outstringopt]
	3.4.8 [ctx]

	4 Trusted Core Framework API
	4.1 Data Types
	4.1.1 TEE_Identity
	4.1.2 TEE_Param
	4.1.3 TEE_TASessionHandle
	4.1.4 TEE_PropSetHandle

	4.2 Constants
	4.2.1 Parameter Types
	4.2.2 Login Types
	4.2.3 Origin Codes
	4.2.4 Property Set Pseudo-Handles
	4.2.5 Memory Access Rights

	4.3 TA Interface
	4.3.1 TA_CreateEntryPoint
	4.3.2 TA_DestroyEntryPoint
	4.3.3 TA_OpenSessionEntryPoint
	4.3.4 TA_CloseSessionEntryPoint
	4.3.5 TA_InvokeCommandEntryPoint
	4.3.6 Operation Parameters in the TA Interface
	4.3.6.1 Content of paramTypes Argument
	4.3.6.2 Initial Content of params Argument
	4.3.6.3 Behavior of the Framework when the Trusted Application Returns
	4.3.6.4 Memory Reference and Memory Synchronization

	4.4 Property Access Functions
	4.4.1 TEE_GetPropertyAsString
	4.4.2 TEE_GetPropertyAsBool
	4.4.3 TEE_GetPropertyAsU32
	4.4.4 TEE_GetPropertyAsBinaryBlock
	4.4.5 TEE_GetPropertyAsUUID
	4.4.6 TEE_GetPropertyAsIdentity
	4.4.7 TEE_AllocatePropertyEnumerator
	4.4.8 TEE_FreePropertyEnumerator
	4.4.9 TEE_StartPropertyEnumerator
	4.4.10 TEE_ResetPropertyEnumerator
	4.4.11 TEE_GetPropertyName
	4.4.12 TEE_GetNextProperty

	4.5 Trusted Application Configuration Properties
	4.6 Client Properties
	4.7 Implementation Properties
	4.8 Panics
	4.8.1 TEE_Panic

	4.9 Internal Client API
	4.9.1 TEE_OpenTASession
	4.9.2 TEE_CloseTASession
	4.9.3 TEE_InvokeTACommand
	4.9.4 Operation Parameters in the Internal Client API

	4.10 Cancellation Functions
	4.10.1 TEE_GetCancellationFlag
	4.10.2 TEE_UnmaskCancellation
	4.10.3 TEE_MaskCancellation

	4.11 Memory Management Functions
	4.11.1 TEE_CheckMemoryAccessRights
	4.11.2 TEE_SetInstanceData
	4.11.3 TEE_GetInstanceData
	4.11.4 TEE_Malloc
	4.11.5 TEE_Realloc
	4.11.6 TEE_Free
	4.11.7 TEE_MemMove
	4.11.8 TEE_MemCompare
	4.11.9 TEE_MemFill

	5 Trusted Storage API for Data and Keys
	5.1 Summary of Features and Design
	5.2 Trusted Storage and Rollback Detection
	5.3 Data Types
	5.3.1 TEE_Attribute
	5.3.2 TEE_ObjectInfo
	5.3.3 TEE_Whence
	5.3.4 TEE_ObjectHandle
	5.3.5 TEE_ObjectEnumHandle

	5.4 Constants
	5.4.1 Constants Used in Trusted Storage API for Data and Keys
	5.4.2 Constants Used in Cryptographic Operations API

	5.5 Generic Object Functions
	5.5.1 TEE_GetObjectInfo1
	5.5.2 TEE_RestrictObjectUsage1
	5.5.3 TEE_GetObjectBufferAttribute
	5.5.4 TEE_GetObjectValueAttribute
	5.5.5 TEE_CloseObject

	5.6 Transient Object Functions
	5.6.1 TEE_AllocateTransientObject
	5.6.2 TEE_FreeTransientObject
	5.6.3 TEE_ResetTransientObject
	5.6.4 TEE_PopulateTransientObject
	5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute
	5.6.6 TEE_CopyObjectAttributes1
	5.6.7 TEE_GenerateKey

	5.7 Persistent Object Functions
	5.7.1 TEE_OpenPersistentObject
	5.7.2 TEE_CreatePersistentObject
	5.7.3 Persistent Object Sharing Rules
	5.7.4 TEE_CloseAndDeletePersistentObject1
	5.7.5 TEE_RenamePersistentObject

	5.8 Persistent Object Enumeration Functions
	5.8.1 TEE_AllocatePersistentObjectEnumerator
	5.8.2 TEE_FreePersistentObjectEnumerator
	5.8.3 TEE_ResetPersistentObjectEnumerator
	5.8.4 TEE_StartPersistentObjectEnumerator
	5.8.5 TEE_GetNextPersistentObject

	5.9 Data Stream Access Functions
	5.9.1 TEE_ReadObjectData
	5.9.2 TEE_WriteObjectData
	5.9.3 TEE_TruncateObjectData
	5.9.4 TEE_SeekObjectData

	6 Cryptographic Operations API
	6.1 Data Types
	6.1.1 TEE_OperationMode
	6.1.2 TEE_OperationInfo
	6.1.3 TEE_OperationInfoMultiple
	6.1.4 TEE_OperationHandle

	6.2 Generic Operation Functions
	6.2.1 TEE_AllocateOperation
	6.2.2 TEE_FreeOperation
	6.2.3 TEE_GetOperationInfo
	6.2.4 TEE_GetOperationInfoMultiple
	6.2.5 TEE_ResetOperation
	6.2.6 TEE_SetOperationKey
	6.2.7 TEE_SetOperationKey2
	6.2.8 TEE_CopyOperation

	6.3 Message Digest Functions
	6.3.1 TEE_DigestUpdate
	6.3.2 TEE_DigestDoFinal

	6.4 Symmetric Cipher Functions
	6.4.1 TEE_CipherInit
	6.4.2 TEE_CipherUpdate
	6.4.3 TEE_CipherDoFinal

	6.5 MAC Functions
	6.5.1 TEE_MACInit
	6.5.2 TEE_MACUpdate
	6.5.3 TEE_MACComputeFinal
	6.5.4 TEE_MACCompareFinal

	6.6 Authenticated Encryption Functions
	6.6.1 TEE_AEInit
	6.6.2 TEE_AEUpdateAAD
	6.6.3 TEE_AEUpdate
	6.6.4 TEE_AEEncryptFinal
	6.6.5 TEE_AEDecryptFinal

	6.7 Asymmetric Functions
	6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt
	6.7.2 TEE_AsymmetricSignDigest
	6.7.3 TEE_AsymmetricVerifyDigest

	6.8 Key Derivation Functions
	6.8.1 TEE_DeriveKey

	6.9 Random Data Generation Function
	6.9.1 TEE_GenerateRandom

	6.10 Cryptographic Algorithms Specification
	6.10.1 List of Algorithm Identifiers
	6.10.2 Object Types
	6.10.3 Elliptic Curve Types

	6.11 Object or Operation Attributes

	7 Time API
	7.1 Data Types
	7.1.1 TEE_Time

	7.2 Time Functions
	7.2.1 TEE_GetSystemTime
	7.2.2 TEE_Wait
	7.2.3 TEE_GetTAPersistentTime
	7.2.4 TEE_SetTAPersistentTime
	7.2.5 TEE_GetREETime

	8 TEE Arithmetical API
	8.1 Introduction
	8.2 Error Handling and Parameter Checking
	8.3 Data Types
	8.3.1 TEE_BigInt
	8.3.2 TEE_BigIntFMMContext
	8.3.3 TEE_BigIntFMM

	8.4 Memory Allocation and Size of Objects
	8.4.1 TEE_BigIntSizeInU32
	8.4.2 TEE_BigIntFMMContextSizeInU32
	8.4.3 TEE_BigIntFMMSizeInU32

	8.5 Initialization Functions
	8.5.1 TEE_BigIntInit
	8.5.2 TEE_BigIntInitFMMContext
	8.5.3 TEE_BigIntInitFMM

	8.6 Converter Functions
	8.6.1 TEE_BigIntConvertFromOctetString
	8.6.2 TEE_BigIntConvertToOctetString
	8.6.3 TEE_BigIntConvertFromS32
	8.6.4 TEE_BigIntConvertToS32

	8.7 Logical Operations
	8.7.1 TEE_BigIntCmp
	8.7.2 TEE_BigIntCmpS32
	8.7.3 TEE_BigIntShiftRight
	8.7.4 TEE_BigIntGetBit
	8.7.5 TEE_BigIntGetBitCount

	8.8 Basic Arithmetic Operations
	8.8.1 TEE_BigIntAdd
	8.8.2 TEE_BigIntSub
	8.8.3 TEE_BigIntNeg
	8.8.4 TEE_BigIntMul
	8.8.5 TEE_BigIntSquare
	8.8.6 TEE_BigIntDiv

	8.9 Modular Arithmetic Operations
	8.9.1 TEE_BigIntMod
	8.9.2 TEE_BigIntAddMod
	8.9.3 TEE_BigIntSubMod
	8.9.4 TEE_BigIntMulMod
	8.9.5 TEE_BigIntSquareMod
	8.9.6 TEE_BigIntInvMod

	8.10 Other Arithmetic Operations
	8.10.1 TEE_BigIntRelativePrime
	8.10.2 TEE_BigIntComputeExtendedGcd
	8.10.3 TEE_BigIntIsProbablePrime

	8.11 Fast Modular Multiplication Operations
	8.11.1 TEE_BigIntConvertToFMM
	8.11.2 TEE_BigIntConvertFromFMM
	8.11.3 TEE_BigIntComputeFMM

	Annex A Panicked Function Identification
	Annex B Deprecated Functions, Identifiers, and Values
	B.1 Deprecated Functions
	B.1.1 TEE_GetObjectInfo – Deprecated
	B.1.2 TEE_RestrictObjectUsage – Deprecated
	B.1.3 TEE_CopyObjectAttributes – Deprecated
	B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated

	B.2 Deprecated Identifiers

	Annex C Normative References for Algorithms

		2016-08-18T16:24:19-0700
	Document Management

