GL-BALPLATFORM®

THE STANDARD FOR MANAGING APPLICATIONS ON SECURE CHIP TECHNOLOGY

GlobalPlatform Device Technology

TEE Internal Core API Specification
Version 1.1.1

Public Release
June 2016

Document Reference: GPD_SPE_010

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual
property rights (collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of
the specification or other work product set forth in this document, and to provide supporting documentation. The technology
provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY

OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 3/242

Contents
INEFOTUCTION L.ttt 12
11 F N E o =g ot R OTPRP PP 12
1.2 | = DTl = 1 1 = S PP PP SR 12
1.3] (=] (=] [T TP PP P P TP PR PPPPPPPPPPT 13
1.4 Terminology and DEfiNItIONS.c..ii et s e e e eas 13
1.5 Abbreviations and NOLALIONSoiiiiiiiiie e e e e et e e e e e e s st e e e e e e e e sanbreaeeeaeeeeaanns 17
1.6 REVISION HISTOIY ...ttt e et e s ekt e e ekt e e e s bt e e e nbr e e e enbr e e e e aneee 18
Overview of the TEE Internal Core APl SpecifiCationcccvvviiiiiiiiiiiiiiiiiieeeee 20
2.1 LI 1S G I o] o] o= L1 1 SR PSERRR 21
P2 N R 17N [(= 5 = Tt TP PP P PP PP PPPPT PPN 21
2.1.2 Instances, Sessions, Tasks, and COMMEANGSc.uuviiiiiirii i e e e e e e 22
2.1.3 Sequential EXecution Of ENtry POINTSc..oiiiiiiiieiiiie ettt 22
N I S @ T To =] | = 4o o 1 OO 22
P2 BT O o =Y d o T=Tox (=T I @ =T | o =15 0 11 0= U1 o] o 23
PN I S I | 0 1 r= T g Tod ST I o= PSP PPPPPPPPIN 23
2.1.7 Configuration, Development, and Managementcccooeiiiiiiiiiiii e 23
2.2 TEE INEINAI COIE APIS ...ttt e ettt e e e e e s ettt e e e e e s s annnbeteeeeeaeessantsnneaeaeeeenanns 24
2.2.1 Trusted Core FrameWOIK APottt e et ee e e e e e s e st eeae e e e e e s s s st aeeeeeeeeseasneeees 24
2.2.2 Trusted Storage API for Data and KEYS........c.ccuuiiiiiiiiieiiiiie et 24
2.2.3 CryptographiC OPerations AP ——— 25
P 1 413 AN PRSPPI 25
2.25 TEE ANMELICAI AP ..ottt e e et e e e e e s s et e e e e e e e e e annrne e 25
2.3 EFTOr HANAIING ..ottt e ekt e s et e e et b e e e e ab e e e e enbn e e e e aneee 26
P2 I R (o 0 = = 1 o] £ SRR 26
2.3.2 PrOQramMEr EITOIS ...oueiiiieiiiiiiiieeit et e sttt e ettt e e e e e st e et e e e s e s e e e et e e e s s e s b b e et e e e e e e annrnees 26
P2 G B - o1 (o= ST PP PP PPPPTOO 27
2.4 OPAQUE HANAIES ... ———— 28
2.5 (0T 01T 1T 29
CommON DEFINITIONS oo 30
3.1 [1= T= o L= gl PR 30
3.2 DTz L T Y/ 01T TP TTRTTTTTT 30
B2 BaASIC T PSS it et et e ittt ————————— 30
3.2.2 BItNUMDBEING.....cccc oo 30
3.2.3 TEE_RESUIt, TEEC RESUILcciiiiiiiiiiiiie ettt siee ettt e e st e e e st e e e s ntteeeestbeeeesnbeeeessnbeeeeaas 30
3.24 TEE_UUID, TEEC _UUID ... 31
3.3 (0] 0 1= 1 | £ 32
3.3.1 Return Code RANGES aNd FOMMIAL........ueiiiiiiiie ittt et e e sbb e e e sbaeee e 32
TR I S (1] 4 H O o [PP PU R TUPPPPPPPRPTN 33
34 Parameter ANNOLALIONSuiiiiiie ittt e ettt et e e e et e s e bbb et e e e e e e s e aabbbeeeeaaeeesaanbabbeeaaaeeeaanns 34
3.4.1 [in], [OUL], @Nd [INOUL].....eteiieiieeaie ittt e e e e e s sttt e e e e e e s bbb e et e e e e e e e anbbbeeeaaaeeeanns 34
I (o101 (o o 1 PSP RPPPPPRPTUPPR 34
I C T 111 o101 PO PRPPPPRUPPR 34
R S o111 o 11 | PSP SPPPPPRPUPPR 35
I R o 1011 o] U1 0] o 1 [PPSR UUPPPPPPRPTR 35
3.4.6 [INString] @nd [INSTINQOPL] ..cceeeeiiiiiiiiie ettt ettt e e e e e e s bbb e e e e e e e e anbbbreeeeaaeeaaaas 36
3.4.7 [outstring] and [OULSTINGOPL].ueieiiieieee ittt e e e e e e e s bbb e e e e e e e s anbbbreeeaaaeaaaaas 36
I T [od ot PSPPSR PPPPRPTUPRR 36
Trusted Core Framework AP ... e e e 37

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4/242 TEE Internal Core API Specification — Public Release v1.1.1

4.1 = L= T N7 01T 38
2 e R I | g o =Y o1 SO ORPPOPPRPTPPRR 38
o I Y i = = o PP UUPPPPPTRTR 38
4.1.3 TEE_TASESSIONHANAIEcoiiiiiiiiiiiiiiiie ettt e e e e e s st e e e e e e s sabrreeaaaeeeaanns 38
4.1.4 TEE_PropSetHANIEccooueiiiiei ettt et e et e e e e 38

4.2 CONSEANTS ... s 39
o N = 1= 10 0[] =T gl 1Y/ 1= T PP PUPPPPPTPTR 39
R W o T 1] R 1Y 01T PSS PPERRR 39
7 T © ¢ o [T O o o - S PPERRRN 39
4.2.4 Property Set PSEUAO-HANAIES...........ccuuiiiiiiiiee ettt 40
4.25 MemoOry ACCESS RIGNES ...co.uiiiiiiiiiiii ettt et e et b e e b e 40

4.3 BN L] =] 1 = Lo PRSP PPPRRPT 41
4.3.1 TA CreateENIIYPOINTouviiii e s e e e e e s e s e e e e e e s s s tn e e e e e e e e s s nnrreeraaeeeaanns 44
4.3.2 TA DESITOYENIYPOINT.....uiiiiii it e s se e e e e e s e s e e e e e e s s st e e e e e e e s assntanereeeeesannnnrreeneaessaanns 45
4.3.3 TA _OpenSeESSIONENTIYPOINGuiiiiiiii e e e e e s s r e e e e e s st tre e e e e e e e s snnnrrreeeaaeesaanns 45
434 TA_ClOSESESSIONENIIYPOINTcitiiiiiiiiiie ittt e et e e e sbb e e e sbbeeeesbreeeeaas 46
435 TA_INvOKECOMMANAENIIYPOINT.....cciitiiiiiiiiiee ittt e e st e e e br e e e e sbreee e 47
4.3.6 Operation Parameters in the TA INTEITACEocuiii i 48

4.4 Property ACCESS FUNCLIONSuuuuiiiiiiiiiiiuiuiutaieiarerererererererereererereerererarararaeersensnssensnsasssnsnsnsnsnsnsnsnsnnnnns 52
441 TEE _GetPropertyASSIING ...cccoeie oo 54
4.4.2 TEE_GetPropertyASBOOIcccoo oo 55
4.4.3 TEE_GEtPrOPEITYASUSZ ...ttt e e e e e e e e e e e e e e e e 56
444 TEE_GetPropertyASBINAryBIOCK.........c..ooiiiiiiiiiiiiie ettt 57
4.45 TEE_GEtPropertyASUUIDcociiiiiiiiei ittt e e e s e e e e e e e e e e 58
4.4.6 TEE_GetPropertyASIdentitycccooiiiii e 59
4.4.7 TEE_AllOCatePropertyENUMEIALON.......cccocie i it 60
4.4.8 TEE_FreePropertyENUMEIAtOrttt e s e e s e e s e e e e bbb s e e e e e e aeaeaans 61
4.49 TEE_StartPropertyENUMEIALONouiiiiiiiiiiiiii et e e e e e e e s e rreeeeeeeeaaaes 61
4.4.10 TEE_ReSetPropertyENUMEIALONcouiiiiiiiiiiii ettt e e e e e e e s 62
4.4.11 TEE_GEtPrOPEITYNGAIME ...coiiiiiiiiiiiiiie ittt e et e e e e e e e e e e e e e a e e eeeeneaaes 62
4.4.12 TEE _GeINEXIPIOPEITY outtiiiiiiiiiiiiiiiies ettt e ettt e s e e e e e et s e e e e e e e e eb b a e e e e et eeabaa s s eeeaeeaentnnns 63

4.5 Trusted Application Configuration Properti€seuuuueuriuiuieiuiririeiuisieieierniernrr—————————. 64

4.6 BNt PrO IS ... ——— 66

4.7 IMPIEMENTALION PrOPEITIESeeiieiieiie ettt ettt e e et bt e e e it e e e e enbee e e e neee 68

4.8 TSR 71
A.8.1 TEE_PANIC ..eeeiiiiiiiii ittt e e b e e e e b b e e et e e e abreee e 71

4.9 INEEINAI CHENT AP ...ttt e s e e et e s et e e e e e e e e enes 72
4.9.1 TEE _OPENTASESSION ...t e ettt 72
4.9.2 TEE _ClOSET ASESSION. ... ci it 73
4.9.3 TEE_INVOKETACOMMANooiiiiiiiiiiiiiiie ittt et et e e e st e e e abb e e e e sbbeeeessbbeeeeaas 74
4.9.4 Operation Parameters in the Internal ClIent APloooiiiiiiiii e 76

4.10 (0= T Tt =11 F= T T T U Lo o] S 77
4.10.1 TEE_GetCancCellatiONFIAg..........cuuuuiiiiiieiiiiieeie ettt e e e e e e abb e eeaaeeeeaaas 77
4.10.2 TEE_UnNmaskCancellationcoooiiiiiiiiii i 78
4.10.3 TEE_MaskCancCellation..........cccooiiiiiiiii i 78

411 Memory Management FUNCLIONS.oiuiiieiiiii ettt sttt e e st e e et e e e s b e e e e nbaeeeeanees 79
4.11.1 TEE_CheckMemOryACCESSRIGNTSciiiiiiiiiii ettt e e beeee e 79
4.11.2 TEE_SEUNSTANCEDE@LAL.cetiiiiiiiiiiiiie ettt e e e e e s r e e e e e e e ann e eeeeeeeaaes 82
4.11.3 TEE_GetNSIANCEDALAuuuiiiiiiiiiiiiiie ettt e e e e e et b e r e e e e e e ee st s s e e e aeeaeaenans 83
ot S I] V= 1| o o PP TUUPPPPPPRPT 84
4115 TEE REAIIOC ... 85
11,6 TEE I .ottt e et e e e et e e e e e e e e e e e e 86

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 5/242

I O A Iy |V =0 1Y T 1Y 86
4.11.8 TEE_MEMCOMPAIE ...coititiiieeiietiiiiii ettt e e et e e e e e e e e et b s s e e et e e atb b e e e e e e e eesbaa s s eeeeeeeenbanns 87
4.11.9 TEE_MEMEFIIL.....oi ettt n e s 88
Trusted Storage API for Data and KEYSciiiiiiiiiiiiiiii e e e e 89
51 Summary of FEatUres and DESIGNccoiuiiiiiiiiiee ittt ettt e st e e et e e s b e e e e aneee 89
5.2 Trusted Storage and ROIIDACK DEIECHIONociiuiiiiiiiiiii et 91
5.3 (D E= Y= Rl Y/ 01T S PP P TP 92
5.3 1 TEE _AINDULE ...ttt n et 92
Lo I N | R @ o] = o3 1) o S PPSRRRR 92
5.3.3 TEE_WHRENCE ..ottt ettt e e e e e sttt e e e e e e e e ababeeeeeae e e e e ntbebeeeaaeeeaanns 93
5.3.4 TEE_ODJECIHANAIEottt ettt et e e st e e e s bb e e e s breeeean 93
5.3.5 TEE_ODJECENUMHANGIEooiiiiiiiii ettt et e e b e e 93
54 100 0151 1= £ PP PP 94
5.4.1 Constants Used in Trusted Storage API for Data and Keysccccceveiiiiiiiiieiiee e 94
5.4.2 Constants Used in Cryptographic Operations APl ..., 95
55 GeENETIC ODJECT FUNCLIONS ...ttt et e et e e s et e e s aabr e e e anbne e e e nneee 96
551 TEE_GEtODJECHINTOLeiiiiiiiiei ittt ettt e et bt e et e e e st b e e s s bbe e e e sbreeeeans 96
5.5.2 TEE_RESHICIODJECIUSAUEL ...ttt ettt sttt et e et e e e s bb e e e e s breee e 98
55.3 TEE_GetObjeCtBUfErAIDULEccoc i 99
554 TEE_GetObjectValUeALIIDULE ..o 101
555 TEE _ClOSEODECT. ..o —————— 102
5.6 Transient ODBJECT FUNCHIONSoouiiiiiiiiii ettt et e e et e e 103
5.6.1 TEE_AllocateTranSi@NtODJECE........cooiuiiiiiiiiii ettt 103
5.6.2 TEE_FreeTranSiENtODJECTciiiiiiiiiiiie ettt e e e e e snnee s 106
5.6.3 TEE_ReSetTransieNtODJECTcccocieie i 106
5.6.4 TEE_PopulateTransientODJECL.........cccooii i 107
5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute...............ooo oo, 111
5.6.6 TEE_COPYODJECIAIIDULESLeeiiiieiiiiie ettt e e e e s sannee s 112
5.6.7 TEE_GENEIAEKEYeiiieiiiiei ittt ettt e e e s et e e e s e e e e e e e e s s nrr e e e e e n e 114
5.7 Persistent ODJECE FUNCHIONSouiiiiiiiiiee et et e 117
5.7.1 TEE_OPEnPErSiStENIODECT 117
5.7.2 TEE_CreatePerSiSteNtODJECT 119
5.7.3 Persistent Object Sharing RUIES ... 122
5.7.4 TEE_CloseAndDeletePersistentODJECL..........coouiiiiiiiiiiiiiiiee e 124
5.7.5 TEE_RenamePersiStENtODECTc.couiiiiiiiiiii ittt 125
5.8 Persistent Object Enumeration FUNCHONS............ocuiiiiiiiiieiie e 126
5.8.1 TEE_AllocatePersistentObjeCtENUMEIALONcccooeiii e 126
5.8.2 TEE_FreePersistentObjeCtENUMEIALONcccoieeiie e 126
5.8.3 TEE_ResetPersistentObjeCtENUMEIALONcccoiiieee e 127
5.8.4 TEE_StartPersistentObjJECtENUMETALOrciiiiiiiiiiiiiiiie it 128
5.8.5 TEE_GetNextPersiSteNtODJECL..........ocuuiiiiiii e 129
5.9 Data Stream ACCESS FUNCHONSoii ettt e e e s e e e e e s e s st ree e e e e e s e e snneneeeeeeens 130
5.9.1 TEE_REAUODJECIDALA. .. .cciiieiiiiiitiiiiie ettt ettt e e e ettt e e e e e e e s e bbbt e e e e e e e e e nbbbreeeaaeeeaanns 130
5.9.2 TEE_WIEODJECIDALAciiii ittt e e e e e ettt e e e e e e s babreeeaaeeeanns 131
5.9.3 TEE_TrunCateODJECIDALAcueiieiiiee ettt e et e e e e e e e bt e e e e e e e e e 132
5.9.4 TEE_SEEKODJECIDALAcciitieiieiiiiii ettt et sttt e s e e e s 133
Cryptographic Operations AP ... e e e e eeeeeeaeees 134
6.1 T2 e T Y/ 01T PPN 136
6.1.1 TEE_OPEratioNMOUEccooi ittt ettt e e e e e e ettt e e e e e e e e anbabreeeaaeaeanas 136
6.1.2 TEE_OPErationINfOcooiiiiiiiiiiiii ettt e e et e e e e e e b e e e e e e e e aaa 136
6.1.3 TEE_OperationINfOMUILIPIEoiiii e e e e e e e e e 137

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6/242 TEE Internal Core API Specification — Public Release v1.1.1

6.1.4 TEE_OPerationNHANMIEccuiiiiiiiie et e e e e st e e e e e e e st e e e e e e e s snnnneneeeeeeeannns 137
6.2 Generic OPeration FUNCHONSiiiiii e s r e e e e s s e e e e e s s e tatre e e e e e e e s snnanaeeeeeas 138
72 R I = Y {[oTo= 11 T@] 01T - (o o SR PRSPRR 138
6.2.2 TEE_FrE@OPEIALIONceiiiiiiiee ittt ettt ettt ettt et e e st et e e s bb e e e e st b e e e s bb e e e e s bbe e e e anreeeean 142
6.2.3 TEE_GetOpPeratioNINTO.........ccuiuiiiiiiiiiee ettt ettt e st e e e st e e e s breee e 143
6.2.4 TEE_GetOperatioNINfOMUILIPIEeeiiiiiiieii ittt nreee e 144
6.2.5 TEE _RESEIOPEIALIONeeiiieiiiiitiieiee e e e e ettt e e e e e e st e e e e e e s e s st e e e e e e e e s asstatareeeeeeesansnnrneeaeeesaanns 146
I T I = ST (@] o 1T =i o] 0] S-S PREPRR 147
6.2.7 TEE_SetOPEratiOnNKEY2........cccuviieiiee e e e ittt e e e e et et tee et e e e e e s st e eeaaeesssstataeeeeaeesssnnsnraneeaeeassanns 149
6.2.8 TEE_COPYOPEIALION ...ceciiutiiieiiitiiee ettt ettt ettt ettt e sttt e e st et e e s bb e e e abb e e e e abbe e e e sabbeeeesbreeeeaa 150
6.3 MeSSAge DIgESE FUNCLIONSoiiiiiiiiiiitiie ettt e et e e st e e s snbre e e e e 151
6.3.1 TEE_DIQESIUPUALEeoiiiiiiiiiiiiiee ittt ettt et e e st et e e s bb et e e abb e e e e abreeeean 151
6.3.2 TEE_DIigESIDOFINGL......ciiiiiiiiiiiiiieie ettt e s r e e e e e s s r e e e e s s st e e e e e e e e e ssnrnrrneeeaeeeaanns 152
6.4 YV =L TR O] o] L= g UL Vo 1o SR 153
O ot R I =1 = @1 o] o T= T4 1 PSP OPPPPOTRPR 153
6.4.2 TEE_CIPhErUPAAtecooiiiiieie ittt ettt ettt e et e e e s bb e e e sbneeeean 155
6.4.3 TEE_CIPhErDORINGLccciiiiiiiiiieiee ettt ettt e et e e e s bb e e e e bneeeean 156
6.5 Y @ 0 Vo 1o PRSP 157
T 70 R I =1 1Y O 11| SRR PPRROTRRR 157
6.5.2 TEE_MAGCUPDUALE........ceiiiiiiiieiiiiiee ettt e et e e e sttt e e st e eeestae e e e staeeeessteeeeeantaeeeeantbeeeesabbeeeesnsbeeeesns 158
TG T I | S Y VAN O @0 g ¥ o 11| (= T = | 159
6.5.4 TEE_MACCOMPAIEFINGL.cciiiiiiiiiiiiee ittt e st e e e bb e e e s snbeeeeeas 160
6.6 Authenticated ENCryption FUNCLONSoiiiiiiiiiiiiie ettt 161
T8 R I = Y 1 | o T RS PRRPRR 161
6.6.2 TEE_AEUPUAIEAADccoitiiiee ittt ettt e sttt e st e e e st e e e s bt e e e s bbe e e e s bbeeeeabbeeeeanbbeeeeantbeaeeans 162
6.6.3 TEE _AEUPUALEooiiiiiie ittt ettt ettt e e sttt e e e sttt e e e st e e e e snbe e e e e antbe e e e abbe e e e e nbteeeeanraeaeeans 163
L S I | N =t =t Vo Y/ o1 = 164
6.6.5 TEE_AEDECIYPIFINGD ...coiiiiiiiiiiiiiiee ettt e et e e s b e 165
6.7 ASYMIMELIIC FUNCHIONSeeiiiieiiie ittt et et e e b bt e e et e e e et e e e e e nbneeeeneee 166
6.7.1 TEE_AsymmetricEncrypt, TEE_ASYMMEIICDECIYPL.....cocuuiiiiiiiiiiiiiiiee et 166
6.7.2 TEE_ASYMMEtICSIGNDIGEST a e 168
6.7.3 TEE_ASYMMEtNICVErifYDIgEST e 170
6.8 LYY =T V2= o) o I U Tox 10} g 172
B.8.1 TEE_DEIVEKEY ...coiiiiiiiiiiitie ettt ettt ettt ettt e e sttt e e e st e e e s bb e e e e e bbe e e e abbe e e e abbeeeean 172
6.9 Random Data Generation FUNCHONooiiiiiiiiiiiiii e e e e e s e eree e e e e e s e s snnaneeeeeeees 174
6.9.1 TEE_GENEratERANUOMuiiiiiiiiiiiiitiiee ettt ettt ettt e ettt e e s bb e e e e s bbe e e e e bbeeeesabbeeeeanbbeeeeans 174
6.10 Cryptographic Algorithms SpecifiCationccoooieiiii i 175
6.10.1 List of AIGOrithm IAENLIFIEIS 175
B.10.2 O JECE TYPBS e e ————— 181
6.10.3 EIlIPLC CUINVE TYPES ..eeieiiiiiiieeeitiiee ettt ettt e ettt e e s bt e e e s bb e e e e s kb e e e e abb e e e e abbeeeeabbeeeesnbbeeeeaas 182
6.11 ODbject or OPeration AIDULES........ouuiii ittt st e e e bb e e e e s sbaeea e 183
A 111 4 L= o PRSP USPP 185
7.1 D= L= R Y/ 01T ST TP PR TP PPPRPRTRRTIN 185
% S R I =1 I 1= TSP OPPRROTPRR 185
7.2 THME FUNCHONS ...ttt ettt ettt et e oo oot b ettt e e e e oo s aba b et e e e e e e e aaabbbeeeeeaeeeaannbbbbeeeaaeaeaanns 186
7.2.1 TEE_GeISYSIEMTIME ..oiiiiiiiiiiiiiee ettt ettt ettt sttt ettt e e sttt e e e sttt e e e ettt e e e abbeeeesbbeeeesbbeeeeans 186
A = L - 11 PSSR 187
7.2.3 TEE _GetTAPEISISIENITIME ... ittt ittt ettt ettt e et e e e et e e e st e e e s bbeeeestbeeeeaas 188
7.2.4 TEE _SetTAPEISISIENITIME ...uuiiiieece e a e e e e e e aeaas 190
T7.25 TEE _GEIREETIME ..itiiiiiiiiiie ettt ettt ettt e sttt e e e et e e e st e e e st e e e e sntaeaeeanteeeeeantaeeaesnsbeeeeansbeaeeans 190
8 TEE ArithmMEtiCal APl ... e e e a e 191

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 71242

8.1 [T [ox o o FO PP PRSP 191
8.2 Error Handling and Parameter ChECKINGcoiiiiiiiiiiie e s ettt e e e e e e e e e e nnnanae e e e s 191
8.3 D E= Y= R Y/ 01T S PP SUPPPPPPTT 192
SRS 70 R = = = 1T | [| S TR OPRTPP 192
8.3.2 TEE_BIGINtFMMECONIEXEeeiiieiiiiiie ittt ettt ettt et e e e e s e e e e snnnee s 193
8.3.3 TEE_BIGINIFMM ...ttt ettt ettt e e bt e e et e et e e s et e e s be e e ebbe e e be e e nnne e e 193
8.4 Memory Allocation and Size Of ODJECLScuiiiiiiiiiiiiee e e 194
8.4.1 TEE_BIQINSIZEINUSZ ...ttt ettt nnn e 194
8.4.2 TEE_BIgINtFMMCONEXISIZEINUS2......ceiiiiiieiieee et 195
8.4.3 TEE_BIgINtFMMSIZEINUS2coitiiiiiiiiiit ettt ettt sttt e sbbe e be e e nnee e 195
8.5 INILIANIZAION FUNCHIONS ...ttt e e e s e ettt e e e e e e s e s nnb et e e e e e e e e e e snnbnneeeaeens 196
8.5 1 TEE_BIGINTINIE ...eeiiiiiiiiie ettt ettt ettt e b e e s bt e et e e sab e e e bt e e sbbe e e be e e nnne e e 196
8.5.2 TEE_BIgINtINItFMMCONEXL......cccteiiiiiiiiiie ettt sn e e nnn e 197
8.5.3 TEE_BIGININIIFMMiiiiiiiiiiii et e e 198
8.6 (0001714 (=T gl U] o Tod o o PSP PPR PR PRRTIN 199
8.6.1 TEE_BIgINtConVertFromMOCLEISTIINGcciiiuiiiieiiiiiie ittt 199
8.6.2 TEE_BIgINtCONVEITTOOCIEISIINGciuvviiieitiiiieiitiee ettt e s e e s sneeeas 200
8.6.3 TEE_BIgINtCONVEITFIOMS32..... ittt ettt sttt e e s e e e s snnnee s 200
8.6.4 TEE _BIigINtCONVEMTOS3Z... .o 201
8.7 (0T o= @ 01T = 11 0] 1 202
8.7.1 TEE _BiIGINtCIMP. .ttt ittt ettt ettt ettt st e e b e e s b et e st e e e sn b e e e be e e nnr e ne e e nnneennne 202
8.7.2 TEE_BIGINTCIMPS32 ...ttt ettt stttk e e s e i bt e e s eab et e e aabb e e s snbne e e s anneeeas 202
8.7.3 TEE_BIgGINtSNIfIRIGNTcoiiiiiiiiiiii e 203
8.7.4 TEE_BIGINIGEIBILcoevveveeececeeeeieeeeeeeeceeteteees s seeeeee e es s e aeteses s nesasaseesesessnseesaeeesesennanaeaeeans 204
8.7.5 TEE_BIgINtGEIBILCOUNLcciiiiitiieiiie ettt ettt ettt e e e e sbre e ne e e nnne e e 204
8.8 e Ry (ol AN 11 0 Lo Ao @] o= = o] 1 205
8.8.1 TEE_BIGINIAAU ... ittt ettt e bt e e et nr e re e nnn e 205
8.8.2 TEE_BIGINTSUD.....ooiiiiiiiiii e 206
8.8.3 TEE _BIGININEG. .. eeiiiiiiiiii ittt ettt et ettt s bt e s a e b e e e e s anee s 207
8.8.4 TEE_BIGINIMULeeiiiiiiii ettt ettt e e et e e s sabb e e e s ennnee s 208
8.8.5 TEE _BIQINISQUAIEcccoeee oo 208
8.8.6 TEE_BIGINIDIVcoiiiiiiiieiiii ittt ettt b ettt be e nnn e 209
8.9 Modular ArithmMetiC OPEIAtiONS.........uuuuuuieiiiiiiieieiere e e a—a—arararararararernrsrnrnrnnnrnnnnes 210
8.9.1 TEE_BIGINIMOMececeeeeeieeeececeeee ettt s e s s s s s s e aseee s s neeenanessenennanananeaes 210
8.9.2 TEE_BIgINtAGUMOU......vvvieeececeeeeieeeeeececeete et es e e et s s en s en s s 211
8.9.3 TEE_BIGINtSUDMOU.coiiiiiiiiiiiiiie ittt e e sabae e e s sannee s 212
8.9.4 TEE_BIGINIMUIMOUooiiiiiiiiiiiiie ittt ettt ettt e s be e e nnneennee 213
8.9.5 TEE_BIgINtSQUArEMOUcoci i 214
8.9.6 TEE_BIGINtINVMOUooiiiiiiiiiiiitie ettt ettt e et e be e e nnn e 215
8.10 Other ArtNMETIC OPEIALIONS.ciii ittt et e e e st e e e s abb e e e e abbe e e e abbeeeesabneeeeaas 216
8.10.1 TEE_BIgINtREIAtIVEPTIME.cciiiiiiiie ittt e e 216
8.10.2 TEE_BIgINtCOMPUIEEXIENAEAGCAeeiiiiiiiiieiiiiii ettt 217
8.10.3 TEE_BIgINtISProbablePrimeooiiiiie ettt e e e 218
8.11 Fast Modular Multiplication OPEIatiONS..........coui ettt e e e e e e abeeeeeeeeas 219
8.11.1 TEE_BIgINtCONVEITORFMM ...ttt e e e e s ettt e e e e e e e s bbb eeeaeaeeaaans 219
8.11.2 TEE_BIgINtCONVEITFIOMEIMMottt ettt e e s e e s snneee s 220
8.11.3 TEE_BIgINtCOMPUIEFMM L....iiiiiiiiiie ittt sttt smbe e e s st e e s snnneeas 221
Annex A Panicked Function [dentifiCationoooiiii e 222
Annex B Deprecated Functions, Identifiers, and ValuesS............cccccceeeiiiieeiiieiiciin e 227
B.1 DepPreCated FUNCLIONS ...ttt e e e e e ekttt e e e e e e e e sab e e et e e e e e e e e annbneeeeaaeas 227
B.1.1 TEE_GetObjectinfo — DEPreCatedccoui it 227

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8/242 TEE Internal Core API Specification — Public Release v1.1.1

B.1.2 TEE_RestrictObjectUsage — DePreCatedcooviiiiieiiiiiee ettt 229
B.1.3 TEE_CopyObjectAttributes — DEPreCatedccuviviieeiiiiiiiiiieee et e e s ee e e 230
B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated............cccvevviiiieiiiiiee i 231
B.2 Deprecated [HENLIEISoiiiiie et e e e e st e e s snnre e e e e 232
Annex C Normative References for Algorithms..........oiiiiii e, 235
FUNCLIONS. . 239
FUNCLIONS DY Cat@UOTY ..o 241

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 9/242

Figures

Figure 2-1: Trusted Application Interactions with the Trusted OS..........c.ccciiiiiiiii e 21
Figure 7-1: Persistent Time Status State MacChine...........c.oeeviii i 188

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

10/242

TEE Internal Core API Specification — Public Release v1.1.1

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 2-1:
Table 3-1:
Table 3-2:
Table 3-3:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:
Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14:
Table 4-15:
Table 4-16:
Table 4-17:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-4b:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:

Tables

NOIMALIVE RETEIENCES ...ttt ettt e e st bt e e s bb et e e s bb et e e sbbeeeeaabneeeeanes 13
Terminology and DefiNItiONSuuiiiiiee e e s e e e s s s re e e e e e s e s snrrrrreeeeessannnes 14
ADDIEVIATIONS ...t 17
REVISION HISTOTY .eiiiiieiiiiiitie et e e e e s s e e e e e e s et e e e e aeessantebtnaeeaeeesannsnraneneeeeeas 18
HANAIE TYPES ..ttt e sttt e e sk et e e sk e e e e st b e e e e st b et e e s bbe e e e abbeeeeabneeeeaan 28
UUID USAQE RESEIVALIONSceiiitiiieiiitiiee ittt e ettt e e sttt e e sbae e e e st e e e abbe e e e sbbeeeesbbeeeeabbeeeesanneeeeaan 31
Return Code FOrmats and RBNGEScccoiiiiiiiiiiiei ittt e et e et e e e sbb e e e snnneeeeaaes 32
APTRETIUM COUESuviiiiiieiiee ittt ettt sttt s e s et e e n et e s e e amn e e snne e e nnneesneeennneenn 33
Parameter TYPE CONSTANTSuuuuiiiiiiiiiiiiiiier ettt e e s et e e e e e ettt a e e e e e e eerebaanaeaaaees 39
LOQIN TYPE CONSLANTSceeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeseaeaeeeseseseeeesaesssssssssssssssesssssssssssssssssssssnnssnsnnnnes 39
OFigin COOE CONSTANTSceiiiiiiiieitiiee ettt ettt e et e e s atb bt e s aab et e e s asbb e e e s aabe e e e s snbbeeesannneeens 39
Property Set Pseudo-Handle CONSTANTSccoiiiiiiiiiiiee ettt 40
Memory ACCESS RIGNtS CONSLANTSeiiiiiiiiiiiiiie ettt et e e e e eeeaaes 40
TA INEITACE FUNCHONSoiiiiiiie et e e e s e e e n s 41
Effect of Client Operation 0N TA INtEITACEeviviiiiiiiiiiiiieieeeeeeee e rereseeeaeaenane 42
Content of params[i] when Trusted Application Entry Point Is Called.............ccccevviieiinnnnenn. 49
Interpretation of params[i] when Trusted Application Entry Point Returnscccccvvvvvvvvennnns 50

P I OPBITY SBES ...ttt et e e e e e e e ae e 52

Trusted Application Standard Configuration Propertiescccovvveeeiiiiee e 64

Standard CleNt PrOPErtiE©Suuuuuuuuiiiiiiiiiiiiiiii s 66

(O3 1= o1 {6 = o1 11 1= PP PP R PTPRPPPo 66

[aa] o] (=T 0 g =T a1 e= UiToT g T =d To o= 5 1= PP PPPRPPNt 68

Interpretation of params[i] on Entry to Internal Client APl...........oovvviiiiiiiiiiiiiieiiieeevevevevevenenns 76

Effects of Internal Client API 0N params[1]eiiieiiiiiiiiiiieieieeeieeeieieeeeeveveveveeeeeseseeereseseseseaenene 76

VAl HINEVAIUES ...ttt e e et e e e st b e e e s bbeee e sbbeeeeanes 84
Values of gpd.tee.trustedStorage.rollbackDetection.protectionLevelcc.c.o...... 91
ODbjeCt STOrage CONSLANTSuuuiuiiiiiiiiiiiiiiii e as 94
Data Flag CONSIANTS. ...ttt e ettt e e e e e s s bbb et e e e e e e s e nbbbeeeeaaaeeeanbbbaeeeaaaeaas 94
USAQGE CONSTANTSeieiiiiiiiitie et e sttt e e e e et e e et et e e e e e e e s e b e et e e e e e s s bbb e e et e e e e e sannnrneeeeeeeeas 94

Miscellaneous Constants [formerly Table 5-8] ... 94
HaNdIE FIAg CONSTANTSuviiiiiiiiiie ettt sttt ettt e e sttt e e e sttt e e e s bbe e e e sbbeeeesbaeeeeane 95
OPEratioN CONSTANTSciiiiiiiiiii ittt ettt et e e e s e e bbbt e et e e e s e e aaabbeb e e e e e e e e e aanbbbeeeeaeeseaannreeneeas 95
(@] T=T = 110 IS] r= L0 L TP EUTTR PP 95
[Moved — NOW TabIE 5-4D] ...ttt e et e e e e e e e e rnneeeeeas 95

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 11/242

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizescccceeviieiiiiiiiiiiieiieeeeiiiieen, 103
Table 5-10: TEE_PopulateTransientObject Supported Attributes..........cccooiiiiiiiiiiii e, 108
Table 5-11: TEE_CopyObjectAttributesl Parameter TYPESccociiiiiiiiiiiiie it 112
Table 5-12: TEE_GenerateKey ParametersS........ccccciiieiiiiiiiiiieeee e e s et e e e e e e s st ere e e e e e e s s sstnaa e e e e e e s e s ennneaees 114
Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of TEE_CreatePersistentObject 120
Table 5-14: Examples of TEE_OpenPersistentObject Sharing RUlESccccvvvveeeiiiiiiiiiice e, 123
Table 6-1: Supported Cryptographic AIGONtRMScoiiiiii i 134
Table 6-2: ECC Cryptographic AlgOrthmS ... e e 135
Table 6-3: Possible TEE_OperationMode ValUES ... 136
Table 6-4: TEE_AllocateOperation ANOWEd MOEScccuiiiieeiiiiiiiiie e 139
Table 6-5: Public Key AlIOWEA MOUESccoiiiiiiiiiii ettt et e e e e 147
Table 6-6: Key-Pair Parts for Operation MOUEScoiuiiiiiiiiieiiiiee et 148
Table 6-6b: Symmetric Encrypt/Decrypt Operation Parametersccooooeeeiiieiiiiiiiiceceee s 153
Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameterscccoceeeiiiiieiiiiieieieesee e esss s 166
Table 6-8: Asymmetric Sign Operation ParameterS......ccooooiioieiiieie e 168
Table 6-9: Asymmetric Verify Operation ParamMeterS..........coiuuiiiiiiiiieiiiiiee ettt 170
Table 6-10: Asymmetric Derivation Operation Parametersoocuuieiiiiiieiiiiiee it 172
Table 6-11: List of AlGOrithm [AENLfIErSoc.uuiiiiieii e e 175
Table 6-12: Structure of Algorithm Identifier or Object Type Identifiercccooeeeiiiiiieiiiieece e 178
Table 6-12b: Algorithm Subtype IdeNntifiercccoiiiiieeee e 180
JLIE=] (ST Gt I S £ o) @ o = o A 1Y/ 01 181
Table 6-14: List of SUPPOITEA ECC CUIVESeiiiiiiiieiiiiii ettt ettt e e et e e e it e e e e enbae e e e nnnes 182
Table 6-15: Object or Operation ALtHDULESooiiiii e e 183
Table 6-16: Attribute FOrmat DefiNitiONSuueiiiiiiiie i 184
Table 6-17: Partial Structure of Attribute TAENTIFIETcuriiii e 184
Table 6-18: Attribute Identifier FIAGSccooie oo 184
Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property........coiinnnnn. 186
Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property........cccccceeiiiiiiinnnnn. 189
Table A-1: Function 1dentification VAIUEScooiiiiiiii e 222
Table B-1: Deprecated ODJeCt IAENTIFIENuuiiiiiee e e 232
Table B-2: Deprecated AlGorithm Identifiers............ueeiiiii i 232
Table C-1: Normative References for AlgOrithmS..........ooo e 235

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

12/242 TEE Internal Core API Specification — Public Release v1.1.1

1 Introduction

This specification defines a set of C APIs for the development of Trusted Applications (TAs) running inside
a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the
requirements defined in the GlobalPlatform TEE System Architecture [Sys Arch] specification, i.e. it is
accessible from a Rich Execution Environment (REE) through the GlobalPlatform TEE Client API (described
in GlobalPlatform TEE Client API Specification [Client API]) but is specifically protected against malicious
attacks and only runs code trusted in integrity and authenticity.

The APIs defined in this document target the C language and provide the following set of functionalities to TA
developers:

¢ Basic OS-like functionalities, such as memory management, timer, and access to configuration
properties
¢ Communication means with Client Applications (CAs) running in the Rich Execution Environment
e Trusted Storage facilities
e Cryptographic facilities
¢ Time management facilities
The scope of this document is the development of Trusted Applications in the C language and their interactions

with the TEE Client API [Client API]. It does not cover other possible language bindings or the run-time
installation and management of Trusted Applications.

1.1 Audience

This document is suitable for software developers implementing Trusted Applications running inside the TEE
which need to expose an externally visible interface to Client Applications and to use resources made available
through the TEE Internal Core API, such as cryptographic capabilities and Trusted Storage.

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework,
the TEE APIs, and the communications infrastructure required to access Trusted Applications.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform, please
visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

https://www.globalplatform.org/specificationsipdisclaimers.asp

TEE Internal Core API Specification — Public Release v1.1.1

13/242

1.3 References

See also Annex C: Normative References for Algorithms.

Table 1-1: Normative References

Standard / Specification | Description Ref
GPD_SPE_007 GlobalPlatform Device Technology [Client API]

TEE Client API Specification
GPD_SPE_009 GlobalPlatform Device Technology [Sys Arch]

TEE System Architecture
GPD_SPE_025 GlobalPlatform Device Technology [Debug]

TEE TA Debug Specification
GPB—SPE-027 GlobalPlatform Device Technology [TEE Mgmt Fmwk]
GPD SPE 120 TEE Management Administration-Framework

ISO/IEC 9899:1999

Programming languages — C

[C99]

NIST Recommended
Elliptic Curves

Recommended Elliptic Curves for Federal Government
Use

[NIST Re Cur]

NIST SP800-56B

Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography

[NIST SP800-56B]

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part [RFC 2045]
One: Format of Internet Message Bodies

RFC 2119 Key words for use in RFCs to Indicate Requirement [RFC 2119]
Levels

RFC 4122 A Universally Unique IDentifier (UUID) URN [RFC 4122]

Namespace

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, and MAY in this
document (refer to [RFC 2119]):

e SHALL indicates an absolute requirement, as does MUST.

e SHALL NOT indicates an absolute prohibition, as does MUST NOT.

e SHOULD indicates a recommendation.

e MAY indicates an option.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

14/242

TEE Internal Core API Specification — Public Release v1.1.1

Table 1-2: Terminology and Definitions

Term

Definition

Cancellation Flag

An indicator that a Client has requested cancellation of an operation.

Client

Either of the following:
e a Client Application using the TEE Client API

e a Trusted Application acting as a client of another Trusted
Application, using the Internal Client API

Client Application (CA)

An application running outside of the Trusted Execution Environment
making use of the TEE Client API to access facilities provided by
Trusted Applications inside the Trusted Execution Environment.

Contrast Trusted Application (TA).

Client Properties

A set of properties associated with the Client of a Trusted Application.

Command

A message (including a Command Identifier and four Operation
Parameters) send by a Client to a Trusted Application to initiate an
operation.

Command Identifier

A 32-bit integer identifying a Command.

Cryptographic Key Object

An object containing key material.

Cryptographic Key-Pair Object

An object containing material associated with both keys of a key-pair.

Cryptographic Operation
Handle

An opaque reference that identifies a particular cryptographic operation.

Cryptographic Operation Key

The key to be used for a particular operation.

Data Object

An object containing a data stream but no key material.

Data Stream

Data associated with a persistent object (excluding Object Attributes
and metadata).

Function Number

Identifies a function within a specification. With the Specification
Number, forms a unique identifier for a function. May be displayed when
a panic occurs or in debug messages where supported.

Implementation

A particular implementation of the Trusted OS.

Initialized Describes a transient object whose attributes have been populated.

Instance A particular execution of a Trusted Application, having physical memory
space that is separated from the physical memory space of all other TA
instances.

Key Size The key size associated with a Cryptographic Object; values are limited

by the key algorithm used.

Key Usage Flags

Indicators of the operations permitted with a Cryptographic Object.

Memory Reference Parameter

An Operation Parameter that carries a pointer to a client-owned memory
buffer.

Contrast Value Parameter.

Metadata

Additional data associated with a Cryptographic Object: Key Size and
Key Usage Flags.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 15/242

Term

Definition

Multi Instance Trusted
Application

Denotes a Trusted Application for which each session opened by a
client is directed to a separate TA instance.

Object Attribute

Small amounts of data used to store key material in a structured way.

Object Handle

An opaque reference that identifies a particular object.

Object Identifier

A variable-length binary buffer identifying a persistent object.

Operation Parameter

One of four data items passed in a Command, which can contain
integer values or references to client-owned shared memory blocks.

Panic

An exception that kills a whole TA instance as a result of calling one of
the API functions.

Parameter Annotation

Denotes the pattern of usage of a function parameter or pair of function
parameters.

Persistent Object

An object identified by an Object Identifier and including a Data Stream.
Contrast Transient Object.

Property

An immutable value identified by a name.

Property Set

Any of the following:
e The configuration properties of a Trusted Application

e Properties associated with a Client Application by the Rich Execution
Environment

e Properties describing characteristics of a TEE Implementation

REE Time

A time value that is as trusted as the REE.

Rich Execution Environment

(REE)

An environment that is provided and governed by a Rich OS, potentially
in conjunction with other supporting operating systems and hypervisors;
it is outside of the TEE. This environment and applications running on it
are considered un-trusted.

Contrast Trusted Execution Environment (TEE).

Rich OS

Typically an OS providing a much wider variety of features than that of
the OS running inside the TEE. It is very open in its ability to accept
applications. It will have been developed with functionality and
performance as key goals, rather than security. Due to the size and
needs of the Rich OS it will run in an execution environment outside of
the TEE hardware (often called an REE — Rich Execution Environment)
with much lower physical security boundaries. From the TEE viewpoint,
everything in the REE has to be considered un-trusted, though from the
Rich OS point of view there may be internal trust structures.

Contrast Trusted OS.

Session

Logically connects multiple commands invoked on a Trusted
Application.

Single Instance Trusted
Application

Denotes a Trusted Application for which all sessions opened by clients
are directed to a single TA instance.

Specification Number

Identifies the specification within which a function is defined. May be
displayed when a panic occurs or in debug messages where supported.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

16/242

TEE Internal Core API Specification — Public Release v1.1.1

Term

Definition

Storage ldentifier

A 32-bit identifier for a Trusted Storage Space that can be accessed by
a Trusted Application.

System Time

A time value that can be used to compute time differences and
operation deadlines.

TA Persistent Time

A time value set by the Trusted Application that persists across platform
reboots and whose level of trust can be queried.

Task

The entity that executes any code executed in a Trusted Application.

Transient Object

An object containing attributes but no data stream, which is reclaimed
when closed or when the TA instance is destroyed.

Contrast Persistent Object.

Trusted Application (TA)

An application running inside the Trusted Execution Environment that
provides security related functionality to Client Applications outside of
the TEE or to other Trusted Applications inside the Trusted Execution
Environment.

Contrast Client Application (CA).

Trusted Application
Configuration Properties

A set of properties associated with the installation of a Trusted
Application.

Trusted Core Framework or
“Framework”

The part of the Trusted OS responsible for implementing the Trusted
Core Framework API* that provides OS-like facilities to Trusted
Applications and a way for the Trusted OS to interact with the Trusted
Applications.

Trusted Execution Environment
(TEE)

An execution environment that runs alongside but isolated from an REE.
A TEE has security capabilities and meets certain security-related
requirements: It protects TEE assets from general software attacks,
defines rigid safeguards as to data and functions that a program can
access, and resists a set of defined threats. There are multiple
technologies that can be used to implement a TEE, and the level of
security achieved varies accordingly.

Contrast Rich Execution Environment (REE).

Trusted OS

An operating system running in the TEE providing the TEE Internal Core
API to Trusted Applications.

Trusted Storage Spaces

Storage spaces accessible only to Trusted Applications.

Uninitialized

Describes a transient object allocated with a certain object type and
maximum size but with no attributes.

Universally Unique Identifier
(UUID)

An identifier as specified in RFC 4122 [RFC 4122].

Value Parameter

An Operation Parameter that carries two 32-bit integers.
Contrast Memory Reference Parameter.

i

The Trusted Core Framework APl is described in Chapter 4.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

17/242

1.5 Abbreviations and Notations

Table 1-3: Abbreviations

Term Definition

AAD Additional Authenticated Data

AE Authenticated Encryption

AES Advanced Encryption Standard

API Application Programming Interface

CA Client Application

CMAC Cipher-based MAC

CRT Chinese Remainder Theorem

CTS CipherText Stealing

DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm
ETSI European Telecommunications Standards Institute
FMM Fast Modular Multiplication

gcd Greatest Common Divisor

HMAC Hash-based Message Authentication Code
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IPR Intellectual Property Rights

ISO International Organization for Standardization
v Initialization Vector

MAC Message Authentication Code

MD5 Message Digest 5

MGF Mask Generating Function

NIST National Institute of Standards and Technology
OAEP Optimal Asymmetric Encryption Padding

oS Operating System

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

18/242 TEE Internal Core API Specification — Public Release v1.1.1
Term Definition
REE Rich Execution Environment
RFC Request For Comments; may denote a memorandum published by the IETF
RSA Rivest, Shamir, Adleman asymmetric algorithm
SHA Secure Hash Algorithm
TA Trusted Application
TEE Trusted Execution Environment
uTC Coordinated Universal Time
UTF Unicode Transformation Format
uuID Universally Unique Identifier
XTS XEX-based Tweaked Codebook mode with ciphertext stealing (CTS)

1.6 Revision History

Table 1-4: Revision History

Date Version | Description

December 2011 | 1.0 Initial Public Release, as “TEE Internal API Specification”.
June 2014 1.1 Public Release, as “TEE Internal Core API Specification”.

June 2016 111 Public Release, showing all non-trivial changes since v1.1.

Significant changes include:

e Many parameters were defined as _size t in v1.0 then changed to
uint32 t invl.1, and have now been reverted.

e Improved clarity of specification with regard to TEE GenerateKey
parameter checking. Reverted over-prescriptive requirements for
parameter vetting, re-enabling practical prime checking.

e Clarification of invalid storage ID handling with regard to
TEE CreatePersistentObject and
TEE OpenPersistentObject.

e Clarified which algorithms may use an IV.
e Clarified the availability of TEE GetPropertyAsBinaryBlock().

e Clarified mismatches between Table 6-12 and elsewhere.

e Deprecated incorrectly defined algorithm identifiers and defined a
distinct set.

e Corrected an errorin TEE BigIntComputeExtendedGed() range

e Clarified operation of TEEC OpenSession with NULL
TEEC Operation.

e Clarified relationship of specification with FIPS 186-2 and FIPS 186-4.
(continues)

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 19/242

Date Version | Description
June 2016 1.1.1 e Clarified uniqueness of gpd.tee.devicelID in case of multiple TEEs
(continued) on a device.

e Corrected details of when TEE HANDLE FLAG INITIALIZED is set.

e Clarified the security of the location of operation parameters that the TA

is acting on.
e Clarified the handling and validation of storage identifiers.

e Clarified the protection level relationships with anti-rollback, and the
way anti-rollback violation is signaled to a TA.

e Clarified the data retention requirement for an unused “b” attribute
value.

e Clarified the acceptable bit size for some security operations.

o Relaxed attribute restrictions such that
TEE PopulateTransientObject and TEE GenerateKey are
aligned.

e Clarified the handling of ACCESS WRITE META.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein 1s subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

20/242 TEE Internal Core API Specification — Public Release v1.1.1

2 Overview of the TEE Internal Core API Specification

This specification defines a set of C APIs for the development of Trusted Applications (TAS) running inside
a Trusted Execution Environment (TEE). For the purposes of this document a TEE is expected to meet the
requirements defined in [Sys Arch], i.e. it is accessible from a Rich Execution Environment (REE) through
the GlobalPlatform TEE Client API [Client API] but is specifically protected against malicious attacks and runs
only code trusted in integrity and authenticity.

A TEE provides the Trusted Applications an execution environment with defined security boundaries, a set of
security enabling capabilities, and means to communicate with Client Applications running in the Rich
Execution Environment. This document specifies how to use these capabilities and communication means for
Trusted Applications developed using the C programming language. It does not cover how Trusted
Applications are installed or managed and does not cover other language bindings.

Sections below provide an overview of the TEE Internal Core API specification.

e Section 2.1 describes Trusted Applications and their operations and interactions with other TEE
components.

e Section 2.2 gives an overview of the TEE Internal Core APIs that provide core secure services to the
Trusted Applications.

e Section 2.3 describes error handling, including how program/normal errors and panic situations are
handled by the all TEE internal specifications.

e Section 2.4 describes different opaque handle types used in the specification. These opaque handles
refer to objects created by the API implementation for a TA instance.

e Section 2.5 describes TEE properties that refer to configuration parameters, permissions, or
implementation characteristics.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein 1s subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 21/242

2.1 Trusted Applications

A Trusted Application (TA) is a program that runs in a Trusted Execution Environment (TEE) and exposes
security services to its Clients.

A Trusted Application is command-oriented. Clients access a Trusted Application by opening a session with
the Trusted Application and invoking commands within the session. When a Trusted Application receives a
command, it parses the messages associated with the command, performs any required processing, and then
sends a response back to the client.

A Client typically runs in the Rich Execution Environment and communicates with a Trusted Application using
the TEE Client API [Client API]. It is then called a “Client Application”. It is also possible for a Trusted
Application to act as a client of another Trusted Application, using the Internal Client API (see section 4.9).
The term “Client” covers both cases.

2.1.1 TA Interface

Each Trusted Application exposes an interface (the TA interface) composed of a set of entry point functions
that the Trusted Core Framework implementation calls to inform the TA about life-cycle changes and to relay
communication between Clients and the TA. Once the Trusted Core Framework has called one of the TA entry
points, the TA can make use of the TEE Internal Core API to access the facilities of the Trusted OS, as
illustrated in Figure 2-1. For more information on the TA interface, see section 4.3.

Each Trusted Application is identified by a Universally Unique Identifier (UUID) as specified in [RFC 4122].
Each Trusted Application also comes with a set of Trusted Application Configuration Properties. These
properties are used to configure the Trusted OS facilities exposed to the Trusted Application. Properties can
also be used by the Trusted Application itself as a means of configuration.

Figure 2-1: Trusted Application Interactions with the Trusted OS

Trusted
Application
|

calls

TA Interface implements

calls [TEE Internal Core API)

A

implements

Trusted Core
Framework Trusted OS

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

22/242 TEE Internal Core API Specification — Public Release v1.1.1

2.1.2 Instances, Sessions, Tasks, and Commands

When a Client creates a session with a Trusted Application, it connects to an Instance of that Trusted
Application. A Trusted Application instance has physical memory space which is separated from the physical
memory space of all other Trusted Application instances. The Trusted Application instance memory space
holds the Trusted Application instance heap and writable global and static data.

All code executed in a Trusted Application is said to be executed by Tasks. A Task keeps a record of its
execution history (typically realized with a stack) and current execution state. This record is collectively called
a Task context. A Task MUST be created each time the Trusted OS calls an entry point of the Trusted
Application. Once the entry point has returned, an Implementation may recycle a Task to call another entry
point but this MUST appear like a completely new Task was created to call the new entry point.

A Session is used to logically connect multiple commands invoked in a Trusted Application. Each session has
its own state, which typically contains the session context and the context(s) of the Task(s) executing the
session.

A Command is issued within the context of a session and contains a Command Identifier, which is a 32-bit
integer, and four Operation Parameters, which can contain integer values or references to client-owned
shared memory blocks.

Itis up to the Trusted Application to define the combinations of commands and their parameters that are valid
to execute. This is outside the scope of this specification.

2.1.3 Sequential Execution of Entry Points

All entry point calls within a given Trusted Application instance are called in sequence, i.e. no more than one
entry point is executed at any point in time. The Trusted Core Framework implementation MUST guarantee
that a commenced entry point call is completed before any new entry point call is allowed to begin execution.

If there is more than one entry point call to complete at any point in time, all but one call MUST be queued by
the Framework. The order in which the Framework queues and picks enqueued calls for execution is
implementation-defined.

It is not possible to execute multiple concurrent commands within a session. The TEE guarantees that a
pending command has completed before a new command is executed.

Since all entry points of a given Trusted Application instance are called in sequence, there is no need to use
any dedicated synchronization mechanisms to maintain consistency of any Trusted Application instance
memory. The sequential execution of entry points inherently guarantees this consistency.

2.1.4 Cancellations

Clients can request the cancellation of open-session and invoke-command operations at any time.

If an operation is requested to be cancelled and has not reached the Trusted Application yet but has been
gueued, then the operation is simply retired from the queue.

If the operation has already been transmitted to the Trusted Application, then the task running the operation is
put in the cancelled state. This has an effect on a few “cancellable” functions, such as TEE_Wait, but this
effect may also be masked by the Trusted Application if it does not want to be affected by client cancellations.
See section 4.10 for more details on how a Trusted Application can handle cancellation requests and mask
their effect.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 23/242

2.1.5 Unexpected Client Termination

When the client of a Trusted Application dies or exits abruptly and when it can be properly detected, then this
MUST appear to the Trusted Application as if the client requests cancellation of all pending operations and
gracefully closes all its client sessions. It MUST be indistinguishable from a clean session closing.

More precisely, the REE SHOULD detect when a Client Application dies or exits. When this happens, the REE
MUST initiate a termination process that MUST result in the following sequence of events for all Trusted
Application instances that are serving a session with the terminating client:

o If an operation is pending in the closing session, it MUST appear as if the client had requested its
cancellation.

¢ When no operation remains pending in the session, the session MUST be closed.

If a TA client is a TA itself, this sequence of events MUST happen when the client TA panics or exits due to
the termination of its own Client Application.?

2.1.6 Instance Types

At least two Trusted Application instance types MUST be supported: Multi Instance and Single Instance.
Whether a Trusted Application is Multi Instance or Single Instance is part of its configuration properties and
MUST be enforced by the Trusted OS. See section 4.5 for more information on configuration properties.

o For a Multi Instance Trusted Application, each session opened by a client is directed to a separate
Trusted Application instance, created on demand when the session is opened and destroyed when the
session closes. By definition, every instance of such a Trusted Application accepts and handles one
and only one session at a given time.

e Fora Single Instance Trusted Application, all sessions opened by the clients are directed to a
single Trusted Application instance. From the Trusted Application point of view, all sessions share the
same Trusted Application instance memory space, which means for example that memory
dynamically allocated for one session is accessible in all other sessions. It is also configurable
whether a Single Instance Trusted Application accepts multiple concurrent sessions or not.

2.1.7 Configuration, Development, and Management

Trusted Applications as discussed in this document are developed using the C language. The way Trusted
Applications are compiled and linked is implementation-dependent.

The TEE Management Framework Fhe-Remote-Administration—speecification-[TEE Mgmt Fmwk] defines a

mechanism by which Trusted Applications can be configured and installed in a TEE. The scope of this
specification does not include configuration, installation, de-installation, signing, verification, or any other life-
cycle or deployment aspects.

2 Panics are discussed in section 2.3.3.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

24242 TEE Internal Core API Specification — Public Release v1.1.1

2.2 TEE Internal Core APIs

The TEE Internal Core APIs are a specified set of APIs that are required to be available on a GlobalPlatform
TEE implementation. The Trusted OS implements TEE Internal Core APIs that are used by Trusted
Applications to develop secure tasks. These APIs provide building blocks to TAs by offering them a set of core
services. These core APIs are further classified into four broad categories described below.

[Note: Sections 2.2.2 through 2.2.5 were previously sections 2.5 through 2.8.]

2.2.1 Trusted Core Framework API

This specification defines an APl that provides OS functionality — integration, scheduling, communication,
memory management, and system information retrieval interfaces — and channels communications from Client
Applications or other Trusted Applications to the Trusted Application.

2.2.2 Trusted Storage API for Data and Keys
This specification defines an API that defines Trusted Storage for keys or general-purpose data. This API
provides access to the following facilities:

o Trusted Storage for general-purpose data and key material with guarantees on the confidentiality and
integrity of the data stored and atomicity of the operations that modify the storage

o The Trusted Storage may be backed by non-secure resources as long as suitable cryptographic
protection is applied, which MUST be as strong as the means used to protect the TEE code and
data itself.

o The Trusted Storage MUST be bound to a particular device, which means that it MUST be
accessible or modifiable only by authorized TAs running in the same TEE and on the same device
as when the data was created.

o See [Sys Arch] §2.2 for more details on the security requirements for the Trusted Storage.
¢ Ability to hide sensitive key material from the TA itself

e Association of data and key: Any key object can be associated with a data stream and pure data
objects contain only the data stream and no key material.

e Separation of storage among different TAs:

o Each TA has access to its own storage space that is shared among all the instances of that TA but
separated from the other TAs.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein 1s subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 25/242

2.2.3 Cryptographic Operations API

This specification defines an API that provides the following cryptographic facilities:

e Generation and derivation of keys and key-pairs

e Support for the following types of cryptographic algorithms:
o Digests
o Symmetric Ciphers
o Message Authentication Codes (MAC)
o Authenticated Encryption algorithms such as AES-CCM and AES-GCM
o Asymmetric Encryption and Signature
o Key Exchange algorithms

¢ Pre-allocation of cryptographic operations and key containers so that resources can be allocated
ahead of time and reused for multiple operations and with multiple keys over time

2.24 Time API

This specification defines an API to access three sources of time:

e The System Time has an arbitrary non-persistent origin. It may use a secure dedicated hardware
timer or be based on the REE timers.

e The TA Persistent Time is real-time and persistent but its origin is individually controlled by each TA.
This allows each TA to independently synchronize its time with the external source of trusted time of
its choice. The TEE itself is not required to have a defined trusted source of time.

e The REE Time is real-time but SHOULD NOT be more trusted than the REE and the user.

The level of trust that a Trusted Application can put in System Time and its TA Persistent Time is
implementation-defined as a given Implementation may not include fully trustable hardware sources of time
and hence may have to rely on untrusted real-time clocks and timers managed by the Rich Execution
Environment. However, when a more trustable source of time is available, it is expected that it will be exposed
to Trusted Applications through this Time API. Note that a Trusted Application can programmatically determine
the level of protection of time sources by querying implementation properties
gpd.tee.systemTime.protectionLevel and gpd.tee.TAPersistentTime.protectionLevel.

2.25 TEE Arithmetical API

The TEE Arithmetical API is a low-level API that complements the Cryptographic APl when a Trusted
Application needs to implement asymmetric algorithms, modes, or paddings not supported by the
Cryptographic API.

The API provides arithmetical functions to work on big numbers and prime field elements. It provides operations
including regular arithmetic, modular arithmetic, primality test, and fast modular multiplication that can be
based on the Montgomery reduction or a similar technique.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

26/242 TEE Internal Core API Specification — Public Release v1.1.1

2.3 Error Handling
2.3.1 Normal Errors

The TEE Internal Core API functions usually return a return code of type TEE_Result to indicate errors to
the caller. This is used to denote “normal” run-time errors that the TA code is expected to catch and handle,
such as out-of-memory conditions or short buffers.

Routines defined in this specification SHOULD only return the return codes defined in their definition in this
specification. Where return codes are defined they SHOULD only be returned with the meaning defined by this
specification: Errors which are detected for which no return code has been defined SHALL cause the routine
to panic.

2.3.2 Programmer Errors

There are a number of conditions in this specification that can only occur as a result of Programmer Error,
i.e. they are triggered by incorrect use of the API by a Trusted Application, such as wrong parameters, wrong
state, invalid pointers, etc., rather than by run-time errors such as out-of-memory conditions.

Some Programmer Errors are explicitly tagged as “Panic Reasons” and MUST be reliably detected by an
Implementation. These errors make it impossible to produce the result of the function and require that the
API panic the calling TA instance, which Kkills the instance. If such a Panic Reason occurs, it MUST NOT go
undetected and, e.g. produce incorrect results or corrupt TA data.

However, it is accepted that some Programmer Errors cannot be realistically detected at all times and that
precise behavior cannot be specified without putting too much of a burden on the implementation. In case of
such a Programmer Error, an Implementation is therefore not required to gracefully handle the error or even
to behave consistently, but the Implementation SHOULD still make a best effort to detect the error and panic
the calling TA. In any case, a Trusted Application MUST NOT be able to use a Programmer Error on purpose
to circumvent the security boundaries enforced by an Implementation.

In general, incorrect handles—i.e. handles not returned by the API, already closed, with the wrong owner, type,
or state—are definite Panic Reasons while incorrect pointers are imprecise Programmer Errors.

Any routine defined by this specification MAY generate a panic if it detects a relevant hardware failure or is
passed invalid arguments that could have been detected by the programmer, even if no panics are listed for
that routine.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 271242

2.3.3 Panics

A Panic is an instance-wide uncatchable exception that kills a whole TA instance as a result of calling one of
the API functions. It SHOULD happen when the Implementation detects an avoidable Programmer Error and
there is no specifically defined error code which covers the problem. In addition the Trusted Application itself
may request a panic by calling the function TEE_Panic.

When a Panic occurs, the Trusted Core Framework Kills the panicking TA instance and does the following:

e It discards all client entry point calls queued on the TA instance and closes all sessions opened by
Clients.

o It closes all resources that the TA instance opened, including all handles and all memory, and
destroys the instance. Note that multiple instances can reference a common resource, for example an
object. If an instance sharing a resource is destroyed, the Framework does not destroy the shared
resource immediately, but will wait until no other instances reference the resource before reclaiming it.

After a Panic, no TA function of the instance is ever called again, not even TA_DestroyEntryPoint.

From the client’s point of view, when a Trusted Application panics, the client commands MUST return the error
TEE_ERROR_TARGET_DEAD with the-an origin_value of TEE_ORIGIN_TEE until the session is closed. (For
details about return origins, see the function TEE_InvokeTACommand in section 4.9.3 or the function
TEEC_InvokeCommand in [Client API] 84.5.9.)

When a Panic occurs, an Implementation in a non-production environment, such as in a development or
pre-production state, is encouraged to issue precise diagnostic information using the mechanisms defined in
[Debug] (or an implementation-specific alternative) to help the developer understand the Programmer Error.
Diagnostic information SHOULD NOT be exposed outside of a secure development environment.

The debug API defined mechanism [Debug] passes a panic code among the information it returns. This SHALL
either be the panic code passed to TEE_Panic or any standard or implementation-specific error code which
best indicates the reason for the panic.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

281242 TEE Internal Core API Specification — Public Release v1.1.1

2.4 Opaque Handles

This specification makes use of handles that opaquely refer to objects created by the APl Implementation for
a particular TA instance. A handle is only valid in the context of the TA instance that creates it and MUST
always be associated with a type.

The special value TEE_HANDLE_NULL, which MUST always be ©, is used to denote the absence of a handle.
It is typically used when an error occurs or sometimes to trigger a special behavior in some function. For
example, the function TEE_SetOperationKey clears the operation key if passed TEE_HANDLE_NULL. In
general, the “close”-like functions do nothing if they are passed the NULL handle.

Other than the particular case of TEE_HANDLE_NULL, this specification does not define any constraint on the
actual value of a handle.

Passing an invalid handle, i.e. a handle not returned by the API, already closed, or of the wrong type, is always
a Programmer Error, except sometimes for the specific value TEE_HANDLE_NULL. When a handle is
dereferenced by the API, the Implementation MUST always check its validity and panic the TA instance if it is
not valid.

This specification defines a C type for each high-level type of handle. The following types are defined:

Table 2-1: Handle Types

Handle Type Handle Purpose

TEE_TASessionHandle Handle on sessions opened by a TA on another TA
TEE_PropSetHandle Handle on a property set or a property enumerator
TEE_ObjectHandle Handle on a cryptographic object
TEE_ObjectEnumHandle Handle on a persistent object enumerator
TEE_OperationHandle Handle on a cryptographic operation

These C types are defined as pointers on undefined structures. For example, TEE_TASessionHandle is
defined as struct __ TEE_TASessionHandle*. This is just a means to leverage the C language type-
system to help separate different handle types. It does not mean that an Implementation has to define the
structure, and handles do not need to represent addresses.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 29/242

2.5 Properties

This specification makes use of Properties to represent configuration parameters, permissions, or
implementation characteristics.

A property is an immutable value identified by a name, which is a Unicode string. The property value can be
retrieved in a variety of formats: Unicode string, binary block, 32-bit integer, Boolean, and Identity.

Property names and values are intended to be rather small with a few hundreds of characters at most, although
the specification defines no limit on the size of names or values.

In this specification, Unicode strings are always encoded in zero-terminated UTF-8, which means that a
Unicode string cannot contain the U+0000 code point.

The value of a property is immutable: A Trusted Application can only retrieve it and cannot modify it. The value
is set and controlled by the Implementation and MUST be trustable by the Trusted Applications.

The following Property Sets are exposed in the API:

e Each Trusted Application can access its own configuration properties. Some of these parameters
affect the behavior of the TEE Implementation itself. Others can be used to configure the behavior of
the TAs that this TA connects to.

e A TAinstance can access a set of properties for each of its Clients. When the Client is a Trusted
Application, the property set contains the configuration properties of that Trusted Application.
Otherwise, it contains properties set by the Rich Execution Environment.

e Finally, a TA can access properties describing characteristics of the TEE Implementation itself.

Property names are case-sensitive and have a hierarchical structure with levels in the hierarchy separated by
the dot character “.”. Property names SHOULD use the reverse domain name convention to minimize the risk
of collisions between properties defined by different organization, although this cannot really be enforced by
an Implementation. For example, the ACME company SHOULD use the “com.acme.” prefix and properties

standardized at ISO will use the “org.iso.” namespace.

This specification reserves the “gpd.” namespace and defines the meaning of a few properties in this
namespace. Any Implementation MUST refuse to define properties in this namespace unless they are defined

in the GlobalPlatform specifications-meetthis-specification.

[Note: The content of sections 2.5 through 2.8 of this specification in versions 1.0 and 1.1 has been moved to
sections 2.2.2 through 2.2.5.]

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

30/242 TEE Internal Core API Specification — Public Release v1.1.1

3 Common Definitions

This chapter specifies the header file, common data types, constants, and parameter annotations used
throughout the specification.

3.1 Header File

The header file for the TEE Internal Core APl MUST have the name “tee_internal_api.h”.

‘ #include "tee_internal_api.h"

3.2 Data Types
3.2.1 Basic Types
This specification makes use of the integer and Boolean C types as defined in the C99 standard
(ISO/IEC 9899:1999) [C99]. The following basic types are used:
e uint32_t: Unsigned 32-bit integer
e 1int32_t: Signed 32-bit integer
e uintl6_t: Unsigned 16-bit integer
e 1intl6_t: Signed 16-bit integer
e uint8_t: Unsigned 8-bit integer
e 1int8_t: Signed 8-bit integer
e bool: Boolean type with the values true and false

e char: Character; used to denote a byte in a zero-terminated string encoded in UTF-8
3.2.2 Bit Numbering

In this specification, bits in integers are numbered from © (least-significant bit) to 7, 15, or 31 (most-significant
bit), depending on the size of the integer.

3.2.3 TEE_Result, TEEC Result

‘ typedef uint32_t TEE_Result; ‘

TEE_Result is the type used for return codes from the APIs.

For compatibility with [Client API], the following alias of this type is also defined:

| typedef TEE_Result TEEC_Result;

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 31/242

3.24 TEE_UUID, TEEC_UUID

typedef struct
{
uint32_t timelow;
uintl6_t timeMid;
uintl6_t timeHiAndVersion;
uint8_t clockSegAndNode[8];
} TEE_UUID;

TEE_UUID is the Universally Unique Resource Identifier type as defined in [RFC 4122]. This type is used to
identify Trusted Applications and clients.

UUIDs can be directly hard-coded in the Trusted Application code. For example, the UUID 79B77788-9789-
4a7a-A2BE-B60155EEF5F3 can be hard-coded using the following code:

static const TEE_UUID myUUID =
{

0x79b77788, 0x9789, ©Ox4a7a,

{ oxa2, oxbe, Oxb6, Ox1, Ox55, Oxee, Oxf5, Oxf3 }
}s

For compatibility with [Client API], the following alias of this type is also defined:

| typedef TEE_UUID TEEC_UUID;

Universally Unique Resource Identifiers come in a number of different versions. The following reservations of
usage are made:

Table 3-1: UUID Usage Reservations

Version Reservation

UUID v5 When the GRB-TEE Management Administration-Framework ([TEE Mgmt Fmwk]) is
supported by a TEE, then TA and Security Domain (SD) UUIDs YUiB’s-using version 5 must
conform to the requirements of that specification.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

32/242 TEE Internal Core API Specification — Public Release v1.1.1

3.3 Constants
3.3.1 Return Code Ranges and Format
The format of return codes and the reserved ranges are defined in Table 3-2.

Table 3-2: Return Code Formats and Ranges

Range Value Format Notes

TEE_SUCCESS 0x00000000

Reserved for use in GlobalPlatform 0x00000001 — OX6FFFFFFF | The return code may

specifications, providing non-error identify the specification, as

information discussed following the
table.

Reserved for implementation-specific 0x70000000 — OX7FFFFFFF

return code providing non-error information

Reserved for implementation-specific 0x80000000 — OXx8FFFFFFF

errors

Reserved for future use in GlobalPlatform 0Xx90000000 — OXEFFFFFFF

specifications

Reserved for TEE API defined errors OxF0000000 — OXFFFEFFFF | The return code may
identify the specification, as
discussed following the
table.

Client API defined Errors (TEEC_*) OXxFFFFO000 — OXFFFFFFFF

Note that some return codes from this
and other specifications have incorrectly
been defined in this range and are
therefore grandfathered in.

An error code is a return code that denotes some failure: These are the return codes above 0x7FFFFFFF.

Return codes in specified ranges in Table 3-2 MAY include the specification number as a 3 digit BCD (Binary
Coded Decimal) value in nibbles 7 through 5 (where the high nibble is considered nibble 8).

For example, GPD_SPE_123 may define return codes as follows:
e Specification unique non-error return codes may be numbered 0x01230000 to Ox0123FFFF.

e Specification unique error codes may be numbered 0xF1230000 to OxF123FFFF.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 33/242

3.3.2 Return Codes
Table 3-3 lists return codes that are used throughout the APIs.

Table 3-3: API Return Codes

Constant Names and Aliases Value

TEE_SUCCESS TEEC_SUCCESS 0x00000000
TEE_ERROR_CORRUPT_OBJECT 0xF0100001
TEE_ERROR_CORRUPT_OBJECT_2 0xF0100002
TEE_ERROR_STORAGE_NOT_AVAILABLE 0xF0100003
TEE_ERROR_STORAGE_NOT_AVAILABLE_2 0xF0100004
TEE_ERROR_GENERIC TEEC_ERROR_GENERIC OxFFFF0000
TEE_ERROR_ACCESS_DENIED TEEC_ERROR_ACCESS_DENIED OxFFFFERO1
TEE_ERROR_CANCEL TEEC_ERROR_CANCEL OxFFFF0002
TEE_ERROR_ACCESS_CONFLICT TEEC_ERROR_ACCESS_CONFLICT OxFFFFo0003
TEE_ERROR_EXCESS_DATA TEEC_ERROR_EXCESS_DATA OxFFFFO004
TEE_ERROR_BAD_FORMAT TEEC_ERROR_BAD_FORMAT OxFFFFO005
TEE_ERROR_BAD_PARAMETERS TEEC_ERROR_BAD_PARAMETERS OxFFFFo006
TEE_ERROR_BAD_STATE TEEC_ERROR_BAD_STATE OxFFFFORO7
TEE_ERROR_ITEM_NOT_FOUND TEEC_ERROR_ITEM _NOT_FOUND OxFFFFOOO8
TEE_ERROR_NOT_IMPLEMENTED TEEC_ERROR_NOT_IMPLEMENTED OxFFFFoO009
TEE_ERROR_NOT_SUPPORTED TEEC_ERROR_NOT_SUPPORTED OxFFFFOORA
TEE_ERROR_NO_DATA TEEC_ERROR_NO_DATA OxFFFFOOOB
TEE_ERROR_OUT_OF _MEMORY TEEC_ERROR_OUT_OF_MEMORY OxFFFFo00C
TEE_ERROR_BUSY TEEC_ERROR_BUSY OxFFFFo00eD
TEE_ERROR_COMMUNICATION TEEC_ERROR_COMMUNICATION OxFFFFOOOE
TEE_ERROR_SECURITY TEEC_ERROR_SECURITY OxFFFFOOOF
TEE_ERROR_SHORT_BUFFER TEEC_ERROR_SHORT_BUFFER OxFFFF0010
TEE_ERROR_EXTERNAL_CANCEL TEEC_ERROR_EXTERNAL_CANCEL OxFFFFo011
TEE_ERROR_OVERFLOW OxFFFF300F
TEE_ERROR_TARGET_DEAD TEEC_ERROR_TARGET_DEAD OxFFFF3024
TEE_ERROR_STORAGE_NO_SPACE OxFFFF3041
TEE_ERROR_MAC_INVALID OxFFFF3071
TEE_ERROR_SIGNATURE_INVALID OxFFFF3072
TEE_ERROR_TIME_NOT_SET OxFFFF5000
TEE_ERROR_TIME_NEEDS_ RESET OxFFFF5001

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

34/242 TEE Internal Core API Specification — Public Release v1.1.1

3.4 Parameter Annotations

This specification uses a set of patterns on the function parameters. Instead of repeating this pattern again on
each occurrence, these patterns are referred to with Parameter Annotations. It is expected that this will also
help with systematically translating the APIs into languages other than the C language.

The following sub-sections list all the parameter annotations used in the specification.

Note that these annotations cannot be expressed in the C language. However, the [in], [inbuf],
[instring], [instringopt], and [ctx] annotations can make use of the const C keyword. This keyword
is omitted in the specification of the functions to avoid mixing the formal annotations and a less expressive C
keyword. However, the C header file of a compliant Implementation SHOULD use the const keyword when
these annotations appear.

3.4.1 [in], [out], and [inout]

The annotation [in] applies to a parameter that has a pointer type on a structure, a base type, or more
generally a buffer of a size known in the context of the API call. If the size needs to be clarified, the syntax
[in(size)] is used.

When this-the [in] annotation is present on a parameter, it means that the APl Implementation uses the pointer
only for reading and does not accept shared memory.

When a Trusted Application calls an API function that defines eentairs-a parameter annotated with [in], the
parameter MUST be entirely readable by the Trusted Application and MUST be entirely owned by the calling
Trusted Application instance, as defined in section 4.11.1. In particular, this means that the parameter
MUST NOT reside in a block of shared memory owned by a client of the Trusted Application. The
Implementation MUST check these conditions and if they are not satisfied, the API call MUST panic the calling
Trusted Application instance.

The annotation [out] and [inout] are equivalent to [in] but for write access and read-and-write access
respectively.

Note that, as described in section 4.11.1, the NULL pointer MUST never be accessible to a Trusted
Application. This means that a Trusted Application MUST NOT pass the NULL pointer in an [in] parameter,
except perhaps if the buffer size is zero.

See the function TEE_CheckMemoryAccessRights in section 4.11.1 for more details about shared memory
and the NULL pointer. See the function TEE_Panic in section 4.8.1 for information about Panics.

3.4.2 [outopt]

The [outopt] annotation is equivalent to [out] except that the caller can set the parameter to NULL, in which
case the result MUST be discarded.

3.4.3 [inbuf]

The [inbuf] annotation applies to a pair of parameters of type void* and—uint32—+t size t. It means
that the parameters describe an input data buffer. The entire buffer MUST be readable by the Trusted
Application and there is no restriction on the owner of the buffer: It can reside in shared memory or in private
memory.

The Implementation MUST check that the buffer is entirely readable and MUST panic the calling Trusted
Application instance if that is not the case.

Because the NULL pointer is never readable, a Trusted Application cannot pass NULL in the first void*
parameter unless the second—uint32—t size t parameteris setto .

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 35/242

3.4.4 [outbuf]

The [outbuf] annotation applies to a pair of parameters of type void* and—uint32%t* size t*, herein
referenced with the names buffer and size. Itis used by API functions to return an output data buffer. The
data buffer MUST be allocated by the calling Trusted Application and passed in the buffer parameter.
Because the size of the output buffer cannot generally be determined in advance, the following convention is
used:

e Onentry, *size contains the number of bytes actually allocated in buffer. The buffer with this
number of bytes MUST be entirely writable by the Trusted Application, otherwise the Implementation
MUST panic the calling Trusted Application instance. In any case, the implementation MUST NOT
write beyond this limit.

e On exit:

o If the output fits in the output buffer, then the Implementation MUST write the output in buffer
and MUST update *size with the actual size of the output in bytes.

o If the output does not fit in the output buffer, then the implementation MUST update *size with
the required number of bytes and MUST return TEE_ERROR_SHORT_BUFFER. It is implementation-
dependent whether the output buffer is left untouched or contains part of the output. In any case,
the TA SHOULD consider that its content is undefined after the function returns.

When the function returns TEE_ERROR_SHORT_BUFFER, it MUST NOT have performed the actual requested
operation. It MUST just return the size of the output data.

Note that if the caller sets *size to 0, the function will always return TEE_ERROR_SHORT_BUFFER unless
the actual output data is empty. In this case, the parameter buffer can take any value, e.g. NULL, as it
will not be accessed by the Implementation. If *size is setto a non-zero value on entry, then buffer cannot
be NULL because the buffer starting from the NULL address is never writable.

There is no restriction on the owner of the buffer: It can reside in shared memory or in private memory.

The parameter size MUST be considered as [inout]. Thatis, size MUST be readable and writable by
the Trusted Application. The parameter size MUST NOT be NULL and MUST NOT reside in shared
memory. The Implementation MUST check these conditions and panic the calling Trusted Application instance
if they are not satisfied.

3.4.5 [outbufopt]

The [outbufopt] annotation is equivalent to [outbuf] but if the parameter size is setto NULL, then the
function MUST behave as if the output buffer was not large enough to hold the entire output data and the
output data MUST be discarded. In this case, the parameter buffer is ignored, but SHOULD normally be
setto NULL, too.

Note the difference between passing a size pointer setto NULL and passing a size that pointsto 0.
Assuming the function does not fail for any other reasons:

o |If size issetto NULL, the function performs the operation, returns TEE_SUCCESS, and the output
data is discarded.

e If size pointsto O, the function does not perform the operation. It just updates *size with the
output size and returns TEE_ERROR_SHORT_BUFFER.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

36/242 TEE Internal Core API Specification — Public Release v1.1.1

3.4.6 [instring] and [instringopt]
The [instring] annotation applies to a single [in] parameter, which MUST contain a zero-terminated string
of char characters. Because the buffer is [in], it cannot reside in shared memory.

The [instringopt] annotation is equivalent to [instring] but the parameter can be setto NULL to denote
the absence of a string.

3.4.7 [outstring] and [outstringopt]

The [outstring] annotation is equivalent to [outbuf], but the output data is specifically a zero-terminated
string of char characters. The size of the buffer MUST account for the zero terminator. The buffer may reside

in shared memory.

The [outstringopt] annotation is equivalent to [outstring] but with [outbufopt] instead of [outbuf],
which means that size canbe setto NULL to discard the output.

3.4.8 [ctx]

The [ctx] annotation applies to a void* parameter. It means that the parameter is not accessed by the
Implementation, but will merely be stored to be provided to the Trusted Application later. Although a Trusted
Application typically uses such parameters to store pointers to allocated structures, they can contain any value.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 37/242

4

Trusted Core Framework API

This chapter defines the Trusted Core Framework API, defining OS-like APIs and infrastructure. It contains
the following sections:

Section 4.1, Data Types
Section 4.2, Constants

Common definitions used throughout the chapter.
Section 4.3, TA Interface

Defines the entry points that each TA MUST define.
Section 4.4, Property Access Functions

Defines the generic functions to access properties. These functions can be used to access TA
Configuration Properties, Client Properties, and Implementation Properties.

Section 4.5, Trusted Application Configuration Properties
Defines the standard Trusted Application Configuration Properties.
Section 4.6, Client Properties
Defines the standard Client Properties.
Section 4.7, Implementation Properties
Defines the standard Implementation Properties.
Section 4.8, Panics
Defines the function TEE_Panic.
Section 4.9, Internal Client API

Defines the Internal Client API that allows a Trusted Application to act as a Client of another Trusted
Application.

Section 4.10, Cancellation Functions

Defines how a Trusted Application can handle client cancellation requests, acknowledge them, and
mask or unmask the propagated effects of cancellation requests on cancellable functions.

Section 4.11, Memory Management Functions

Defines how to check the access rights to memory buffers, how to access global variables, how to
allocate memory (similar to malloc), and a few utility functions to fill or copy memory blocks.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

38/242 TEE Internal Core API Specification — Public Release v1.1.1

4.1 Data Types

4.1.1 TEE_ldentity

‘typedef struct ‘
| € |
‘ uint32_t login; ‘
.~ TEE_UWUID uuid; |
| } TEE_Identity; |

The TEE_Identity structure defines the full identity of a Client:
e login isone ofthe TEE_LOGIN_XXX constants. (See section 4.2.2.)
e uuid contains the client UUID or Nil (as defined in [RFC 4122]) if not applicable.

4.1.2 TEE_Param

typedef union
{
struct
{
void* buffer;—uint32—+% size t size;
} memref;
struct
{
uint32_t a, b;
} value;
} TEE_Param;

This union describes one parameter passed by the Trusted Core Framework to the entry points
TA_OpenSessionEntryPoint or TA_InvokeCommandEntryPoint or by the TA to the functions
TEE_OpenTASession or TEE_InvokeTACommand.

Which of the field value or memref to selectis determined by the parameter type specified in the argument
paramTypes passed to the entry point. See section 4.3.6.1 and section 4.9.4 for more details on how this
type is used.

4.1.3 TEE_TASessionHandle

‘typedef struct _ TEE_TASessionHandle* TEE_TASessionHandle;

TEE_TASessionHandle is an opaque handle on a TA Session. These handles are returned by the function
TEE_OpenTASession specified in section 4.9.1.

4.1.4 TEE_PropSetHandle

‘typedef struct _ TEE_PropSetHandle* TEE_PropSetHandle;

TEE_PropSetHandle is an opaque handle on a property set or enumerator. These handles either are
returned by the function TEE_AllocatePropertyEnumerator specified in section 4.4.7 or are one of the
pseudo-handles defined in section 4.2.4.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 39/242

4.2 Constants
4.2.1 Parameter Types

Table 4-1: Parameter Type Constants

Constant Name Constant Value

TEE_PARAM_TYPE_NONE

TEE_PARAM_TYPE_VALUE_INPUT

TEE_PARAM_TYPE_VALUE_OUTPUT

TEE_PARAM_TYPE_VALUE_INOUT

TEE_PARAM_TYPE_MEMREF_INPUT

TEE_PARAM_TYPE_MEMREF_OUTPUT

N oju|w | N | L |

TEE_PARAM_TYPE_MEMREF_INOUT

4.2.2 Login Types

Table 4-2: Login Type Constants

Constant Name Constant Value
TEE_LOGIN_PUBLIC 0Xx00000000
TEE_LOGIN_USER 0x00000001
TEE_LOGIN_GROUP 0x00000002
TEE_LOGIN_APPLICATION 0x00000004
TEE_LOGIN_APPLICATION_USER 0x00000005
TEE_LOGIN_APPLICATION_GROUP 0x00000006

Reserved for future GlobalPlatform defined login types | 9x00000007 - Ox7FFFFFFF

Reserved for implementation-specific login types 0x80000000 - OXEFFFFFFF

TEE_LOGIN_TRUSTED_APP OXF2000000

Reserved for future GlobalPlatform defined login types | OxF@000001 - OXFFFFFFFF

4.2.3 Origin Codes

Table 4-3: Origin Code Constants

Constant Names Constant Value
TEE_ORIGIN_API TEEC_ORIGIN_API 0x00000001
TEE_ORIGIN_COMMS TEEC_ORIGIN_COMMS 0x00000002
TEE_ORIGIN_TEE TEEC_ORIGIN_TEE 0x00000003
TEE_ORIGIN_TRUSTED_APP TEEC_ORIGIN_TRUSTED_APP 0x00000004

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

40/242

TEE Internal Core API Specification — Public Release v1.1.1

4.2.4 Property Set Pseudo-Handles

Table 4-4: Property Set Pseudo-Handle Constants

Constant Name

Constant Value

Reserved

0x00000000 - OXEFFFFFFF

Reserved for implementation-specific property sets

OxF0000000 - OXFFFEFFFF

Reserved for future GlobalPlatform use

OxFFFF@O00 - OXFFFFFFFC

TEE_PROPSET_TEE_IMPLEMENTATION

(TEE_PropSetHandle)OxFFFFFFFD

TEE_PROPSET_CURRENT_CLIENT

(TEE_PropSetHandle)@xFFFFFFFE

TEE_PROPSET_CURRENT_TA

(TEE_PropSetHandle)OxFFFFFFFF

4.2.5 Memory Access Rights

Table 4-5: Memory Access Rights Constants

Constant Name

Constant Value

TEE_MEMORY_ACCESS_READ 0X00000001
TEE_MEMORY_ACCESS_WRITE 0X00000002
TEE_MEMORY_ACCESS_ANY_OWNER PX00000004

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

41/242

4.3 TA Interface

Each Trusted Application MUST provide the Implementation with a number of functions, collectively called the
“TA interface”. These functions are the entry points called by the Trusted Core Framework to create the
instance, notify the instance that a new client is connecting, notify the instance when the client invokes a
command, etc. These entry points cannot be registered dynamically by the Trusted Application code: They
MUST be bound to the framework before the Trusted Application code is started.

Table 4-6 lists the functions in the TA interface.

Table 4-6: TA Interface Functions

TA Interface Function (Entry Point)

Description

TA_CreateEntryPoint

This is the Trusted Application constructor. It is called once
and only once in the life-time of the Trusted Application
instance. If this function fails, the instance is not created.

TA_DestroyEntryPoint

This is the Trusted Application destructor. The Trusted Core
Framework calls this function just before the Trusted
Application instance is terminated. The Framework MUST
guarantee that no sessions are open when this function is
called. When TA_DestroyEntryPoint returns, the
Framework MUST collect all resources claimed by the Trusted
Application instance.

TA_OpenSessionEntryPoint

This function is called whenever a client attempts to connect to
the Trusted Application instance to open a new session. If this
function returns an error, the connection is rejected and no
new session is opened.

In this function, the Trusted Application can attach an opaque
void* context to the session. This context is recalled in all
subsequent TA calls within the session.

TA_CloseSessionEntryPoint

This function is called when the client closes a session and
disconnects from the Trusted Application instance. The
Implementation guarantees that there are no active commands
in the session being closed. The session context reference is
given back to the Trusted Application by the Framework.

It is the responsibility of the Trusted Application to deallocate
the session context if memory has been allocated for it.

TA_InvokeCommandEntryPoint

This function is called whenever a client invokes a Trusted
Application command. The Framework gives back the session
context reference to the Trusted Application in this function
call.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

42/242

TEE Internal Core API Specification — Public Release v1.1.1

Table 4-7 summarizes client operations and the resulting Trusted Application effect.

Table 4-7: Effect of Client Operation on TA Interface

Client Operation

Trusted Application Effect

TEEC_OpenSession
or
TEE_OpenTASession

If a new Trusted Application instance is needed to handle the
session, TA _CreateEntryPoint is called.

Then, TA_OpenSessionEntryPoint is called.

TEEC_InvokeCommand

or
TEE_InvokeTACommand

TA_InvokeCommandEntryPoint is called.

TEEC _CloseSession
or
TEE_CloseTASession

TA_CloseSessionEntryPoint is called.

For a multi-instance TA or for a single-instance,

non keep-alive TA, if the session closed was the last session
on the instance, then TA_DestroyEntryPoint is called.
Otherwise, the instance is kept until the TEE shuts down.

TEEC_RequestCancellation
or

The function TEE_OpenTASession or
TEE_InvokeTACommand is cancelled.

See section 4.10 for details on the effect of cancellation
requests.

Client terminates unexpectedly

From the point of view of the TA instance, the behavior

MUST be identical to the situation where the client does not

terminate unexpectedly but, for all opened sessions:

e requests the cancellation of all pending operations in that
session,

¢ waits for the completion of all these operations in that
session,

¢ and finally closes that session.

Note that there is no way for the TA to distinguish between

the client gracefully cancelling all its operations and closing

all its sessions and the Implementation taking over when the

client dies unexpectedly.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 43/242

Interface Operation Parameters

When a Client opens a session on a Trusted Application or invokes a command, it can send Operation
Parameters to the Trusted Application. The parameters encode the data associated with the operation. Up to
four parameters can be sent in an operation. If these are insufficient, then one of the parameters may be used
to carry further parameter data via a Memory Reference.

Each parameter can be individually typed by the Client as a Value Parameter, carrying two 32-bit integers, or
a Memory Reference Parameter, carrying a pointer to a client-owned memory buffer. Each parameter is also
tagged with a direction of data flow (input, output, or both input and output). For output Memory References,
there is a built-in mechanism for the Trusted Applications to report the necessary size of the buffer in case of
a too-short buffer. See section 4.3.6 for more information about the handling of parameters in the TA interface.

Note that Memory Reference Parameters typically point to memory owned by the client and shared with the
Trusted Application for the duration of the operation. This is especially useful in the case of REE Clients to
minimize the number of memory copies and the data footprint in case a Trusted Application needs to deal with
large data buffers, for example to process a multimedia stream protected by DRM.

Security Considerations

The fact that Memory References may use memory directly shared with the client implies that the Trusted
Application needs to be especially careful when handling such data: Even if the client is not allowed to access
the shared memory buffer during an operation on this buffer, the Trusted OS usually cannot enforce this
restriction. A badly-designed or rogue client may well change the content of the shared memory buffer at any
time, even between two consecutive memory accesses by the Trusted Application. This means that the
Trusted Application needs to be carefully written to avoid any security problem if this happens. If values in the
buffer are security critical, the Trusted Application SHOULD always read data only once from a shared buffer
and then validate it. It MUST NOT assume that data written to the buffer can be read unchanged later on.

Error Handling

All TA interface functions except TA_DestroyEntryPoint and TA_CloseSessionEntryPoint return a
return code of type TEE_Result. The behavior of the Framework when an entry point returns an error depends
on the entry point called:

e If TA CreateEntryPoint returns an error, the Trusted Application instance is not created.

e If TA OpenSessionEntryPoint returns an error code, the client connection is rejected.
Additionally, the error code is propagated to the client as described below.

e If TA InvokeCommandEntryPoint returns an error code, this error code is propagated to the client.
e TA CloseSessionEntryPoint and TA DestroyEntryPoint cannot return an error.

TA_OpenSessionEntryPoint and TA_InvokeCommandEntryPoint return codes are propagated to the
client via the TEE Client API (see [Client API]) or the Internal Client API (see section 4.9) with the origin set to
TEEC_ORIGIN_TRUSTED_APP.

Client Properties

When a Client connects to a Trusted Application, the Framework associates the session with Client Properties.
Trusted Applications can retrieve the identity and properties of their client by calling one of the property access
functions with the TEE_PROPSET_CURRENT_CLIENT. The standard Client Properties are fully specified in
section 4.6.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

44/242 TEE Internal Core API Specification — Public Release v1.1.1

The TA_EXPORT keyword

Depending on the compiler used and the targeted platform, a TA entry point may need to be decorated with
an annotation such as __ declspec(dllexport) or similar. This annotation MUST be defined in the TEE
Internal Core API header file as TA_EXPORT and placed between the entry point return type and function
name as shown in the specification of each entry point.

4.3.1 TA_CreateEntryPoint

‘TEE_Result TA_EXPORT TA_CreateEntryPoint(void);

Description

The function TA_CreateEntryPoint is the Trusted Application’s constructor, which the Framework calls
when it creates a new instance of the Trusted Application.

To register instance data, the implementation of this constructor can use either global variables or the function
TEE_SetInstanceData (described in section 4.11.2).

Specification Number: 10 Function Number: 0x102

Return Code
e TEE_SUCCESS: If the instance is successfully created, the function MUST return TEE_SUCCESS.

e Any other value: If any other code is returned, then the instance is not created, and no other entry
points of this instance will be called. The Framework MUST reclaim all resources and dereference all
objects related to the creation of the instance.

If this entry point was called as a result of a client opening a session, the return code is returned to the
client and the session is not opened.

Panic Reasons

o If the Implementation detects any error which cannot be represented by any defined or implementation
defined error code.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 45/242

4.3.2 TA_DestroyEntryPoint

void TA _EXPORT TA_DestroyEntryPoint(void);

Description

The function TA_DestroyEntryPoint is the Trusted Application’s destructor, which the Framework calls
when the instance is being destroyed.

When the function TA_DestroyEntryPoint is called, the Framework guarantees that no client session is
currently open. Once the call to TA_DestroyEntryPoint has been completed, no other entry point of this
instance will ever be called.

Note that when this function is called, all resources opened by the instance are still available. It is only after
the function returns that the Implementation MUST start automatically reclaiming resources left open.

After this function returns, the Implementation MUST consider the instance destroyed and MUST reclaim alll
resources left open by the instance.

Specification Number: 10 Function Number: 0x103

Panic Reasons

o If the Implementation detects any error.

4.3.3 TA_OpenSessionEntryPoint

TEE_Result TA _EXPORT TA_OpenSessionEntryPoint (
uint32_t paramTypes,
[inout] TEE_Param params[4],
[out][ctx] void** sessionContext);

Description

The Framework calls the function TA OpenSessionEntryPoint when a client requests to open a session
with the Trusted Application. The open session request may result in a new Trusted Application instance being
created as defined by the gpd.ta.singleInstance property described in section 4.5.

The client can specify parameters in an open operation which are passed to the Trusted Application instance
in the arguments paramTypes and params. These arguments can also be used by the Trusted Application
instance to transfer response data back to the client. See section 4.3.6 for a specification of how to handle the
operation parameters.

If this function returns TEE_SUCCESS, the client is connected to a Trusted Application instance and can invoke
Trusted Application commands. When the client disconnects, the Framework will eventually call the
TA_CloseSessionEntryPoint entry point.

If the function returns any error, the Framework rejects the connection and returns the return code and the
current content of the parameters to the client. The return origin is then set to TEEC_ORIGIN_TRUSTED_APP.

The Trusted Application instance can register a session data pointer by setting *sessionContext. The value
of this pointer is not interpreted by the Framework, and is simply passed back to other TA_ functions within
this session. Note that *sessionContext may be set with a pointer to a memory allocated by the Trusted
Application instance or with anything else, such as an integer, a handle, etc. The Framework will not
automatically free *sessionContext when the session is closed; the Trusted Application instance is
responsible for freeing memory if required.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

46/242 TEE Internal Core API Specification — Public Release v1.1.1

During the call to TA OpenSessionEntryPoint the client may request to cancel the operation. See
section 4.10 for more details on cancellations. If the call to TA_OpenSessionEntryPoint returns
TEE_SUCCESS, the client MUST consider the session as successfully opened and explicitly close it if
necessary.
Parameters

e paramTypes: The types of the four parameters. See section 4.3.6.1 for more information.

e params: A pointer to an array of four parameters. See section 4.3.6.2 for more information.

e sessionContext: A pointer to a variable that can be filled by the Trusted Application instance with

an opaque void* data pointer

Specification Number: 10 Function Number: 0x105

Return Value
e TEE_SUCCESS: If the session is successfully opened
¢ Any other value: If the session could not be opened

o The return code may be one of the pre-defined codes, or may be a new return code defined by the
Trusted Application implementation itself. In any case, the Implementation MUST report the return
code to the client with the origin TEEC_ORIGIN_TRUSTED_APP.

Panic Reasons

¢ If the Implementation detects any error which cannot be expressed by any defined or implementation
defined error code.

4.3.4 TA_CloseSessionEntryPoint

void TA_EXPORT TA_CloseSessionEntryPoint(
[ctx] void* sessionContext);

Description
The Framework calls the function TA_CloseSessionEntryPoint to close a client session.

The Trusted Application implementation is responsible for freeing any resources consumed by the session
being closed. Note that the Trusted Application cannot refuse to close a session, but can hold the closing until
it returns from TA_CloseSessionEntryPoint. This is why this function cannot return a return code.

Parameters

e sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the
function TA_OpenSessionEntryPoint for this session.

Specification Number: 10 Function Number: 0x101

Return Value

This function can return no success or error code.

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 471242

435 TA_InvokeCommandEntryPoint

TEE_Result TA_EXPORT TA_InvokeCommandEntryPoint(
[ctx] void* sessionContext,
uint32_t commandID,
uint32_t paramTypes,
[inout] TEE_Param params[4]);

Description

The Framework calls the function TA_InvokeCommandEntryPoint when the client invokes a command
within the given session.

The Trusted Application can access the parameters sent by the client through the paramTypes and params
arguments. It can also use these arguments to transfer response data back to the client. See section 4.3.6 for
a specification of how to handle the operation parameters.

During the call to TA_InvokeCommandEntryPoint the client may request to cancel the operation. See
section 4.10 for more details on cancellations.

A command is always invoked within the context of a client session. Thus, any client property (see section 4.6)
can be accessed by the command implementation.

Parameters

e sessionContext: The value of the void* opaque data pointer set by the Trusted Application in the
function TA_OpenSessionEntryPoint

e commandID: A Trusted Application-specific code that identifies the command to be invoked
e paramTypes: The types of the four parameters. See section 4.3.6.1 for more information.

e params: A pointer to an array of four parameters. See section 4.3.6.2 for more information.
Specification Number: 10 Function Number: 0x104

Return Value
e TEE_SUCCESS: If the command is successfully executed, the function MUST return this value.
¢ Any other value: If the invocation of the command fails for any reason

o The return code may be one of the pre-defined codes, or may be a new return code defined by the
Trusted Application implementation itself. In any case, the Implementation MUST report the return
code to the client with the origin TEEC_ORIGIN_TRUSTED_APP.

Panic Reasons

¢ If the Implementation detects any error which cannot be expressed by any defined or implementation
defined error code.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

48/242 TEE Internal Core API Specification — Public Release v1.1.1

4.3.6 Operation Parameters in the TA Interface

When a client opens a session or invokes a command within a session, it can transmit operation parameters
to the Trusted Application instance and receive response data back from the Trusted Application instance.

Arguments paramTypes and params are used to encode the operation parameters and their types which
are passed to the Trusted Application instance. While executing the open session or invoke command entry
points, the Trusted Application can also write in params to encode the response data.

4.3.6.1 Content of paramTypes Argument

The argument paramTypes encodes the type of each of the four parameters passed to an entry point. The
content of paramTypes is implementation-dependent.

Each parameter type can take one of the TEE_PARAM_TYPE_XXX values listed in Table 4-1 on page 39. The
type of each parameter determines whether the parameter is used or not, whether it is a Value or a Memory
Reference, and the direction of data flow between the Client and the Trusted Application instance: Input (Client
to Trusted Application instance), Output (Trusted Application instance to Client), or both Input and Output. The
parameter type is set to TEE _PARAM _TYPE NONE when no parameters are passed by the client in either
TEEC OpenSession or TEEC InvokeCommand; this includes when the operation parameter itself is set to
NULL.

The following macros are available to decode paramTypes:

#define TEE_PARAM_TYPES(t0,t1,t2,t3) \
((te) | ((t1) << 4) | ((t2) << 8) | ((t3) << 12))

#define TEE_PARAM_TYPE_GET(t, i) (((t) >> (i*4)) & OxF)

The macro TEE_PARAM_TYPES can be used to construct a value that you can compare against an incoming
paramTypes to check the type of all the parameters in one comparison, as in the following example:

if (paramTypes !=
TEE_PARAM_TYPES(
TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_OUTPUTOURUT,
TEE_PARAM_TYPE_NONE,
TEE_PARAM_TYPE_NONE))
{
/* Bad parameter types */
return TEE_ERROR_BAD_PARAMETERS;

}

The macro TEE_PARAM_TYPE_GET can be used to extract the type of a given parameter from paramTypes
if you need more fine-grained type checking.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 49/242

4.3.6.2 Initial Content of params Argument

When the Framework calls the Trusted Application entry point, it initializes the content of params[i] as
described in Table 4-8.

Table 4-8: Content of params[i] when Trusted Application Entry Point Is Called

Value of type[i] Content of params[i] when the Entry Point is Called

TEE_PARAM_TYPE_NONE Filled with zeroes.

TEE_PARAM_TYPE_VALUE_OUTPUT

TEE_PARAM_TYPE_VALUE_INPUT params[i].value.a and params[i].value.b contain the

TEE_PARAM_TYPE_VALUE_INOUT two integers sent by the client

TEE_PARAM_TYPE_MEMREF_INPUT params[i].memref.buffer is a pointer to memory buffer

TEE_PARAM_TYPE_MEMREF_OUTPUT shared by the client. This can be NULL.

TEE_PARAM_TYPE_MEMREF_INOUT params[i].memref.size describes the size of the buffer. If
buffer is NULL, size is guaranteed to be zero.

Note that if the Client is a Client Application that uses the TEE Client API ([Client API]), the Trusted Application
cannot distinguish between a registered and a temporary Memory Reference. Both are encoded as one of the
TEE_PARAM_TYPE_MEMREF_XXX types and a pointer to the data is passed to the Trusted Application.

Security Warning: For a Memory Reference Parameter, the buffer may concurrently exist within the client
and Trusted Application instance memory spaces. It MUST therefore be assumed that the client is able to
make changes to the content of this buffer asynchronously at any moment. It is a security risk to assume
otherwise.

Any Trusted Application which implements functionality that needs some guarantee that the contents of a
buffer are constant SHOULD copy the contents of a shared buffer into Trusted Application instance-owned
memory.

To determine whether a given buffer is a Memory Reference or a buffer owned by the Trusted Application
itself, the function TEE_CheckMemoryAccessRights defined in section 4.11.1 can be used.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

50/242 TEE Internal Core API Specification — Public Release v1.1.1

4.3.6.3 Behavior of the Framework when the Trusted Application Returns

When the Trusted Application entry point returns, the Framework reads the content of each params[i] to
determine what response data to send to the client, as described in Table 4-9.

Table 4-9: Interpretation of params[i] when Trusted Application Entry Point Returns

Value of type[i] Behavior of the Framework when Entry Point Returns
TEE_PARAM_TYPE_NONE The content of params[i] is ignored.

TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_MEMREF_INPUT

TEE_PARAM_TYPE_VALUE_OUTPUT params[i].value.a and params[i].value.b contain
TEE_PARAM_TYPE_VALUE_INOUT the two integers sent to the client.

TEE_PARAM _TYPE_MEMREF_OUTPUT The Framework reads params[i].memref.size:
TEE_PARAM_TYPE_MEMREF_INOUT e Ifitis equal or less than the original value of size, itis

considered as the actual size of the memory buffer. In
this case, the Framework assumes that the Trusted
Application has not written beyond this actual size and
only this actual size will be synchronized with the client.

e Ifitis greater than the original value of size, itis
considered as a request for a larger buffer. In this case,
the Framework assumes that the Trusted Application
has not written anything in the buffer and no data will be
synchronized.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 51/242

4.3.6.4 Memory Reference and Memory Synchronization

Note that if a parameter is a Memory Reference, the memory buffer may be released or unmapped immediately
after the operation completes. Also, some implementations may explicitly synchronize the contents of the
memory buffer before the operation starts and after the operation completes.

As a consequence:

The Trusted Application MUST NOT access the memory buffer after the operation completes. In
particular, it cannot be used as a long-term communication means between the client and the Trusted
Application instance. A Memory Reference MUST be accessed only during the lifetime of the
operation.

The Trusted Application MUST NOT attempt to write into a memory buffer of type
TEE_PARAM_TYPE_MEMREF_INPUT.

o Itis a Programmer Error to attempt to do this but the Implementation is not required to detect this
and the access may well be just ignored.

For a Memory Reference Parameter marked as OUTPUT or INOUT, the Trusted Application can write
in the entire range described by the initial content of params[i].memref.size. However, the
Implementation MUST only guarantee that the client will observe the modifications below the final
value of size and only if the final value is equal or less than the original value.

For example, assume the original value of size is 100:

o If the Trusted Application does not modify the value of size, the complete buffer is synchronized
and the client is guaranteed to observe all the changes.

o If the Trusted Application writes 50 in size, then the client is only guaranteed to observe the
changes within the range from index © to index 49.

o If the Trusted Application writes 200 in size, then no data is guaranteed to be synchronized with
the client. However, the client will receive the new value of size. The Trusted Application can
typically use this feature to tell the client that the Memory Reference was too small and request that
the client retry with a Memory Reference of at least 200 bytes.

Failure to comply with these constraints will result in undefined behavior and is a Programmer Error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

52/242 TEE Internal Core API Specification — Public Release v1.1.1

4.4 Property Access Functions

This section defines a set of functions to access individual properties in a property set, to convert them into a
variety of types (printable strings, integers, Booleans, binary blocks, etc.), and to enumerate the properties in
a property set. These functions can be used to access TA Configuration Properties, Client Properties, and
Implementation Properties.

The property set is passed to each function in a pseudo-handle parameter. Table 4-10 lists the defined property
sets.

Table 4-10: Property Sets

Pseudo-Handle Meaning

TEE_PROPSET_CURRENT_TA The configuration properties for the current Trusted
Application. See section 4.5 for a definition of these
properties.

TEE_PROPSET_CURRENT_CLIENT The properties of the current client. This pseudo-handle is

valid only in the context of the following entry points:
e TA_OpenSessionEntryPoint

e TA_InvokeCommandEntryPoint

e TA CloseSessionEntryPoint

See section 4.6 for a definition of these properties.

TEE_PROPSET_TEE_IMPLEMENTATION The properties of the TEE Implementation itself. See
section 4.7.

Properties can be retrieved and converted using TEE_GetPropertyAsXXX access functions (described in
the following sections).

A property may be retrieved and converted into a printable string or into one and only one of the following
types:

e Binary block

e 32-bit unsigned integer
e Boolean

e UUID

Identity (a pair composed of a login method and a UUID)

Retrieving as a String

While implementations have latitude on how they set and store properties internally, a property that is retrieved
via the function TEE_GetPropertyAsString MUST always be converted into a printable string encoded in
UTF-8.

To ensure consistency between the representation of a property as one of the above types and its
representation as a printable string encoded in UTF-8, the following conversion rules apply:

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 53/242

Binary block

is converted into a string that is consistent with a Base64 encoding of the binary block as defined in
RFC 2045 ([RFC 2045]) section 6.8 but with the following tolerance:

o An Implementation is allowed not to encode the final padding ‘=" characters.
o An implementation is allowed to insert characters that are not in the Base64 character set.
32-bit unsigned integer

is converted into a string that is consistent with the following syntax:

integer: decimal-integer
| hexadecimal-integer
| binary-integer

decimal -integer: [0-9,]+{K,M}?
hexadecimal -integer: ©[x,X][0-9,a-f,A-F,]+
binary-integer: o[b,B][0,1,]+

Note that the syntax allows returning the integer either in decimal, hexadecimal, or binary format, that
the representation can mix cases and can include underscores to separate groups of digits, and finally
that the decimal representation may use ‘K> or ‘M’ to denote multiplication by 1024 or 1048576
respectively.

For example, here are a few acceptable representations of the number 1024: “1K”, “@X400”,
“0b100_0000_0000".

Boolean

is converted into a string equal to “true” or “false” case-insensitive, depending on the value of the
Boolean.

uulD

is converted into a string that is consistent with the syntax defined in [RFC 4122]. Note that this string
may mix character cases.

Identity

is converted into a string consistent with the following syntax:

identity: integer (':' uuid)?

where:
e The integer is consistent with the integer syntax described above

¢ |[f the identity UUID is Nil, then it can be omitted from the string representation of the property

Enumerating Properties

Properties in a property set can also be enumerated. For this:

Allocate a property enumerator using the function TEE_AllocatePropertyEnumerator.

Start the enumeration by calling TEE_StartPropertyEnumerator, passing the pseudo-handle on
the desired property set.

Call the functions TEE_GetProperty[AsXXX] with the enumerator handle and a NULL name.

An enumerator provides the properties in an arbitrary order. In particular, they are not required to be sorted by
name although a given implementation may ensure this.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

54/242 TEE Internal Core API Specification — Public Release v1.1.1

44.1 TEE_GetPropertyAsString

TEE_Result TEE_GetPropertyAsString(
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[outstring] char* valueBuffer,—uint32£* size t*
valueBufferLen);

Description

The TEE_GetPropertyAsString function performs a lookup in a property set to retrieve an individual
property and convert its value into a printable string.

When the lookup succeeds, the implementation MUST convert the property into a printable string and copy
the result into the buffer described by valueBuffer and valueBufferLen.
Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and it MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL

o valueBuffer, valueBufferlLen: Output buffer for the property value
Specification Number: 10 Function Number: 0x207

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding
e TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 55/242

4.4.2 TEE_GetPropertyAsBool

TEE_Result TEE_GetPropertyAsBool (
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[out] bool* value);

Description

The TEE_GetPropertyAsBool function retrieves a single property in a property set and converts its value
to a Boolean.

If a property cannot be viewed as a Boolean, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL.

e value: A pointer to the variable that will contain the value of the property on success or false on
error.

Specification Number: 10 Function Number: 0x205

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding
e TEE_ERROR_BAD_FORMAT: If the property value cannot be converted to a Boolean

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

56/242 TEE Internal Core API Specification — Public Release v1.1.1

443 TEE_GetPropertyAsU32

TEE_Result TEE_GetPropertyAsU32(
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[out] uint32_t* value);

Description

The TEE_GetPropertyAsU32 function retrieves a single property in a property set and converts its value to
a 32-bit unsigned integer.

If a property cannot be viewed as a 32-bit unsigned integer, this function MUST return
TEE_ERROR_BAD_FORMAT.
Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL.

e value: A pointer to the variable that will contain the value of the property on success, or zero on
error.

Specification Number: 10 Function Number: 0x208

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding
e TEE_ERROR_BAD_FORMAT: If the property value cannot be converted to an unsigned 32-bit integer

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 571242

4.4.4 TEE_GetPropertyAsBinaryBlock

TEE_Result TEE_GetPropertyAsBinaryBlock(
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[outbuf] void* valueBuffer,—uint32 £* size t*
valueBufferLen);

Description

The function TEE_GetPropertyAsBinaryBlock retrieves an individual property and converts its value into
a binary block.

If a property cannot be viewed as a binary block, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL.

e valueBuffer, valueBufferLen: Output buffer for the binary block
Specification Number: 10 Function Number: 0x204

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding
e TEE_ERROR_BAD_FORMAT: If the property cannot be retrieved as a binary block
e TEE_ERROR_SHORT_BUFFER: If the value buffer is not large enough to hold the whole property value

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

58/242 TEE Internal Core API Specification — Public Release v1.1.1

445 TEE_GetPropertyAsUUID

TEE_Result TEE_GetPropertyAsUUID (
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[out] TEE_UUID* value);

Description
The function TEE_GetPropertyAsUUID retrieves an individual property and converts its value into a UUID.

If a property cannot be viewed as a UUID, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL.
e value: A pointer filled with the UUID. MUST NOT be NULL.

Specification Number: 10 Function Number: 0x209

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding
e TEE_ERROR_BAD_FORMAT: If the property cannot be converted into a UUID

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 59/242

44.6 TEE_GetPropertyAslidentity

TEE_Result TEE_GetPropertyAsIdentity(
TEE_PropSetHandle propsetOrEnumerator,
[instringopt] char* name,
[out] TEE_Identity* value);

Description

The function TEE_GetPropertyAsIdentity retrieves an individual property and converts its value into a
TEE_Identity.

If a property cannot be viewed as an identity, this function MUST return TEE_ERROR_BAD_FORMAT.

Parameters

e propsetOrEnumerator: One of the TEE_PROPSET_XXX pseudo-handles or a handle on a property
enumerator

e name: A pointer to the zero-terminated string containing the name of the property to retrieve. Its
content is case-sensitive and MUST be encoded in UTF-8.

o If propsetOrEnumerator is a property enumerator handle, name is ignored and can be NULL.
o Otherwise, name MUST NOT be NULL.
e value: A pointer filled with the identity. MUST NOT be NULL.

Specification Number: 10 Function Number: 0x206

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM_NOT_FOUND: If the property is not found or if name is not a valid UTF-8 encoding

o TEE_ERROR_BAD_FORMAT: If the property value cannot be converted into an Identity

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

60/242 TEE Internal Core API Specification — Public Release v1.1.1

4.4.7 TEE_AllocatePropertyEnumerator

TEE_Result TEE_AllocatePropertyEnumerator(
[out] TEE_PropSetHandle* enumerator);

Description
The function TEE_AllocatePropertyEnumerator allocates a property enumerator object. Once a handle
on a property enumerator has been allocated, it can be used to enumerate properties in a property set using
the function TEE_StartPropertyEnumerator.
Parameters

e enumerator: A pointer filled with an opaque handle on the property enumerator on success and with

TEE_HANDLE_NULL on error

Specification Number: 10 Function Number: 0x201

Return Value
e TEE_SUCCESS: In case of success

e TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the property enumerator

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 61/242

448 TEE_FreePropertyEnumerator

void TEE_FreePropertyEnumerator (
TEE_PropSetHandle enumerator);

Description

The function TEE_FreePropertyEnumerator deallocates a property enumerator object.

Parameters

e enumerator: A handle on the enumerator to free
Specification Number: 10 Function Number: 0x202

Panic Reasons

¢ If the Implementation detects any error.

449 TEE_StartPropertyEnumerator

void TEE_StartPropertyEnumerator(
TEE_PropSetHandle enumerator,
TEE_PropSetHandle propSet);

Description
The function TEE_StartPropertyEnumerator starts to enumerate the properties in an enumerator.
Once an enumerator is attached to a property set:

o Properties can be retrieved using one of the TEE_GetPropertyAsXXX functions, passing the
enumerator handle as the property set and NULL as the name.

e The function TEE_GetPropertyName can be used to retrieve the name of the current property in the
enumerator.

e The function TEE_GetNextProperty can be used to advance the enumeration to the next property
in the property set.

Parameters
e enumerator: A handle on the enumerator

e propSet: A pseudo-handle on the property set to enumerate. MUST be one of the
TEE_PROPSET_XXX pseudo-handles.

Specification Number: 10 Function Number: 0x20C

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

62/242 TEE Internal Core API Specification — Public Release v1.1.1

4410 TEE_ResetPropertyEnumerator

void TEE_ResetPropertyEnumerator (
TEE_PropSetHandle enumerator);

Description

The function TEE_ResetPropertyEnumerator resets a property enumerate to its state immediately after
allocation. If an enumeration is currently started, it is abandoned.

Parameters

e enumerator: A handle on the enumerator to reset
Specification Number: 10 Function Number: 0x20B

Panic Reasons

¢ If the Implementation detects any error.

4.4.11 TEE_GetPropertyName

TEE_Result TEE_GetPropertyName(
TEE_PropSetHandle enumerator,
[outstring] void* nameBuffer,—uint32t* size t* nameBufferlLen

)5

Description
The function TEE_GetPropertyName gets the name of the current property in an enumerator.

The property name MUST be the valid UTF-8 encoding of a Unicode string containing no U+0000 code points.

Parameters
e enumerator: A handle on the enumerator

e nameBuffer, nameBufferLen: The buffer filled with the name
Specification Number: 10 Function Number: 0x20A

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_ITEM_NOT_FOUND: If there is no current property either because the enumerator has not
started or because it has reached the end of the property set

e TEE_ERROR_SHORT_BUFFER: If the name buffer is not large enough to contain the property name

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 63/242

4412 TEE_GetNextProperty

TEE_Result TEE_GetNextProperty(
TEE_PropSetHandle enumerator);

Description

The function TEE_GetNextProperty advances the enumerator to the next property.

Parameters

e enumerator: A handle on the enumerator
Specification Number: 10 Function Number: 0x203

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM _NOT_FOUND: If the enumerator has reached the end of the property set or if it has
not started
Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

64/242 TEE Internal Core API Specification — Public Release v1.1.1

4.5 Trusted Application Configuration Properties

Each Trusted Application is associated with Configuration Properties that are accessible using the generic
Property Access Functions and the TEE_PROPSET_CURRENT_TA pseudo-handle. This section defines a few

standard configuration properties that affect the behavior of the Implementation. Other configuration properties
can be defined:

¢ either by the Implementation to configure implementation-defined behaviors,
e or by the Trusted Application itself for its own configuration purposes.

The way properties are actually configured and attached to a Trusted Application is beyond the scope of the
specification.

Table 4-11 defines the standard configuration properties for Trusted Applications.

Table 4-11: Trusted Application Standard Configuration Properties

Property Name Type Meaning
gpd.ta.appID UuID The identifier of the Trusted Application.
gpd.ta.singleInstance Boolean | Whether the Implementation SHALL create a single TA

instance for all the client sessions (if true) or SHALL
create a separate instance for each client session
(if false).

gpd.ta.multiSession Boolean | Whether the Trusted Application instance supports multiple
sessions.

This property is ignored when gpd.ta.singleinstance

is set to false.for-multi-instance-Trusted-Applications:

gpd.ta.instanceKeepAlive Boolean | Whether the Trusted Application instance context SHALL
be preserved when there are no sessions connected to the
instance. The instance context is defined as all writable
data within the memory space of the Trusted Application
instance, including the instance heap.

This property is meaningful only when the
gpd.ta.singleInstance issetto true.

When this property is setto false, then the TA instance
MUST be created when one or more sessions are opened
on the TA and it MUST be destroyed when there are no
more sessions opened on the instance.

When this property is setto true, then the TA instance is
terminated only when the TEE shuts down, which includes
when the device goes through a system-wide global power
cycle. Note that the TEE MUST NOT shut down whenever
the REE does not shut down and keeps a restorable state,
including when it goes through transitions into lower power
states (hibernation, suspend, etc.).

The exact moment when a keep-alive single instance is
created is implementation-defined but it MUST be no later
than the first session opening.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 65/242

Property Name Type Meaning

gpd.ta.dataSize Integer Maximum estimated amount of dynamic data in bytes
configured for the Trusted Application. The memory blocks
allocated through TEE_Malloc are drawn from this
space, as well as the task stacks. How this value precisely
relates to the exact number and sizes of blocks that can be
allocated is implementation-dependent.

gpd.ta.stackSize Integer Maximum stack size in bytes available to any task in the
Trusted Application at any point in time. This corresponds
to the stack size used by the TA code itself and does not
include stack space possibly used by the Trusted Core
Framework. For example, if this property is set to “512”,
then the Framework MUST guarantee that, at any time, the
TA code can consume up to 512 bytes of stack and still be
able to call any functions in the API.

gpd.ta.version String Version number of this Trusted Application.

gpd.ta.description String Optional description of the Trusted Application

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

66/242 TEE Internal Core API Specification — Public Release v1.1.1

4.6 Client Properties

This section defines the standard Client Properties, accessible using the generic Property Access Functions
and the TEE_PROPSET_CURRENT_CLIENT pseudo-handle. Other non-standard client properties can be
defined by specific implementations, but they MUST be defined outside the “gpd.” namespace.

Note that Client Properties can be accessed only in the context of a TA entry point associated with a client, i.e.
in one of the following entry point functions: TA_OpenSessionEntryPoint,
TA_InvokeCommandEntryPoint, or TA_CloseSessionEntryPoint.

Table 4-12 defines the standard Client Properties.

Table 4-12: Standard Client Properties

Property Name Type Meaning

gpd.client.identity Identity Identity of the current client. This can be conveniently
retrieved using the function
TEE_GetPropertyAsIdentity (see section 4.4.6).

A Trusted Application can use the client identity to perform
access control. For example, it can refuse to open a session
for a client that is not identified.

As shown in Table 4-13, the client identifier and the client properties that the Trusted Application can retrieve
depend on the nature of the client and the method it has used to connect.

Table 4-13: Client Identities

Login Method Meaning

TEE_LOGIN_PUBLIC The client is in the Rich Execution Environment and is neither
identified nor authenticated. The client has no identity and the
UUID is the Nil UUID as defined in [RFC 4122].

TEE_LOGIN_APPLICATION The Client Application has been identified by the Rich
Execution Environment independently of the identity of the
user executing the application. The nature of this identification
and the corresponding UUID is REE-specific.

TEE_LOGIN_USER The Client Application has been identified by the Rich
Execution Environment and the client UUID reflects the actual
user that runs the calling application independently of the
actual application.

TEE_LOGIN_GROUP The client UUID reflects a group identity that is executing the
calling application. The notion of group identity and the
corresponding UUID is REE-specific.

TEE_LOGIN_APPLICATION_USER The client UUID identifies both the calling application and the
user that is executing it.

TEE_LOGIN_APPLICATION_GROUP The client UUID identifies both the calling application and a
group that is executing it.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 67/242

Login Method

Meaning

TEE_LOGIN_TRUSTED_APP

The client is another Trusted Application. The client identity
assigned to this session is the UUID of the calling Trusted
Application.

The client properties are all the configuration properties of the
calling Trusted Application.

The range 0x80000000-0XEFFFFFFF
is reserved for implementation-defined
login methods.

The meaning of the Client UUID and the associated client
properties are implementation-defined. If the Trusted
Application does not support the particular implementation, it
SHOULD assume that the client has minimum rights, i.e.
rights equivalent to the login method TEE_LOGIN_ PUBLIC.

The ranges 0x00000000-0x7FFFFFFF
and OxFO0000V0-OXFFFFFFFF are
reserved for standard login methods
defined by GlobalPlatform.

Client properties are meant to be managed by either the Rich OS or the Trusted OS and these MUST ensure
that a Client cannot tamper with its own properties in the following sense:

e The property gpd.client.identity MUST always be determined by the Trusted OS and the
determination of whether it is equal to TEE_LOGIN_TRUSTED_APP or not MUST be as trustworthy as

the Trusted OS itself.

e When gpd.client.identity isequalto TEE_LOGIN_TRUSTED_APP then the Trusted OS MUST
ensure that the remaining properties are equal to the properties of the calling TA up to the same level
of trustworthiness that the target TA places in the Trusted OS.

e When gpd.client.identity is notequalto TEE_LOGIN_TRUSTED_APP, then the Rich OS is
responsible for ensuring that the Client Application cannot tamper with its own properties.

Note that if a Client wants to transmit a property that is not synthesized by the Rich OS or Trusted OS, such
as a password, then it MUST use a parameter to the session open operation or in subsequent commands.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

68/242

TEE Internal Core API Specification — Public Release v1.1.1

4.7

Implementation Properties

The implementation properties can be retrieved by the generic Property Access Functions with the

TEE_PROPSET_TEE_IMPLEMENTATION pseudo-handle.

Table 4-14 defines the standard implementation properties.

Table 4-14: Implementation Properties

Property Name

Type

Meaning

gpd.tee.apiversion

String

The version number of the API implementation.
Its value for this version of the specification is
the string “1.1”.

gpd.tee.description

String

A description of the implementation. The
content of this property is implementation-
dependent but typically contains a version and
build number of the implementation as well as
other configuration information.

Note that implementations are free to define
their own non-standard identification property
names, provided they are not in the “gpd.”
namespace

gpd.tee.devicelD

uulID

A device identifier that MUST be globally
unique among all GlobalPlatform TEEs
whatever the manufacturer, vendor, or
integration._If there are multiple GlobalPlatform
TEESs on one device, each TEE SHALL have a
unigue gpd.tee.devicelD.

Implementer’s Note

It is acceptable to derive this device identifier
from statistically unique secret or public
information, such as a Hardware Unique Key,
die identifiers, etc. However, note that this
property is intended to be public and exposed
to any software running on the device, not only
to Trusted Applications. The derivation MUST
therefore be carefully designed so that it

does not compromise secret information.

gpd.tee.systemTime.protectionLevel

Integer

The protection level provided by the system
time implementation. See the function
TEE_GetSystemTime in section 7.2.1 for
more details.

gpd.tee.TAPersistentTime.
protectionLevel

Integer

The protection level provided for the

TA Persistent Time. See the function
TEE_GetTAPersistentTime in section 7.2.3
for more details.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

69/242

Property Name

Type

Meaning

gpd.tee.arith.maxBigIntSize

Integer

Maximum size in bits of the big integers for all
the functions in the TEE Arithmetical API
specified in Chapter 8. Beyond this limit, some
of the functions MAY panic due to insufficient
pre-allocated resources or hardware
limitations.

gpd.tee.cryptography.ecc

Boolean

If set to True, then the Elliptic Curve
Cryptographic (ECC) algorithms shown in
Table 6-2 are supported.

gpd.tee.trustedStorage.
antiRollback.protectionLevel

Integer

Indicates the level of protection from rollback of
Trusted Storage supplied by the
implementation:

0 (or missing): No anti rollback protection

100: Anti rollback mechanism for the Trusted
Storage is enforced at the REE level.

1000: Anti rollback mechanism for the
Trusted Storage is based on TEE-controlled
hardware. This hardware MUST be out of
reach of software attacks from the REE.

If an active TA attempts to access material
held in Trusted Storage that has been rolled
back, it will receive an error equivalent to a
corrupted object.

Users may still be able to roll back the Trusted
Storage but this MUST be detected by the
Implementation

gpd.tee.trustedos.implementation.
version

String

The detailed version number of the TEE
implementation.

The value of this property MUST change
whenever anything changes in the code
forming the Trusted OS which provides the
TEE, i.e. any patch MUST change this string.

gpd.tee.trustedos.implementation.
binaryversion

binary

A binary value which is equivalent to
gpd.tee.trustedos.implementation.
version. May be derived from some form of
certificate indicating the software has been
signed, a measurement of the image, a
checksum, a direct binary conversion of
gpd.tee.trustedos.implementation.
version, or any other binary value which the
TEE manufacturer chooses to provide. The
Trusted OS manufacturer’'s documentation
SHALL state the format of this value.

The value of this property MUST change
whenever anything changes in the code
forming the Trusted OS which provides the
TEE, i.e. any patch MUST change this string.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

70/242 TEE Internal Core API Specification — Public Release v1.1.1

Property Name Type Meaning
gpd.tee.trustedos.manufacturer String Name of the manufacturer of the Trusted OS.
gpd.tee.firmware.implementation. String The detailed version number of the firmware
version which supports the Trusted OS

implementation. This includes all privileged
software involved in the secure booting and
support of the TEE apart from the secure OS
and Trusted Applications.

The value of this property MUST change
whenever anything changes in this code, i.e.
any patch MUST change this string. The value
of this property MAY be the empty string if
there is no such software.

gpd.tee.firmware.implementation. Binary A binary value which is equivalent to
binaryversion gpd.tee.firmware.implementation.
version. May be derived from some form of
certificate indicating the firmware has been
signed, a measurement of the image, a
checksum, a direct binary conversion of
gpd.tee.firmware.implementation.
version, or any other binary value which the
Trusted OS manufacturer chooses to provide.
The Trusted OS manufacturer’s documentation
SHALL state the format of this value.

The value of this property MUST change
whenever anything changes in this code, i.e.
any patch MUST change this string. The value
of this property MAY be a zero length value if
there is no such firmware.

gpd.tee.firmware.manufacturer String Name of the manufacturer of the firmware
which supports the Trusted OS or the empty
string if there is no such firmware.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 71/242

4.8 Panics

4.8.1 TEE_Panic

‘void TEE_Panic(TEE_Result panicCode);

Description
The TEE_Panic function raises a Panic in the Trusted Application instance.

When a Trusted Application calls the TEE_Panic function, the current instance MUST be destroyed and alll
the resources opened by the instance MUST be reclaimed. All sessions opened from the panicking instance
on another TA MUST be gracefully closed and all cryptographic objects and operations MUST be closed
properly.

When an instance panics, its clients receive the return code TEE_ERROR_TARGET _DEAD of origin
TEE_ORIGIN_TEE until they close their session. This applies to Rich Execution Environment clients calling

through the TEE Client API (see [Client API]) and to Trusted Execution Environment clients calling through the
Internal Client API (see section 4.9).

When this routine is called, an Implementation in a non-production environment, such as in a development or
pre-production state, SHALL display the supplied panicCode using the mechanisms defined in [Debug] (or an
implementation-specific alternative) to help the developer understand the Programmer Error. Diagnostic
information SHOULD NOT be exposed outside of a secure development environment.

Once an instance is panicked, no TA entry point is ever called again for this instance, not even
TA DestroyEntryPoint. The caller cannot expect that the TEE_Panic function will return.

Parameters

e panicCode: An informative panic code defined by the TA. May be displayed in traces if traces are
available.

Specification Number: 10 Function Number: 0x301

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

721242 TEE Internal Core API Specification — Public Release v1.1.1

4.9 Internal Client API
This API allows a Trusted Application to act as a client to another Trusted Application.

49.1 TEE_OpenTASession

TEE_Result TEE_OpenTASession (
[in] TEE_UUID* destination,
uint32_t cancellationRequestTimeout,
uint32_t paramTypes,
[inout] TEE_Param params[4],
[out] TEE_TASessionHandle* session,
[out] uint32_t* returnOrigin);

Description
The function TEE_OpenTASession opens a new session with a Trusted Application.

The destination Trusted Application is identified by its UUID passed in destination.-Fhis-UUib-can-be
hardecoded-in-the—callercode. An-nitial set of four parameters can be passed during the operation. See
section 4.9.4 for a detailed specification of how these parameters are passed inthe paramTypes and params
arguments.

The result of this function is returned both in the return code and the return origin, stored in the variable pointed
to by returnOrigin:

¢ If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it
could reach the target Trusted Application. The possible return codes are listed in “Return_Code
Value” below.

e |If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return value depends on
the protocol exposed by the target Trusted Application. However, if TEE_SUCCESS is returned, it
always means that the session was successfully opened and if the function returns a value different
from TEE_SUCCESS, it means that the session opening failed.

When the session is successfully opened, i.e. when the function returns TEE_SUCCESS, a valid session handle
is written into *session. Otherwise, the value TEE_HANDLE_NULL is written into *session.
Parameters

e destination: A pointertoa TEE_UUID structure containing the UUID of the destination Trusted
Application

e cancellationRequestTimeout: Timeoutin milliseconds or the special value
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE MUST act as
though a cancellation request for the operation had been sent.

e paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details.

e params: The parameters passed in the operation. See section 4.9.4 for more details. These are
updated only if the returnOrigin is TEE_ORIGIN_TRUSTED_APP.

e session: A pointer to a variable that will receive the client session handle. The pointer MUST NOT
be NULL. The value is setto TEE_HANDLE_NULL upon error.

e returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if
the return origin is not needed.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 731242

Specification Number: 10 Function Number: 0x403

Return Code

e TEE_SUCCESS: In case of success; the session was successfully opened.

e Any other value: The opening failed.

If the return origin is different from TEE_ORIGIN_TRUSTED_APP, one of the following return codes can
be returned:

o

o

TEE_ERROR_OUT_OF _MEMORY: If not enough resources are available to open the session
TEE_ERROR_ITEM NOT_FOUND: If no Trusted Application matches the requested destination UUID
TEE_ERROR_ACCESS_DENIED: If access to the destination Trusted Application is denied

TEE_ERROR_BUSY: If the destination Trusted Application does not allow more than one session at
a time and already has a session in progress

TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the
operation

If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed
by the destination Trusted Application.

Panic Reasons

o If the Implementation detects any error which cannot be represented by any defined or implementation
defined error code.

4.9.2

TEE_CloseTASession

void TEE_CloseTASession(TEE_TASessionHandle session);

Description

The function TEE_CloseTASession closes a client session.

Parameters

e session: An opened session handle

Specification Number: 10 Function Number: 0x401

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

741242 TEE Internal Core API Specification — Public Release v1.1.1

49.3 TEE_InvokeTACommand

TEE_Result TEE_InvokeTACommand (
TEE_TASessionHandle session,
uint32_t cancellationRequestTimeout,
uint32_t commandID,
uint32_t paramTypes,
[inout] TEE_Param params[4],
[out] uint32_t* returnOrigin);

Description

The function TEE_InvokeTACommand invokes a command within a session opened between the client
Trusted Application instance and a destination Trusted Application instance.

The parameter session MUST reference a valid session handle opened by TEE_OpenTASession.

Up to four parameters can be passed during the operation. See section 4.9.4 for a detailed specification of
how these parameters are passed in the paramTypes and params arguments.

The result of this function is returned both in the return value and the return origin, stored in the variable pointed
to by returnOrigin:

If the return origin is different from TEE_ORIGIN_TRUSTED_APP, then the function has failed before it could
reach the destination Trusted Application. The possible return codes are listed in “Return_Code-\/alue” below.

If the return origin is TEE_ORIGIN_TRUSTED_APP, then the meaning of the return value is determined by the
protocol exposed by the destination Trusted Application. It is recommended that the Trusted Application
developer choose TEE_SUCCESS (@) to indicate success in their protocol, as this makes it possible to
determine success or failure without looking at the return origin.
Parameters

e session: An opened session handle

e cancellationRequestTimeout: Timeout in milliseconds or the special value
TEE_TIMEOUT_INFINITE if there is no timeout. After the timeout expires, the TEE MUST act as
though a cancellation request for the operation had been sent.

e commandID: The identifier of the Command to invoke. The meaning of each Command Identifier
MUST be defined in the protocol exposed by the target Trusted Application.

e paramTypes: The types of all parameters passed in the operation. See section 4.9.4 for more details.

e params: The parameters passed in the operation. See section 4.9.4 for more details.

e returnOrigin: A pointer to a variable which will contain the return origin. This field may be NULL if
the return origin is not needed.

Specification Number: 10 Function Number: 0x402

Return Code

o If the return origin is different from TEE_ORIGIN_TRUSTED_APP, one of the following return codes can
be returned:

o TEE_SUCCESS: In case of success

o TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to perform the operation

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 751242

o TEE_ERROR_TARGET_DEAD: If the destination Trusted Application has panicked during the

operation
If the return origin is TEE_ORIGIN_TRUSTED_APP, the return code is defined by the protocol exposed

by the destination Trusted Application.

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

76/242 TEE Internal Core API Specification — Public Release v1.1.1

4.9.4 Operation Parameters in the Internal Client API

The functions TEE_OpenTASession and TEE_InvokeTACommand take paramTypes and params as
arguments. The calling Trusted Application can use these arguments to pass up to four parameters.

Each of the parameters has a type, which is one of the TEE_PARAM_TYPE_XXX values listed in Table 4-1 on
page 39. The content of paramTypes SHOULD be built using the macro TEE_PARAM_TYPES (see
section 4.3.6.1).

Unless all parameter types are setto TEE_PARAM TYPE_NONE, params MUST NOT be NULL and MUST
point to an array of four TEE_Param elements. Each of the params[i] is interpreted as follows.

When the operation starts, the Framework reads the parameters as described in Table 4-15.

Table 4-15: Interpretation of params[i] on Entry to Internal Client API

Parameter Type Interpretation of params[i]
TEE_PARAM_TYPE_NONE Ignored.

TEE_PARAM_TYPE_VALUE_OUTPUT

TEE_PARAM_TYPE_VALUE_INPUT Contains two integers in params[i].value.a and
TEE_PARAM_TYPE_VALUE_INOUT params[i].value.b
TEE_PARAM_TYPE_MEMREF_INPUT params[i].memref.buffer and
TEE_PARAM_TYPE_MEMREF_OUTPUT params[i].memref.size MUST be initialized with a
TEE PARAM TYPE MEMREF INOUT memory buffer that is accessible with the access rights

described in the type. The buffer can be NULL, in which
case size MUST be setto @.

During the operation, the destination Trusted Application can update the contents of the OUTPUT or INOUT
Memory References.

When the operation completes, the Framework updates the structure params[i] as described in Table 4-16.

Table 4-16: Effects of Internal Client APl on params[i]

Parameter Type Effects on params[i]
TEE_PARAM_TYPE_NONE Unchanged.
TEE_PARAM_TYPE_VALUE_INPUT
TEE_PARAM_TYPE_MEMREF_INPUT

TEE_PARAM TYPE_VALUE_OUTPUT params[i].value.a and params[i].value.b are

TEE_PARAM_TYPE_VALUE_INOUT updated with the value sent by the destination Trusted
Application.

TEE_PARAM_TYPE_MEMREF_OUTPUT params[i].memref.size is updated to reflect the actual

TEE_PARAM_TYPE_MEMREF_INOUT or requested size of the buffer.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 771242

4.10 Cancellation Functions

This section defines functions for Trusted Applications to handle cancellation requested by a Client Application.

When a Client Application requests cancellation using the function TEEC RequestCancellation of
[Client API], the implementation MUST do the following:

¢ If the operation has not reached the TA yet but has been queued in the TEE, then it MUST be retired
from the queue and fail with the return code TEEC_ERROR_CANCEL and the origin
TEEC_ORIGIN_TEE.

o If the operation has been transmitted to the Trusted Application, the implementation MUST set the
Cancellation Flag of the task executing the command.

o If the Trusted Application has unmasked the effects of cancellation by using the function
TEE_UnmaskCancellation, and if the task is engaged in a cancellable function when the
Cancellation Flag is set, then that cancellable function is interrupted. The Trusted Application can
detect that the function has been interrupted because it returns TEE_ERROR_CANCEL. It can then
execute cleanup code and possibly fail the current client operation, although it may well report a
success.

o Note that this version of the specification defines a single cancellable function, which is the
TEE_Wait function. Future versions may define other cancellable functions, in particular in the

domain of user interactions.

o The functions TEE_OpenTASession and TEE_InvokeTACommand, while not cancellable per se,
MUST transmit cancellation requests: If the Cancellation Flag is set and the effects of cancellation
are not masked, then the Trusted Core Framework MUST consider that the cancellation of the
corresponding operation is requested.

o When the Cancellation Flag is set for a given task, the function TEE_GetCancellationFlag MUST
return true, but only in the case the cancellations are not masked. This allows the Trusted
Application to poll the Cancellation Flag, for example, when it is engaged in a lengthy active
computation not using cancellable functions such as TEE_Wait.

4.10.1 TEE_GetCancellationFlag

‘bool TEE_GetCancellationFlag(void);

Description
The TEE_GetCancellationFlag function determines whether the current task’s Cancellation Flag is set. If
cancellations are masked, this function MUST return false. This function cannot panic.

Specification Number: 10 Function Number: 0x501

Return Value
e false if the Cancellation Flag is not set or if cancellations are masked

o true if the Cancellation Flag is set and cancellations are not masked

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

781242 TEE Internal Core API Specification — Public Release v1.1.1

4.10.2 TEE_UnmaskCancellation

bool TEE_UnmaskCancellation(void);

Description
The TEE_UnmaskCancellation function unmasks the effects of cancellation for the current task.

When cancellation requests are unmasked, the Cancellation Flag interrupts cancellable functions such as
TEE_Wait and requests the cancellation of operations started with TEE_OpenTASession or
TEE_InvokeTACommand.

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to
cope with the effects of cancellation requests.

Specification Number: 10 Function Number: 0x503

Return Value
e true if cancellations were masked prior to calling this function

e false otherwise

Panic Reasons

¢ If the Implementation detects any error.

4.10.3 TEE_MaskCancellation

bool TEE_MaskCancellation(void);

Description
The TEE_MaskCancellation function masks the effects of cancellation for the current task.

When cancellation requests are masked, the Cancellation Flag does not have an effect on the cancellable
functions and cannot be retrieved using TEE_GetCancellationFlag.

By default, tasks created to handle a TA entry point have cancellation masked, so that a TA does not have to
cope with the effects of cancellation requests.

Specification Number: 10 Function Number: 0x502

Return Value
e true if cancellations were masked prior to calling this function

e false otherwise

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 791242

4.11 Memory Management Functions

This section defines the following functions:

e A function to check the access rights of a given buffer. This can be used in particular to check if the
buffer belongs to shared memory.

e Access to an instance data register, which provides a possibly more efficient alternative to using read-
write C global variables

e A malloc facility

o A few utilities to copy and fill data blocks

4.11.1 TEE_CheckMemoryAccessRights

TEE_Result TEE_CheckMemoryAccessRights(
uint32_t accessFlags,
void* buffer,—uint32+t size t size);

Description

The TEE_CheckMemoryAccessRights function causes the Implementation to examine a buffer of memory
specified in the parameters buffer and size and to determine whether the current Trusted Application
instance has the access rights requested in the parameter accessFlags. If the characteristics of the buffer
are compatible with accessFlags, then the function returns TEE_SUCCESS. Otherwise, it returns
TEE_ERROR_ACCESS_DENIED. Note that the buffer SHOULD NOT be accessed by the function, but the
Implementation SHOULD check the access rights based on the address of the buffer and internal memory
management information.

The parameter accessFlags can contain one or more of the following flags:

e TEE_MEMORY_ACCESS_READ: Check that the buffer is entirely readable by the current Trusted
Application instance.

e TEE_MEMORY_ACCESS_WRITE: Check that the buffer is entirely writable by the current Trusted
Application instance.

e TEE_MEMORY_ACCESS_ANY_OWNER:

o If this flag is not set, then the function checks that the buffer is not shared, i.e. whether it can be
safely passed in an [in] or [out] parameter.

o If this flag is set, then the function does not check ownership. It returns TEE_SUCCESS if the
Trusted Application instance has read or write access to the buffer, independently of whether the
buffer resides in memory owned by a Client or not.

e All other flags are reserved for future use and SHOULD be setto 0.

The result of this function is valid until:
e The allocated memory area containing the supplied buffer is passed to TEE_Realloc or TEE_Free.
¢ One of the entry points of the Trusted Application returns.

e Actors outside of the TEE change the memory access rights when the memory is shared with an
outside entity.

In the first these-two situations, the access rights of a given buffer MAY change and the Trusted Application
SHOULD call the function TEE_CheckMemoryAccessRights again.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

80/242 TEE Internal Core API Specification — Public Release v1.1.1

When this function returns TEE_SUCCESS, and as long as this result is still valid, the Implementation MUST
guarantee the following properties:

For the flag TEE_MEMORY_ACCESS READ and TEE_MEMORY_ACCESS WRITE, the Implementation
MUST guarantee that subsequent read or write accesses by the Trusted Application wherever in the
buffer will succeed and will not panic.

When the flag TEE_MEMORY_ACCESS_ANY_OWNER is not set, the Implementation MUST guarantee
that the memory buffer is owned either by the Trusted Application instance or by a more trusted
component, and cannot be controlled, modified, or observed by a less trusted component, such as the
Client of the Trusted Application. This means that the Trusted Application can assume the following
guarantees:

o Read-after-read consistency: If the Trusted Application performs two successive read accesses
to the buffer at the same address and if, between the two read accesses, it performs no write,
either directly or indirectly through the API to that address, then the two reads MUST return the
same result.

o Read-after-write consistency: If the Trusted Application writes some data in the buffer and
subsequently reads the same address and if it performs no write, either directly or indirectly
through the API to that address in between, the read MUST return the data.

o Non-observability: If the Trusted Application writes some data in the buffer, then the data
MUST NOT be observable by components less trusted than the Trusted Application itself.

Note that when true memory sharing is implemented between Clients and the Trusted Application, the Memory
Reference Parameters passed to the TA entry points will typically not satisfy these requirements. In this case,
the function TEE_CheckMemoryAccessRights MUST return TEE_ERROR_ACCESS_DENIED. The code
handling such buffers has to be especially careful to avoid security issues brought by this lack of guarantees.
For example, it can read each byte in the buffer only once and refrain from writing temporary data in the buffer.

Additionally, the Implementation MUST guarantee that some types of memory blocks have a minimum set of
access rights:

The following blocks MUST allow read and write accesses, MUST be owned by the Trusted
Application instance, and SHOULD NOT allow code execution:

o All blocks returned by TEE_Malloc or TEE_Realloc
o All the local and global non-const C variables

o The TEE_Param structures passed to the entry points TA_OpenSessionEntryPoint and
TA_InvokeCommandEntryPoint. This applies to the immediate contents of the TEE_Param
structures, but not to the pointers contained in the fields of such structures, which can of course
point to memory owned by the client. Note that this also means that these TEE_Param structures
MUST NOT directly point to the corresponding structures in the TEE Client API (see [Client API]) or
the Internal Client API (see section 4.9). The Implementation MUST perform a copy into a safe
TA-owned memory buffer before passing the structures to the entry points.

The following blocks MUST allow read accesses, MUST be owned by the Trusted Application
instance, and SHOULD NOT allow code execution:

o All const local or global C variables

The following blocks MAY allow read accesses, MUST be owned by the Trusted Application instance,
and MUST allow code execution:

o The code of the Trusted Application itself

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 81/242

e When a particular parameter passed in the structure TEE_Param to a TA entry point is a Memory
Reference as specified in its parameter type, then this block, as described by the initial values of the
fields buffer and size inthat structure, MUST allow read and/or write accesses as specified in
the parameter type. As noted above, this buffer is not required to reside in memory owned by the TA
instance.

Finally, any Implementation MUST also guarantee that the NULL pointer cannot be dereferenced. If a Trusted
Application attempts to read one byte at the address NULL, it MUST panic. This guarantee MUST extend to a
segment of addresses starting at NULL, but the size of this segment is implementation-dependent.
Parameters

e accessFlags: The access flags to check

e buffer, size: The description of the buffer to check
Specification Number: 10 Function Number: 0x601

Return Code
e TEE_SUCCESS: If the entire buffer allows the requested accesses
e TEE_ERROR_ACCESS_DENIED: If at least one byte in the buffer is not accessible with the requested
accesses
Panic Reasons

This function MUST NOT panic for any reason.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

82/242 TEE Internal Core API Specification — Public Release v1.1.1

4.11.2 TEE_SetinstanceData

void TEE_SetInstanceData(
[ctx] void* instanceData);

Description

The TEE_SetlInstanceData and TEE_GetInstanceData functions provide an alternative to writable
global data (writable variables with global scope and writable static variables with global or function scope).
While an Implementation MUST support C global variables, using these functions may be sometimes more
efficient, especially if only a single instance data variable is required.

These two functions can be used to register and access an instance variable. Typically this instance variable
can be used to hold a pointer to a Trusted Application-defined memory block containing any writable data that
needs instance global scope, or writable static data that needs instance function scope.

The value of this pointer is notinterpreted by the Framework, and is simply passed back to other
TA_ functions within this session. Note that *instanceData may be set with a pointer to a buffer allocated
by the Trusted Application instance or with anything else, such as an integer, a handle, etc. The Framework
will not automatically free *instanceData when the session is closed; the Trusted Application instance is
responsible for freeing memory if required.

An equivalent session context variable for managing session global and static data exists for sessions (see
TA_OpenSessionEntryPoint, TA_InvokeCommandEntryPoint, and TA_CloseSessionEntryPoint in

section 4.3).

This function sets the Trusted Application instance data pointer. The data pointer can then be retrieved by the
Trusted Application instance by calling the TEE_GetInstanceData function.

Parameters

e instanceData: A pointer to the global Trusted Application instance data. This pointer may be NULL.
Specification Number: 10 Function Number: 0x609

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 83/242

4.11.3 TEE_ GetlnstanceData

‘[ctx] void* TEE_GetInstanceData(void);

Description

The TEE_GetInstanceData function retrieves the instance data pointer set by the Trusted Application using
the TEE_SetInstanceData function.

Specification Number: 10 Function Number: 0x603

Return Value

The value returned is the previously set pointer to the Trusted Application instance data, or NULL if no instance
data pointer has yet been set.

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

84/242 TEE Internal Core API Specification — Public Release v1.1.1

4.11.4 TEE_Malloc

void* TEE_Malloc(
—uint32—+ size t size,
uint32_t hint);

Description

The TEE_Malloc function allocates space for an object whose size in bytes is specified in the parameter
size.

The pointer returned is guaranteed to be aligned such that it may be assigned as a pointer to any of the basic
C types.

The parameter hint is a hint to the allocator. The valid values for the hint are defined in Table 4-17. This
parameter allows Trusted Applications to refer to various pools of memory or to request special characteristics
for the allocated memory by using an implementation-defined hint. Future versions of this specification may
introduce additional standard hints.

Table 4-17; Valid Hint Values

Name Hint Value Meaning

TEE_MALLOC_FILL_ZERO | 0x00000000 Guarantees that the returned block of memory
is filled with zeroes

Reserved 0x00000001-0x7FFFFFFF | Reserved for future versions of this
specification.

Implementation defined 0x80000000-0xXFFFFFFFF | Reserved for implementation-defined hints.

The hint MUST be attached to the allocated block and SHOULD be used when the block is reallocated with
TEE_Realloc.

If the space cannot be allocated, given the current hint value (for example because the hint value is not
implemented), a NULL pointer SHALL be returned.
Parameters

e size: The size of the buffer to be allocated.

e hint: A hintto the allocator. See Table 4-17 for valid values.
Specification Number: 10 Function Number: 0x604

Return Value

Upon successful completion, with size not equal to zero, the function returns a pointer to the allocated space.
If the space cannot be allocated, given the current hint value, a NULL pointer is returned.

If the size of the requested space is zero:

e The value returned is undefined but guaranteed to be different from NULL. This non-NULL value
ensures that the hint can be associated with the returned pointer for use by TEE_Realloc.

e The Trusted Application MUST NOT access the returned pointer. The Trusted Application SHOULD
panic if the memory pointed to by such a pointer is accessed for either read or write.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 85/242

Panic Reasons

¢ If the Implementation detects any error.

4115 TEE_Realloc

void* TEE_Realloc(
[in] void* buffer,
uint32_t newSize);

Description

The TEE_Realloc function changes the size of the memory object pointed to by buffer to the size specified
by newSize.

The content of the object remains unchanged up to the lesser of the new and old sizes. Space in excess of
the old size contains unspecified content.

If the new size of the memory object requires movement of the object, the space for the previous instantiation
of the object is deallocated. If the space cannot be allocated, the original object remains allocated, and this
function returns a NULL pointer.

If buffer is NULL, TEE_Realloc isequivalentto TEE_Malloc for the specified size. The associated hint
applied SHALL be the default value defined in TEE_Malloc.

It is a Programmer Error if buffer does not match a pointer previously returned by TEE_Malloc or
TEE_Realloc, or if the space has previously been deallocated by a callto TEE_Free or TEE_Realloc.

If the hint initially provided when the block was allocated with TEE_Malloc is 0, then the extended space is
filled with zeroes. In general, the function TEE_Realloc SHOULD allocate the new memory buffer using
exactly the same hint as for the buffer initially allocated with TEE_Malloc. In any case, it MUST NOT
downgrade the security or performance characteristics of the buffer.

Note that any pointer returned by TEE_Malloc or TEE_Realloc and not yet freed or reallocated can be
passedto TEE_Realloc. This includes the special non-NULL pointer returned when an allocation for © bytes
is requested.

Parameters
e buffer: The pointer to the object to be reallocated

e newSize: The new size required for the object
Specification Number: 10 Function Number: 0x608

Return Value
Upon successful completion, TEE_Realloc returns a pointer to the (possibly moved) allocated space.

If there is not enough available memory, TEE_Realloc returns a NULL pointer and the original buffer is still
allocated and unchanged.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

86/242 TEE Internal Core API Specification — Public Release v1.1.1

411.6 TEE_Free

void TEE_Free(void *buffer);

Description

The TEE_Free function causes the space pointed to by buffer to be deallocated; that is, made available
for further allocation.

If buffer isa NULL pointer, TEE_Free does nothing. Otherwise, it is a Programmer Error if the argument
does not match a pointer previously returned by the TEE_Malloc or TEE_Realloc, or if the space has been
deallocated by a callto TEE_Free or TEE_Realloc.

Parameters

e buffer: The pointer to the memory block to be freed
Specification Number: 10 Function Number: 0x602

Panic Reasons

¢ If the Implementation detects any error.

4.11.7 TEE_MemMove

void TEE_MemMove (
[outbuf(size)] void* dest,
[inbuf(size)] void* src,
uint32_t size);

Description

The TEE_MemMove function copies size bytes from the buffer pointed to by src into the buffer pointed to
by dest.

Copying takes place as if the size bytes from the buffer pointed to by src are first copied into a temporary
array of size bytes that does not overlap the buffers pointed to by dest and src, and then the size
bytes from the temporary array are copied into the buffer pointed to by dest.

Parameters
e dest: A pointer to the destination buffer
e src: A pointer to the source buffer

e size: The number of bytes to be copied
Specification Number: 10 Function Number: 0x607

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 87/242

4.11.8 TEE_MemCompare

int32_t TEE_MemCompare(
[inbuf(size)] void* bufferl,
[inbuf(size)] void* buffer2,
uint32_t size);
Description

The TEE_MemCompare function compares the first size bytes of the buffer pointed to by bufferl to the
first size bytes of the buffer pointed to by buffer2.

Parameters
e bufferil: A pointer to the first buffer
e buffer2: A pointer to the second buffer

e size: The number of bytes to be compared
Specification Number: 10 Function Number: 0x605

Return Value

The sign of a non-zero return value is determined by the sign of the difference between the values of the first
pair of bytes (both interpreted as type uint8_t) that differ in the objects being compared.

o If the first byte that differs is higher in bufferl, then return an integer greater than zero.
o Ifthe first size bytes of the two buffers are identical, then return zero.

o |If the first byte that differs is higher in buffer2, then return an integer lower than zero.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

88/242 TEE Internal Core API Specification — Public Release v1.1.1

4.11.9 TEE_MemfFill

void TEE_MemFill(
[outbuf(size)] void* buffer,
uint32_t x,
uint32_t size);

Description
The TEE_MemFill function writes the byte x (converted to a uint8_t) into the first size bytes of the
buffer pointed to by buffer.
Parameters
e buffer: A pointer to the destination buffer
e X: The value to be set

e size: The number of bytes to be set
Specification Number: 10 Function Number: 0x606

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 89/242

5

Trusted Storage API for Data and Keys

This chapter includes the following sections:

5.1 Summary of Features and DESIGNccueiiiiiiiieiiiiiee ittt e s senee e 89
5.2 Trusted Storage and RoOIIDACK DEIECHIONeeiiiiiiiieiiiiiie e 91
R I B =1 = Rl Y/ o[PP PP TP PPPPPTPRRPTP 92
5.4 CONSLANTS ...ttt e 94
N I =T o 1= Tl @] o =T od a0 T 1o OSSR 96
5.6 Transient OBJECt FUNCLIONSccciiiiiiiiiiee e e s r e e e e e e snnran e e e e e e 103
5.7 Persistent ODJECt FUNCLIONSoiiiiuiiiieiiiiie ettt 117
5.8 Persistent Object Enumeration FUNCHONS..........ccoiiiiiiiiiiiiic e 126
5.9 Data Stream ACCESS FUNCHONS.........uiiiiiiiiie ittt 130

5.1 Summary of Features and Design

This section provides a summary of the features and design of the Trusted Storage API.

Each TA has access to a set of Trusted Storage Spaces, identified by 32-bit Storage Identifiers.

o The current version of this specification defines a single Trusted Storage Space for each TA, which
is its own private storage space. The objects in this storage space are accessible only to the TA
that created them and are not visible to other TAs.

o Other storage identifiers may be defined in future versions of this specification or by an
Implementation, e.g. to refer to storage spaces shared among multiple TAs or for communicating
between boot-time entities and run-time Trusted Applications.

A Trusted Storage Space contains Persistent Objects. Each persistent object is identified by an
Object Identifier, which is a variable-length binary buffer from @ to 64 bytes. Object identifiers can
contain any bytes, including bytes corresponding to non-printable characters.

A persistent object can be a Cryptographic Key Object, a Cryptographic Key-Pair Object, or a
Data Object.

Each persistent object has a type, which precisely defines the content of the object. For example,
there are object types for AES keys, RSA key-pairs, data objects, etc.

All persistent objects have an associated Data Stream. Persistent data objects have only a data
stream._Persistent cryptographic objects (that is, keys or key-pairs) have a data stream, Object
Attributes, and metadata.

o The Data Stream is entirely managed in the TA memory space. It can be loaded into a
TA-allocated buffer when the object is opened or stored from a TA-allocated buffer when the object
is created. It can also be accessed as a stream, so it can be used to store large amounts of data
accessed by small chunks.

o Object Attributes are used for small amounts of data (typically a few tens or hundreds of bytes).
They can be stored in a memory pool that is separated from the TA instance and some attributes
may be hidden from the TA itself. Attributes are used to store the key material in a structured way.
For example, an RSA key-pair has an attribute for the modulus, the public exponent, the private
exponent, etc. When an object is created, all mandatory Object Attributes MUST be specified and
optional attributes MAY be specified.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

90/242

TEE Internal Core API Specification — Public Release v1.1.1

o

Note that an Implementation is allowed to store more information in an object than the visible
attributes. For example, some data might be pre-computed and stored internally to accelerate
subsequent cryptographic operations.

The metadata associated with each cryptographic object includes:

o Key Size in bits. The precise meaning depends on the key algorithm. For example, AES key
can have 128 bits, 192 bits, or 256 bits; RSA keys can have 1024 bits or 2048 bits or any other
supported size, etc.

o Key Usage Flags, which define the operations permitted with the key as well as whether the
sensitive parts of the key material can be retrieved by the TA or not.

e A TA can also allocate Transient Objects. Compared to persistent objects:

o

@)

@)

Transient objects are held in memory and are automatically wiped and reclaimed when they are
closed or when the TA instance is destroyed.

Transient objects contain only attributes and no data stream.

A transient object can be uninitialized, in which case it is an object container allocated with a
certain object type and maximum size but with no attributes. A transient object becomes initialized
when its attributes are populated. Note that persistent objects are always created initialized. This
means that when the TA wants to generate or derive a persistent key, it has to first use a transient
object then write the attributes of a transient object into a persistent object.

Transient objects have no identifier, they are only manipulated through object handles.

Currently, transient objects are used for cryptographic keys and key-pairs.

¢ Any function that accesses a persistent object handle MAY return a status of
TEE_ERROR_CORRUPT_OBJECT or TEE_ERROR_CORRUPT_OBIJECT_2, which indicates that corruption
of the object has been detected. Before this status is returned, the Implementation SHALL delete the
corrupt object and SHALL close the associated handle; subsequent use of the handle SHALL cause a
panic.

¢ Any function that accesses a persistent object MAY return a status of
TEE_ERROR_STORAGE_NOT_AVAILABLE or TEE_ERROR_STORAGE_NOT_AVAILABLE_2, which
indicates that the storage system in which the object is stored is not accessible for some reason.

e Persistent and transient objects are manipulated through opaque Object Handles.

o

Some functions accept both types of object handles. For example, a cryptographic operation can
be started with either a transient key handle or a persistent key handle.

Some functions accept only handles on transient objects. For example, populating the attributes of
an object works only with a transient object because it requires an uninitialized object and
persistent objects are always fully initialized.

Finally, the file-like API functions to access the data stream work only with persistent objects
because transient objects have no data stream.

Cryptographic operations are described in Chapter 6.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 91/242

5.2 Trusted Storage and Rollback Detection

The Trusted Storage MUST provide a minimum level of protection against rollback attacks on persistent
objects; however it is accepted that the actually physical storage may be in an unsecure area and so is
vulnerable to actions from outside of the TEE.

The level of protection trust-that a Trusted Application can assume from put-en-the rollback detection
mechanism of the Trusted Storage is implementation defined but can be discovered programmatically by
guerying the implementation property:

gpd.tee.trustedStorage.rollbackDetection.protectionLevel

Typically, an implementation may rely on the REE for that purpose (protection level 100) or on hardware assets
controlled by the TEE (protection level 1000).

Table 5-1: Values of gpd.tee.trustedStorage.rollbackDetection.protectionLevel

Property Value Meaning

100 Rollback detection mechanism for the Trusted Storage is enforced at the REE
level.

1000 Rollback detection mechanism for the Trusted Storage is based on TEE-controlled

hardware. This hardware MUST be out of reach of software attacks from the REE.

Users may still be able to roll back the Trusted Storage but this MUST be detected
by the Implementation.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

92/242 TEE Internal Core API Specification — Public Release v1.1.1

5.3 Data Types
5.3.1 TEE_Attribute

An array of this type is passed whenever a set of attributes is specified as argument to a function of the API.

typedef struct {
uint32_t attributelD;
union

{

struct
{
[inbuf] void* buffer;—uint32—+ size t length;
} ref;
struct
{
uint32_t a, b;
} value;
} content;
} TEE_Attribute;

An attribute can be either a buffer attribute or a value attribute. This is determined by bit [29] of the attribute
identifier. If this bit is set to 0, then the attribute is a buffer attribute and the field ref MUST be selected.
If the bit is set to 1, then it is a value attribute and the field value MUST be selected.

When an array of attributes is passed to a function, either to populate an object or to specify operation
parameters, and if an attribute identifier is present twice in the array, then only the first occurrence is used.

5.3.2 TEE_Objectinfo

typedef struct {
uint32_t objectType;
uint32_t objectSizekeySize;
uint32_t maxObjectSizemaxkeySize;
uint32_t objectUsage;
uint32_t dataSize;
uint32_t dataPosition;
uint32_t handleFlags;
} TEE_ObjectInfo;

See the documentation of function TEE_GetObjectInfol in section 5.5.1 for a description of this structure.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 93/242

5.3.3 TEE_Whence

typedef enum

{
TEE_DATA_SEEK_SET = @,
TEE_DATA_SEEK_CUR = 1,
TEE_DATA_SEEK_END = 2

} TEE_Whence;

This structure enumerates the possible start offset when moving a data position in the data stream associated
with a persistent object.

5.3.4 TEE_ObjectHandle

‘typedef struct _ TEE_ObjectHandle* TEE_ObjectHandle; ‘

TEE_ObjectHandle is an opaque handle on an object.a-eryptographic-object—FEE—ObjectHandle—isan

opague—handle—on—a—eryptographic—object: These handles are returned by the functions
TEE_AllocateTransientObject (section 5.6.1), TEE_OpenPersistentObject (section 5.7.1), and

TEE_CreatePersistentObject (section 5.7.2).

5.3.5 TEE_ObjectEnumHandle

typedef struct __ TEE_ObjectEnumHandle* TEE_ObjectEnumHandle;

TEE_ObjectEnumHandle is an opaque handle on an object enumerator. These handles are returned by the
function TEE_AllocatePersistentObjectEnumerator specified in section 5.8.1.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

94/242

TEE Internal Core API Specification — Public Release v1.1.1

5.4 Constants

5.4.1

Constants Used in Trusted Storage API for Data and Keys

The following tables pertain to the Trusted Storage API for Data and Keys_(Chapter 5).

Table 5-2: Object Storage Constants

Constant Name Value
Reserved 0x00000000
TEE_STORAGE_PRIVATE 0Xx00000001

Reserved for future use

PXx00000002-Ox7FFFFFFF

Reserved for implementation defined storage

0x80000000-0xXFFFFFFFF

Table 5-3: Data Flag Constants

Constant Name Value
TEE_DATA_FLAG_ACCESS_READ 0x00000001
TEE_DATA_FLAG_ACCESS WRITE 0x00000002
TEE_DATA_FLAG_ACCESS_WRITE_META 0x00000004
TEE_DATA_FLAG_SHARE_READ 0x00000010
TEE_DATA_FLAG_SHARE_WRITE 0x00000020
TEE_DATA_FLAG_OVERWRITE 0x00000400
TEE_DATA_FLAG_EXCLUSIVE 0x00000400
(deprecated, replace with TEE_DATA_FLAG_OVERWRITE)
Table 5-4: Usage Constants

Constant Name Value
TEE_USAGE_EXTRACTABLE 0x00000001
TEE_USAGE_ENCRYPT 0x00000002
TEE_USAGE_DECRYPT 0x00000004
TEE_USAGE_MAC 0x00000008
TEE_USAGE_SIGN 0x00000010
TEE_USAGE_VERIFY 0x00000020
TEE_USAGE_DERIVE 0x00000040

Table 5-4b: Miscellaneous Constants [formerly Table 5-8]

Constant Name Value
TEE_DATA MAX_POSITION OXFFFFFFFF
TEE_OBJECT_ID MAX LEN 64

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

95/242

5.4.2 Constants Used in Cryptographic Operations API

The following tables pertain to the Cryptographic Operations API_(Chapter 6).

Table 5-5: Handle Flag Constants

Constant Name Value
TEE_HANDLE_FLAG_PERSISTENT 0x00010000
TEE_HANDLE_FLAG_INITIALIZED 0x00020000
TEE_HANDLE_FLAG_KEY_SET 0x00040000
TEE_HANDLE_FLAG_EXPECT_TWO_KEYS 0x00080000
Table 5-6: Operation Constants

Constant Name Value
TEE_OPERATION_CIPHER 1
TEE_OPERATION_MAC 3
TEE_OPERATION_AE 4
TEE_OPERATION_DIGEST 5
TEE_OPERATION_ASYMMETRIC_CIPHER 6
TEE_OPERATION_ASYMMETRIC_SIGNATURE 7
TEE_OPERATION_KEY_DERIVATION 8

Reserved for future use

0x00000009-0x7FFFFFFF

Implementation defined

0Xx80000000-OxFFFFFFFF

Table 5-7: Operation States

Constant Name Value
TEE_OPERATION_STATE_INITIAL ©Xx00000000
TEE_OPERATION_STATE_ACTIVE 0Xx00000001

Reserved for future use

0x00000002 -Ox7FFFFFFF

Implementation defined

0x80000000-OXFFFFFFFF

Table 5-8: [moved — now Table 5-4b]

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

96/242 TEE Internal Core API Specification — Public Release v1.1.1

5.5 Generic Object Functions
These functions can be called on both transient and persistent object handles.

5.5.1 TEE_GetObjectinfol

TEE_Result TEE_GetObjectInfol(
TEE_ObjectHandle object,
[out] TEE_ObjectInfo* objectInfo);

Description

This function replaces the TEE_GetObjectInfo function, whose use is deprecated.

The TEE_GetObjectInfol function returns the characteristics of an object. It fills in the following fields in
the structure TEE_ObjectInfo (section 5.3.2):

e objectType: The parameter objectType passed when the object was created

e objectSizekeySize: The current size in bits of the object as determined by its attributes. This will
always be less than or equal to maxObjectSize.maxkeySize: Setto @ for uninitialized and data
only objects.

e maxObjectSizemaxkeySize: The maximum objectSize keySize-which this object can
represent.

o For a persistent object, set to_objectSize-keySize

o For atransient object, set to the parameter maxObjectSize maxkeySize-passed to
TEE_AllocateTransientObject

e objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4.

e dataSize
o For a persistent object, set to the current size of the data associated with the object
o For atransient object, always setto @

e dataPosition

o For a persistent object, set to the current position in the data for this handle. Data positions for
different handles on the same object may differ.

o For atransient object, setto ©
e handleFlags: A bit vector containing one or more of the following flags:
o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object
o TEE_HANDLE_FLAG_INITIALIZED
e For a persistent object, always set
e For atransient object, initially cleared, then set when the object becomes initialized

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object

Parameters
e object: Handle of the object

e objectInfo: Pointer to a structure filled with the object information

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 97/242

Specification Number: 10 Function Number: 0x706

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the persistent object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is nota valid opened object handle.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

98/242 TEE Internal Core API Specification — Public Release v1.1.1

5.5.2 TEE_RestrictObjectUsagel

TEE_Result TEE_RestrictObjectUsagel(
TEE_ObjectHandle object,
uint32_t objectUsage);

Description

This function replaces the TEE_RestrictObjectInfo function, whose use is deprecated.

The TEE_RestrictObjectUsagel function restricts the object usage flags of an object handle to contain at
most the flags passed in the objectUsage parameter.

For each bit in the parameter objectUsage:
o |If the bit is set to 1, the corresponding usage flag in the object is left unchanged.
o If the bitis setto 0, the corresponding usage flag in the object is cleared.

For example, if the usage flags of the object are setto TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and
if objectUsage is setto TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining
usage flag in the object after calling the function TEE_RestrictObjectUsagel is TEE_USAGE_ENCRYPT.

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent
object.

A transient object’s object usage flags are reset to 1 using the TEE_ResetTransientObject function.

For a persistent object, setting the object usage MUST be an atomic operation.

Parameters
e object: Handle on an object
e objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_ XXX
constants defined in Table 5-4

Specification Number: 10 Function Number: 0x707

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the persistent object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is nota valid opened object handle.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 99/242

5.5.3 TEE_GetObjectBufferAttribute

TEE_Result TEE_GetObjectBufferAttribute(
TEE_ObjectHandle object,
uint32_t attributelD,
[outbuf] void* buffer,—uint32t* size t* size);

Description
The TEE_GetObjectBufferAttribute function extracts one buffer attribute from an object.

The attribute is identified by the argument attributeID. The precise meaning of this parameter depends on
the container type and size and is defined in section 6.11.

Bit [29] of the attribute identifier MUST be setto 0 ;i.e. it MUST denote a buffer attribute.
They-There are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17):
e Public object attributes can always be extracted whatever the status of the container.

o Protected attributes can be extracted only if the object’s key usage contains the
TEE_USAGE_EXTRACTABLE flag.

See section 6.11 for a definition of all available object attributes, their formats, and their level of protection.

To ensure that the buffer is large enough to receive the expected value, the caller should allocate a buffer
which is at least as large as used in TEE InitRefAttribute().

Note: It is recommended that TA writers do not rely on implementations stripping leading zeros from bignum
attributes. However, calling TEE GetObjectBufferAttribute() with a NULL buffer is quaranteed to return
a size sufficient to hold the attribute.

Parameters
e object: Handle of the object
e attributelID: Identifier of the attribute to retrieve

e buffer, size: Output buffer to get the content of the attribute
Specification Number: 10 Function Number: 0x702

Return Code

e TEE_SUCCESS: In case of success

TEE_ERROR_ITEM_NOT_FOUND: If the attribute is not found on this object
e TEE_ERROR_SHORT_BUFFER: If buffer is NULL ortoo small to contain the key part
e TEE_ERROR_CORRUPT_OBIJECT: If the persistent object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is nota valid opened object handle.
e The object is not initialized.

e Bit[29] of attributelID is notsetto O, so the attribute is not a buffer attribute.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

100/242 TEE Internal Core API Specification — Public Release v1.1.1

Bit [28] of attributelD is setto O, denoting a protected attribute, and the object usage does not
contain the TEE_USAGE_EXTRACTABLE flag.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 101/242

5.5.4 TEE_GetObjectValueAttribute

TEE_Result TEE_GetObjectValueAttribute(
TEE_ObjectHandle object,

uint32_t attributelD,
[outopt] uint32_t* a,
[outopt] uint32_t* b);

Description
The TEE_GetObjectValueAttribute function extracts a value attribute from an object.

The attribute is identified by the argument attributelD. The precise meaning of this parameter depends on
the container type and size and is defined in section 6.11.

Bit [29] of the attribute identifier MUST be set to 1, i.e. it MUST denote a value attribute.
They are two kinds of object attributes, which are identified by a bit in their handle value (see Table 6-17):
e Public object attributes can always be extracted whatever the status of the container.

e Protected attributes can be extracted only if the object’s key usage contains the
TEE_USAGE_EXTRACTABLE flag.

See section 6.11 for a definition of all available object attributes and their level of protection.

Where the format of the attribute (see Table 6-16) does not define a meaning for b, the value returned for b
is implementation defined.

Parameters
e object: Handle of the object
o attributelD: Identifier of the attribute to retrieve
e a, b: Pointers on the placeholders filled with the attribute fields a and b. Each can be NULL if the
corresponding field is not of interest to the caller.

Specification Number: 10 Function Number: 0x704

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_ITEM NOT_FOUND: If the attribute is not found on this object
e TEE_ERROR_ACCESS_DENIED: Deprecated: Handled by a panic
e TEE_ERROR_CORRUPT_OBIJECT: If the persistent object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is not a valid opened object handle.
e The object is not initialized.
e Bit[29] of attributeID is not setto 1, so the attribute is not a value attribute.

e Bit[28] of attributelD is setto O, denoting a protected attribute, and the object usage does not
contain the TEE_USAGE_EXTRACTABLE flag.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

102/242 TEE Internal Core API Specification — Public Release v1.1.1

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

55,5 TEE_CloseObject

void TEE_CloseObject(TEE_ObjectHandle object);

Description

The TEE_CloseObject function closes an opened object handle. The object can be persistent or transient.
For transient objects, TEE_CloseObject is equivalentto TEE_FreeTransientObject.

This function will operate correctly even if the object or the containing storage is corrupt.

Parameters
e object: Handle on the object to close. If setto TEE_HANDLE_NULL, does nothing.

Specification Number: 10 Function Number: 0x701

Panic Reasons
e object is nota valid opened object handle and is not equal to TEE_HANDLE_NULL.

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 103/242

5.6 Transient Object Functions

5.6.1 TEE_AllocateTransientObject

TEE_Result TEE_AllocateTransientObject(

uint32_t objectType,
uint32_t maxObjectSizemaxkeySize,

[out] TEE_ObjectHandle* object);

Description

The TEE_AllocateTransientObject function allocates an uninitialized transient object, i.e. a container
for attributes. Transient objects are used to hold a cryptographic object (key or key-pair). The object type and
the maximum key size MUST be specified so that all the container resources can be pre-allocated.

As allocated, the container is uninitialized. It can be initialized by subsequently importing the object material,
generating an object, deriving an object, or loading an object from the Trusted Storage.

The initial value of the key usage associated with the container is @xFFFFFFFF, which means that it contains
all usage flags. You can use the function TEE_RestrictObjectUsagel to restrict the usage of the container.

The returned handle is used to refer to the newly-created container in all subsequent functions that require an
object container: key management and operation functions. The handle remains valid until the container is
deallocated using the function TEE_FreeTransientObject.

As shown in Table 5-9, the object type determines the possible object size to be passed to
TEE_AllocateTransientObject, which is not necessarily the size of the object to allocate. In particular, for
key objects the size to be passed is the-one of the appropriate key sizes described in Table 5-9.

Note that a compliant Implementation MUST implement all the keys, algorithms, and key sizes described in
Table 5-9 except the elliptic curve cryptographic types which are optional; support for other sizes or algorithms
is implementation-defined.

Table 5-9: TEE_AllocateTransientObject Object Types and Key Sizes?®

Object Type Possible Key Sizes

TEE_TYPE_AES 128, 192, or 256 bits

TEE_TYPE_DES Always 64 bits including the parity bits. This gives an effective key
size of 56 bits

TEE_TYPE_DES3 128 or 192 bits including the parity bits. This gives effective key
sizes of 112 or 168 bits

TEE_TYPE_HMAC_MD5 Between 64 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA1 Between 80 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA224 Between 112 and 512 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA256 Between 192 and 1024 bits, multiple of 8 bits

TEE_TYPE_HMAC_SHA384 Between 256 and 1024 bits, multiple of 8 bits

w

WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with
time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate Government guidelines.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

104/242

TEE Internal Core API Specification — Public Release v1.1.1

Object Type

Possible Key Sizes

TEE_TYPE_HMAC_SHA512

Between 256 and 1024 bits, multiple of 8 bits

TEE_TYPE_RSA_PUBLIC_KEY

The number of bits in the modulus.

256, 512, 768, 1024, 1536 and 2048 bit keys MUST be supported.
Support for other key sizes including bigger key sizes is
implementation-dependent. Minimum key size is 256 bits.*

TEE_TYPE_RSA_KEYPAIR

Same as for RSA public key size.

TEE_TYPE_DSA_PUBLIC_KEY

Depends on Algorithm:

TEE ALG_DSA_SHA1: Between 512 and 1024 bits, multiple of 64 bits
TEE ALG_DSA_SHA224: 2048 bits
TEE_ALG_DSA_SHA256: 2048 or 3072 bits

TEE_TYPE_DSA_KEYPAIR

Same as for DSA public key size.

TEE_TYPE_DH_KEYPAIR

From 256 to 2048 bits, multiple of 8 bits.

TEE_TYPE_ECDSA_PUBLIC_KEY

Conditional: If ECC is supported, then all the curves eurve-sizes
defined in Table 6-14 MUST be supported.

TEE_TYPE_ECDSA_KEYPAIR

Conditional: If ECC is supported, then MUST be same value as for
ECDSA public key size_(for values, see Table 6-14).

TEE_TYPE_ECDH_PUBLIC_KEY

Conditional: If ECC is supported, then all the curves eurve-sizes
defined in Table 6-14 MUST be supported.

TEE_TYPE_ECDH_KEYPAIR

Conditional: If ECC is supported, then MUST be same value as for
ECDH ECH-public key size (for values, see Table 6-14).

TEE_TYPE_GENERIC_SECRET

Multiple of 8 bits, up to 4096 bits. This type is intended for secret

data that has been derived from is-retdirectlyused-as-akeyina
cryptographic-operationbutparticipatesin-a key derivation_scheme.

TEE_TYPE_DATA

0 — All data is in the associated data stream.

Parameters

e objectType: Type of uninitialized object container to be created (see Table 6-13).

o maxkeySize—maxObjectSize: Key Size of the object. Valid values depend on the object type and

are defined in Table 5-9 above.

e object: Filled with a handle on the newly created key container

Specification Number: 10 Function Number:

Return Code

e TEE_SUCCESS: On success

0x801

e TEE_ERROR_OUT_OF_MEMORY: If not enough resources are available to allocate the object handle

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 105/242

TEE_ERROR_NOT_SUPPORTED: If the key size is not supported or the object type is not supported.

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for

this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

106/242 TEE Internal Core API Specification — Public Release v1.1.1

5.6.2 TEE_FreeTransientObject

void TEE_FreeTransientObject(
TEE_ObjectHandle object);

Description

The TEE_FreeTransientObject function deallocates a transient object previously allocated with
TEE_AllocateTransientObject. After this function has been called, the object handle is no longer valid
and all resources associated with the transient object MUST have been reclaimed.

If the object is initialized, the object attributes are cleared before the object is deallocated.

This function does nothing if object is TEE_HANDLE_NULL.

Parameters

e object: Handle on the object to free
Specification Number: 10 Function Number: 0x803

Panic Reasons
e object is nota valid opened object handle and is not equal to TEE_HANDLE_NULL.

o If the Implementation detects any other error.

5.6.3 TEE_ResetTransientObject

void TEE_ResetTransientObject(
TEE_ObjectHandle object);

Description
The TEE_ResetTransientObject function resets a transient object to its initial state after allocation.

If the object is currently initialized, the function clears the object of all its material. The object is then uninitialized
again.

In any case, the function resets the key usage of the container to OxXFFFFFFFFF.

This function does nothing if object is setto TEE_HANDLE_NULL.

Parameters

e object: Handle on a transient object to reset
Specification Number: 10 Function Number: 0x808

Panic Reasons
e object is nota valid opened object handle and is not equal to TEE_HANDLE_NULL.

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 107/242

5.6.4 TEE_PopulateTransientObject

TEE_Result TEE_PopulateTransientObject(
TEE_ObjectHandle object,
[in] TEE_Attribute* attrs, uint32_t attrCount);

Description

The TEE_PopulateTransientObject function populates an uninitialized object container with object
attributes passed by the TA in the attrs parameter.

When this function is called, the object MUST be uninitialized. If the object is initialized, the caller MUST first
clear it using the function TEE_ResetTransientObject.

Note that if the object type is a key-pair, then this function sets both the private and public attributes parts-of
the key-pair.

As shown in Table 5-10, the interpretation of the attrs parameter depends on the object type. The values
of all attributes are copied into the object so that the attrs array and all the memory buffers it points to may
be freed after this routine returns without affecting the object.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

108/242

TEE Internal Core API Specification — Public Release v1.1.1

Table 5-10: TEE_PopulateTransientObject Supported Attributes

Object Type

Attributes

TEE_TYPE_AES

TEE_TYPE_DES

TEE_TYPE_DES3

TEE_TYPE_HMAC_MD5

TEE_TYPE_HMAC_SHA1

TEE_TYPE_HMAC_SHA224

TEE_TYPE_HMAC_SHA256

TEE_TYPE_HMAC_SHA384

TEE_TYPE_HMAC_SHA512

TEE_TYPE_GENERIC_SECRET

For all secret key objects, the TEE_ATTR_SECRET_VALUE MUST
be provided.

For TEE_TYPE_DES and TEE_TYPE_DES3, the buffer associated
with this attribute MUST include parity bits.

TEE_TYPE_RSA_PUBLIC_KEY

The following attributes parts-MUST be provided:
TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT

TEE_TYPE_RSA_KEYPAIR

The following attributes parts-MUST be provided:
TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT
TEE_ATTR_RSA_PRIVATE_EXPONENT

The CRT parameters are optional. If any of these attributes parts-is
provided, then all of them MUST be provided:

TEE_ATTR_RSA_PRIME1
TEE_ATTR_RSA_PRIME2
TEE_ATTR_RSA_EXPONENT1
TEE_ATTR_RSA_EXPONENT2
TEE_ATTR_RSA_COEFFICIENT

TEE_TYPE_ECDSA_PUBLIC_KEY

Conditional: If ECC is supported, then the following attributes parts
MUST be provided:

TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDSA_KEYPAIR

Conditional: If ECC is supported, then the following attributes parts
MUST be provided:

TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 109/242

Object Type

Attributes

TEE_TYPE_ECDH_PUBLIC_KEY

Conditional: If ECC is supported, then the following attributes parts
MUST be provided:

TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_ECDH_KEYPAIR

Conditional: If ECC is supported, then the following attributes parts
MUST be provided:

TEE_ATTR_ECC_PRIVATE_VALUE
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_CURVE

TEE_TYPE_DSA_PUBLIC_KEY

The following attributes parts-MUST be provided:
TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE
TEE_ATTR_DSA PUBLIC_VALUE

TEE_TYPE_DSA_KEYPAIR

The following attributes parts-MUST be provided:
TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE
TEE_ATTR_DSA_PRIVATE_VALUE
TEE_ATTR_DSA PUBLIC_VALUE

TEE_TYPE_DH_KEYPAIR

The following attributes parts-MUST be provided:

TEE_ATTR_DH_PRIME

TEE_ATTR_DH_BASE

TEE_ATTR_DH_PUBLIC_VALUE

TEE_ATTR_DH_PRIVATE_VALUE
Optionaly,—FEE-ATTR—DH-SUBPRIME-—may-be provided,too.The
following parameters can optionally be passed:

TEE ATTR DH SUBPRIME (q)

If present, constrains the private value x to be in the range
[2, 0-2], and a mismatch will cause a
TEE ERROR BAD PARAMETERS error.

TEE ATTR DH X BITS (4)
If present, constrains the private value x to have £ bits, and a
mismatch will cause a TEE_ERROR_BAD PARAMETERS error.

If neither of these optional parts is specified, then the only constraint
on x is that it is less than p-1.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

110/242 TEE Internal Core API Specification — Public Release v1.1.1

All mandatory attributes MUST be specified, otherwise the routine will panic.

If attribute values are larger than the maximum size specified when the object was created, the Implementation
SHALL panic.

The Implementation can attempt to detect whether the attribute values are consistent; for example, if the
numbers supposed to be prime are indeed prime. However, it is not required to do these checks fully and
reliably. If it detects invalid attributes, it MUST return the error code TEE_ERROR_BAD_PARAMETERS and
MUST NOT panic. If it does not detect any inconsistencies, it MUST be able to later proceed with all operations
associated with the object without error. In this case, it is not required to make sensible computations, but all
computations MUST terminate and output some result.

Only the attributes specified in Table 5-10 associated with the object’s type are valid. The presence of any
other attribute in the attribute list is an error and will cause the routine to panic.

Parameters
e object: Handle on an already created transient and uninitialized object

e attrs, attrCount: Array of object attributes
Specification Number: 10 Function Number: 0x807

Return Code
e TEE_SUCCESS: In case of success. In this case, the content of the object MUST be initialized.

e TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute value is detected. In this case,
the content of the object MUST remain uninitialized.

Panic Reasons
e object is not a valid opened object handle that is transient and uninitialized.
¢ Some mandatory attribute is missing.
e An attribute which is not defined for the object’s type is presentin attrs

e An attribute value is too big to fit within the maximum object size specified when the object was
created.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 111/242

5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute

void TEE_InitRefAttribute(
[out] TEE_Attribute* attr,
uint32_t attributelD,
[inbuf] void* buffer,—uint32—t size t length);

void TEE_InitValueAttribute(
[out] TEE_Attribute* attr,

uint32_t attributeID,
uint32_t a,
uint32_t b);

Description

The TEE_InitRefAttribute and TEE_InitValueAttribute helper functions can be used to populate
a single attribute either with a reference to a buffer or with integer values.

For example, the following code can be used to initialize a DH key generation:

TEE_Attribute attrs[3];

TEE_InitRefAttribute(&attrs[@], TEE_ATTR_DH_PRIME, &p, len);
TEE_InitRefAttribute(&attrs[1], TEE_ATTR_DH_BASE, &g, len);
TEE_InitValueAttribute(&attrs[2], TEE_ATTR_DH_X BITS, xBits, 0);
TEE_GenerateKey(key, 1024, attrs, sizeof(attrs)/sizeof(TEE_Attribute));

Note that in the case of TEE_InitRefAttribute, only the buffer pointer is copied, not the content of the
buffer. This means that the attribute structure maintains a pointer back to the supplied buffer. It is the
responsibility of the TA author to ensure that the contents of the buffer maintain their value until the attributes
array is no longer in use.
Parameters

e attr: attribute structure (defined in section 5.3.1) to initialize

e attributelD: Identifier of the attribute to populate, defined in section 6.11

e buffer, length: Input buffer that holds the content of the attribute. Assigned to the corresponding
members of the attribute structure defined in section 5.3.1.

e a: unsigned integer value to assign to the a member of the attribute structure defined in section 5.3.1

e b: unsigned integer value to assign to the b member of the attribute structure defined in

section 5.3.1
InitRefAttribute: Specification Number: 10 Function Number: 0x805
InitValueAttribute: Specification Number: 10 Function Number: 0x806

Panic Reasons

e Bit[29] of attributeID describing whether the attribute identifier is a value or reference (as
discussed in Table 6-17) is not consistent with the function.

o If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

112/242 TEE Internal Core API Specification — Public Release v1.1.1

5.6.6 TEE_CopyObjectAttributesl

TEE_Result TEE_CopyObjectAttributesi(
TEE_ObjectHandle destObject,
TEE_ObjectHandle srcObject);

Description

This function replaces the TEE_CopyObjectAttributes function, whose use is deprecated.

The TEE_CopyObjectAttributesl function populates an uninitialized object handle with the attributes of
another object handle; that is, it populates the attributes of destObject with the attributes of srcObject.
It is most useful in the following situations:

e To extract the public key attributes from a key-pair object
e To copy the attributes from a persistent object into a transient object
destObject MUST refer to an uninitialized object handle and MUST therefore be a transient object.
The source and destination objects MUST have compatible types and sizes in the following sense:
e The type of destObject MUST be a subtype of srcObject, i.e. one of the conditions listed in
Table 5-11 MUST be true.

Table 5-11: TEE_CopyObjectAttributesl Parameter Types

Type of srcObject Type of destObject

Any Equal to type of srcObject
TEE_TYPE_RSA_KEYPAIR TEE_TYPE_RSA_PUBLIC_KEY
TEE_TYPE_DSA_KEYPAIR TEE_TYPE_DSA_PUBLIC_KEY
TEE_TYPE_ECDSA_KEYPAIR (optional) TEE_TYPE_ECDSA_PUBLIC_KEY (optional)
TEE_TYPE_ECDH_KEYPAIR (optional) TEE_TYPE_ECDH_PUBLIC_KEY (optional)

e The size of srcObject MUST be less than or equal to the maximum size of destObject.

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject
except that the attributes are taken from srcObject instead of from parameters.

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and
the object usage of srcObject.
Parameters

o destObject: Handle on an uninitialized transient object

e srcObject: Handle on an initialized object
Specification Number: 10 Function Number: 0x802

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the persistent object is corrupt. The object handle is closed.

e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 113/242

Panic Reasons
e srcObject is notinitialized.
e destObject isinitialized.
e The type and size of srcObject and destObject are not compatible.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

114/242 TEE Internal Core API Specification — Public Release v1.1.1

5.6.7 TEE_GenerateKey

TEE_Result TEE_GenerateKey(
TEE_ObjectHandle object,
uint32_t keySize,
[in] TEE_Attribute* params, uint32_t paramCount);

Description

The TEE_GenerateKey function generates a random key or a key-pair and populates a transient key object
with the generated key material.

The size of the desired key is passed in the keySize parameter and MUST be less than or equal to the
maximum key size specified when the transient object was created. The valid values for key size are defined
in Table 5-9.

As shown in Table 5-12, the generation algorithm can take parameters depending on the object type.

Table 5-12: TEE_GenerateKey Parameters

Object Type Details

TEE_TYPE_AES No parameter is necessary. The function generates the attribute
TEE TYPE DES TEE_ATTR_SECRET_VALUE. The generated value SHALL be the full

key size.
TEE_TYPE_DES3

TEE_TYPE_HMAC_MD5
TEE_TYPE_HMAC_SHA1
TEE_TYPE_HMAC_SHA224
TEE_TYPE_HMAC_SHA256
TEE_TYPE_HMAC_SHA384
TEE_TYPE_HMAC_SHA512
TEE_TYPE_GENERIC_SECRET

TEE_TYPE_RSA_KEYPAIR No parameter is required.

The TEE_ATTR_RSA_PUBLIC_EXPONENT attribute may be specified; if
omitted, the default value is 65537.

Key generation SHALL follow the rules defined in [NIST SP800-56B].
The function generates and populates the following attributes:
TEE_ATTR_RSA_MODULUS
TEE_ATTR_RSA_PUBLIC_EXPONENT (if not specified)
TEE_ATTR_RSA_PRIVATE_EXPONENT
TEE_ATTR_RSA_PRIME1
TEE_ATTR_RSA_PRIME2
TEE_ATTR_RSA_EXPONENT1
TEE_ATTR_RSA_ EXPONENT2
TEE_ATTR_RSA COEFFICIENT

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 115/242

Object Type Details

TEE_TYPE_DSA_KEYPAIR The following domain parameters MUST be passed to the function:
TEE_ATTR_DSA_PRIME
TEE_ATTR_DSA_SUBPRIME
TEE_ATTR_DSA_BASE

The function generates and populates the following attributes:
TEE_ATTR_DSA _PUBLIC_VALUE
TEE_ATTR_DSA_PRIVATE_VALUE

TEE_TYPE_DH_KEYPAIR The following domain parameters MUST be passed to the function:
TEE_ATTR_DH_PRIME
TEE_ATTR_DH_BASE

The following parameters can optionally be passed:
TEE_ATTR_DH_SUBPRIME (q): If present, constrains the private
value x to be in the range [2, g-2]

TEE_ATTR_DH_X_BITS (¢) If present, constrains the private value x
to have /£ bits
If neither of these optional parts is specified, then the only
constraint on x is that it is less than p-1.

The function generates and populates the following attributes:
TEE_ATTR_DH_PUBLIC_VALUE
TEE_ATTR_DH_PRIVATE_VALUE
TEE_ATTR_DH_X_BITS (number of bits in x)

TEE_TYPE_ECDSA_KEYPAIR The following domain parameters MUST be passed to the function:
TEE_ATTR_ECC_CURVE

The function generates and populates the following attributes:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_PRIVATE_VALUE

TEE_TYPE_ECDH_KEYPAIR The following domain parameters MUST be passed to the function:
TEE_ATTR_ECC_CURVE

The function generates and populates the following attributes:
TEE_ATTR_ECC_PUBLIC_VALUE_X
TEE_ATTR_ECC_PUBLIC_VALUE_Y
TEE_ATTR_ECC_PRIVATE_VALUE

Once the key material has been generated, the transient object is populated exactly as in the function
TEE_PopulateTransientObject except that the key material is randomly generated internally instead of
being passed by the caller.

Parameters

e object: Handle on an uninitialized transient key to populate with the generated key

e keySize: Requested key size. MUST be less than or equal to the maximum key size specified when
the object container was created. MUST be a valid value as defined in Table 5-9.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

116/242 TEE Internal Core API Specification — Public Release v1.1.1

e params, paramCount: Parameters for the key generation. The values of all parameters are copied
into the object so that the params array and all the memory buffers it points to may be freed after this
routine returns without affecting the object.

Specification Number: 10 Function Number: 0x804

Return Code
e TEE_SUCCESS: On success
e TEE_ERROR_BAD_ PARAMETERS: If an incorrect or inconsistent attribute is detected. The checks that
are performed depend on the implementation.
Panic Reasons
e object is nota valid opened object handle that is transient and uninitialized.
e keySize is not supported or is too large.
¢ A mandatory parameter is missing.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 117/242

5.7 Persistent Object Functions

5.7.1 TEE_OpenPersistentObject

TEE_Result TEE_OpenPersistentObject (
uint32_t storagelD,
[in(objectIDLength)] void* objectID,—uint32—+% size t
objectIDLen,
uint32_t flags,
[out] TEE_ObjectHandle* object);
Description

The TEE_OpenPersistentObject function opens a handle on an existing persistent object. It returns a
handle that can be used to access the object’s attributes and data stream.

The storageID parameter indicates which Trusted Storage Space to access. Possible values are defined
in Table 5-2.

The flags parameter is a set of flags that controls the access rights and sharing permissions with which the
object handle is opened. The value of the flags parameter is constructed by a bitwise-inclusive OR of flags
from the following list:

e Access control flags:

o TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the
Trusted Application to call the function TEE_ReadObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows
the Trusted Application to call the functions TEE_WriteObjectData and
TEE_TruncateObjectData.

o TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right.
This allows the Trusted Application to call the functions
TEE_CloseAndDeletePersistentObject and TEE_RenamePersistentObject.

e Sharing permission control flags:

o TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with
read access.

o TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created with
write access.

e Other flags are reserved for future use and SHALL be setto 0.

Multiple handles may be opened on the same object simultaneously, but sharing MUST be explicitly allowed
as described in section 5.7.3.

The initial data position in the data stream is setto 0.

Every Trusted Storage implementation is expected to return TEE_ERROR_CORRUPT_OBIJECT if a Trusted
Application attempts to open an object and the TEE determines that its contents (or those of the storage itself)
have been tampered with or rolled back.

Parameters

e storagelD: The storage to use. Valid values are defined in Table 5-2.

e objectID, objectIDLen: The object identifier. Note that this buffer cannot reside in shared
memory.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

118/242 TEE Internal Core API Specification — Public Release v1.1.1

e flags: The flags which determine the settings under which the object is opened.

e object: A pointer to the handle, which contains the opened handle upon successful completion.
If this function falils for any reason, the value pointed to by object issetto TEE_HANDLE_NULL.
When the object handle is no longer required, it MUST be closed using a call to the
TEE_CloseObject function.

Specification Number: 10 Function Number: 0x903

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_ITEM NOT_FOUND: If the storage denoted by storageID does not exist or if the object
identifier cannot be found in the storage

e TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while
opening the object

e TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation
e TEE_ERROR_CORRUPT_OBIJECT: If the storage or object is corrupt

e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible._It may be associated with the device but unplugged, busy, or inaccessible for
some other reason.

Panic Reasons
e objectIDLen is greaterthan TEE_OBJECT_ID_ MAX_LEN.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 119/242

5.7.2 TEE_CreatePersistentObject
TEE_Result TEE_CreatePersistentObject(
uint32_t storagelD,
[in(objectIDLength)] void* objectID,—uint32—+% size t
objectIDLen,
uint32_t flags,
TEE_ObjectHandle attributes,
[inbuf] void* initialData,—wint32—+ size t
initialDatalen,
[out] TEE_ObjectHandle* object);
Description

The TEE_CreatePersistentObject function creates a persistent object with initial attributes and an initial
data stream content, and optionally returns either a handle on the created object, or TEE_HANDLE_NULL upon

failure.

The storageID parameter indicates which Trusted Storage Space to access. Possible values are defined
in Table 5-2.

The flags parameter is a set of flags that controls the access rights, sharing permissions, and object creation
mechanism with which the object handle is opened. The value of the flags parameter is constructed by a
bitwise-inclusive OR of flags from the following list:

e Access control flags:

@)

TEE_DATA_FLAG_ACCESS_READ: The object is opened with the read access right. This allows the
Trusted Application to call the function TEE_ReadObjectData.

TEE_DATA_FLAG_ACCESS_WRITE: The object is opened with the write access right. This allows
the Trusted Application to call the functions TEE_WriteObjectData and
TEE_TruncateObjectData.

TEE_DATA_FLAG_ACCESS_WRITE_META: The object is opened with the write-meta access right.
This allows the Trusted Application to call the functions
TEE_CloseAndDeletePersistentObject and TEE_RenamePersistentObject.

e Sharing permission control flags:

o

TEE_DATA_FLAG_SHARE_READ: The caller allows another handle on the object to be created with
read access.

TEE_DATA_FLAG_SHARE_WRITE: The caller allows another handle on the object to be created with
write access.

e TEE_DATA_FLAG_OVERWRITE: As summarized in Table 5-13:

o

If this flag is present and the object exists, then the object is deleted and re-created as an atomic
operation: that is the TA sees either the old object or the new one.

If the flag is absent and the object exists, then the function SHALL return
TEE_ERROR_ACCESS_CONFLICT.

e Other flags are reserved for future use and SHALL be setto 0.

The attributes of the newly created persistent object are taken from attributes, which can be another

persistent object or an initialized transient object. The-attributes-argumentcan-also-beNULL forapure
data-objeet-The object type, size, and usage are copied from attributes.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

120/242 TEE Internal Core API Specification — Public Release v1.1.1

To create a pure data object, the attributes argument can also be NULL. If attributes is NULL, the

object type SHALL be setto TEE_TYPE_DATA to create a pure data object.

Multiple handles may be opened on the same object simultaneously, but sharing MUST be explicitly allowed
as described in section 5.7.3.

The initial data position in the data stream is setto 0.

Table 5-13: Effect of TEE_DATA_FLAG_OVERWRITE on Behavior of
TEE_CreatePersistentObject

TEE_DATA_FLAG_OVERWRITE Object Object Created? Return Code
in flags Exists
Absent No Yes TEE_SUCCESS
Absent Yes No TEE_ERROR_ACCESS_CONFLICT
Present No Yes TEE_SUCCESS
Present Yes Deleted and re-created | TEE_SUCCESS
as an atomic operation

Parameters

storageID: The storage to use. Valid values are defined in Table 5-2.
objectID, objectIDLen: The object identifier. Note that this cannot reside in shared memory.
flags: The flags which determine the settings under which the object is opened

attributes: A handle on a persistent object or an initialized transient object from which to take the
persistent object attributes. Can be TEE_HANDLE_NULL if the persistent object contains no attribute;
for example, if it is a pure data object.

initialData, initialDatalen: The initial data content of the persistent object

object: A pointer to the handle, which contains the opened handle upon successful completion. If
this function fails for any reason, the value pointed to by object issetto TEE_HANDLE_NULL. When
the object handle is no longer required, it MUST be closed using a call to the TEE_CloseObject
function.

Specification Number: 10 Function Number: 0x902

Return Code

TEE_SUCCESS: In case of success
TEE_ERROR_ITEM_NOT_FOUND: If the storage denoted by storageID does not exist

TEE_ERROR_ACCESS_CONFLICT: If an access right conflict (see section 5.7.3) was detected while
opening the object

TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to complete the operation
TEE_ERROR_STORAGE_NO_SPACE: If insufficient space is available to create the persistent object
TEE_ERROR_CORRUPT_OBIJECT: If the storage is corrupt

TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible. It may be associated with the device but unplugged, busy, or inaccessible for
some other reason.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 121/242

Panic Reasons
objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN.

attributes isnot TEE_HANDLE NULL and is not a valid handle on an initialized object containing
the type and attributes of the persistent object to create.

If the Implementation detects any other error which is not explicitly associated with a defined return

[]
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

122/242 TEE Internal Core API Specification — Public Release v1.1.1

5.7.3 Persistent Object Sharing Rules

Multiple handles may be opened on the same object simultaneously using the functions
TEE_OpenPersistentObject or TEE_CreatePersistentObject, but sharing MUST be explicitly
allowed. More precisely, at any one time the following constraints apply: If more than one handle is opened on
the same object, and if any of these object handles was opened with the flag TEE_DATA_FLAG_ACCESS_READ,
then all the object handles MUST have been opened with the flag TEE_DATA FLAG_SHARE_READ. There is a
corresponding constraint with the flags TEE_DATA FLAG_ACCESS WRITE and
TEE_DATA_FLAG_SHARE_WRITE. Accessing an object with ACCESS WRITE META wwite-meta—rights is
exclusive and can never be shared.

When one of the functions TEE_OpenPersistentObject or TEE_CreatePersistentObject is called
and if opening the object would violate these constraints, then the function returns the return code
TEE_ERROR_ACCESS_CONFLICT.

Any bits in flags not defined in Table 5-3 of section 5.4 are reserved for future use and MUST be set to
zero.

The examples in Table 5-14 illustrate the behavior of the TEE_OpenPersistentObject function when called
twice on the same object. Note that for readability, the flag names used in Table 5-14 have been abbreviated
by removing the ‘TEE_DATA_FLAG_’ prefix from their name, and any non-TEE_SUCCESS return codes have
been shortened by removing the ‘TEE_ERROR_’ prefix.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

123/242

Table 5-14: Examples of TEE_OpenPersistentObject Sharing Rules

Value of flags for
First Open/Create

Value of flags for
Second
Open/Create

Return Code of
Second
Open/Create

Comments

ACCESS_READ

ACCESS_READ

ACCESS_CONFLICT

The object handles have not
been opened with the flag
SHARE_READ. Only the first call
will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ

ACCESS_CONFLICT

Not all the object handles have
been opened with the flag
SHARE_READ. Only the first call
will succeed.

ACCESS_READ |
SHARE_READ

ACCESS_READ |
SHARE_READ

TEE_SUCCESS

All the object handles have been
opened with the flag
SHARE_READ.

ACCESS_READ

ACCESS_WRITE

ACCESS_CONFLICT

Objects are not opened with
share flags. Only the first call will
succeed.

ACCESS WRITE META

ACCESS READ |

SHARE READ

ACCESS WRITE |
SHARE WRITE

ACCESS CONFLICT

The write-meta flag indicates an
exclusive access to the object.
Only the first Open/Create will
succeed.

ACCESS WRITE META

(Anything)

(Anything)

ACCESS CONFLICT

The write-meta flag indicates an
exclusive access to the object.
Only the first Open/Create will
succeed.

ACCESS_READ |
SHARE_READ |
SHARE_WRITE

ACCESS_WRITE |
SHARE_READ |
SHARE_WRITE

TEE_SUCCESS

All the object handles have been
opened with the share flags.

ACCESS_READ |
SHARE_READ |
ACCESS_WRITE |
SHARE_WRITE

ACCESS_WRITE_META

ACCESS_CONFLICT

The write-meta flag indicates an
exclusive access to the object.
Only the first call will succeed.

SHARE_READ

ACCESS_WRITE |
SHARE_WRITE

ACCESS_CONFLICT

An object can be opened with
only share flags, which locks the
access to an object against a
given mode. Here the first call
prevents subsequent accesses in
write mode.

ACCESS_READ |
SHARE_READ

ACCESS_CONFLICT

An object can be opened with no
flag set, which completely locks
all subsequent attempts to
access the object. Only the first
call will succeed.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

124/242 TEE Internal Core API Specification — Public Release v1.1.1

5.7.4 TEE_CloseAndDeletePersistentObjectl

TEE_Result TEE_CloseAndDeletePersistentObjectl(TEE_ObjectHandle object); ‘

Description
This function replaces the TEE_CloseAndDeletePersistentObject function, whose useis
deprecated.

The TEE_CloseAndDeletePersistentObjectl function marks an object for deletion and closes the object
handle.

The object handle MUST have been opened with the write-meta access right, which means access to the
object is exclusive.

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open
handles for the object exist. This SHALL be the case even if the object or the storage containing it have become
corrupted.

The only reason this routine can fail is if the storage area containing the object becomes inaccessible (e.g. the
user removes the media holding the object). In this case TEE_ERROR_STORAGE_NOT_AVAILABLE SHALL be
returned.

If object is TEE_HANDLE_NULL, the function does nothing.

Parameters

e object: The object handle
Specification Number: 10 Function Number: 0x905

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.

Panic Reasons
e object is nota valid handle on a persistent object opened with the write-meta access right.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 125/242

5.7.5 TEE_RenamePersistentObject

TEE_Result TEE_RenamePersistentObject (
TEE_ObjectHandle object,
[in(newObjectIDLen)] void* newObjectID,—wint32—+ size t
newObjectIDLen);

Description

The function TEE_RenamePersistentObject changes the identifier of an object. The object handle MUST
have been opened with the write-meta access right, which means access to the object is exclusive.

Renaming an object is an atomic operation; either the object is renamed or nothing happens.

Parameters
e object: The object handle

e newObjectID, newObjectIDLen: A buffer containing the new object identifier. The identifier
contains arbitrary bytes, including the zero byte. The identifier length MUST be less than or equal to
TEE_OBJECT_ID_MAX_LEN and can be zero. The buffer containing the new object identifier cannot
reside in shared memory.

Specification Number: 10 Function Number: 0x904

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_ACCESS_CONFLICT: If an object with the same identifier already exists
e TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons

e object is not avalid handle on a persistent object that has been opened with the write-meta access
right.

e newObjectID resides in shared memory.
e newObjectIDLen is morethan TEE_OBJECT_ID_ MAX_LEN.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

126/242 TEE Internal Core API Specification — Public Release v1.1.1

5.8 Persistent Object Enumeration Functions

5.8.1 TEE_AllocatePersistentObjectEnumerator

TEE_Result TEE_AllocatePersistentObjectEnumerator(
[out] TEE_ObjectEnumHandle* objectEnumerator);

Description
The TEE_AllocatePersistentObjectEnumerator function allocates a handle on an object enumerator.
Once an object enumerator handle has been allocated, it can be reused for multiple enumerations.
Parameters
e objectEnumerator: A pointer filled with the newly-allocated object enumerator handle on success.
Setto TEE_HANDLE_NULL in case of error.
Specification Number: 10 Function Number: 0xAO01

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_OUT_OF_MEMORY: If there is not enough memory to allocate the enumerator handle

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

5.8.2 TEE_FreePersistentObjectEnumerator

void TEE_FreePersistentObjectEnumerator(
TEE_ObjectEnumHandle objectEnumerator);

Description
The TEE_FreePersistentObjectEnumerator function deallocates all resources associated with an object
enumerator handle. After this function is called, the handle is no longer valid.
Parameters
e objectEnumerator: The handle to close. If objectEnumerator is TEE_HANDLE_NULL, then this
function does nothing.

Specification Number: 10 Function Number: 0xA02

Panic Reasons
e objectEnumerator is not a valid handle on an object enumerator.

o If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 127/242

5.8.3 TEE_ResetPersistentObjectEnumerator

void TEE_ResetPersistentObjectEnumerator(
TEE_ObjectEnumHandle objectEnumerator);

Description

The TEE_ResetPersistentObjectEnumerator function resets an object enumerator handle to its initial
state after allocation. If an enumeration has been started, it is stopped.

This function does nothing if objectEnumerator is TEE_HANDLE_NULL.

Parameters

e objectEnumerator: The handle to reset
Specification Number: 10 Function Number: 0xA04

Panic Reasons

e objectEnumerator isnot TEE_HANDLE NULL and is not a valid handle on an object enumerator.

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

128/242 TEE Internal Core API Specification — Public Release v1.1.1

5.8.4 TEE_StartPersistentObjectEnumerator

TEE_Result TEE_StartPersistentObjectEnumerator(
TEE_ObjectEnumHandle objectEnumerator,
uint32_t storageID);

Description

The TEE_StartPersistentObjectEnumerator function starts the enumeration of all the persistent objects

in a given Trusted Storage. The object information can be retrieved by calling the function
TEE_GetNextPersistentObject repeatedly.

The enumeration does not necessarily reflect a given consistent state of the storage: During the enumeration,
other TAs or other instances of the TA may create, delete, or rename objects. It is not guaranteed that all
objects will be returned if objects are created or destroyed while the enumeration is in progress.

To stop an enumeration, the TA can call the function TEE_ResetPersistentObjectEnumerator, which
detaches the enumerator from the Trusted Storage. The TA can call the function
TEE_FreePersistentObjectEnumerator to completely deallocate the object enumerator.

If this function is called on an enumerator that has already been started, the enumeration is first reset then
started.

Parameters
e objectEnumerator: A valid handle on an object enumerator
e storagelD: The identifier of the storage in which the objects MUST be enumerated. Possible values
are defined in Table 5-2.
Specification Number: 10 Function Number: 0xA05

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_ITEM_NOT_FOUND: If the storage does not exist or if there is no object in the specified
storage

e TEE_ERROR_CORRUPT_OBIJECT: If the storage is corrupt
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e objectEnumerator is not a valid handle on an object enumerator.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 129/242

5.8.5 TEE_GetNextPersistentObject

TEE_Result TEE_GetNextPersistentObject(
TEE_ObjectEnumHandle objectEnumerator,
[out] TEE_ObjectInfo* objectInfo,
[out(TEE_OBJECT_ID MAX_LEN)] void* objectID,
[out] —uint32t* sjze t*
objectIDLen);

Description

The TEE_GetNextPersistentObject function gets the next object in an enumeration and returns
information about the object: type, size, identifier, etc.

If there are no more objects in the enumeration or if there is no enumeration started, then the function returns
TEE_ERROR_ITEM_NOT_FOUND.

If while enumerating objects a corrupt object is detected, then its object ID SHALL be returned in objectID,
objectInfo shall be zeroed, and the function SHALL return TEE_ERROR_CORRUPT_OBJECT.
Parameters

e objectEnumerator: A handle on the object enumeration

e objectInfo: A pointertoa TEE_ObjectInfo filled with the object information as specified in the
function TEE_GetObjectInfol in section 5.5.1. It may be NULL.

e objectID: Pointer to an array able to hold at least TEE_OBJECT_ID MAX_LEN bytes. On exit the
object identifier is written to this location

e objectIDLen: Filled with the size of the object identifier (from © to TEE_OBJECT_ID_MAX_LEN)
Specification Number: 10 Function Number: 0xAO03

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_ITEM _NOT_FOUND: If there are no more elements in the object enumeration or if no
enumeration is started on this handle

e TEE_ERROR_CORRUPT_OBIJECT: If the storage or returned object is corrupt
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e objectEnumerator is not a valid handle on an object enumerator.
e objectID is NULL.
e objectIDLen is NULL.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

130/242 TEE Internal Core API Specification — Public Release v1.1.1

5.9 Data Stream Access Functions

These functions can be used to access the data stream of persistent objects. They work like a file API.

5.9.1 TEE_ReadObjectData

TEE_Result TEE_ReadObjectData(
TEE_ObjectHandle object,

[out] void* buffer,
uinE32—t size t size,
[out] uint32_t* count);

Description

The TEE_ReadObjectData function attempts to read size bytes from the data stream associated with the
object object into the buffer pointed to by buffer.

The object handle MUST have been opened with the read access right.

The bytes are read starting at the position in the data stream currently stored in the object handle. The handle’s
position is incremented by the number of bytes actually read.

On completion TEE_ReadObjectData sets the number of bytes actually read in the uint32_t pointed to
by count. The value written to *count may be less than size if the number of bytes until the end-of-
stream is less than size. Itis setto © if the position at the start of the read operation is at or beyond the
end-of-stream. These are the only cases where *count may be less than size.

No data transfer can occur past the current end of stream. If an attempt is made to read past the end-of-stream,
the TEE_ReadObjectData function stops reading data at the end-of-stream and returns the data read up to
that point. This is still a success. The position indicator is then set at the end-of-stream. If the position is at, or
past, the end of the data when this function is called, then no bytes are copied to *buffer and *count is
setto 0.
Parameters

e object: The object handle

e buffer: A pointer to the memory which, upon successful completion, contains the bytes read

e size: The number of bytes to read

e count: A pointer to the variable which upon successful completion contains the number of bytes read
Specification Number: 10 Function Number: 0xBO1

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is not avalid handle on a persistent object opened with the read access right.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 131/242

5.9.2 TEE_WriteObjectData

TEE_Result TEE_WriteObjectData(
TEE_ObjectHandle object,
[in] void* buffer,—uint32—+t size t size);

Description

The TEE_WriteObjectData function writes size bytes from the buffer pointed to by buffer to the data
stream associated with the open object handle object.

The object handle MUST have been opened with the write access permission.

If the current data position points before the end-of-stream, then size bytes are written to the data stream,
overwriting bytes starting at the current data position. If the current data position points beyond the stream’s
end, then the data stream is first extended with zero bytes until the length indicated by the data position
indicator is reached, and then size bytes are written to the stream. Thus, the size of the data stream can be
increased as a result of this operation.

If the operation would move the data position indicator to beyond its maximum possible value, then
TEE_ERROR_OVERFLOW is returned and the operation fails.

The data position indicator is advanced by size. The data position indicators of other object handles opened
on the same object are not changed.

Writing in a data stream is atomic; either the entire operation completes successfully or no write is done.

Parameters
e object: The object handle
o buffer: The buffer containing the data to be written

e size: The number of bytes to write
Specification Number: 10 Function Number: 0xB04

Return Code

e TEE_SUCCESS: In case of success

TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available

e TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would
be greater than TEE_DATA_MAX_POSITION

e TEE_ERROR_CORRUPT_OBJECT: If the object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is not avalid handle on a persistent object opened with the write access right.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

132/242 TEE Internal Core API Specification — Public Release v1.1.1

5.9.3 TEE_TruncateObjectData

TEE_Result TEE_TruncateObjectData(
TEE_ObjectHandle object,
uint32_t size);

Description

The function TEE_TruncateObjectData changes the size of a data stream. If size is less than the current
size of the data stream then all bytes beyond size are removed. If size is greater than the current size of
the data stream then the data stream is extended by adding zero bytes at the end of the stream.

The object handle MUST have been opened with the write access permission.

This operation does not change the data position of any handle opened on the object. Note that if the current
data position of such a handle is beyond size, the data position will point beyond the object data’s end after
truncation.

Truncating a data stream is atomic: Either the data stream is successfully truncated or nothing happens.

Parameters
e object: The object handle

e size: The new size of the data stream
Specification Number: 10 Function Number: 0xB03

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to perform the operation
e TEE_ERROR_CORRUPT_OBIJECT: If the object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e object is nota valid handle on a persistent object opened with the write access right.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 133/242

5.9.4 TEE_SeekObjectData

TEE_Result TEE_SeekObjectData(
TEE_ObjectHandle object,
int32_t offset,
TEE_Whence whence);

Description
The TEE_SeekObjectData function sets the data position indicator associated with the object handle.
The parameter whence controls the meaning of offset:

e If whence is TEE_DATA_SEEK_SET, the data position is setto offset bytes from the beginning of
the data stream.

e If whence is TEE_DATA_SEEK_ CUR, the data position is set to its current position plus offset.

e If whence is TEE_DATA_SEEK_END, the data position is set to the size of the object data plus
offset.

The TEE_SeekObjectData function may be used to set the data position beyond the end of stream; this
does not constitute an error. However, the data position indicator does have a maximum value which is
TEE_DATA_MAX_POSITION. If the value of the data position indicator resulting from this operation would be
greater than TEE_DATA_MAX_POSITION, the error TEE_ERROR_OVERFLOW is returned.

If an attempt is made to move the data position before the beginning of the data stream, the data position is
set at the beginning of the stream. This does not constitute an error.

Parameters
e object: The object handle

o offset: The number of bytes to move the data position. A positive value moves the data position
forward; a negative value moves the data position backward.

e whence: The position in the data stream from which to calculate the new position
Specification Number: 10 Function Number: 0xB02

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_OVERFLOW: If the value of the data position indicator resulting from this operation would
be greater than TEE_DATA MAX_ POSITION

e TEE_ERROR_CORRUPT_OBIJECT: If the object is corrupt. The object handle is closed.

e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.

Panic Reasons
e object is nota valid handle on a persistent object.

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

134/242 TEE Internal Core API Specification — Public Release v1.1.1

6 Cryptographic Operations API

This part of the Cryptographic API defines how to actually perform cryptographic operations:

¢ Cryptographic operations can be pre-allocated for a given operation type, algorithm, and key size.
Resulting Cryptographic Operation Handles can be reused for multiple operations.

¢ When required by the operation, the Cryptographic Operation Key can be set up independently and
reused for multiple operations. Note that some cryptographic algorithms, such as AES-XTS, require
two keys.

e An operation may be in two states: initial state where nothing is going on and active state where an
operation is in progress

¢ The cryptographic algorithms listed in Table 6-1 are supported in this specification.

Table 6-1: Supported Cryptographic Algorithms2

Algorithm Type Supported Algorithm

Digests MD5
SHA-1
SHA-256
SHA-224
SHA-384
SHA-512

Symmetric ciphers DES
Triple-DES with double-length and triple-length keys
AES

Message Authentication Codes DES-MAC

(MACs) AES-MAC

AES-CMAC

HMAC with one of the supported digests

Authenticated Encryption (AE) AES-CCM with support for Additional Authenticated Data (AAD)
AES-GCM with support for Additional Authenticated Data (AAD)

Asymmetric Encryption Schemes RSA PKCS1-V1.5

RSA OAEP
Asymmetric Signature Schemes DSA
RSA PKCS1-V1.5
RSA PSS
Key Exchange Algorithms Diffie-Hellman

5 WARNING: Given the increases in computing power, it is necessary to increase the strength of encryption used with
time. Many of the algorithms and key sizes included are known to be weak and are included to support legacy
implementations only. TA designers should regularly review the choice of cryptographic primitives and key sizes used
in their applications and should refer to appropriate Government guidelines.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 135/242

¢ In addition, the algorithms in Table 6-2 are supported if the tee.cryptography.ecc property is set

to True.
Table 6-2: ECC Cryptographic Algorithms
Algorithm Type Supported Algorithm
Asymmetric Signature Schemes ECDSA
Key Exchange Algorithms ECDH

e Digest, symmetric ciphers, MACs, and AE operations are always multi-stage, i.e. data can be provided
in successive chunks to the API. On the other hand, asymmetric operations are always single stage.
Note that signature and verification operations operate on a digest computed by the caller.

¢ Operation states can be copied from one operation handle into an uninitialized operation handle. This
allows the TA to duplicate or fork a multi-stage operation, for example.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

136/242 TEE Internal Core API Specification — Public Release v1.1.1

6.1 Data Types
6.1.1 TEE_OperationMode

The enumeration TEE_OperationMode lists the modes for all the cryptographic operations.

typedef enum {
TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT
TEE_MODE_SIGN
TEE_MODE_VERIFY
TEE_MODE_MAC
TEE_MODE_DIGEST
TEE_MODE_DERIVE

} TEE_OperationMode;

-

-

-

-

-

1l
AUVl h WNREO
-

Table 6-3: Possible TEE_OperationMode Values

Name Comment
TEE_MODE_ENCRYPT Encryption mode
TEE_MODE_DECRYPT Decryption mode
TEE_MODE_SIGN Signature generation mode
TEE_MODE_VERIFY Signature verification mode
TEE_MODE_MAC MAC mode
TEE_MODE_DIGEST Digest mode
TEE_MODE_DERIVE Key derivation mode

6.1.2 TEE_Operationinfo

typedef struct {
uint32_t algorithm;
uint32_t operationClass;
uint32_t mode;
uint32_t digestLength;
uint32_t maxKeySize;
uint32_t keySize;
uint32_t requiredKeyUsage;
uint32_t handleState;

} TEE_OperationInfo;

See the documentation of function TEE_GetOperationInfo in section 6.2.3 for a description of this
structure.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 137/242

6.1.3 TEE_OperationinfoMultiple

typedef struct {

uint32_t keySize;

uint32_t requiredKeyUsage;
} TEE_OperationInfoKey;

typedef struct {

uint32_t algorithm;
uint32_t operationClass;
uint32_t mode;

uint32_t digestLength;
uint32_t maxKeySize;
uint32_t handleState;
uint32_t operationState;
uint32_t numberOfKeys;

TEE_OperationInfoKey keyInformation[];
} TEE_OperationInfoMultiple;

See the documentation of function TEE_GetOperationInfoMultiple in section 6.2.4 for a description of
this structure.

The buffer size to allocate to hold details of N keys is given by

sizeof (TEE_OperationInfoMultiple) + N * sizeof(TEE_OperationInfoKey)

6.1.4 TEE_OperationHandle

‘typedef struct _ TEE_OperationHandle* TEE_OperationHandle;

TEE_OperationHandle is an opaque handle on a cryptographic operation. These handles are returned by
the function TEE_AllocateOperation specified in section 6.2.1.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

138/242 TEE Internal Core API Specification — Public Release v1.1.1

6.2 Generic Operation Functions

These functions are common to all the types of cryptographic operations, which are:
e Digests
e Symmetric ciphers
e MACs
e Authenticated Encryptions
o Asymmetric operations

e Key Derivations

6.2.1 TEE_AllocateOperation

‘TEE_Result TEE_AllocateOperation (‘
| TEE_OperationHandle* operation, |
‘ uint32_t algorithm, ‘
| |

uint32_t mode,
uint32_t maxKeySize);
Description

The TEE_AllocateOperation function allocates a handle for a new cryptographic operation and sets the
mode and algorithm type. If this function does not return with TEE_SUCCESS then there is no valid handle
value.

Once a cryptographic operation has been created, the implementation MUST guarantee that all resources
necessary for the operation are allocated and that any operation with a key of at most maxKeySize bits can
be performed. For algorithms that take multiple keys, for example the AES XTS algorithm, the maxKeySize
parameter specifies the size of the largest key. It is up to the implementation to properly allocate space for
multiple keys if the algorithm so requires.

The parameter algorithm MUST be one of the constants defined in section 6.10.1.

The parameter mode MUST be one of the constants defined in section 6.1.1. It MUST be compatible with the
algorithm as defined by Table 6-4.

The parameter maxKeySize MUST be a valid value as defined in Table 5-9 for the algorithm, for algorithms
referenced in Table 5-9. For all other algorithms, the maxKeySize parameter may have any value.

The operation is placed in initial state.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

139/242

Table 6-4: TEE_AllocateOperation Allowed Modes

Algorithm

Possible Modes

TEE_ALG_AES_ECB_NOPAD

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

TEE_ALG_AES_CTS

TEE_ALG_AES_XTS

TEE_ALG_AES_CCM

TEE_ALG_AES_GCM

TEE_ALG_DES_ECB_NOPAD

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD

TEE_ALG_DES3_CBC_NOPAD

TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_DES_CBC_MAC_NOPAD

TEE_ALG_AES_CBC_MAC_NOPAD

TEE_ALG_AES_CBC_MAC_PKCS5

TEE_ALG_AES_CMAC

TEE_ALG_DES_CBC_MAC_PKCS5

TEE_ALG_DES3_CBC_MAC_NOPAD

TEE_ALG_DES3_CBC_MAC_PKCS5

TEE_MODE_MAC

TEE_ALG_RSASSA_PKCS1_V1_5_MD5

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

TEE_ALG_RSASSA_PKCS1_V1_5_ SHA256

TEE_ALG_RSASSA PKCS1_V1_5_ SHA384

TEE_ALG_RSASSA_PKCS1_V1_5 SHA512

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

TEE_MODE_SIGN
TEE_MODE_VERIFY

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

140/242

TEE Internal Core API Specification — Public Release v1.1.1

Algorithm

Possible Modes

TEE_ALG_DSA_SHA1

TEE_ALG_DSA_SHA224

TEE_ALG_DSA_SHA256

TEE_ALG_ECDSA_SHA1

TEE ALG ECDSA SHA224

TEE ALG ECDSA SHA256

TEE ALG ECDSA SHA384

TEE ALG ECDSA SHA512

(if supported)

TEE MODE SIGN
TEE MODE VERIFY

TEE_ALG_RSAES_PKCS1_V1_5

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

TEE_MODE_ENCRYPT
TEE_MODE_DECRYPT

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

TEE_ALG_RSA_NOPAD

TEE_ALG_DH_DERIVE_SHARED_SECRET

TEE_ALG_ECDH—P192— DERIVE_SHARED_SECRET
FEEALGECDH P224 DERTIVE SHARED SECRET

TEE ALG ECDH P256 DERIVE SHARED SECRET TEE_MODE_DERIVE

FEEALG ECDH P384 DERTVE SHARED SECRET

FEEALGECDH P521 DERTIVE SHARED SECRET

(if supported)

TEE_ALG_MD5

TEE_ALG_SHA1

TEE_ALG_SHA224

TEE_ALG_SHA256

TEE_MODE_DIGEST

TEE_ALG_SHA384

TEE_ALG_SHA512

TEE_ALG_HMAC_MD5

TEE_ALG_HMAC_SHA1

TEE_ALG_HMAC_SHA224

TEE_ALG_HMAC_SHA256

TEE_MODE_MAC

TEE_ALG_HMAC_SHA384

TEE_ALG_HMAC_SHA512

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 141/242

Note that all algorithms listed in Table 6-4 MUST be supported by any compliant Implementation with the
exception of the elliptic curve algorithms which are marked as optional, but a particular implementation may
also support more implementation-defined algorithms, modes, or key sizes.

Parameters
e operation: Reference to generated operation handle
e algorithm: One of the cipher algorithms enumerated in section 6.1.1
e mode: The operation mode
¢ maxKeySize: Maximum key size in bits for the operation — must be a valid value for the algorithm as
defined in Table 5-9.

Specification Number: 10 Function Number: 0xC01

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_OUT_OF_MEMORY: If there are not enough resources to allocate the operation

e TEE_ERROR_NOT_SUPPORTED: If the mode is not compatible with the algorithm or key size or if the
algorithm is not one of the listed algorithms or if naxKeySize is not appropriate for the algorithm.

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

142/242 TEE Internal Core API Specification — Public Release v1.1.1

6.2.2 TEE_FreeOperation

void TEE_FreeOperation(TEE_OperationHandle operation);

Description

The TEE_Free Operation function deallocates all resources associated with an operation handle. After this
function is called, the operation handle is no longer valid. All cryptographic material in the operation is
destroyed.

Parameters

e operation: Reference to operation handle
Specification Number: 10 Function Number: 0xC03

Panic Reasons

e operation is not a valid handle on an operation.

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 143/242

6.2.3

TEE_GetOperationinfo

void TEE_GetOperationInfo(
TEE_OperationHandle operation,
[out] TEE_OperationInfo* operationInfo);

Description

The TEE_GetOperationInfo function returns information about an operation handle. It fills the following
fields in the structure operationInfo (defined in section 6.1.2):

algorithm, mode, maxKeySize: The parameters passed to the function
TEE_AllocateOperation

operationClass: One of the constants from Table 5-6, describing the kind of operation.

keySize: If a key is programmed in the operation, the actual size of this key. If multiple keys are
required by this type of operation, then this value SHALL be setto 0.

requiredKeyUsage: A bit vector that describes the necessary bits in the object usage for
TEE_SetOperationKey or TEE_SetOperationKey2 to succeed without panicking. Setto @ for a
digest operation. If multiple keys are required by this type of operation, then this value SHALL be set
to O.

digestlLength: For a MAC, AE, or Digest digest, describes the number of bytes in the digest or tag

handleState: A bit vector describing the current state of the operation. Can contain any combination
of the following flags or © if no flags are appropriate:

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using
TEE_SetOperationKey2. This happens only if algorithm is setto TEE_ALG_AES_XTS. In this
case keySize and requiredKeyUsage are both setto 0 ;the required information can be
retrieved using the TEE_GetOperationInfoMultiple routine defined in section 6.2.4.

o TEE_HANDLE_FLAG_KEY_SET: Set if the operation key has been set. Always set for digest
operations.

o TEE_HANDLE_FLAG_INITIALIZED: Set for multi- stage operations_and+e—al-but

OP A ON—A MM ope ion whetherthe-ope e been-initi

usmg@n&eﬁ%&)@@@nai—#u#@ﬁens%ﬂag%&lways—set for Dlgest operatlons

Parameters

operation: Handle on the operation

operationInfo: Pointer to a structure filled with the operation information

Specification Number: 10 Function Number: 0xC04

Panic Reasons

operation is not a valid opened operation handle.

If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

144/242 TEE Internal Core API Specification — Public Release v1.1.1

6.2.4 TEE_GetOperationinfoMultiple
TEE_Result TEE_GetOperationInfoMultiple(
TEE_OperationHandle operation,
[outbuf] TEE_OperationInfoMultiple* operationInfoMultiple,—uint32—+ size t*
operationSize);
Description

The TEE_GetOperationInfoMultiple function returns information about an operation handle. It fills the
following fields in the structure operationInfoMultiple (defined in section 6.1.3):

algorithm, mode, maxKeySize: The parameters passed to the function
TEE_AllocateOperation

operationClass: One of the constants from Table 5-6, describing the kind of operation.
digestLength: For a MAC, AE, or Digest digest, describes the number of bytes in the digest or tag

handleState: A bit vector describing the current state of the operation. Contains one or more of the
following flags:

o TEE_HANDLE_FLAG_EXPECT_TWO_KEYS: Set if the algorithm expects two keys to be set, using
TEE_SetOperationKey2. This happens only if algorithm is setto TEE_ALG_AES_XTS.

o TEE_HANDLE_FLAG_KEY_SET: Set if all required operation keys have been set. Always set for
digest operations.

o TEE_HANDLE_FLAG_INITIALIZED: For multi-stage operations, i.e. all but
TEE_OPERATION_ASYMMETRIC_XXX operation classes, whether the operation has been initialized
using one of the TEE_XXXInit functions. This flag is always set for Digest operations.

operationState: One of the values from Table 5-7. This is set to OPERATION_STATE_ACTIVE if the
operation is in active state and to OPERATION_STATE_INITIAL if the operation is in initial state.

numberOfKeys: This is set to the number of keys required by this operation. It indicates the number of
TEE_OperationInfoKey structures which follow. May be © for an operation which requires no keys.

keyInformation: This array contains numberOfKeys entries, each of which defines the details for
one key used by the operation, in the order they are defined. For each element:

o keySize: If a key is programmed in the operation, the actual size of this key, otherwise ©.

o requiredKeyUsage: A bit vector that describes the necessary bits in the object usage for
TEE_SetOperationKey or TEE_SetOperationKey2 to succeed without panicking.

Parameters

operation: Handle on the operation

operationInfoMultiple, operationSize: Buffer filled with the operation information. The
number of keys which can be contained is given by:

(*operationSize-sizeof(TEE_OperationInfoMultiple))/sizeof(TEE_OperationInfoKey)+1

Specification Number: 10 Function Number: 0xC08

Return Code

TEE_SUCCESS: In case of success

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 145/242

TEE_ERROR_SHORT_BUFFER: If the operationInfo buffer is not large enough to hold a

[)
TEE_OperationInfoMultiple (defined in section 6.1.3) structure containing the required number

of keys.

Panic Reasons
operation is not a valid opened operation handle.

[]
If the Implementation detects any other error which is not explicitly associated with a defined return

[]
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this

Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

146/242 TEE Internal Core API Specification — Public Release v1.1.1

6.2.5 TEE_ResetOperation

void TEE_ResetOperation(TEE_OperationHandle operation);

Description

For a multi-stage operation, the TEE_ResetOperation function resets the operation to initial state before
initialization, but after the key has been set.

This function can be called on any operation and at any time after the key is set, but is meaningful only for the
multi-stage operations, i.e. symmetric ciphers, MACs, AEs, and digests.

When such a multi-stage operation is active, i.e. when it has been initialized but not yet successfully finalized,
then the operation is reset to initial state. The operation key(s) are not cleared.
Parameters

e operation: Handle on the operation
Specification Number: 10 Function Number: 0xC05

Panic Reasons
e operation is not a valid opened operation handle.
e The key has not been set yet.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 147/242

6.2.6 TEE_SetOperationKey

TEE_Result TEE_SetOperationKey(
TEE_OperationHandle operation,
TEE_ObjectHandle key);

Description

The TEE_SetOperationKey function programs the key of an operation; that is, it associates an operation
with a key.

The key material is copied from the key object handle into the operation. After the key has been set, there is
no longer any link between the operation and the key object. The object handle can be closed or reset and this
will not affect the operation. This copied material exists until the operation is freed using TEE_FreeOperation
or another key is set into the operation.

This function accepts handles on both transient key objects and persistent key objects.
The operation MUST be in initial state before the operation and remains in initial state afterwards.

The key object type and size MUST be compatible with the type and size of the operation. The operation mode
MUST be compatible with key usage:

¢ In general, the operation mode MUST be allowed in the object usage.
e Forthe TEE_ALG_RSA_NOPAD algorithm:
o The only supported modes are TEE_MODE_ENCRYPT and TEE_MODE_DECRYPT.

o For TEE_MODE_ENCRYPT, the object usage MUST contain both the TEE_USAGE_ENCRYPT and
TEE_USAGE_VERIFY flags.

o For TEE_MODE_DECRYPT, the object usage MUST contain both the TEE_USAGE_DECRYPT and
TEE_USAGE_SIGN flags.

e For a public key object, the allowed operation modes depend on the type of key and are specified in

Table 6-5.
Table 6-5: Public Key Allowed Modes
Key Type Allowed Operation Modes
TEE_TYPE_RSA_PUBLIC_KEY TEE_MODE_VERIFY or TEE_MODE_ENCRYPT
TEE_TYPE_DSA PUBLIC_KEY TEE_MODE_VERIFY

TEE_TYPE_ECDSA_PUBLIC_KEY (optional) TEE_MODE_VERIFY

TEE_TYPE_ECDH_PUBLIC_KEY (optional) TEE_MODE_DERIVE

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

148/242 TEE Internal Core API Specification — Public Release v1.1.1

o If the object is a key-pair then the key parts used in the operation depend on the operation mode as
defined in Table 6-6.

Table 6-6: Key-Pair Parts for Operation Modes

Operation Mode Key Parts Used
TEE_MODE_VERIFY Public
TEE_MODE_SIGN Private
TEE_MODE_ENCRYPT Public
TEE_MODE_DECRYPT Private
TEE_MODE_DERIVE Public and Private

If key issetto TEE_HANDLE_NULL, then the operation key is cleared.
If a key is present in the operation then it is cleared and all key material copied into the operation is destroyed
before the new key is inserted.
Parameters
e operation: Operation handle

e key: A handle on a key object
Specification Number: 10 Function Number: 0xC06

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the object is corrupt. The object handle is closed.
e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the persistent object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e operation is not a valid opened operation handle.
e key isnot TEE_HANDLE_NULL and is not a valid handle on a key object.
e key is not initialized.
e The operation expects no key (digest mode) or two keys (AES-XTS algorithm).

e The type, size, or usage of key is not compatible with the algorithm, mode, or size of the
operation.

e operationis notin initial state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 149/242

6.2.7 TEE_SetOperationKey?2

TEE_Result TEE_SetOperationKey2(
TEE_OperationHandle operation,
TEE_ObjectHandle key1l,
TEE_ObjectHandle key2);

Description

The TEE_SetOperationKey2 function initializes an existing operation with two keys. This is used only for
the algorithm TEE_ALG_AES_XTS.

This function works like TEE_SetOperationKey except that two keys are set instead of a single key.

keyl and key2 MUST both be non-NULL or both NULL.

Parameters
e operation: Operation handle
e keyl: A handle on a key object
e key2: A handle on a key object

Specification Number: 10 Function Number: 0xC07

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_CORRUPT_OBIJECT: If the keyl object is corrupt. The object handle is closed.
e TEE_ERROR_CORRUPT_OBJECT_2: If the key2 object is corrupt. The object handle is closed.

e TEE_ERROR_STORAGE_NOT_AVAILABLE: If the keyl object is stored in a storage area which is
currently inaccessible.

e TEE_ERROR_STORAGE_NOT_AVAILABLE_2: If the key2 object is stored in a storage area which is
currently inaccessible.
Panic Reasons
e operation is not a valid opened operation handle.

e keyl and key2 are notboth TEE_HANDLE_NULL and keyl or key2 or both are not valid handles
on a key obiject.

e keyl and/or key2 are not initialized.
e The operation expects no key (digest mode) or a single key (all but AES-XTS algorithm).

e The type, size, or usage of keyl or key2 is not compatible with the algorithm, mode, or size of the
operation.

e operationisnotininitial state.
e Hardware or cryptographic algorithm failure

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

150/242 TEE Internal Core API Specification — Public Release v1.1.1

6.2.8 TEE_CopyOperation

void TEE_CopyOperation(
TEE_OperationHandle dstOperation,
TEE_OperationHandle srcOperation);

Description

The TEE_CopyOperation function copies an operation state from one operation handle into another
operation handle. This also copies the key material associated with the source operation.

The state of srcOperation including the key material currently set up is copied into dstOperation.
This function is useful in the following use cases:

o “Forking” a digest operation after feeding some amount of initial data

o Computing intermediate digests
The algorithm and mode of dstOperation MUST be equal to the algorithm and mode of srcOperation.
The state of srcOperation (initial/active) is copied to dstOperation.

If srcOperation has no key programmed, then the key in destOperation is cleared. If there is a key
programmed in srcOperation, then the maximum key size of dstOperation MUST be greater than or
equal to the actual key size of srcOperation.

Parameters

e dstOperation: Handle on the destination operation

e srcOperation: Handle on the source operation
Specification Number: 10 Function Number: 0xC02

Panic Reasons
e dstOperation or srcOperation is not a valid opened operation handle.
e The algorithm or mode differ in dstOperation and srcOperation.
e srcOperation has akey and its size is greater than the maximum key size of dstOperation.
e Hardware or cryptographic algorithm failure.

¢ |If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 151/242

6.3 Message Digest Functions

6.3.1 TEE_DigestUpdate

void TEE_DigestUpdate (
TEE_OperationHandle operation,
[inbuf] void* chunk,—uint32+ size t chunkSize);

Description

The TEE_DigestUpdate function accumulates message data for hashing. The message does not have to
be block aligned. Subsequent calls to this function are possible.

The operation may be in either initial or active state and becomes active.

Parameters
e operation: Handle of a running Message Digest operation

e chunk, chunkSize: Chunk of data to be hashed
Specification Number: 10 Function Number: 0xD02

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_DIGEST.
¢ Input data exceeds maximum length for algorithm.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

152/242 TEE Internal Core API Specification — Public Release v1.1.1

6.3.2 TEE_DigestDoFinal

TEE_Result TEE_DigestDoFinal(
TEE_OperationHandle operation,

[inbuf] void* chunk,—wint32—+ size t chunkLen,
[outbuf] void* hash, —uint32+t size t *hashLen);
Description

The TEE_DigestDoFinal function finalizes the message digest operation and produces the message hash.
Afterwards the Message Digest operation is reset to initial state and can be reused.

The input operation may be in either initial or active state.

Parameters
e operation: Handle of a running Message Digest operation
e chunk, chunkLen: Last chunk of data to be hashed

e hash, hashLen: Output buffer filled with the message hash
Specification Number: 10 Function Number: 0xD01

Return Code
e TEE_SUCCESS: On success
e TEE_ERROR_SHORT_BUFFER: If the output buffer is too small. In this case, the operation is not
finalized.
Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_DIGEST.
¢ Input data exceeds maximum length for algorithm.
e Hardware or cryptographic algorithm failure

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 153/242

6.4 Symmetric Cipher Functions

These functions define the way to perform symmetric cipher operations, such as AES. They cover both block
ciphers and stream ciphers.

6.4.1 TEE_Cipherinit

void TEE_CipherInit(
TEE_OperationHandle operation,
[inbuf] void* IV,—uint32—% size t IVLen);

Description

The TEE_CipherInit function starts the symmetric cipher operation.
The operation MUST have been associated with a key.

If the operation is in active state, it is reset and then initialized.

If the operation is in initial state, it is moved to active state.

Parameters
e operation: A handle on an opened cipher operation setup with a key

e IV, IVLen: Buffer containing the operation Initialization Vector erthe-initial-countervalue-as
appropriate_(as indicated in the following table).

Table 6-6b: Symmetric Encrypt/Decrypt Operation Parameters

Algorithm 1V Required Meaning of IV
TEE ALG_AES ECB NOPAD No

TEE ALG_AES CBC NOPAD Yes

TEE ALG AES CTR Yes Initial Counter Value
TEE _ALG_AES CTS Yes

TEE ALG _AES XTS Yes Tweak value
TEE ALG AES CCM Yes Nonce value
TEE ALG_AES GCM Yes Nonce value
TEE ALG _DES _ECB NOPAD No

TEE ALG DES CBC NOPAD Yes

TEE ALG DES3 ECB NOPAD No

TEE _ALG_DES3 CBC_NOPAD Yes

Specification Number: 10 Function Number: 0xEO02

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_CIPHER.

e No key is programmed in the operation.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

154/242 TEE Internal Core API Specification — Public Release v1.1.1

e The Initialization Vector does not have the length required by the algorithm.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 155/242

6.4.2 TEE_CipherUpdate

TEE_Result TEE_CipherUpdate(
TEE_OperationHandle operation,

[inbuf] void* srcData, —wint32—+ size t srclen,
[outbuf] void* destData,uint32 t size t *destlLen);
Description

The TEE_CipherUpdate function encrypts or decrypts input data.

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless
one or more calls of this function have supplied sufficient input data, no output is generated. The cipher
operation is finalized with a callto TEE_CipherDoFinal.

The operation MUST be in active state.

Parameters
e operation: Handle of a running Cipher operation
e srcData, srclLen: Input data buffer to be encrypted or decrypted

e destData, destLen: Output buffer
Specification Number: 10 Function Number: O0xEO3

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output. In this
case, the input is not fed into the algorithm.
Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_CIPHER.
e The operation has not been started yet with TEE_CipherInit or has already been finalized.
e operationis notin active state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

156/242 TEE Internal Core API Specification — Public Release v1.1.1

6.4.3 TEE_CipherDoFinal

TEE_Result TEE_CipherDoFinal(
TEE_OperationHandle operation,

[inbuf] void* srcData, —wint32—+ size t srclen,
[outbufopt] void* destData,—uint32t size t *destlLen);
Description

The TEE_CipherDoFinal function finalizes the cipher operation, processing data that has not been
processed by previous calls to TEE_CipherUpdate as well as data supplied in srcData. The operation
handle can be reused or re-initialized.

The operation MUST be in active state and is set to initial state afterwards.

Parameters
e operation: Handle of a running Cipher operation
e srcData, srclLen: Reference to final chunk of input data to be encrypted or decrypted
e destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it
is known to be empty.

Specification Number: 10 Function Number: 0xEO1

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_CIPHER.
e The operation has not been started yet with TEE_CipherInit or has already been finalized.

e The total length of the input is not a multiple of a block size when the algorithm of the operation is a
symmetric block cipher which does not specify padding.

e operationis notin active state.
e Hardware or cryptographic algorithm failure

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 157/242

6.5 MAC Functions

These functions are used to perform MAC (Message Authentication Code) operations, such as HMAC or AES-
CMAC operations.

These functions are not used for Authenticated Encryption algorithms, which MUST use the functions defined
in section 6.6.

6.5.1 TEE_MACInit

void TEE_MACInit(
TEE_OperationHandle operation,
[inbuf] void* IV,—uint32-t size t IVLen);

Description

The TEE_MACInit function initializes a MAC operation.

The operation MUST have been associated with a key.

If the operation is in active state, it is reset and then initialized.
If the operation is in initial state, it moves to active state.

If the MAC algorithm does not require an IV, the parameters IV, IVLen are ignored.

Parameters
e operation: Operation handle

e IV, IVLen: Input buffer containing the operation Initialization Vector, if applicable
Specification Number: 10 Function Number: 0xF03

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_MAC.
¢ No key is programmed in the operation.
¢ The Initialization Vector does not have the length required by the algorithm.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

158/242 TEE Internal Core API Specification — Public Release v1.1.1

6.5.2 TEE_MACUpdate

void TEE_MACUpdate(
TEE_OperationHandle operation,
[inbuf] void* chunk,—uint32+ size t chunkSize);

Description
The TEE_MACUpdate function accumulates data for a MAC calculation.

Input data does not have to be a multiple of the block size. Subsequent calls to this function are possible.
TEE_MACComputeFinal or TEE_MACCompareFinal are called to complete the MAC operation.

The operation MUST be in active state.

Parameters
e operation: Handle of a running MAC operation

e chunk, chunkSize: Chunk of the message to be MACed
Specification Number: 10 Function Number: 0xF04

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_MAC.
e The operation has not been started yet with TEE_MACInit or has already been finalized.
¢ Input data exceeds maximum length for algorithm.
e operationis notin active state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 159/242

6.5.3 TEE_MACComputeFinal

TEE_Result TEE_MACComputeFinal(
TEE_OperationHandle operation,

[inbuf] void* message,—uinrt32—t size t messagelen,
[outbuf] void* mac,—uint32 + size t *maclLen);
Description

The TEE_MACComputeFinal function finalizes the MAC operation with a last chunk of message, and
computes the MAC. Afterwards the operation handle can be reused or re-initialized with a new key.

The operation MUST be in active state and moves to initial state afterwards.

Parameters
e operation: Handle of a MAC operation
e message, messagelen: Input buffer containing a last message chunk to MAC

e mac, maclLen: Output buffer filled with the computed MAC
Specification Number: 10 Function Number: 0xF02

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the computed MAC

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_MAC.
e The operation has not been started yet with TEE_MACInit or has already been finalized.
¢ Input data exceeds maximum length for algorithm.
e operationis notin active state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

160/242 TEE Internal Core API Specification — Public Release v1.1.1

6.5.4 TEE_MACCompareFinal

TEE_Result TEE_MACCompareFinal(
TEE_OperationHandle operation,

[inbuf] void* message,—uinrt32—+t size t messagelen,
[inbuf] void* mac,—uint32—t size t macLen);
Description

The TEE_MACCompareFinal function finalizes the MAC operation and compares the MAC with the buffer
passed to the function. Afterwards the operation handle can be reused and initialized with a new key.

The operation MUST be in active state and moves to initial state afterwards.

Parameters
e operation: Handle of a MAC operation
e message, messagelen: Input buffer containing the last message chunk to MAC

e mac, maclen: Input buffer containing the MAC to check
Specification Number: 10 Function Number: 0xFO01

Return Code
e TEE_SUCCESS: If the computed MAC corresponds to the MAC passed in the parameter mac
e TEE_ERROR_MAC_INVALID: If the computed MAC does not correspond to the value passed in the
parameter mac
Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_MAC.
e The operation has not been started yet with TEE_MACInit or has already been finalized.
¢ Input data exceeds maximum length for algorithm.
e operationis notin active state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 161/242

6.6 Authenticated Encryption Functions

These functions are used for Authenticated Encryption operations, i.e. the TEE_ALG_AES CCM and
TEE_ALG_AES_GCM algorithms.

6.6.1 TEE_AEInit

TEE_Result TEE_AEInit(
TEE_OperationHandle operation,
[inbuf] void* nonce,—uint32—+ size t noncelen,
uint32_t taglen,
uint32_t AADLen,
uint32_t payloadlLen);
Description

The TEE_AEInit function initializes an Authentication Encryption operation.

The operation must be initial state and remains in the initial state afterwards.

Parameters
e operation: A handle on the operation
e nonce, noncelLen: The operation nonce or IV
o taglen: Size in bits of the tag
o For AES-GCM, can be 128, 120, 112, 104, or 96
o For AES-CCM, can be 128, 112, 96, 80, 64, 48, or 32
e AADLen: Length in bytes of the AAD
o Used only for AES-CCM. Ignored for AES-GCM.
e payloadLen: Length in bytes of the payload
o Used only for AES-CCM. Ignored for AES-GCM.

Specification Number: 10 Function Number: 0x1003

Return Code
e TEE_SUCCESS: On success
e TEE_ERROR_NOT_SUPPORTED: If the tag length is not supported by the algorithm

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_AE.
¢ No key is programmed in the operation.
e The nonce length is not compatible with the length required by the algorithm.
e operationis notin initial state.
e Hardware or cryptographic algorithm failure

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

162/242 TEE Internal Core API Specification — Public Release v1.1.1

6.6.2 TEE_AEUpdateAAD

void TEE_AEUpdateAAD (
TEE_OperationHandle operation,
[inbuf] void* AADdata,—wint32—t size t AADdatalLen);

Description

The TEE_AEUpdateAAD function feeds a new chunk of Additional Authentication Data (AAD) to the AE
operation. Subsequent calls to this function are possible.

The operation may be in either initial or active state and enters active state afterwards.

Parameters
e operation: Handle on the AE operation

e AADdata, AADdatalen: Input buffer containing the chunk of AAD
Specification Number: 10 Function Number: 0x1005

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_AE.
e The operation has not started yet.
e The AAD length has already been reached (AES-CCM only).
e operationis notin active state.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 163/242

6.6.3 TEE_AEUpdate

TEE_Result TEE_AEUpdate(
TEE_OperationHandle operation,

[inbuf] void* srcData, —wint32—+t size t srclLen,
[outbuf] void* destData,—uint32 + size t *destlLen);
Description

The TEE_AEUpdate function accumulates data for an Authentication Encryption operation.

Input data does not have to be a multiple of block size. Subsequent calls to this function are possible. Unless
one or more calls of this function have supplied sufficient input data, no output is generated.

Warning: when using this routine to decrypt the returned data may be corrupt since the integrity check is not
performed until all the data has been processed. If this is a concern then only use the
TEE_AEDecryptFinal-AEFinal routine.

The operation may be in either initial or active state and enters active state afterwards.

Parameters
e operation: Handle of a running AE operation
e srcData, srclLen: Input data buffer to be encrypted or decrypted

e destData, destLen: Output buffer
Specification Number: 10 Function Number: 0x1004

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_AE.
e The operation has not started yet.
e The required AAD length has not been provided yet (AES-CCM only).
e The payload length has already been reached (AES-CCM only).
e operationis notin active state.
e Hardware or cryptographic algorithm failure

o If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

164/242 TEE Internal Core API Specification — Public Release v1.1.1

6.6.4 TEE_AEEncryptFinal

TEE_Result TEE_AEEncryptFinal(
TEE_OperationHandle operation,

[inbuf] void* srcData, —wint32—+ size t srclLen,

[outbuf] void* destData,uint32t* size t* destLen,

[outbuf] void* tag, —uint32 t* size t* taglen);
Description

The TEE_AEEncryptFinal function processes data that has not been processed by previous calls to
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and computes the tag.

The operation handle can be reused or newly initialized.

The operation may be in either initial or active state and enters initial state afterwards.

Parameters
e operation: Handle of a running AE operation
e srcData, srclLen: Reference to final chunk of input data to be encrypted

o destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it
is known to be empty.

e tag, taglLen: Output buffer filled with the computed tag
Specification Number: 10 Function Number: 0x1002

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SHORT_BUFFER: If the output or tag buffer is not large enough to contain the output

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_AE.
e The operation has not started yet.
e The required AAD and payload have not been provided.
e Hardware or cryptographic algorithm failure.

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 165/242

6.6.5 TEE_AEDecryptFinal

TEE_Result TEE_AEDecryptFinal(
TEE_OperationHandle operation,

[inbuf] void* srcData,—wint32—+ size t srclen,

[outbuf] void* destData,uint32t size t *destLen,

[in] void* tag,—uint32t size t taglen);
Description

The TEE_AEDecryptFinal function processes data that has not been processed by previous calls to
TEE_AEUpdate as well as data supplied in srcData. It completes the AE operation and compares the
computed tag with the tag supplied in the parameter tag.

The operation handle can be reused or newly initialized.

The operation may be in either initial or active state and enters initial state afterwards.

Parameters
e operation: Handle of a running AE operation
e srcData, srclLen: Reference to final chunk of input data to be decrypted

e destData, destLen: Output buffer. Can be omitted if the output is to be discarded, e.g. because it
is known to be empty.

e tag, taglen: Input buffer containing the tag to compare
Specification Number: 10 Function Number: 0x1001

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to contain the output
e TEE_ERROR_MAC_INVALID: If the computed tag does not match the supplied tag

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_AE.
e The operation has not started yet.
e The required AAD and payload have not been provided.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

166/242 TEE Internal Core API Specification — Public Release v1.1.1

6.7 Asymmetric Functions

These functions allow the encryption and decryption of data using asymmetric algorithms, signatures of
digests, and verification of signatures.

Note that asymmetric encryption is always “single-stage”, which differs from symmetric ciphers which are
always “multi-stage”.

6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt

TEE_Result TEE_AsymmetricEncrypt(
TEE_OperationHandle operation,

[in] TEE_Attribute* params, uint32_t paramCount,
[inbuf] void* srcData, -—wint32+t size t srclLen,
[outbuf] void* destData, —uint32+% size t *destLen);

TEE_Result TEE_AsymmetricDecrypt(
TEE_OperationHandle operation,

[in] TEE_Attribute* params, uint32_t paramCount,

[inbuf] void* srcData, —wint32+ size t srclen,

[outbuf] void* destData, —uint32+% size t *destLen);
Description

The TEE_AsymmetricEncrypt function encrypts a message within an asymmetric operation, and the
TEE_AsymmetricDecrypt function decrypts the result.

These functions can be called only with an operation of the following algorithms:
e TEE_ALG_RSAES PKCS1 V1_5
e TEE_ALG_RSAES_PKCS1 OAEP_MGF1_SHA1
e TEE_ALG_RSAES_PKCS1 _OAEP_MGF1_SHA224
e TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256
e TEE_ALG_RSAES_PKCS1 OAEP_MGF1_SHA384
e TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHAS512
e TEE_ALG_RSA_NOPAD

The parameters params, paramCount contain the operation parameters listed in Table 6-7.

Table 6-7: Asymmetric Encrypt/Decrypt Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_XXX TEE_ATTR_RSA_OAEP_LABEL: This parameter is
optional. If not present, an empty label is assumed.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 167/242

Parameters
e operation: Handle on the operation, which MUST have been suitably set up with an operation key
e params, paramCount: Optional operation parameters
e srcData, srclLen: Input buffer

e destData, destLen: Output buffer
TEE_AsymmetricDecrypt: Specification Number: 10 Function Number: 0x1101
TEE_AsymmetricEncrypt: Specification Number: 10 Function Number: 0x1102

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_SHORT_BUFFER: If the output buffer is not large enough to hold the result
e TEE_ERROR_BAD_PARAMETERS: If the length of the input buffer is not consistent with the algorithm or
key size. Refer to Table 5-9 for algorithm references and supported sizes.
Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_CIPHER.

No key is programmed in the operation.
e The mode is not compatible with the function.
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

168/242

TEE Internal Core API Specification — Public Release v1.1.1

6.7.2 TEE_AsymmetricSignDigest

[in] TEE_Attribute*
[inbuf] void*
[outbuf] void*

)5

TEE_Result TEE_AsymmetricSignDigest(
TEE_OperationHandle operation,

params, uint32_t paramCount,
digest, —uint32—+% size t digestlLen,
signature, —wint32—+ size t *signatureLen

Description

The TEE_AsymmetricSignDigest function signs a message digest within an asymmetric operation.

Note that only an already hashed message can be signed.

This function can be called only with an operation of the following algorithms:

e TEE_ALG_RSASSA PKCS1_V1_5_MD5
e TEE_ALG_RSASSA PKCS1_V1_5_SHA1

e TEE_ALG_RSASSA PKCS1_V1_5_ SHA224
e TEE_ALG_RSASSA_PKCS1_V1_5_ SHA256
e TEE_ALG_RSASSA PKCS1_V1_5 SHA384
e TEE_ALG_RSASSA_PKCS1_V1_5 SHA512

e TEE_ALG_RSASSA PKCS1_PSS_MGF1_SHA1

e TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

e TEE_ALG_DSA_SHA1
e TEE_ALG_DSA_SHA224
e TEE_ALG_DSA_SHA256

e TEE_ALG_ECDSA_SHA1-P192 (if supported)
e TEE_ALG_ECDSA_SHA224P224 (if supported)
e TEE_ALG_ECDSA_SHA256—P256 (if supported)

e TEE_ALG_ECDSA SHA384-P384 (if supported)

e TEE_ALG _ECDSA SHA512-P521 (if supported)

The parameters params, paramCount contain the operation parameters listed in Table 6-8.

Table 6-8: Asymmetric Sign Operation Parameters

Algorithm

Possible Operation Parameters

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_XXX

TEE_ATTR_RSA_PSS_SALT_LENGTH: Number of bytes
in the salt. This parameter is optional. If not present, the
salt length is equal to the hash length.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 169/242

Where a hash algorithm is specified in the algorithm, digestLen SHALL be equal to the digest length of this
hash algorithm.

Parameters
e operation: Handle on the operation, which MUST have been suitably set up with an operation key
e params, paramCount: Optional operation parameters
e digest, digestLen: Input buffer containing the input message digest

e signature, signaturelLen: Output buffer written with the signature of the digest
Specification Number: 10 Function Number: 0x1103

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_SHORT_BUFFER: If the signature buffer is not large enough to hold the result

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE.
o No key is programmed in the operation.
e The operation mode is not TEE_MODE_SIGN.
e digestLen is not equal to the hash size of the algorithm
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

170/242

TEE Internal Core API Specification — Public Release v1.1.1

6.7.3 TEE_AsymmetricVerifyDigest

TEE_OperationHandle
[in] TEE_Attribute*
[inbuf] void*

TEE_Result TEE_AsymmetricVerifyDigest (

operation,
params, uint32_t paramCount,
digest, —uint32+ size t digestlLen,

[inbuf] void* signature,—uint32t size t signaturelLen);

Description

The TEE_AsymmetricVerifyDigest function verifies a message digest signature within an asymmetric

operation.

This function can be called only with an operation of the following algorithms:

TEE_ALG_RSASSA PKCS1_V1_5 MD5
TEE_ALG_RSASSA PKCS1 V1_5 SHA1
TEE_ALG_RSASSA _PKCS1_V1_5 SHA224
TEE_ALG_RSASSA_PKCS1_V1_5 SHA256
TEE_ALG_RSASSA PKCS1_V1_5 SHA384
TEE_ALG_RSASSA PKCS1 V1 5 SHA512
TEE_ALG_RSASSA PKCS1_ PSS MGF1_SHA1
TEE_ALG_RSASSA PKCS1_PSS_MGF1_SHA224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384
TEE_ALG_RSASSA PKCS1_PSS _MGF1_SHA512
TEE_ALG_DSA_SHA1

TEE_ALG_DSA_SHA224
TEE_ALG_DSA_SHA256
TEE_ALG_ECDSA_SHA1-P192 (if supported)
TEE_ALG_ECDSA SHA224-P224 (if supported)
TEE_ALG_ECDSA_SHA256—P256 (if supported)
TEE_ALG_ECDSA_SHA384-—P384 (if supported)
TEE_ALG_ECDSA_SHA512-P52% (if supported)

The parameters params, paramCount contain the operation parameters listed in Table 6-9.

Table 6-9: Asymmetric Verify Operation Parameters

Algorithm

Possible Operation Parameters

TEE_ALG_RSASSA PKCS1_PSS_MGF1_XXX TEE_ATTR_RSA_PSS_SALT_LENGTH: Number of
bytes in the salt. This parameter is optional. If not
present, the salt length is equal to the hash length.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 171/242

Where a hash algorithm is specified in the algorithm, digestlLen SHALL be equal to the digest length of this
hash algorithm.

Parameters
e operation: Handle on the operation, which MUST have been suitably set up with an operation key
e params, paramCount: Optional operation parameters
e digest, digestLen: Input buffer containing the input message digest

e signature, signaturelLen: Input buffer containing the signature to verify
Specification Number: 10 Function Number: 0x1104

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SIGNATURE_INVALID: If the signature is invalid

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_ASYMMETRIC_SIGNATURE.
¢ No key is programmed in the operation.
e The operation mode is not TEE_MODE_VERIFY.
e digestLen is not equal to the hash size of the algorithm
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error which is not explicitly associated with a defined return
code for this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

172/242 TEE Internal Core API Specification — Public Release v1.1.1

6.8 Key Derivation Functions

6.8.1 TEE_DeriveKey

void TEE_DeriveKey(
TEE_OperationHandle operation,
[in] TEE_Attribute* params, uint32_t paramCount,
TEE_ObjectHandle derivedKey);

Description

The TEE_DeriveKey_function takes one of the Asymmetric Derivation Operation Parameters in Table 6-10
as input, and outputs a key object.

The TEE DeriveKey function can only be used with algorithms defined in Table 6-10.

The parameters params, paramCount contain the operation parameters listed in Table 6-10.

Table 6-10: Asymmetric Derivation Operation Parameters

Algorithm Possible Operation Parameters

TEE_ALG_DH_DERIVE_SHARED_SECRET TEE_ATTR_DH_PUBLIC_VALUE: Public
key part-of the other party. This parameter
is mandatory.

TEE_ALG_ECDH-NISTP192 DERIVE_SHARED SECRET TEE_ATTR_ECC_PUBLIC_VALUE_X,
_TEE ALGECDH-NIST P224 DERIVE SHARED SECRET TEE_ATTR_ECC_PUBLIC_VALUE_Y:
TEE ALG ECDH NIST P256 DERIVE SHARED SECRET Public key part-of the other party. These
IFEE_EI G_EEQ I_r ISi_Pss I_BERI! !E_SIIEREE_SEEREI parameters are Fhis-parameteris

- = - - - - - mandatory.
(if supported)

The derivedKey handle MUST refer to an object with type TEE_TYPE_GENERIC_SECRET.

The caller MUST have set the private part of the operation DH key using the TEE SetOperationKey
function.

The caller MUST pass the other party’s public key as a parameter of the TEE DeriveKey function.

On completion the derived key is placed into the TEE_ATTR_SECRET_VALUE attribute of the derivedKey
handle.
Parameters

e operation: Handle on the operation, which MUST have been suitably set up with an operation key

e params, paramCount: Operation parameters

o derivedKey: Handle on an uninitialized transient object to be filled with the derived key

Specification Number: 10 Function Number: 0x1201

Panic Reasons
e operation is not a valid operation handle of class TEE_OPERATION_KEY_DERIVATION.

e The object derivedKey is too small for the generated value.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 173/242

e No key is programmed in the operation.

e A mandatory parameter is missing.

e The operation mode is not TEE_MODE_DERIVE.
e Hardware or cryptographic algorithm failure

¢ |If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

174/242 TEE Internal Core API Specification — Public Release v1.1.1

6.9 Random Data Generation Function

6.9.1 TEE_GenerateRandom

void TEE_GenerateRandom(
[out] void* randomBuffer,
—uint32—+% size t randomBufferLen);
Description

The TEE_GenerateRandom function generates random data.

Parameters
¢ randomBuffer: Reference to generated random data

o randomBufferLen: Byte length of requested random data
Specification Number: 10 Function Number: 0x1301

Panic Reasons
e Hardware or cryptographic algorithm failure

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 175/242

6.10 Cryptographic Algorithms Specification

This section specifies the cryptographic algorithms, key types, and key parts supported in the Cryptographic
Operations API.

Note that for the “NOPAD” symmetric algorithms, it is the responsibility of the TA to do the padding.

6.10.1 List of Algorithm Identifiers

Table 6-11 provides an exhaustive list of all algorithm identifiers specified in the Cryptographic Operations API.
Note that the algorithm identifiers have the structure defined in Table 6-12. (Normative references for the
algorithms may be found in Annex C.)

Implementations MAY define their own algorithms. Such algorithms MUST have implementation-defined
algorithm identifiers, and those identifiers MUST use the structure defined in Table 6-12.

Table 6-11: List of Algorithm Identifiers

Name ldentifier Comments

Algorithm Identifier Value

TEE_ALG_AES_ECB_NOPAD 0x10000010

TEE_ALG_AES_CBC_NOPAD 0x10000110

TEE_ALG_AES_CTR 0x10000210 | The counter MUST be encoded as
a 16-byte buffer in big-endian form.
Between two consecutive blocks,
the counter MUST be incremented
by 1. If it reaches the limit of all
128 bits set to 1, it MUST wrap
around to ©.

TEE_ALG_AES_CTS 0x10000310

TEE_ALG_AES_XTS 0x10000410

TEE_ALG_AES_CBC_MAC_NOPAD 0x30000110

TEE_ALG_AES_CBC_MAC_PKCS5 0x30000510

TEE_ALG_AES_CMAC 0x30000610

TEE_ALG_AES_CCM 0x40000710

TEE_ALG_AES_GCM 0x40000810

TEE_ALG_DES_ECB_NOPAD 0x10000011

TEE_ALG_DES_CBC_NOPAD 0x10000111

TEE_ALG_DES_CBC_MAC_NOPAD 0x30000111

TEE_ALG_DES_CBC_MAC_PKCS5 0x30000511

TEE_ALG_DES3_ECB_NOPAD 0x10000013 | Triple DES MUST be understood as
Encrypt-Decrypt-Encrypt mode with
two or three keys.

TEE_ALG_DES3_CBC_NOPAD 0x10000113

TEE_ALG_DES3_CBC_MAC_NOPAD 0x30000113

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

176/242 TEE Internal Core API Specification — Public Release v1.1.1

blose ldentiier Comments
Algorithm Identifier Value
TEE_ALG_DES3_CBC_MAC_PKCS5 0x30000513
TEE_ALG_RSASSA _PKCS1_V1_5 MD5 0x70001830
TEE_ALG_RSASSA PKCS1_V1_5 SHA1 0x70002830
TEE_ALG_RSASSA PKCS1_V1 5 SHA224 0x70003830
TEE_ALG_RSASSA PKCS1_V1 5 SHA256 0Xx70004830
TEE_ALG_RSASSA_PKCS1_V1_5 SHA384 0x70005830
TEE_ALG_RSASSA _PKCS1 _V1_5 SHAS512 0x70006830
TEE_ALG_RSASSA PKCS1_PSS_MGF1_SHA1 0x70212930
TEE_ALG_RSASSA PKCS1_PSS_MGF1_SHA224 0x70313930
TEE_ALG_RSASSA PKCS1_PSS_MGF1_SHA256 0x70414930
TEE_ALG_RSASSA_PKCS1 PSS _MGF1_SHA384 0x70515930
TEE_ALG_RSASSA_PKCS1 PSS _MGF1_SHA512 0Xx70616930
TEE_ALG_RSAES_PKCS1 V1 5 0x60000130
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1 0x60210230
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224 0x60310230
TEE_ALG_RSAES_PKCS1 OAEP_MGF1_SHA256 0x60410230
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384 0x60510230
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512 0x60610230
TEE_ALG_RSA_NOPAD 0x60000030
TEE_ALG_DSA_SHA1 0x70002131
TEE_ALG_DSA_SHA224 0x70003131
TEE_ALG_DSA_SHA256 0Xx70004131
TEE_ALG_DH_DERIVE_SHARED SECRET 0x80000032
TEE_ALG_MD5 0x50000001
TEE_ALG_SHA1 0x50000002
TEE_ALG_SHA224 0x50000003
TEE_ALG_SHA256 0x50000004
TEE_ALG_SHA384 @Xx50000005
TEE_ALG_SHA512 0x50000006
TEE_ALG_HMAC_MD5 0x30000001
TEE_ALG_HMAC_SHA1 0x30000002
TEE_ALG_HMAC_SHA224 0x30000003
TEE_ALG_HMAC_SHA256 0X30000004

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 177/242
Name ldentiier Comments
Algorithm Identifier Value
TEE_ALG_HMAC_SHA384 0x30000005
TEE_ALG_HMAC_SHA512 0x30000006
TEE_ALG_ECDSA_SHA1-P192 0x70001042 | If supported
TEE_ALG_ECDSA_SHA224-P224 0x70002042 | If supported
TEE_ALG_ECDSA_SHA256-—P256 0x70003042 | If supported
TEE_ALG_ECDSA_SHA384-—P384 0x70004042 | If supported
TEE_ALG_ECDSA_SHA512—P521 0x70005042 | If supported
TEE_ALG_ECDH_P192 _DERIVE SHARED SECRET | @x80001042 | |f supported

0x80000042
FEEALGECPDHP224 DERTVE-SHAREDSECRET ex86002842 | Ifsupported
FEEALGECPDHP256 DERTVESHAREDSECRET ex86003842 | Ifsupported
TEE-ALG-ECDH-P384_DERIVE SHARED SECRET ©x80004042 | Ifsupported
TEE-ALG-ECPH-P521 DERIVE SHARED SECRET ©x80005042 | Ifsupported

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

178/242 TEE Internal Core API Specification — Public Release v1.1.1
Table 6-12: Structure of Algorithm Identifier_or Object Type Identifier
Bits Function Values
Bits [31:28] | Specifies the algorithm | 0x1: Block cipher
classl &F}d-m 0x3: MAC
determines . th_e 0x4: Authenticated Encryption cipher
cryptographic functions)
that can be called 0x5: Digest
0x6: Asymmetric cipher
0x7: Asymmetric signature
0x8: Key derivation
O0xA: Object handle
Note:
e Algorithm Identifiers (bits 31:28 <> 0xA) are listed in
Table 6-11.
e Object Type Identifiers (bits 31:28 = 0xA) are listed in
Table 6-13.
Bits [27:25] Reserved Should Be Zero.
Bit [24] Object Type Key Pair If an Algorithm Identifier (bits 31:28 <> 0xA), then Should Be
Indicator Zero.
If an Object Type Identifier (bits 31:28 = 0xA), then:
If object is a key pair, then Ox1.
Otherwise Should Be Zero.
Bits [23:20] | Defines the internal If bits 19:16 indicate use of MGF, then bits 23:20 define the
hash used by the MGF | digest mode, using the values in Table 6-12b.
for RSA OAEP (for Otherwise Should Be Zero.
signature algorithms,
equal to the message
digest)
Bits [19:16] | Define-the MGFfor If the algorithm uses MGF, then 0x1.
RSA-PSS-and-RSA Otherwise Should Be Zero.
OAEP-algorithms
o
Lootn =0t mantheds
H-supported

Indicates whether the
algorithm uses MGF

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein 1s subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 179/242

Bits Function Values

Bits [15:12] | Defines the message If bits 31:28 are 0x7, then:

d.igest for asym.metric If bits 7:0 are 0x42, then this is an ECC algorithm. The key
signature algorithms material specifies the curve type, and the algorithm 1D
specifies the supplied hash size:

0x1 SHA-1

0x2 SHA-224
0x3 SHA-256
0x4 SHA-384
0x5 SHA-512

Otherwise bits 15:12 define the digest mode, using the values
in Table 6-12b.

Bits [11:8] May define the
chaining mode or
padding

Bits [7:0] Identifies the 0x00: Generic Secret Key object
underlying main 0x01:MD5

algorithm itself Ox02:_SHA-1

0x03:-SHA-224

0Ox04:—SHA-256

0Ox05:-SHA-384

0x06:-SHA-512

0x01 — 0x06: See Table 6-12b.
0x10: AES

0x11: DES

0x12: DES2{enlyforkey-generation)-Deprecated
0x13: DESS3

0x30: RSA

0x31: DSA

0x32: DH

When used to define
Algorithms in Table 6-11:

0x42: ECC (if supported)

Else (when used to define
Objects in Table 6-13):

0x41: ECDSA (if supported)
0x42: ECDH (if supported)

OxBE: Object is invalid
OxBF: No appropriate algorithm

Algorithm numbers above 0xCO are reserved for
implementation-specific algorithms.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

180/242 TEE Internal Core API Specification — Public Release v1.1.1

Table 6-12b: Algorithm Subtype Identifier

Value Subtype
0x01 MD5
0x02 SHA-1
0x03 SHA-224
0x04 SHA-256
0x05 SHA-384
0x06 SHA-512

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 181/242

6.10.2 Object Types

Object handles are a special class of algorithm handle and follow the rules in Table 6-12 but only use the
object type, object type key pair indicator, and algorithm fields.

Table 6-13: List of Object Types

Name Identifier

TEE_TYPE_AES 0xA0000010
TEE_TYPE_DES 0xA0000011
TEE_TYPE_DES3 0xA0000013
TEE_TYPE_HMAC_MD5 0xA0000001
TEE_TYPE_HMAC_SHA1 0xA0000002
TEE_TYPE_HMAC_SHA224 0xA0000003
TEE_TYPE_HMAC_SHA256 0xA0000004
TEE_TYPE_HMAC_SHA384 0xA0000005
TEE_TYPE_HMAC_SHA512 0xA0000006
TEE_TYPE_RSA_PUBLIC_KEY 0xA0000030
TEE_TYPE_RSA_KEYPAIR 0xA1000030
TEE_TYPE_DSA_PUBLIC_KEY 0xA0000031
TEE_TYPE_DSA_KEYPAIR 0xA1000031
TEE_TYPE_DH_KEYPAIR 0xA1000032
TEE_TYPE_ECDSA_PUBLIC_KEY 0xA0000041
TEE_TYPE_ECDSA_KEYPAIR OxA1000041
TEE_TYPE_ECDH_PUBLIC_KEY 0xA0000042
TEE_TYPE_ECDH_KEYPAIR OxA1000042
TEE_TYPE_GENERIC_SECRET OxA0P0V00O
TEE_TYPE_CORRUPTED_OBIJECT OxAO0LOOBE
TEE_TYPE_DATA OxAQ0OOOBF

Object types using implementation-specific algorithms are defined by the implementation.

The TEE_TYPE_CORRUPTED_OBJECT is used solely in the deprecated TEE_GetObjectInfo function to
indicate that the object on which it is being invoked has been corrupted in some way.

The TEE_TYPE_DATA is used to represent objects which have no cryptographic attributes, just a data stream.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

182/242 TEE Internal Core API Specification — Public Release v1.1.1

6.10.3 Elliptic Curve Types

If elliptic curve cryptography (ECC) is supported then the curve to be used is defined as follows. All curve
definitions come from http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf [NIST Re Cur].
Note that if ECC is supported, then all the curves defined in the following table SHALL be implemented.

Table 6-14: List of Supported ECC Curves

Name Identifier Size
TEE_ECC_CURVE_NIST_P192 0x00000001 192 bits
TEE_ECC_CURVE_NIST_P224 0x00000002 224 bits
TEE_ECC_CURVE_NIST P256 0x00000003 256 bits
TEE_ECC_CURVE_NIST_P384 0x00000004 384 bits
TEE_ECC_CURVE_NIST_P521 0x00000005 521 bits
Reserved for future use 0x00000006 - OX7FFFFFFF
Implementation defined 0x80000000 - OXFFFFFFFF

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

TEE Internal Core API Specification — Public Release v1.1.1 183/242

6.11 Object or Operation Attributes

Table 6-15: Object or Operation Attributes

Name Value Protection | Type Format | Comment
(Table
6-16)
TEE_ATTR_SECRET_VALUE 0xC0000000 | Protected Ref binary Used for all
secret keys for
symmetric
ciphers,
MACs, and
HMACs
TEE_ATTR_RSA_MODULUS 0xD0000130 | Public Ref bignum
TEE_ATTR_RSA_PUBLIC_EXPONENT | 0xD0000230 | Public Ref bignum
TEE_ATTR_RSA_PRIVATE_EXPONENT | 0xC0000330 | Protected Ref bignum
TEE_ATTR_RSA_PRIME1 0xC0000430 | Protected Ref bignum | Usually
referred to as
p.
TEE_ATTR_RSA_PRIME2 0xC0000530 | Protected | Ref bignum | q
TEE_ATTR_RSA_EXPONENT1 0xC0000630 | Protected Ref bignum dp
TEE_ATTR_RSA_EXPONENT2 0xC0000730 | Protected Ref bignum dq
TEE_ATTR_RSA_COEFFICIENT 0xC0000830 | Protected Ref bignum | iq
TEE_ATTR_DSA_PRIME 0xD0001031 | Public Ref bignum | p
TEE_ATTR_DSA_SUBPRIME 0xD0001131 | Public Ref bignum q
TEE_ATTR_DSA_BASE 0xD0001231 | Public Ref bignum g
TEE_ATTR_DSA_PUBLIC_VALUE 0xD0000131 | Public Ref bignum |y
TEE_ATTR_DSA_PRIVATE_VALUE 0xC0000231 | Protected | Ref bignum | x
TEE_ATTR_DH_PRIME 0xD0001032 | Public Ref bignum | p
TEE_ATTR_DH_SUBPRIME 0xD0001132 | Public Ref bignum q
TEE_ATTR_DH_BASE 0xD0001232 | Public Ref bignum | g
TEE_ATTR_DH_X_BITS 0xF0001332 | Public Value | int {
TEE_ATTR_DH_PUBLIC_VALUE 0xD0000132 | Public Ref bignum |y
TEE_ATTR_DH_PRIVATE_VALUE 0xC0000232 | Protected Ref bignum | x
TEE_ATTR_RSA_OAEP_LABEL 0xD0000930 | Public Ref binary
TEE_ATTR_RSA_PSS_SALT_LENGTH | 0xFOOOOA30 | Public Value | int
TEE_ATTR_ECC_PUBLIC_VALUE_X 0xD0000141 | Public Ref bignum
TEE_ATTR_ECC_PUBLIC_VALUE_Y 0xD0000241 | Public Ref bignum
TEE_ATTR_ECC_PRIVATE_VALUE 0xC0000341 | Protected Ref bignum | d

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

184/242 TEE Internal Core API Specification — Public Release v1.1.1

Name Value Protection | Type Format | Comment
(Table
6-16)
TEE_ATTR_ECC_CURVE 0xF0000441 | Public Value | int Identifier value
from
Table 6-14

Table 6-16: Attribute Format Definitions

Format Description
binary An array of unsigned octets
bignum An unsigned bignum in big-endian binary format.

Leading zero bytes are allowed.

int Values attributes represented in a single integer returned/read from argument a.

Additional attributes may be defined for use with implementation defined algorithms.

Implementer’s Notes

Selected bits of the attribute identifiers are explained in Table 6-17.

Table 6-17: Partial Structure of Attribute Identifier

Bit Function Values

Bit [29] Defines whether the attribute is a buffer or value attribute 0: buffer attribute
1: value attribute

Bit [28] Defines whether the attribute is protected or public Q: protected attribute
1: public attribute

A protected attribute cannot be extracted unless the object has the TEE_USAGE_EXTRACTABLE flag.

Table 6-18 defines constants that reflect setting bit [29] and bit [28], respectively, intended to help decode
attribute identifiers.

Table 6-18: Attribute Identifier Flags

Name Value
TEE_ATTR_FLAG_VALUE 0x20000000
TEE_ATTR_FLAG_PUBLIC 0x10000000

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 185/242

7 Time API

This API provides access to three sources of time:
e System Time

o The origin of this system time is arbitrary and implementation-dependent. Different TA instances
may even have different system times. The only guarantee is that the system time is not reset or
rolled back during the life of a given TA instance, so it can be used to compute time differences and
operation deadlines, for example. The system time MUST NOT be affected by transitions through
low power states.

o System time is related to the function TEE_Wait, which waits for a given timeout or cancellation.

o The level of trust that a Trusted Application can put on the system time is implementation defined
but can be discovered programmatically by querying the implementation property
gpd.tee.systemTime.protectionLevel. Typically, an implementation may rely on the REE
timer (protection level 100) or on a dedicated secure timer hardware (protection level 1000).

o System time MUST advance within plus or minus15% of the passage of real time in the outside
world including while the device is in low power states, to ensure that appropriate security levels
are maintained when, for example, system time is used to implement dictionary attack protection.
This accuracy also applies to timeout values where they are specified in individual routines.

e TA Persistent Time, a real-time source of time

o The origin of this time is set individually by each Trusted Application and MUST persist across
reboots.

o The level of trust on the TA Persistent Time can be queried through the property
gpd.tee.TAPersistentTime.protectionlLevel.

e REE Time
o This is as trusted as the REE itself and may also be tampered by the user.

All time functions use a millisecond resolution and split the time in the two fields of the structure TEE_Time:
one field for the seconds and one field for the milliseconds within this second.

7.1 Data Types

7.1.1 TEE_Time

typedef struct
{
uint32_t seconds;
uint32_t millis;
} TEE_Time;

When used to return a time value, this structure can represent times up to 06:28:15 UTC on Sun, 7 February
2106.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

186/242 TEE Internal Core API Specification — Public Release v1.1.1

7.2 Time Functions

7.2.1 TEE_GetSystemTime

void TEE_GetSystemTime (
[out] TEE_Time* time);

Description
The TEE_GetSystemTime function retrieves the current system time.

The system time has an arbitrary implementation-defined origin that can vary across TA instances. The
minimum guarantee is that the system time MUST be monotonic for a given TA instance.

Implementations are allowed to use the REE timers to implement this function but may also better protect the
system time. A TA can discover the level of protection implementation by querying the implementation property
gpd.tee.systemTime.protectionLevel. Possible values are listed in Table 7-1.

Table 7-1: Values of the gpd.tee.systemTime.protectionLevel Property

Value Meaning

100 System time based on REE-controlled timers. Can be tampered by the REE.

The implementation MUST still guarantee that the system time is monotonic, i.e. successive
callsto TEE_GetSystemTime MUST return increasing values of the system time.

1000 System time based on a TEE-controlled secure timer.

The REE cannot interfere with the system time. It may still interfere with the scheduling of
TEE tasks, but is not able to hide delays from a TA calling TEE_GetSystemTime.

Parameters

o time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC
Specification Number: 10 Function Number: 0x1402

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 187/242

7.2.2 TEE_Wait

TEE_Result TEE_Wait(uint32_t timeout);

Description

The TEE_Wait function waits for the specified number of milliseconds or waits forever if timeout equals
TEE_TIMEOUT_INFINITE (@xFFFFFFFF).

When this function returns success, the implementation MUST guarantee that the difference between two calls
to TEE_GetSystemTime before and after the call to TEE_Wait is greater than or equal to the requested
timeout. However, there may be additional implementation-dependent delays due to the scheduling of TEE
tasks.

This function is cancellable, i.e. if the current task’s cancelled flag is set and the TA has unmasked the effects
of cancellation, then this function returns earlier than the requested timeout with the return code
TEE_ERROR_CANCEL. See section 4.10 for more details about cancellations.

Parameters

e timeout: The number of milliseconds to wait, or TEE_TIMEOUT_INFINITE
Specification Number: 10 Function Number: 0x1405

Return Code
e TEE_SUCCESS: On success
e TEE_ERROR_CANCEL: If the wait has been cancelled

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

188/242 TEE Internal Core API Specification — Public Release v1.1.1

7.2.3 TEE_GetTAPersistentTime

TEE_Result TEE_GetTAPersistentTime (
[out] TEE_Time* time);

Description

The TEE_GetTAPersistentTime function retrieves the persistent time of the Trusted Application, expressed
as a number of seconds and miliseconds since the arbitrary origin set by calling
TEE_SetTAPersistentTime.

This function can return the following statuses (as well as other status values discussed in “Return Code”):

e TEE_SUCCESS means the persistent time is correctly set and has been retrieved into the parameter
time.

e TEE_ERROR_TIME_NOT_SET is the initial status and means the persistent time has not been set. The
Trusted Application MUST set its persistent time by calling the function
TEE_SetTAPersistentTime.

e TEE_ERROR_TIME_NEEDS_RESET means the persistent time has been set but may have been
corrupted and MUST no longer be trusted. In such a case it is recommended that the Trusted
Application resynchronize the persistent time by calling the function TEE_SetTAPersistentTime.
Until the persistent time has been reset, the status TEE_ERROR_TIME_NEEDS_RESET will always be
returned.

Initially the time status is TEE_ERROR_TIME_NOT_SET. Once a Trusted Application has synchronized its
persistent time by calling TEE_SetTAPersistentTime, the status can be TEE_SUCCESS or
TEE_ERROR_TIME_NEEDS_RESET. Once the status has become TEE_ERROR_TIME_NEEDS_RESET it will
keep this status until the persistent time is re-synchronized by calling TEE_SetTAPersistentTime.

Figure 7-1 shows the state machine of the persistent time status.

Figure 7-1: Persistent Time Status State Machine

TEE_ERROR_TIME_NOT_SET

TEE_SetTAPersistentTime

A

TEE_SUCCESS

Corruption TEE_SetTAPersistentTime

A 4

TEE_ERROR_TIME_NEEDS_RESET

The meaning of the status TEE_ERROR_TIME NEEDS RESET depends on the protection level provided by the
hardware implementation and the underlying real-time clock (RTC). This protection level can be queried by
retrieving the implementation property gpd.tee.TAPersistentTime.protectionLevel, which can have
one of the values listed in Table 7-2.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 189/242

Table 7-2: Values of the gpd.tee.TAPersistentTime.protectionLevel Property

Value Meaning

100 Persistent time based on an REE-controlled real-time clock and on the TEE Trusted Storage
for the storage of origins.

The implementation MUST guarantee that rollback of persistent time is detected to the fullest
extent allowed by the Trusted Storage.

1000 Persistent time based on a TEE-controlled real-time clock and the TEE Trusted Storage. The
real-time clock MUST be out of reach of software attacks from the REE.

Users may still be able to provoke a reset of the real-time clock but this MUST be detected by
the Implementation.

The number of seconds in the TA Persistent Time may exceed the range of the uint32_t integer type. In
this case, the function MUST return the error TEE_ERROR_OVERFLOW, but still computes the TA Persistent
Time as specified above, except that the number of seconds is truncated to 32 bits before being written to
time->seconds. For example, if the Trusted Application sets its persistent time to 232-100 seconds, then
after 100 seconds, the TA Persistent Time is 232, which is not representable with a uint32_t. In this case,
the function TEE_GetTAPersistentTime MUST return TEE_ERROR_OVERFLOW and set time->seconds
to @ (whichis 232 truncated to 32 bits).
Parameters

e time: A pointer to the TEE_Time structure to be set to the current TA Persistent Time. If an error

other than TEE_ERROR_OVERFLOW is returned, this structure is filled with zeroes.

Specification Number: 10 Function Number: 0x1403

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_TIME_NOT_SET
e TEE_ERROR_TIME_NEEDS RESET

e TEE_ERROR_OVERFLOW: The number of seconds in the TA Persistent Time overflows the range of a
uint32_t. The field time->seconds is still set to the TA Persistent Time truncated to 32 bits
(i.e. modulo 2%2).

e TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

190/242 TEE Internal Core API Specification — Public Release v1.1.1

7.2.4 TEE_SetTAPersistentTime

TEE_Result TEE_SetTAPersistentTime (
[in] TEE_Time* time);

Description
The TEE_SetTAPersistentTime function sets the persistent time of the current Trusted Application.

Only the persistent time for the current Trusted Application is modified, not the persistent time of other Trusted
Applications. This will affect all instances of the current Trusted Application. The modification is atomic and
persistent across device reboots.

Parameters

e time: Filled with the persistent time of the current TA
Specification Number: 10 Function Number: 0x1404

Return Code
e TEE_SUCCESS: In case of success
e TEE_ERROR_OUT_OF_MEMORY: If not enough memory is available to complete the operation
e TEE_ERROR_STORAGE_NO_SPACE: If insufficient storage space is available to complete the operation

Panic Reasons

o If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

7.25 TEE_GetREETime

void TEE_GetREETime(
[out] TEE Time* time);

Description

The TEE_GetREETime function retrieves the current REE system time. This function retrieves the current
time as seen from the point of view of the REE, expressed in the number of seconds since midnight on
January 1, 1970, UTC.

In normal operation, the value returned SHOULD correspond to the real time, but it SHOULD NOT be
considered as trusted, as it may be tampered by the user or the REE software.

Parameters

e time: Filled with the number of seconds and milliseconds since midnight on January 1, 1970, UTC
Specification Number: 10 Function Number: 0x1401

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 191/242

8 TEE Arithmetical API

8.1 Introduction

All asymmetric cryptographic functions are implemented by using arithmetical functions, where operands are
typically elements of finite fields or in mathematical structures containing finite field elements. The
Cryptographic Operations API hides the complexity of the mathematics that is behind these operations. A
developer who needs some cryptographic service does not need to know anything about the internal
implementation.

However in practice developer may face the following difficulties: the API does not support the desired
algorithm; or the API supports the algorithm, but with the wrong encodings, options, etc. The purpose of the
TEE Arithmetical APl is to provide building blocks so that the developer can implement missing asymmetric
algorithms. In other Words the arlthmetlcal API can be used to |mplement a plug in |nt0 the Cryptographic
Operations API.
+ts—tuneﬂens—ean—be—leit—as—epﬂenal—te—mplemeni—Furthermore and to ease the de5|gn of speed eff|C|ent
algorithms, the arithmetical API also gives access to a Fast Modular Multiplication primitive, referred to as
FMM.

This specification mandates that all functions within the TEE Arithmetical APl MUST work when input and
output TEE_BigInt values are within the interval [-2M+1, 2M-1] (limits included), where M is an
implementation-defined number of bits. Every Implementation MUST ensure that M is at least 2048. The exact
value of M can be retrieved as the implementation property gpd.tee.arith.maxBigIntSize.

Throughout this chapter:
¢ The notation “n-bit integer” refers to an integer that can take values in the range [-2"+1, 2"-1], including
limits.

e The notation “magnitude(src)” denotes the minimum number of required bits to represent the
absolute value of the big integer src in a natural binary representation. The developer may query the
magnitude of a big integer by using the function TEE_BigIntGetBitCount(src), as described in
section 8.7.5.

8.2 Error Handling and Parameter Checking

This low level arithmetical APl performs very few checks on the parameters given to the functions. Most
functions will return undefined results when called inappropriately but will not generate any error return codes.

Some functions in the APl MAY work for inputs larger than indicated by the implementation property
gpd.tee.arith.maxBigIntSize. This is however not guaranteed. When a function does not support a
given bigint size beyond this limit, it MUST panic and not produce invalid results.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

192/242 TEE Internal Core API Specification — Public Release v1.1.1

8.3 Data Types

This specification version has three data types for the arithmetical operations. These are TEE_BigInt,
TEE_BigIntFMM, and TEE_BigIntFMMContext. Before using the arithmetic operations, the TA developer
MUST allocate and initialize the memory for the input and output operands This API provides entry points to
determine the correct sizes of the needed memory allocations.

8.3.1 TEE_Bigint

The TEE_BigInt type is a placeholder for the memory structure of the TEE core internal representation of a
large multi-precision integer.

typedef uint32_t TEE_BigInt;

The following constraints are put on the internal representation of the TEE_BigInt:
1) The size of the representation MUST be a multiple of 4 bytes.
2) The extra memory within the representation to store metadata MUST NOT exceed 8 bytes.
3) The representation MUST be stored 32-bit aligned in memory.

Exactly how a multi-precision integer is represented internally is implementation-specific but it MUST be stored
within a structure of the maximum size given by the macro TEE_BigIntSizeInU32 (see section 8.4.1).

By defining a TEE_BigInt asa uint32_t for the TA, we allow the TA developer to allocate static space
for multiple occurrences of TEE_BigInt at compile time which obey constraints 1 and 3. The allocation can
be done with code similar to this:

uint32_t twoints[2 * TEE_BigIntSizeInU32(1024)];

TEE_BigInt* first twoints;
TEE_BigInt* second = twoints + TEE_BigIntSizeInU32(1024);

/* Or if we do it dynamically */

TEE_BigInt* op1l;

opl = TEE_Malloc(TEE_BigIntSizeInU32(1024) * sizeof(TEE_BigInt), 0);
/* use opl */

TEE_Free(opl);

Conversions from an external representation to the internal TEE_BigInt representation and vice versa can
be done by using functions from section 8.6.

Most functions in the TEE Arithmetical API take one or more TEE_BigInt pointers as parameters; for
example, func(TEE_BigInt *opl, TEE_BigInt *op2). When describing the parameters and what the
function does, this specification will refer to the integer represented in the structure to which the pointer opl
points, by simply writing op1. It will be clear from the context when the pointer value is referred to and when
the integer value is referred to.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 193/242

8.3.2 TEE_BigIntFMMContext

Usually, such a fast modular multiplication requires some additional data or derived numbers. That extra data
is stored in a context that MUST be passed to the fast modular multiplication function. The
TEE_BigIntFMMContext is a placeholder for the TEE core internal representation of the context that is used
in the fast modular multiplication operation.

‘ typedef uint32_t TEE_BigIntFMMContext;

The following constraints are put on the internal representation of the TEE_BigIntFMMContext:
1) The size of the representation MUST be a multiple of 4 bytes.
2) The representation MUST be stored 32-bit aligned in memory.

Exactly how this context is represented internally is implementation-specific but it MUST be stored within a
structure of the size given by the function TEE_BigIntFMMContextSizeInU32 (see section 8.4.2).

Similarly to TEE_BigInt, we expose this type asa uint32_t tothe TA, which helps TEE_Malloc to align
the structure correctly when allocating space fora TEE_BigIntFMMContext*.

8.3.3 TEE_BigIntFMM

Some implementations may have support for faster modular multiplication algorithms such as Montgomery or
Barrett multiplication for use in modular exponentiation. Typically, those algorithms require some
transformation of the input before the multiplication can be carried out. The TEE_BigIntFMM is a placeholder
for the memory structure that holds an integer in such a transformed representation.

typedef uint32_t TEE_BigIntFMM;

The following constraints are put on the internal representation of the TEE_BigIntFMM:
1) The size of the representation MUST be a multiple of 4 bytes.
2) The representation MUST be stored 32-bit aligned in memory.

Exactly how this transformed representation is stored internally is implementation-specific but it MUST be
stored within a structure of the maximum size given by the function TEE_BigIntFMMSizeInU32 (see
section 8.4.3).

Similarly to TEE_BigInt, we expose this type asa uint32_t tothe TA, which helps TEE_Malloc to align
the structure correctly when allocating space fora TEE_BigIntFMM*.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

194/242 TEE Internal Core API Specification — Public Release v1.1.1

8.4 Memory Allocation and Size of Objects

It is the responsibility of the Trusted Application to allocate and free memory for all TEE arithmetical objects,
including all operation contexts, used in the Trusted Application. Once the arithmetical objects are allocated,
the functions in the TEE Arithmetical APl will never fail because of out-of-resources.

TEE implementer’s note: Implementations of the TEE Arithmetical API SHOULD utilize memory from one or
more pre-allocated pools to store intermediate results during computations to ensure that the functions do not
fail because of lack of resources. All memory resources used internally MUST be thread-safe. Such a pool of
scratch memory could be:

¢ Internal memory of a hardware accelerator module
¢ Allocated from mutex protected system-wide memory
o Allocated from the heap of the TA instance, i.e. by using TEE_Malloc or TEE_Realloc

If the implementation uses a memory pool of temporary storage for intermediate results or if it uses hardware
resources such as accelerators for some computations, the implementation MUST either wait for the resource
to become available or, for example in case of a busy hardware accelerator, resort to other means such as a
software implementation.

8.4.1 TEE_BigIntSizelnU32

‘#define TEE_BigIntSizeInU32(n) ((((n)+31)/32)+2)

Description

The TEE_BigIntSizeInU32 macro calculates the size of the array of uint32_t values needed to represent
an n-bit integer. This is defined as a macro (thereby mandating the maximum size of the internal
representation) rather than as a function so that TA developers can use the macro in a static compile-time
declaration of an array. Note that the implementation of the internal arithmetic functions assumes that memory
pointed to by the TEE_BigInt* is 32-bit aligned.

Parameters

e n: maximum number of bits to be representable

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 195/242

8.4.2 TEE_BigIntFMMContextSizelnU32

uint32 tsize t TEE_BigIntFMMContextSizeInU32(uint32+%size t modulusSizeInBits
)

Description

The TEE_BigIntFMMContextSizeInU32 function returns the size of the array of uint32_t values needed
to represent a fast modular context using a given modulus size. This function MUST never fail.

Parameters

e modulusSizeInBits: Size of modulus in bits
Specification Number: 10 Function Number: 0x1502

Return Value

Number of bytes needed to store a TEE_BigIntFMMContext given a modulus of length
modulusSizeInBits.

Panic Reasons

¢ If the Implementation detects any error.

8.4.3 TEE_BigIntFMMSizelnU32

uint32 ftsize t TEE_BigIntFMMSizeInU32(uint32tsize t modulusSizeInBits); ‘

Description

The TEE_BigIntFMMSizeInU32 function returns the size of the array of uint32_t values needed to
represent an integer in the fast modular multiplication representation, given the size of the modulus in bits.
This function MUST never fail.

Normally from a mathematical point of view, this function would have needed the context to compute the exact
required size. However, it is beneficial to have a function that does not take an initialized context as a parameter
and thus the implementation may overstate the required memory size. It is nevertheless likely that a given
implementation of the fast modular multiplication can calculate a very reasonable upper-bound estimate based
on the modulus size.

Parameters

e modulusSizeInBits: Size of modulus in bits
Specification Number: 10 Function Number: 0x1501

Return Value

Number of bytes needed to store a TEE_BigIntFMM given a modulus of length modulusSizeInBits

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

196/242 TEE Internal Core API Specification — Public Release v1.1.1

8.5 Initialization Functions

These functions initialize the arithmetical objects after the TA has allocated the memory to store them. The
Trusted Application MUST call the corresponding initialization function after it has allocated the memory for
the arithmetical object.

8.5.1 TEE_Bigintinit

void TEE_BigIntInit(
[out] TEE_BigInt *biglInt,
—uint32—t size t len);

Description

The TEE_BigIntInit function initializes bigInt and sets its represented value to zero. This function
assumes that bigInt points to a memory area of len uint32_t. This can be done for example with the
following memory allocation:

TEE_BigInt *a;

size t wint32t-len;

len = (size t) TEE_BigIntSizeInU32(bitSize);

a = (TEE_BigInt *)TEE_Malloc(len * sizeof(TEE_BigInt), 9);

ret = TEE_BigIntInit(a, len);

Parameters
e bigInt: A pointertothe TEE_BigInt to be initialized
e len: Thesizein uint32_t of the memory pointed to by bigInt

Specification Number: 10 Function Number: 0x1601

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 197/242

8.5.2 TEE_BigIntInitFMMContext

void TEE_BigIntInitFMMContext (
[out] TEE_BigIntFMMContext *context,
—uint32—% size t len,
[in] TEE_BigInt *modulus);

Description

The TEE_BigIntInitFMMContext function calculates the necessary prerequisites for the fast modular
multiplication and stores them in a context. This function assumes that context points to a memory area of
len uint32_t. This can be done for example with the following memory allocation:

TEE_BigIntFMMContext* ctx;

size t wint32—+t-len = (size t) TEE_BigIntFMMContextSizeInU32(bitsize);
ctx=(TEE_BigIntFMMContext *)TEE_Malloc(len * sizeof(TEE_BigIntFFMContext), 0);
/*Code for initializing modulus*/

TEE_BigIntInitFMMContext(ctx, len, modulus);

Even though a fast multiplication might be mathematically defined for any modulus, normally there are
restrictions in order for it to be fast on a computer. This specification mandates that all implementations MUST
work for all odd moduli larger than 2 and less than 2 to the power of the implementation defined property
gpd.tee.arith.maxBigIntSize.
Parameters

e context: A pointertothe TEE_BigIntFMMContext to be initialized

e 1len: Thesizein uint32_t of the memory pointed to by context

e modulus: The modulus, an odd integer larger than 2 and less than 2 to the power of

gpd.tee.arith.maxBigIntSize

Specification Number: 10 Function Number: 0x1603

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

198/242 TEE Internal Core API Specification — Public Release v1.1.1

8.5.3 TEE_BigIntIinitFMM

void TEE_BigIntInitFMM(
[in] TEE_BigIntFMM *bigIntFMM,
—int32—+ size t len);
Description

The TEE_BigIntInitFMM function initializes bigIntFMM and sets its represented value to zero. This
function assumes that bigIntFMM pointsto a memory area of len uint32_t. This can be done for example
with the following memory allocation:

TEE_BigIntFMM *a;

w#int32t-size t len;

len = (size t) TEE_BigIntFMMSizeInU32(modulusSizeinBits);

a = (TEE_BigIntFMM *)TEE_Malloc(len * sizeof(TEE_BigIntFMM), ©);

TEE_BigIntInitFMM(a, len);

Parameters
e bigIntFMM: A pointertothe TEE_BigIntFMM to be initialized
e 1len: Thesizein uint32_t of the memory pointed to by bigIntFMM

Specification Number: 10 Function Number: 0x1602

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 199/242

8.6 Converter Functions

TEE_BigInt contains the internal representation of a multi-precision integer. However in many use cases
some integer data comes from external sources or integers; for example, a local device gets an ephemeral
Diffie-Hellman public key during a key agreement procedure. In this case the ephemeral key is expected to be
in octet string format, which is a big-endian radix 256 representation for unsigned numbers. For example
0x123456789abcdef has the following octet string representation:

{ox01, ox23, ox45, 0x67, 0x89, Oxab, Oxcd, ©Oxef}

This section provides functions to convert to and from such alternative representations.

8.6.1 TEE_BigIntConvertFromOctetString

TEE_Result TEE_BigIntConvertFromOctetString(
[out] TEE_BigInt *dest,
[inbuf] uint8_t *buffer,—uint32—+ size t bufferLen,
int32_t sign);

Description

The TEE_BigIntConvertFromOctetString function converts a bufferLen byte octet string buffer into
a TEE_BigInt format. The octet string is in most significant byte first representation. The input parameter
sign will set the sign of dest. It will be set to negative if sign<@ and to positive if sign>=0.

Parameters
e dest: Pointertoa TEE_BigInt to hold the result
e buffer: Pointer to the buffer containing the octet string representation of the integer
e bufferLen: The length of *buffer in bytes

e sign: The sign of dest is setto the sign of sign.
Specification Number: 10 Function Number: 0x1701

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_OVERFLOW: If memory allocation for the dest is too small

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

200/242 TEE Internal Core API Specification — Public Release v1.1.1

8.6.2 TEE_BigIntConvertToOctetString

TEE_Result TEE_BigIntConvertToOctetString(
[outbuf] void* buffer,—uint32t size t *bufferlLen,
[in] TEE_BigInt *bigInt);
Description

The TEE_BigIntConvertToOctetString function converts the absolute value of an integer in
TEE_BigInt formatinto an octet string. The octet string is written in a most significant byte first representation.

Parameters

e buffer, bufferLen: Output buffer where converted octet string representation of the integer is
written

e bigInt: Pointer to the integer that will be converted to an octet string
Specification Number: 10 Function Number: 0x1703

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_SHORT_BUFFER: If the output buffer is too small to contain the octet string

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

8.6.3 TEE_BigIntConvertFromS32

void TEE_BigIntConvertFromS32(
[out] TEE_BigInt *dest,
int32_t shortVal);

Description

The TEE_BigIntConvertFromS32 function sets *dest tothe value shortVal.

Parameters
o dest: Pointertoa TEE_BigInt to store the result

e shortVal: Inputvalue
Specification Number: 10 Function Number: 0x1702

Result Size

The result MUST have memory allocation for holding a 32-bit signed value.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 201/242

8.6.4 TEE_BigIntConvertToS32

TEE_Result TEE_BigIntConvertToS32(
[out] int32_t *dest,
[in] TEE_BigInt *src);

Description

The TEE_BigIntConvertToS32 function sets *dest tothe value of src, including the sign of src.If src
does not fit within an int32_t, the value of *dest is undefined.

Parameters
e dest: Pointerto an int32_t to store the result

e src: Pointer to the input value
Specification Number: 10 Function Number: 0x1704

Return Code
e TEE_SUCCESS: In case of success

e TEE_ERROR_OVERFLOW: If src does not fit within an int32_t

Panic Reasons

¢ If the Implementation detects any error which is not explicitly associated with a defined return code for
this function.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

202/242 TEE Internal Core API Specification — Public Release v1.1.1

8.7 Logical Operations

8.7.1 TEE_BigIntCmp

int32_t TEE_BigIntCmp(
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntCmp function checks whether opl>op2, opl==0p2, or opl<op2.

Parameters
e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1801

Return Value

This function returns a negative number if opl<op2, @ if opl==0p2, and a positive number if opl>op2.

Panic Reasons

o If the Implementation detects any error.

8.7.2 TEE_BigIntCmpS32

int32_t TEE_BigIntCmpS32(
[in] TEE_BigInt *op,
int32_t shortval);

Description
The TEE_BigIntCmpS32 function checks whether op>shortVal, op==shortVal, or op<shortVal.

Parameters
e op: Pointer to the first operand

e shortVal: Pointer to the second operand
Specification Number: 10 Function Number: 0x1802

Return Value

This function returns a negative number if op<shortVal, @ if op==shortVal, and a positive number if
op>shortVal.

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 203/242

8.7.3 TEE_BigIntShiftRight

void TEE_BigIntShiftRight(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op
—uint32-t size t bits);

Description

The TEE_BigIntShiftRight function computes |dest| = |op| >> bits and dest will have the
same sign as op.8 If bits is greater than the bit length of op then the result is zero. dest and op MAY
point to the same memory region.

Parameters
e dest: Pointerto TEE_BigInt to hold the shifted result
e op: Pointer to the operand to be shifted

e bits: Number of bits to shift
Specification Number: 10 Function Number: 0x1805

Panic Reasons

¢ If the Implementation detects any error.

6 The notation |x| means the absolute value of X.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

204/242 TEE Internal Core API Specification — Public Release v1.1.1

8.7.4 TEE_BigIntGetBit

bool TEE_BigIntGetBit (
[in] TEE_BigInt *src,
uint32_t bitIndex);

Description

The TEE_BigIntGetBit function returns the bitIndexth bit of the natural binary representation of |src]|.
A true return value indicates a “1” and a false return value indicates a “@” in the bitIndexth position.
If bitIndex is larger than the number of bits in op, the return value is false, thus indicating a “@".

Parameters
e src: Pointer to the integer

e bitIndex: The offset of the bit to be read, starting at offset @ for the least significant bit
Specification Number: 10 Function Number: 0x1803

Return Value

The Boolean value of the bitIndexth bitin |src]|. True represents a “1” and false represents a “9”.

Panic Reasons

¢ If the Implementation detects any error.

8.7.5 TEE_BigIntGetBitCount

uint32_t TEE_BigIntGetBitCount(
[in] TEE_BigInt *src);

Description

The TEE_BigIntGetBitCount function returns the number of bits in the natural binary representation of
| src]|; that is, the magnitude of src.

Parameters

e src: Pointer to the integer
Specification Number: 10 Function Number: 0x1804

Return Value

The number of bits in the natural binary representation of |src|.If src equals zero, it will return @.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 205/242

8.8 Basic Arithmetic Operations

This section describes basic arithmetical operations addition, subtraction, negation, multiplication, squaring,
and division.

8.8.1 TEE_BigIntAdd

void TEE_BigIntAdd(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntAdd function computes dest = opl + op2. All or some of dest, opl, and op2 MAY
point to the same memory region.

Parameters
o dest: Pointerto TEE_BigInt to store the result opl + op2
e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1901

Result Size

Depending on the sign of opl and op2, the result may be larger or smaller than opl and op2. For the
worst case, dest MUST have memory allocation for holding max(magnitude(opl), magnitude(op2))+1
bits.”

Panic Reasons

¢ If the Implementation detects any error.

7 The magnitude function is defined in section 8.7.5.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

206/242 TEE Internal Core API Specification — Public Release v1.1.1

8.8.2 TEE_BigIntSub

void TEE_BigIntSub(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntSub function computes dest = opl - op2. All or some of dest, opl, and op2 MAY
point to the same memory region.

Parameters
e dest: Pointerto TEE_BigInt to store the result opl - op2
e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1906

Result Size

Depending on the sign of opl and op2, the result may be larger or smaller than opl and op2. For the
worst case, the result MUST have memory allocation for holding max(magnitude(opl),
magnitude(op2))+1 bits.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 207/242

8.8.3 TEE_BigIntNeg

void TEE_BigIntNeg(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op);

Description

The TEE_BigIntNeg function negates an operand: dest = -op. dest and op MAY point to the same
memory region.

Parameters
e dest: Pointerto TEE_BigInt to store the result -op

e op: Pointer to the operand to be negated
Specification Number: 10 Function Number: 0x1904

Result Size

The result MUST have memory allocation for magnitude(op) bits.

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

208/242 TEE Internal Core API Specification — Public Release v1.1.1

8.8.4 TEE_BigIntMul

void TEE_BigIntMul(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntMul function computes dest = opl * op2. All or some of dest, opl, and op2 MAY
point to the same memory region.

Parameters
e dest: Pointerto TEE_BigInt to store the result opl * op2
e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1903

Result Size

The result MUST have memory allocation for (magnitude(opl) + magnitude(op2)) bits.

Panic Reasons

o If the Implementation detects any error.

8.8.5 TEE_BigIntSquare

void TEE_BigIntSquare(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op);

Description

The TEE_BigIntSquare function computes dest = op * op.dest and op MAY point to the same
memory region.

Parameters
e dest: Pointerto TEE_BigInt to store the result op * op

e op: Pointer to the operand to be squared
Specification Number: 10 Function Number: 0x1905

Result Size

The result MUST have memory allocation for 2*magnitude(op) bits.

Panic Reasons

o If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 209/242

8.8.6 TEE_BigIntDiv

void TEE_BigIntDiv(
[out] TEE_BigInt *dest g,
[out] TEE_BigInt *dest_r,
[in] TEE_BigInt *opil,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntDiv function computes dest_r and dest_q such that opl = dest_q * op2 +
dest_r. It willround dest_q towards zero and dest_r will have the same sign as op1.

Example:
opl op2 dest_q | dest_r | Expression
53 7 7 4 53 = 7*7 + 4
-53 7 -7 -4 -53 = (-7)*7 + (-4)

53 -7 -7 +4 53 = (-7)*%(-7) + 4

-53 -7 7 -4 -53

7%(-7) + (-4)

To call TEE_BigIntDiv with op2 equal to zero is considered a programming error and will cause the
Trusted Application to panic.

The memory pointed to by dest _q and dest r MUST NOT overlap. However it is possible that
dest_g==0pl, dest_g==0p2, dest_r==opl, dest_r==0p2, when dest_q and dest_r do not overlap.
If a NULL pointer is passed for either dest_q or dest_r, the implementation MAY take advantage of the
fact that it is only required to calculate either dest_q or dest_r.
Parameters

e dest g: Pointertoa TEE_BigInt to store the quotient. dest q can be NULL.

e dest_r: Pointertoa TEE_BigInt to store the remainder. dest_r canbe NULL.

e opl: Pointer to the first operand, the dividend

e o0p2: Pointer to the second operand, the divisor
Specification Number: 10 Function Number: 0x1902

Result Sizes

The quotient, dest_g, MUST have memory allocation for @ bytes if |opl| <= |op2| and
magnitude(opl) - magnitude(op2) if |opl| > |op2].

The remainder dest_r MUST have memory allocation to hold magnitude(op2) bits.
Panic Reasons
L] Op2 ==

o If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

210/242 TEE Internal Core API Specification — Public Release v1.1.1

8.9 Modular Arithmetic Operations

To reduce the number of tests the modular functions needs to perform on entrance and to speed up the
performance, all modular functions (except TEE_BigIntMod) assume that input operands are normalized, i.e.
non-negative and smaller than the modulus, and the modulus SHALL be greater than one, otherwise it is a
Programmer Error and the behavior of these functions are undefined. This normalization can be done by using
the reduction function in section 8.9.1.

8.9.1 TEE_BigIntMod

void TEE_BigIntMod(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op,
[in] TEE_BigInt *n);

Description

The TEE_BigIntMod function computes dest = op (mod n) suchthat @ <= dest < n.dest and op
MAY point to the same memory region but n MUST point to a unique memory region. For negative op the
function follows the normal convention that -1 = (n-1) mod n.

Parameters

e dest: Pointerto TEE_BigInt to hold the result op (mod n). The result dest will bein the
interval [0, n-1].

e op: Pointer to the operand to be reduced mod n

e n: Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A03

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.®

Panic Reasons
e n<2

¢ If the Implementation detects any other error.

8 The magnitude function is defined in section 8.7.5.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 211/242

8.9.2 TEE_BigIntAddMod

void TEE_BigIntAddMod (
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2,
[in] TEE_BigInt *n);

Description
The TEE_BigIntAddMod function computes dest = (opl + op2) (mod n).All or some of dest, opl,
and op2 MAY point to the same memory region but n MUST point to a unique memory region.
Parameters

e dest: Pointerto TEE_BigInt to hold the result (opl + op2) (mod n)

e opl: Pointer to the first operand. Operand MUST be in the interval [0,n-1].

e o0p2: Pointer to the second operand. Operand MUST be in the interval [0,n-1].

¢ n: Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A01

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons
e n<2

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

212/242 TEE Internal Core API Specification — Public Release v1.1.1

8.9.3 TEE_BigIntSubMod

void TEE_BigIntSubMod (
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2,
[in] TEE_BigInt *n);

Description
The TEE_BigIntSubMod function computes dest = (opl - op2) (mod n).All or some of dest, opl,
and op2 MAY point to the same memory region but n MUST point to a uniqgue memory region.
Parameters

e dest: Pointerto TEE_BigInt to hold the result (opl - op2) (mod n)

e opl: Pointer to the first operand. Operand MUST be in the interval [0,n-1].

e o0p2: Pointer to the second operand. Operand MUST be in the interval [0,n-1] .

¢ n: Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A06

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons
e n<2

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

213/242

8.9.4 TEE_BigIntMulMod

void TEE_BigIntMulMod (
[out] TEE_BigInt *dest,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2,
[in] TEE_BigInt *n);

Description

The TEE_BigIntMulMod function computes dest = (opl * op2) (mod n).All or some of dest, opl,

and op2 MAY point to the same memory region but n MUST point to a uniqgue memory region.

Parameters
e dest: Pointerto TEE_BigInt to hold the result (opl * op2) (mod n)
e opl: Pointer to the first operand. Operand MUST be in the interval [0,n-1].
e o0p2: Pointer to the second operand. Operand MUST be in the interval [0,n-1].

¢ n: Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A04

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons
e n<2

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

2147242 TEE Internal Core API Specification — Public Release v1.1.1

8.9.5 TEE_BigIntSquareMod

void TEE_BigIntSquareMod(
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op,
[in] TEE_BigInt *n);

Description

The TEE_BigIntSquareMod function computes dest = (op * op) (mod n).dest and opl MAY point
to the same memory region but n MUST point to a unique memory region.

Parameters
e dest: Pointerto TEE_BigInt to hold the result (op * op) (mod n)
e op: Pointer to the operand. Operand MUST be in the interval [0,n-1].

e n: Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A05

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons
e n<2

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

215/242

8.9.6 TEE_BigIntinvMod

void TEE_BigIntInvMod (
[out] TEE_BigInt *dest,
[in] TEE_BigInt *op,
[in] TEE_BigInt *n);

Description

The TEE_BigIntInvMod function computes dest suchthat dest * op

1 (mod n).dest and op

MAY point to the same memory region. This function assumes that gcd(op,n) is equal to 1, which can be
checked by using the function in section 8.10.1. If gcd(op,n) is greaterthan 1 then the result is unreliable.

Parameters
e dest: Pointerto TEE_BigInt to hold the result (op”-1) (mod n)

e op: Pointer to the operand. Operand MUST be in the interval [1,n-1].

e n:. Pointer to the modulus. Modulus MUST be larger than 1.
Specification Number: 10 Function Number: 0x1A02

Result Size

The result dest MUST have memory allocation for magnitude(n) bits.

Panic Reasons
e n<2
e Op =0

¢ |If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

216/242 TEE Internal Core API Specification — Public Release v1.1.1

8.10 Other Arithmetic Operations

8.10.1 TEE_BigIntRelativePrime

bool TEE_BigIntRelativePrime(
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description

The TEE_BigIntRelativePrime function determines whether gcd(opl, op2)==1.0pl and op2 MAY
point to the same memory region.

Parameters
e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1B03

Return Value
e true if gcd(opl, op2)==
e false otherwise

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 217/242

8.10.2 TEE_BigIntComputeExtendedGcd

void TEE_BigIntComputeExtendedGed (
[out] TEE_BigInt *gcd,
[out] TEE_BigInt *u,
[out] TEE_BigInt *v,
[in] TEE_BigInt *opl,
[in] TEE_BigInt *op2);

Description
The TEE_BigIntComputeExtendedGcd function computes the greatest common divisor of the input
parameters opl and op2. Furthermore it computes the coefficients u and v suchthat u*opl+v*op2==gcd.
opl and op2 MAY point to the same memory region. u, v, or both can be NULL. If both are NULL then the
function only computes the gcd of opl and op2.
Parameters

e gcd: Pointerto TEE_BigInt to hold the greatest common divisor of opl and op2

e u: Pointerto TEE_BigInt to hold the first coefficient

e Vv: Pointerto TEE_BigInt to hold the second coefficient

e opl: Pointer to the first operand

e o0p2: Pointer to the second operand
Specification Number: 10 Function Number: 0x1B01

Result Sizes
e The gcd result MUST be able to hold max(magnitude(opl), magnitude(op2)) bits.®

o If opl != @, then the absolute value of v isinthe range [0, |opl/gcd|-1].

o If op2 != @, then the absolute value of u isinthe range [0, |op2/gcd|-1].

e The absolute value of u isinthe range [0, |op2/gcd|-1].1°

e The absolute value of v isintherange [0, |opl/gcd]|-1].

Panic Reasons

¢ If the Implementation detects any error.

9 The magnitude function is defined in section 8.7.5.

10 The notation |x| means the absolute value of X.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

218/242 TEE Internal Core API Specification — Public Release v1.1.1

8.10.3 TEE_BiglIntisProbablePrime

int32_t TEE_BigIntIsProbablePrime (
[in] TEE_BigInt *op,
uint32_t confidencelLevel);

Description

The TEE_BigIntIsProbablePrime function performs a probabilistic primality test on op. The parameter
confidencelevel is used to specify the probability of a non-conclusive answer. If the function cannot
guarantee that op is prime or composite, it MUST iterate the test until the probability that op is composite is
less than 2~ (-confidencelevel). Values smaller than 80 for confidencelLevel will not be recognized
and will default to 80. The maximum honored value of confidencelLevel is implementation-specific, but
MUST be at least 80.

The algorithm for performing the primality test is implementation-specific, but its correctness and efficiency
MUST be equal to or better than the Miller-Rabin test.
Parameters

e op: Candidate number that is tested for primality

e confidencelLevel: The desired confidence level for a non-conclusive test. This parameter (usually)
maps to the number of iterations and thus to the running time of the test. Values smaller than 80 will
be treated as 80.

Specification Number: 10 Function Number: 0x1B02

Return Value
e O: If op isacomposite number
e 1: If op is guaranteed to be prime
e -1: If the test is non-conclusive but the probability that op is composite is less than
2~(-confidencelLevel)
Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 219/242

8.11 Fast Modular Multiplication Operations

This part of the API allows the implementer of the TEE Internal Core API to give the TA developer access to
faster modular multiplication routines, possibly hardware accelerated. These functions MAY be implemented
using Montgomery or Barrett or any other suitable technique for fast modular multiplication. If no such support
is possible the functions in this section MAY be implemented using regular multiplication and modular
reduction. The data type TEE_BigIntFMM is used to represent the integers during repeated multiplications
such as when calculating a modular exponentiation. The internal representation of the TEE_BigIntFMM is
implementation-specific.

8.11.1 TEE_BigIntConvertToFMM

void TEE_BigIntConvertToFMM(

[out] TEE_BigIntFMM *dest,
[in] TEE_BiglInt *src,
[in] TEE_BiglInt *n,

[in] TEE_BigIntFMMContext *context);

Description

The TEE_BigIntConvertToFMM function converts src into a representation suitable for doing fast modular
multiplication. If the operation is successful, the result will be written in implementation-specific format into the
buffer dest, which MUST have been allocated by the TA and initialized using TEE_BigIntInitFMM.

Parameters
e dest: Pointer to an initialized TEE_BigIntFMM memory area
e src: Pointertothe TEE_BigInt to convert
¢ n: Pointer to the modulus

e context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext
Specification Number: 10 Function Number: 0x1C03

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

220/242 TEE Internal Core API Specification — Public Release v1.1.1

8.11.2 TEE_BigIntConvertFromFMM

void TEE_BigIntConvertFromFMM (

[out] TEE_BigInt *dest,
[in] TEE_BigIntFMM *src,
[in] TEE_BigInt *n,

[in] TEE_BigIntFMMContext *context);

Description
The TEE_BigIntConvertFromFMM function converts src in the fast modular multiplication representation
back to a TEE_BigInt representation.
Parameters
e dest: Pointer to an initialized TEE_BigInt memory area to hold the converted result
e src: Pointertoa TEE_BigIntFMM holding the value in the fast modular multiplication representation
e n: Pointer to the modulus

e context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext
Specification Number: 10 Function Number: 0x1C02

Panic Reasons

¢ If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 221/242

8.11.3 TEE_BigIntComputeFMM

void TEE_BigIntComputeFMM(

[out] TEE_BigIntFMM *dest,
[in] TEE_BigIntFMM *opl,
[in] TEE_BigIntFMM *op2,
[in] TEE_BigInt *n,

[in] TEE_BigIntFMMContext *context);

Description

The TEE_BigIntComputeFMM function calculates dest = opl * op2 in the fast modular multiplication
representation. The pointers dest, opl, and op2 MUST each pointto a TEE_BigIntFMM which has
been previously initialized with the same modulus and context as used in this function call; otherwise the
result is undefined. All or some of dest, opl, and op2 MAY point to the same memory region.

Parameters

dest: Pointerto TEE_BigIntFMM to hold the result opl * op2 in the fast modular multiplication
representation

opl: Pointer to the first operand
op2: Pointer to the second operand
n: Pointer to the modulus

context: Pointer to a context previously initialized using TEE_BigIntInitFMMContext

Specification Number: 10 Function Number: 0x1C01

Panic Reasons

If the Implementation detects any error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

222/242 TEE Internal Core API Specification — Public Release v1.1.1

Annex A Panicked Function Identification

If this specification is used in conjunction with the TEE TA Debug Specification ([Debug]), then the specification
number is 10 and the values listed in Table A-1 MUST be associated with the function declared.

Table A-1: Function ldentification Values

Function Function
Category Function Number in Number
hexadecimal | in decima
TA Interface TA CloseSessionEntryPoint ox101 257
TA_CreateEntryPoint 0x102 258
TA_DestroyEntryPoint 0x103 259
TA_InvokeCommandEntryPoint ox104 260
TA_OpenSessionEntryPoint 0x105 261
Property Access TEE_AllocatePropertyEnumerator 0x201 513
TEE_FreePropertyEnumerator 0x202 514
TEE_GetNextProperty 0x203 515
TEE_GetPropertyAsBinaryBlock 0x204 516
TEE_GetPropertyAsBool 0x205 517
TEE_GetPropertyAsIdentity 0x206 518
TEE_GetPropertyAsString 0x207 519
TEE_GetPropertyAsU32 0x208 520
TEE_GetPropertyAsUUID 0x209 521
TEE_GetPropertyName Ox20A 522
TEE_ResetPropertyEnumerator 0x208B 523
TEE_StartPropertyEnumerator 0x20C 524
Panic Function TEE_Panic 0x301 769
Internal Client API TEE_CloseTASession 0x401 1025
TEE_InvokeTACommand 0x402 1026
TEE_OpenTASession 0x403 1027
Cancellation TEE_GetCancellationFlag ox501 1281
TEE_MaskCancellation 0x502 1282
TEE_UnmaskCancellation 0x503 1283

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

223/242

Function Function
Category Function Number in Number
hexadecimal | in decima
Memory Management | TEE_CheckMemoryAccessRights 0x601 1537
TEE_Free 0x602 1538
TEE_GetInstanceData 0x603 1539
TEE_Malloc 0x604 1540
TEE_MemCompare 0x605 1541
TEE_MemFill 0x606 1542
TEE_MemMove 0x607 1543
TEE_Realloc 0x608 1544
TEE_SetInstanceData 0x609 1545
Generic Object TEE_CloseObject 0x701 1793
TEE_GetObjectBufferAttribute 0x702 1794
TEE_GetObjectInfo (deprecated) 0x703 1795
TEE_GetObjectValueAttribute ox704 1796
TEE_RestrictObjectUsage (deprecated) 0x705 1797
TEE_GetObjectInfol 0Xx706 1798
TEE_RestrictObjectUsagel ox707 1799
Transient Object TEE_AllocateTransientObject 0x801 2049
TEE_CopyObjectAttributes (deprecated) 0x802 2050
TEE_FreeTransientObject 0x803 2051
TEE_GenerateKey 0x804 2052
TEE_InitRefAttribute 0x805 2053
TEE_InitValueAttribute 0x806 2054
TEE_PopulateTransientObject 0x807 2055
TEE_ResetTransientObject 0x808 2056
TEE_CopyObjectAttributesl 0x809 2057
Persistent Object TEE_CloseAndDeletePersistentObject 0x901 2305
(deprecated)
TEE_CreatePersistentObject 0x902 2306
TEE_OpenPersistentObject 0x903 2307
TEE_RenamePersistentObject 0x904 2308
TEE_CloseAndDeletePersistentObjectl 0x905 2309

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

224/242 TEE Internal Core API Specification — Public Release v1.1.1

Function Function
Category Function Number in Number
hexadecimal | in decima
Persistent Object TEE_AllocatePersistentObjectEnumerator | 0xA01 2561
Enumeration TEE_FreePersistentObjectEnumerator 0xA02 2562
TEE_GetNextPersistentObject 0xA03 2563
TEE_ResetPersistentObjectEnumerator oxAe4 2564
TEE_StartPersistentObjectEnumerator 0xA05 2565
Data Stream Access TEE_ReadObjectData 0xBo1l 2817
TEE_SeekObjectData 0xB02 2818
TEE_TruncateObjectData 0xBo3 2819
TEE_WriteObjectData oxBo4 2820
Generic Operation TEE_AllocateOperation oxco1l 3073
TEE_CopyOperation oxCo2 3074
TEE_FreeOperation oxCo3 3075
TEE_GetOperationInfo oxCo4 3076
TEE_ResetOperation oxCo5 3077
TEE_SetOperationKey oxCo6 3078
TEE_SetOperationKey2 oxCo7 3079
TEE_GetOperationInfoMultiple oxCo8 3080
Message Digest TEE_DigestDoFinal oxDo1 3329
TEE_DigestUpdate oxDo2 3330
Symmetric Cipher TEE_CipherDoFinal OxE0Q1 3585
TEE_CipherInit OxEQ2 3586
TEE_CipherUpdate OxEQ3 3587
MAC TEE_MACCompareFinal oxFo1l 3841
TEE_MACComputeFinal OxF02 3842
TEE_MACInit OxFoe3 3843
TEE_MACUpdate OxFo4 3844
Authenticated TEE_AEDecryptFinal 0x1001 4097
Encryption TEE_AEEncryptFinal 0x1002 4098
TEE_AEInit 0x1003 4099
TEE_AEUpdate 0x1004 4100
TEE_AEUpdateAAD 0x1005 4101

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

225/242

Function Function
Category Function Number in Number
hexadecimal | in decimal
Asymmetric TEE_AsymmetricDecrypt oxl101 4353
TEE_AsymmetricEncrypt 0x1102 4354
TEE_AsymmetricSignDigest 0x1103 4355
TEE_AsymmetricVerifyDigest ox11e4 4356
Key Derivation TEE_DeriveKey ox1201 4609
Random Data TEE_GenerateRandom ox1301 4865
Generation
Time TEE_GetREETime 0x1401 5121
TEE_GetSystemTime 0x1402 5122
TEE_GetTAPersistentTime 0x1403 5123
TEE_SetTAPersistentTime ox1404 5124
TEE_Wait 0x1405 5125
Memory Allocation TEE_BigIntFMMContextSizeInU32 ox1501 5377
and Size of Objects | rgg BjgoTntFMMSizeInU32 0x1502 5378
Initialization TEE_BigIntInit 0x1601 5633
TEE_BigIntInitFMM 0x1602 5634
TEE_BigIntInitFMMContext 0x1603 5635
Converter TEE_BigIntConvertFromOctetString ox1701 5889
TEE_BigIntConvertFromS32 0x1702 5890
TEE_BigIntConvertToOctetString 0x1703 5891
TEE_BigIntConvertToS32 0x1704 5892
Logical Operation TEE_BigIntCmp 0x1801 6145
TEE_BigIntCmpS32 0x1802 6146
TEE_BigIntGetBit 0x1803 6147
TEE_BigIntGetBitCount 0x1804 6148
TEE_BigIntShiftRight 0x1805 6149
Basic Arithmetic TEE_BigIntAdd 0x1901 6401
TEE_BigIntDiv 0x1902 6402
TEE_BigIntMul 0x1903 6403
TEE_BigIntNeg 0x1904 6404
TEE_BigIntSquare 0x1905 6405
TEE_BigIntSub 0x1906 6406

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

226/242 TEE Internal Core API Specification — Public Release v1.1.1

Function Function
Category Function Number in Number
hexadecimal | in decimal
Modular Arithmetic TEE_BigIntAddMod 0x1A01 6657
TEE_BigIntInvMod Ox1A02 6658
TEE_BigIntMod 0x1A03 6659
TEE_BigIntMulMod Ox1A04 6660
TEE_BigIntSquareMod 0x1A05 6661
TEE_BigIntSubMod 0x1A06 6662
Other Arithmetic TEE_BigIntComputeExtendedGcd ox1Bo1 6913
TEE_BigIntIsProbablePrime 0x1B02 6914
TEE_BigIntRelativePrime 0x1B0O3 6915
Fast Modular TEE_BigIntComputeFMM ox1co1l 7169
Multiplication TEE_BigIntConvertFromFMM 0x1C02 7170
TEE_BigIntConvertToFMM 0x1Co3 7171

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 2271242

Annex B Deprecated Functions, Identifiers, and
Values

B.1 Deprecated Functions

The functions in this section are deprecated and have been replaced by new functions as noted in their
descriptions. These functions will be removed at some future major revision of this specification._Note that
while new TA code SHOULD use the new functions, the old functions SHALL be present in an implementation
until removed from the specification.

B.1.1 TEE_GetObjectinfo — Deprecated

void TEE_GetObjectInfo(
TEE_ObjectHandle object,
[out] TEE_ObjectInfo* objectInfo);

Description

Use of this function is deprecated — new code SHOULD use the TEE_GetObjectInfol function instead.

The TEE_GetObjectInfo function returns the characteristics of an object. It fills in the following fields in the
structure TEE_ObjectInfo:

e objectType: The parameter objectType passed when the object was created. If the object is
corrupt then this field is set to TEE_TYPE_CORRUPTED_OBJECT and the rest of the fields are setto @.

e keySize: Setto © for an uninitialized object
o maxKeySize
o For a persistent object, setto keySize

o For atransient object, set to the parameter maxKeySize passed to
TEE_AllocateTransientObject

e objectUsage: A bit vector of the TEE_USAGE_XXX bits defined in Table 5-4. Initially set to
OXFFFFFFFF.

e dataSize
o For a persistent object, set to the current size of the data associated with the object
o For atransient object, always setto ©

e dataPosition

o For a persistent object, set to the current position in the data for this handle. Data positions for
different handles on the same object may differ.

o For a transient object, setto ©
e handleFlags: A bit vector containing one or more of the following flags:
o TEE_HANDLE_FLAG_PERSISTENT: Set for a persistent object
o TEE_HANDLE_FLAG_INITIALIZED
e For a persistent object, always set
e For atransient object, initially cleared, then set when the object becomes initialized

o TEE_DATA_FLAG_XXX: Only for persistent objects, the flags used to open or create the object

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

228/242 TEE Internal Core API Specification — Public Release v1.1.1

Parameters
e object: Handle of the object

e objectInfo: Pointerto a structure filled with the object information
Specification Number: 10 Function Number: 0x703

Panic Reasons
e object is not a valid opened object handle.

¢ If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 229/242

B.1.2 TEE_RestrictObjectUsage — Deprecated

void TEE_RestrictObjectUsage (
TEE_ObjectHandle object,
uint32_t objectUsage);

Description

Use of this function is deprecated — new code SHOULD use the TEE_RestrictObjectUsagel function
instead.

The TEE_RestrictObjectUsage function restricts the object usage flags of an object handle to contain at
most the flags passed in the objectUsage parameter.

For each bit in the parameter objectUsage:
o If the hit is set to 1, the corresponding usage flag in the object is left unchanged.
o |Ifthe bitis setto 0, the corresponding usage flag in the object is cleared.

For example, if the usage flags of the object are setto TEE_USAGE_ENCRYPT | TEE_USAGE_DECRYPT and
if objectUsage is setto TEE_USAGE_ENCRYPT | TEE_USAGE_EXTRACTABLE, then the only remaining
usage flag in the object after calling the function TEE_RestrictObjectUsage is TEE_USAGE_ENCRYPT.

Note that an object usage flag can only be cleared. Once it is cleared, it cannot be set to 1 again on a persistent
object.

A transient object’s object usage flags are reset using the TEE_ResetTransientObject function. For a
transient object, resetting the object also clears all the key material stored in the container.

For a persistent object, setting the object usage MUST be an atomic operation.

If the supplied object is persistent and corruption is detected then this function does nothing and returns. The
object handle is not closed since the next use of the handle will return the corruption and delete it.

Parameters
e object: Handle on an object

e objectUsage: New object usage, an OR combination of one or more of the TEE_USAGE_XXX
constants defined in Table 5-4

Specification Number: 10 Function Number: 0x705

Panic Reasons
e object is not a valid opened object handle.

¢ |If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

230/242 TEE Internal Core API Specification — Public Release v1.1.1

B.1.3 TEE_CopyObjectAttributes — Deprecated

void TEE_CopyObjectAttributes (
TEE_ObjectHandle destObject,
TEE_ObjectHandle srcObject);

Description

Use of this function is deprecated — new code SHOULD use the TEE_CopyObjectAttributesl function
instead.

The TEE_CopyObjectAttributes function populates an uninitialized object handle with the attributes of
another object handle; that is, it populates the attributes of destObject with the attributes of srcObject.
It is most useful in the following situations:

e To extract the public key attributes from a key-pair object

e To copy the attributes from a persistent object into a transient object
destObject MUST refer to an uninitialized object handle and MUST therefore be a transient object.
The source and destination objects MUST have compatible types and sizes in the following sense:

e The type of destObject MUST be a subtype of srcObject, i.e. one of the conditions listed in
Table 5-11 MUST be true.

e The size of srcObject MUST be less than or equal to the maximum size of destObject.

The effect of this function on destObject is identical to the function TEE_PopulateTransientObject
except that the attributes are taken from srcObject instead of from parameters.

The object usage of destObject is set to the bitwise AND of the current object usage of destObject and
the object usage of srcObject.

If the source object is corrupt then this function copies no attributes and leaves the target object uninitialized.

Parameters
e destObject: Handle on an uninitialized transient object

e srcObject: Handle on an initialized object
Specification Number: 10 Function Number: 0x802

Panic Reasons
e srcObject is not initialized.
e destObject isinitialized.
e The type and size of srcObject and destObject are not compatible.

o If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 231/242

B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated

void TEE_CloseAndDeletePersistentObject(TEE_ObjectHandle object);

Description

Use of this function is deprecated — new code SHOULD use the TEE_CloseAndDeletePersistentObjectl
function instead.

The TEE_CloseAndDeletePersistentObject function marks an object for deletion and closes the object
handle.

The object handle MUST have been opened with the write-meta access right, which means access to the
object is exclusive.

Deleting an object is atomic; once this function returns, the object is definitely deleted and no more open
handles for the object exist. This SHALL be the case even if the object or the storage containing it have become
corrupted.

If the storage containing the object is unavailable then this routine SHALL panic.

If object is TEE_HANDLE_NULL, the function does nothing.

Parameters

e object: The object handle
Specification Number: 10 Function Number: 0x901

Panic Reasons
e object is nota valid handle on a persistent object opened with the write-meta access right.
¢ If the storage containing the object is now inaccessible

o If the Implementation detects any other error.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

B.2 Deprecated Identifiers

A typo introduced an incorrect object identifier. The deprecated identifier will be removed at some future major revision of this specification. Note that while

new TA code SHOULD use the new identifier, the old identifier SHALL be recognized in an implementation until removed from the specification.

Table B-1: Deprecated Object Identifier

Identifier in v1.1

TEE TYPE CORRUPTED*

Replacement Identifier
TEE TYPE CORRUPTED OBIJECT

* As the value of the deprecated identifier was not previously formally defined, that value SHOULD be the same as the value of the Replacement

Identifier. This value can be found in Table 6-13.

Table B-2 lists deprecated algorithm identifiers and their replacements. The deprecated identifiers will be removed at some future major revision of this

specification. Note that while new TA code SHOULD use the new identifiers, the old identifiers SHALL be recognized in an implementation until removed

from the specification.

Table B-2: Deprecated Algorithm Identifiers

Identifier in v1.1

\ Replacement Identifier
DSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE ALG DSA 2048 SHA224* TEE ALG DSA SHA224
TEE _ALG DSA 2048 SHA256* TEE _ALG _DSA SHA256
TEE _ALG DSA 3072 SHA256* TEE _ALG _DSA SHA256
In some cases an incomplete identifier was used for DSA algorithms.

ALG DSA SHA1* TEE_ALG_DSA SHA1
ALG DSA SHA224%* TEE_ALG DSA SHA224
ALG DSA SHA256* TEE ALG DSA SHA256
In some cases the ECDSA algorithm was not sufficiently defined and did not indicate digest size.

TEE ALG ECDSA* TEE ALG ECDSA SHA512

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.

Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

233/242

Identifier in v1.1

Replacement Identifier

ECDSA algorithm identifiers should be tied to the size of the digest, not the key. The key size information is provided with the key material.

TEE ALG ECDSA P192%* TEE ALG ECDSA SHA1l

TEE ALG ECDSA P224* TEE ALG ECDSA SHA224
TEE ALG ECDSA P256* TEE ALG ECDSA SHA256
TEE ALG ECDSA P384* TEE ALG ECDSA SHA384
TEE ALG ECDSA P521* TEE ALG ECDSA SHA512

A number of algorithm identifier declarations mistakenly included “ NIST” and/or the curve type. The curve type can be found in the key material.—

TEE ALG ECDH NIST P192 DERTIVE SHARED SECRET* TEE ALG ECDH P192 DERIVE SHARED SECRET
TEE ALG ECDH NIST P224 DERTVE SHARED SECRET* TEE ALG ECDH P224 DERIVE SHARED SECRET
TEE ALG ECDH NIST P256 DERIVE SHARED SECRET* TEE ALG ECDH P256-DERIVE SHARED SECRET
TEE ALG ECDH NIST P384 DERTIVE SHARED SECRET* TEE ALG ECDH P284 DERIVE SHARED SECRET
TEE ALG ECDH NIST P521 DERTIVE SHARED SECRET* TEE ALG ECDH P521 DERIVE SHARED SECRET

TEE ALG ECDH P192 TEE ALG ECDH P192 DERIVE SHARED SECRET
TEE ALG ECDH P224 TEE ALG ECDH P-DERIVE SHARED SECRET
TEE ALG ECDH P256 TEE ALG ECDH P2-DERIVE SHARED SECRET
TEE ALG ECDH P384 TEE ALG ECDH P-DERIVE SHARED SECRET
TEE ALG ECDH P521 TEE ALG ECDH P-DERIVE SHARED SECRET
TEE ALG ECDH P192 DERIVE SHARED SECRET* TEE ALG ECDH DERIVE SHARED SECRET

TEE ALG ECDH P224 DERIVE SHARED SECRET* TEE ALG ECDH DERIVE SHARED SECRET

TEE ALG ECDH P256 DERIVE SHARED SECRET* TEE ALG ECDH DERIVE SHARED SECRET

TEE ALG ECDH P384 DERIVE SHARED SECRET* TEE ALG ECDH DERIVE SHARED SECRET

TEE ALG ECDH P521 DERIVE SHARED SECRET* TEE ALG ECDH DERTIVE SHARED SECRET

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 234/242

*

As the values of the deprecated algorithm identifiers were not previously formally defined, those values SHOULD be the same as the values of the
Replacement Identifier. In each case, this value can be found in Table 6-11.

As the values of the deprecated algorithm identifiers were not previously formally defined. those values SHOULD be the same as the values of the
deprecated TEE ALG_ECDH Pxxx equivalent. In each case, the particular value can be found in Table 6-11.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

TEE Internal Core API Specification — Public Release v1.1.1

235/242

Annex C

Normative References for Algorithms

This annex provides normative references for the algorithms discussed earlier in this document.

Table C-1: Normative References for Algorithms

Name

References

URL

TEE_ALG_AES_ECB_NOPAD
TEE_ALG_AES_CBC_NOPAD
TEE_ALG_AES_CTR

FIPS 197 (AES)

NIST SP800-38A (ECB,
CBC, CTR)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

TEE_ALG_AES_CTS

FIPS 197 (AES)

NIST SP800-38A
Addendum (CTS = CBC-
CS3)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-
nist_sp800-38A.pdfhitp/fcsrc-nist.gov/publications/nistpubs/800-
38a/addendum-to-nistsp800-8Apdf

TEE_ALG_AES_XTS

IEEE Std 1619-2007

http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=449343
1

TEE_ALG_AES_CCM

FIPS 197 (AES)
RFC 3610 (CCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3610

TEE_ALG_AES_GCM

FIPS 197 (AES)
NIST 800-38D (GCM)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D. pdf

TEE_ALG_DES_ECB_NOPAD
TEE_ALG_DES_CBC_NOPAD
TEE_ALG_DES3_ECB_NOPAD
TEE_ALG_DES3_CBC_NOPAD

FIPS 46 (DES, 3DES)
FIPS 81 (ECB, CBC)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

http://www.itl.nist.gov/fipspubs/fip81.htm

TEE_ALG_AES_CBC_MAC_NOPAD
TEE_ALG_AES_CBC_MAC_PKCS5
TEE_ALG_DES_CBC_MAC_NOPAD
TEE_ALG_DES_CBC_MAC_PKCS5
TEE_ALG_DES3_CBC_MAC_NOPAD
TEE_ALG_DES3_CBC_MAC_PKCS5

FIPS 46 (DES, 3DES)
FIPS 197 (AES)
RFC 1423 (PKCS5 Pad)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc1423

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.

Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-nist_sp800-38A.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4493431
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3610
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc1423

TEE Internal Core API Specification — Public Release v1.1.1

236/242

Name

References

URL

TEE_ALG_AES_CMAC

FIPS 197 (AES)
NIST SP800-38B (CMAC)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

TEE_ALG_RSASSA_PKCS1_V1_5_MD5
TEE_ALG_RSASSA_PKCS1_V1_5_SHA1
TEE_ALG_RSASSA_PKCS1_V1_5_ SHA224
TEE_ALG_RSASSA_PKCS1_V1_5_ SHA256
TEE_ALG_RSASSA_PKCS1_V1_5_ SHA384
TEE_ALG_RSASSA_PKCS1_V1_5 SHA512
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384
TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

PKCS #1 (RSA, PKCS1
v1.5, PSS)

RFC 1321 (MD5)

FIPS 180-4 (SHA-1,
SHA-2)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_DSA_SHA1
TEE_ALG_DSA_2048-SHA224
TEE_ALG_DSA_20848SHA256

FIPS 180-4 (SHA-1)
FIPS 186-2 (DSA)*

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

TEE_ALG_RSAES_PKCS1_V1_5
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384
TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

PKCS #1 (RSA,
PKCS1 v1.5, OAEP)

FIPS 180-4 (SHA-1,
SHA-2)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_RSA_NOPAD

PKCS #1 (RSA primitive)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

TEE_ALG_DH_DERIVE_SHARED_SECRET

PKCS #3

ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps

TEE_ALG_MD5

RFC 1321

http://tools.ietf.org/html/rfc1321

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://tools.ietf.org/html/rfc1321
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-3.ps
http://tools.ietf.org/html/rfc1321

TEE Internal Core API Specification — Public Release v1.1.1

2371242

Name

References

URL

TEE_ALG_SHA1
TEE_ALG_SHA224
TEE_ALG_SHA256
TEE_ALG_SHA384
TEE_ALG_SHA512

FIPS 180-4

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

TEE_ALG_HMAC_MD5
TEE_ALG_HMAC_SHA1

RFC 2202

http://tools.ietf.org/html/rfc2202

TEE_ALG_HMAC_SHA224
TEE_ALG_HMAC_SHA256
TEE_ALG_HMAC_SHA384
TEE_ALG_HMAC_SHA512

RFC 4231

http://tools.ietf.org/html/rfc4231

TEE_ALG_ECDSA_SHA1-P192

TEE_ALG_ECDSA_SHA224-P224
TEE_ALG_ECDSA_SHA256-—P256
TEE_ALG_ECDSA_SHA384-P384
TEE_ALG_ECDSA_SHA512-P521

FIPS 186-4*
ANSI X9.62

http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

TEE_ALG_ECDH_—P192 DERIVE SHARED

SECRET

NIST SP800-56A,
Cofactor Static Unified
Model

FIPS 186-4* (curve
definitions)

http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
56Ar2.pdf
http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.

Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc2202
http://tools.ietf.org/html/rfc4231
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

TEE Internal Core API Specification — Public Release v1.1.1

238/242

Name

References

URL

*

This specification follows a superset of both FIPS 186-2 and

FIPS 186-4. Available key sizes are defined in this specification and so
no key size exclusions in FIPS 186-2 or FIPS 186-4 apply to this
specification. Otherwise, when applied to this specification, if

FIPS 186-4 conflicts with FIPS 186-2, then FIPS 186-4 is taken as
definitive.

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform.
Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 239/242

Functions
TA_ CloseSessionEntryPoint, 46 TEE_BigIntSizelnU32 (macro), 192
TA_CreateEntryPoint, 44 TEE_BigIntSquare, 206
TA_DestroyEntryPoint, 45 TEE_BigIntSquareMod, 212
TA_InvokeCommandEntryPoint, 47 TEE_BigIntSub, 204
TA _OpenSessionEntryPoint, 45 TEE_BigIntSubMod, 210
TEE_AEDecryptFinal, 164 TEE_CheckMemoryAccessRights, 79
TEE_AEEncryptFinal, 163 TEE_CipherDoFinal, 155
TEE_AElInit, 160 TEE_Cipherlnit, 152
TEE_AEUpdate, 162 TEE_CipherUpdate, 154
TEE_AEUpdateAAD, 161 TEE_CloseAndDeletePersistentObject
TEE_AllocateOperation, 137 (deprecated), 229
TEE_AllocatePersistentObjectEnumerator, 125 TEE_CloseAndDeletePersistentObjectl, 123
TEE_AllocatePropertyEnumerator, 60 TEE_CloseObject, 102
TEE_AllocateTransientObject, 103 TEE_CloseTASession, 73
TEE_AsymmetricDecrypt, 165 TEE_CopyObjectAttributes (deprecated), 228
TEE_AsymmetricEncrypt, 165 TEE_CopyObjectAttributes1, 111
TEE_AsymmetricSignDigest, 167 TEE_CopyOperation, 149
TEE_AsymmetricVerifyDigest, 169 TEE_CreatePersistentObject, 118
TEE_BigIntAdd, 203 TEE_DeriveKey, 171
TEE_BigIntAddMod, 209 TEE_DigestDoFinal, 151
TEE_BigIntCmp, 200 TEE_DigestUpdate, 150
TEE_BigIntCmpS32, 200 TEE_Free, 86
TEE_BigIntComputeExtendedGced, 215 TEE_FreeOperation, 141
TEE_BigIntComputeFMM, 219 TEE_FreePersistentObjectEnumerator, 125
TEE_BiglIntConvertFromFMM, 218 TEE_FreePropertyEnumerator, 61
TEE_BigIntConvertFromOctetString, 197 TEE_FreeTransientObject, 105
TEE_BigIntConvertFromS32, 198 TEE_GenerateKey, 113
TEE_BigIntConvertToFMM, 217 TEE_GenerateRandom, 173
TEE_BigIntConvertToOctetString, 198 TEE_GetCancellationFlag, 77
TEE_BigIntConvertToS32, 199 TEE_GetinstanceData, 83
TEE_BigIntDiv, 207 TEE_GetNextPersistentObject, 128
TEE_BigIntFMMContextSizelnU32, 193 TEE_GetNextProperty, 63
TEE_BigIntFMMSizelnU32, 193 TEE_GetObjectBufferAttribute, 99
TEE_BigIntGetBit, 202 TEE_GetObjectinfo (deprecated), 225
TEE_BigIntGetBitCount, 202 TEE_GetObjectinfol, 96
TEE_BigIntlnit, 194 TEE_GetObjectValueAttribute, 101
TEE_BigIntInitFMM, 196 TEE_GetOperationinfo, 142
TEE_BigIntInitFMMContext, 195 TEE_GetOperationinfoMultiple, 143
TEE_BigintinvMod, 213 TEE_GetPropertyAsBinaryBlock, 57
TEE_BiglntlsProbablePrime, 216 TEE_GetPropertyAsBool, 55
TEE_BigIntMod, 208 TEE_GetPropertyAslidentity, 59
TEE_BigIntMul, 206 TEE_GetPropertyAsString, 54
TEE_BigIntMulMod, 211 TEE_GetPropertyAsU32, 56
TEE_BigIntNeg, 205 TEE_GetPropertyAsUUID, 58
TEE_BigIntRelativePrime, 214 TEE_GetPropertyName, 62
TEE_BigIntShiftRight, 201 TEE_GetREETime, 188

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

240/242

TEE Internal Core API Specification — Public Release v1.1.1

TEE_GetSystemTime, 184
TEE_GetTAPersistentTime, 186
TEE_InitRefAttribute, 110
TEE_InitValueAttribute, 110
TEE_InvokeTACommand, 74
TEE_MACCompareFinal, 159
TEE_MACComputeFinal, 158
TEE_MACInit, 156
TEE_MACUpdate, 157
TEE_Malloc, 84
TEE_MaskCancellation, 78
TEE_MemCompare, 87
TEE_MemfFill, 88
TEE_MemMove, 86
TEE_OpenPersistentObject, 116
TEE_OpenTASession, 72
TEE_Panic, 71
TEE_PopulateTransientObject, 106
TEE_ReadObjectData, 129

TEE_Realloc, 85
TEE_RenamePersistentObject, 124
TEE_ResetOperation, 145
TEE_ResetPersistentObjectEnumerator, 126
TEE_ResetPropertyEnumerator, 62
TEE_ResetTransientObject, 105
TEE_RestrictObjectUsage (deprecated), 227
TEE_RestrictObjectUsagel, 98
TEE_SeekObjectData, 132
TEE_SetinstanceData, 82
TEE_SetOperationKey, 146
TEE_SetOperationKey2, 148
TEE_SetTAPersistentTime, 188
TEE_StartPersistentObjectEnumerator, 127
TEE_StartPropertyEnumerator, 61
TEE_TruncateObjectData, 131
TEE_UnmaskCancellation, 78

TEE_Wait, 185

TEE_WriteObjectData, 130

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

TEE Internal Core API Specification — Public Release v1.1.1 241/242

Functions by Category

Asymmetric
TEE_AsymmetricDecrypt, 165
TEE_AsymmetricEncrypt, 165
TEE_AsymmetricSignDigest, 167
TEE_AsymmetricVerifyDigest, 169

Authenticated Encryption
TEE_AEDecryptFinal, 164
TEE_AEEncryptFinal, 163
TEE_AElInit, 160
TEE_AEUpdate, 162
TEE_AEUpdateAAD, 161

Basic Arithmetic
TEE_BigIntAdd, 203
TEE_BigIntDiv, 207
TEE_BigIntMul, 206
TEE_BigIntNeg, 205
TEE_BigIntSquare, 206
TEE_BigIntSub, 204

Cancellation

TEE_GetCancellationFlag, 77
TEE_MaskCancellation, 78
TEE_UnmaskCancellation, 78

Converter

TEE_BigIntConvertFromOctetString, 197
TEE_BigIntConvertFromS32, 198
TEE_BigIntConvertToOctetString, 198
TEE_BigIntConvertToS32, 199

Data Stream Access

TEE_ReadObjectData, 129
TEE_SeekObjectData, 132
TEE_TruncateObjectData, 131
TEE_WriteObjectData, 130

Deprecated

TEE_CloseAndDeletePersistentObject, 229
TEE_CopyObijectAttributes, 228
TEE_GetObjectinfo, 225
TEE_RestrictObjectUsage, 227

Fast Modular Multiplication

TEE_BigIntComputeFMM, 219
TEE_BigIntConvertFromFMM, 218
TEE_BigIntConvertToFMM, 217

Generic Object

TEE_CloseObject, 102
TEE_GetObjectBufferAttribute, 99
TEE_GetObjectinfo (deprecated), 225
TEE_GetObjectinfol, 96
TEE_GetObjectValueAttribute, 101

TEE_RestrictObjectUsage (deprecated), 227

TEE_RestrictObjectUsagel, 98
Generic Operation

TEE_AllocateOperation, 137
TEE_CopyOperation, 149
TEE_FreeOperation, 141
TEE_GetOperationinfo, 142
TEE_GetOperationinfoMultiple, 143
TEE_ResetOperation, 145
TEE_SetOperationKey, 146
TEE_SetOperationKey2, 148
Initialization

TEE_BigIntlnit, 194

TEE_BigIntIinitFMM, 196

TEE_BigIntInitFMMContext, 195
Internal Client API

TEE_CloseTASession, 73
TEE_InvokeTACommand, 74
TEE_OpenTASession, 72

Key Derivation
TEE_DeriveKey, 171
Logical Operation

TEE_BigIntCmp, 200

TEE_BIigIntCmpS32, 200

TEE_BigIntGetBit, 202

TEE_BigIntGetBitCount, 202

TEE_BigIntShiftRight, 201
MAC

TEE_MACCompareFinal, 159
TEE_MACComputeFinal, 158
TEE_MACInit, 156
TEE_MACUpdate, 157

Memory Allocation and Size of Objects

TEE_BigIntFMMContextSizelnU32, 193

TEE_BigIntFMMSizelnU32, 193

TEE_BigIntSizelnU32 (macro), 192
Memory Management

TEE_CheckMemoryAccessRights, 79

TEE_Free, 86

TEE_GetinstanceData, 83

TEE_Malloc, 84

TEE_MemCompare, 87

TEE_MemFill, 88

TEE_MemMove, 86

TEE_Realloc, 85

TEE_SetinstanceData, 82

Message Digest
TEE_DigestDoFinal, 151
TEE_DigestUpdate, 150

Modular Arithmetic
TEE_BigIntAddMod, 209

TEE_BigintinvMod, 213
TEE_BigIntMod, 208

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

242/242 TEE Internal Core API Specification — Public Release v1.1.1

TEE_BigIntMulMod, 211

TEE_BigIntSquareMod, 212

TEE_BigIntSubMod, 210
Other Arithmetic

TEE_BigIntComputeExtendedGced, 215
TEE_BigintlsProbablePrime, 216
TEE_BigIntRelativePrime, 214

Panic Function
TEE_Panic, 71
Persistent Object

TEE_CloseAndDeletePersistentObject
(deprecated), 229
TEE_CloseAndDeletePersistentObjectl, 123
TEE_CreatePersistentObject, 118
TEE_OpenPersistentObject, 116
TEE_RenamePersistentObject, 124
Persistent Object Enumeration

TEE_AllocatePersistentObjectEnumerator, 125
TEE_FreePersistentObjectEnumerator, 125
TEE_GetNextPersistentObject, 128
TEE_ResetPersistentObjectEnumerator, 126
TEE_StartPersistentObjectEnumerator, 127

Property Access

TEE_AllocatePropertyEnumerator, 60
TEE_FreePropertyEnumerator, 61
TEE_GetNextProperty, 63
TEE_GetPropertyAsBinaryBlock, 57
TEE_GetPropertyAsBool, 55
TEE_GetPropertyAsldentity, 59
TEE_GetPropertyAsString, 54
TEE_GetPropertyAsU32, 56
TEE_GetPropertyAsUUID, 58

TEE_GetPropertyName, 62
TEE_ResetPropertyEnumerator, 62
TEE_StartPropertyEnumerator, 61

Random Data Generation
TEE_GenerateRandom, 173

Symmetric Cipher
TEE_CipherDoFinal, 155
TEE_Cipherlnit, 152
TEE_CipherUpdate, 154

TA Interface

TA_CloseSessionEntryPoint, 46
TA_CreateEntryPoint, 44
TA_DestroyEntryPoint, 45
TA_InvokeCommandEntryPoint, 47
TA_OpenSessionEntryPoint, 45
Time
TEE_GetREETime, 188
TEE_GetSystemTime, 184
TEE_GetTAPersistentTime, 186
TEE_SetTAPersistentTime, 188
TEE_Wait, 185
Transient Object

TEE_AllocateTransientObject, 103
TEE_CopyObjectAttributes (deprecated), 228
TEE_CopyObijectAttributesl, 111
TEE_FreeTransientObject, 105
TEE_GenerateKey, 113
TEE_InitRefAttribute, 110

TEE_ InitValueAttribute, 110
TEE_PopulateTransientObject, 106
TEE_ResetTransientObject, 105

Copyright © 2011-2016 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
Information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly

prohibited.

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Overview of the TEE Internal Core API Specification
	2.1 Trusted Applications
	2.1.1 TA Interface
	2.1.2 Instances, Sessions, Tasks, and Commands
	2.1.3 Sequential Execution of Entry Points
	2.1.4 Cancellations
	2.1.5 Unexpected Client Termination
	2.1.6 Instance Types
	2.1.7 Configuration, Development, and Management

	2.2 TEE Internal Core APIs
	2.2.1 Trusted Core Framework API
	2.2.2 Trusted Storage API for Data and Keys
	2.2.3 Cryptographic Operations API
	2.2.4 Time API
	2.2.5 TEE Arithmetical API

	2.3 Error Handling
	2.3.1 Normal Errors
	2.3.2 Programmer Errors
	2.3.3 Panics

	2.4 Opaque Handles
	2.5 Properties

	3 Common Definitions
	3.1 Header File
	3.2 Data Types
	3.2.1 Basic Types
	3.2.2 Bit Numbering
	3.2.3 TEE_Result, TEEC_Result
	3.2.4 TEE_UUID, TEEC_UUID

	3.3 Constants
	3.3.1 Return Code Ranges and Format
	3.3.2 Return Codes

	3.4 Parameter Annotations
	3.4.1 [in], [out], and [inout]
	3.4.2 [outopt]
	3.4.3 [inbuf]
	3.4.4 [outbuf]
	3.4.5 [outbufopt]
	3.4.6 [instring] and [instringopt]
	3.4.7 [outstring] and [outstringopt]
	3.4.8 [ctx]

	4 Trusted Core Framework API
	4.1 Data Types
	4.1.1 TEE_Identity
	4.1.2 TEE_Param
	4.1.3 TEE_TASessionHandle
	4.1.4 TEE_PropSetHandle

	4.2 Constants
	4.2.1 Parameter Types
	4.2.2 Login Types
	4.2.3 Origin Codes
	4.2.4 Property Set Pseudo-Handles
	4.2.5 Memory Access Rights

	4.3 TA Interface
	4.3.1 TA_CreateEntryPoint
	4.3.2 TA_DestroyEntryPoint
	4.3.3 TA_OpenSessionEntryPoint
	4.3.4 TA_CloseSessionEntryPoint
	4.3.5 TA_InvokeCommandEntryPoint
	4.3.6 Operation Parameters in the TA Interface
	4.3.6.1 Content of paramTypes Argument
	4.3.6.2 Initial Content of params Argument
	4.3.6.3 Behavior of the Framework when the Trusted Application Returns
	4.3.6.4 Memory Reference and Memory Synchronization

	4.4 Property Access Functions
	4.4.1 TEE_GetPropertyAsString
	4.4.2 TEE_GetPropertyAsBool
	4.4.3 TEE_GetPropertyAsU32
	4.4.4 TEE_GetPropertyAsBinaryBlock
	4.4.5 TEE_GetPropertyAsUUID
	4.4.6 TEE_GetPropertyAsIdentity
	4.4.7 TEE_AllocatePropertyEnumerator
	4.4.8 TEE_FreePropertyEnumerator
	4.4.9 TEE_StartPropertyEnumerator
	4.4.10 TEE_ResetPropertyEnumerator
	4.4.11 TEE_GetPropertyName
	4.4.12 TEE_GetNextProperty

	4.5 Trusted Application Configuration Properties
	4.6 Client Properties
	4.7 Implementation Properties
	4.8 Panics
	4.8.1 TEE_Panic

	4.9 Internal Client API
	4.9.1 TEE_OpenTASession
	4.9.2 TEE_CloseTASession
	4.9.3 TEE_InvokeTACommand
	4.9.4 Operation Parameters in the Internal Client API

	4.10 Cancellation Functions
	4.10.1 TEE_GetCancellationFlag
	4.10.2 TEE_UnmaskCancellation
	4.10.3 TEE_MaskCancellation

	4.11 Memory Management Functions
	4.11.1 TEE_CheckMemoryAccessRights
	4.11.2 TEE_SetInstanceData
	4.11.3 TEE_GetInstanceData
	4.11.4 TEE_Malloc
	4.11.5 TEE_Realloc
	4.11.6 TEE_Free
	4.11.7 TEE_MemMove
	4.11.8 TEE_MemCompare
	4.11.9 TEE_MemFill

	5 Trusted Storage API for Data and Keys
	5.1 Summary of Features and Design
	5.2 Trusted Storage and Rollback Detection
	5.3 Data Types
	5.3.1 TEE_Attribute
	5.3.2 TEE_ObjectInfo
	5.3.3 TEE_Whence
	5.3.4 TEE_ObjectHandle
	5.3.5 TEE_ObjectEnumHandle

	5.4 Constants
	5.4.1 Constants Used in Trusted Storage API for Data and Keys
	5.4.2 Constants Used in Cryptographic Operations API

	5.5 Generic Object Functions
	5.5.1 TEE_GetObjectInfo1
	5.5.2 TEE_RestrictObjectUsage1
	5.5.3 TEE_GetObjectBufferAttribute
	5.5.4 TEE_GetObjectValueAttribute
	5.5.5 TEE_CloseObject

	5.6 Transient Object Functions
	5.6.1 TEE_AllocateTransientObject
	5.6.2 TEE_FreeTransientObject
	5.6.3 TEE_ResetTransientObject
	5.6.4 TEE_PopulateTransientObject
	5.6.5 TEE_InitRefAttribute, TEE_InitValueAttribute
	5.6.6 TEE_CopyObjectAttributes1
	5.6.7 TEE_GenerateKey

	5.7 Persistent Object Functions
	5.7.1 TEE_OpenPersistentObject
	5.7.2 TEE_CreatePersistentObject
	5.7.3 Persistent Object Sharing Rules
	5.7.4 TEE_CloseAndDeletePersistentObject1
	5.7.5 TEE_RenamePersistentObject

	5.8 Persistent Object Enumeration Functions
	5.8.1 TEE_AllocatePersistentObjectEnumerator
	5.8.2 TEE_FreePersistentObjectEnumerator
	5.8.3 TEE_ResetPersistentObjectEnumerator
	5.8.4 TEE_StartPersistentObjectEnumerator
	5.8.5 TEE_GetNextPersistentObject

	5.9 Data Stream Access Functions
	5.9.1 TEE_ReadObjectData
	5.9.2 TEE_WriteObjectData
	5.9.3 TEE_TruncateObjectData
	5.9.4 TEE_SeekObjectData

	6 Cryptographic Operations API
	6.1 Data Types
	6.1.1 TEE_OperationMode
	6.1.2 TEE_OperationInfo
	6.1.3 TEE_OperationInfoMultiple
	6.1.4 TEE_OperationHandle

	6.2 Generic Operation Functions
	6.2.1 TEE_AllocateOperation
	6.2.2 TEE_FreeOperation
	6.2.3 TEE_GetOperationInfo
	6.2.4 TEE_GetOperationInfoMultiple
	6.2.5 TEE_ResetOperation
	6.2.6 TEE_SetOperationKey
	6.2.7 TEE_SetOperationKey2
	6.2.8 TEE_CopyOperation

	6.3 Message Digest Functions
	6.3.1 TEE_DigestUpdate
	6.3.2 TEE_DigestDoFinal

	6.4 Symmetric Cipher Functions
	6.4.1 TEE_CipherInit
	6.4.2 TEE_CipherUpdate
	6.4.3 TEE_CipherDoFinal

	6.5 MAC Functions
	6.5.1 TEE_MACInit
	6.5.2 TEE_MACUpdate
	6.5.3 TEE_MACComputeFinal
	6.5.4 TEE_MACCompareFinal

	6.6 Authenticated Encryption Functions
	6.6.1 TEE_AEInit
	6.6.2 TEE_AEUpdateAAD
	6.6.3 TEE_AEUpdate
	6.6.4 TEE_AEEncryptFinal
	6.6.5 TEE_AEDecryptFinal

	6.7 Asymmetric Functions
	6.7.1 TEE_AsymmetricEncrypt, TEE_AsymmetricDecrypt
	6.7.2 TEE_AsymmetricSignDigest
	6.7.3 TEE_AsymmetricVerifyDigest

	6.8 Key Derivation Functions
	6.8.1 TEE_DeriveKey

	6.9 Random Data Generation Function
	6.9.1 TEE_GenerateRandom

	6.10 Cryptographic Algorithms Specification
	6.10.1 List of Algorithm Identifiers
	6.10.2 Object Types
	6.10.3 Elliptic Curve Types

	6.11 Object or Operation Attributes

	7 Time API
	7.1 Data Types
	7.1.1 TEE_Time

	7.2 Time Functions
	7.2.1 TEE_GetSystemTime
	7.2.2 TEE_Wait
	7.2.3 TEE_GetTAPersistentTime
	7.2.4 TEE_SetTAPersistentTime
	7.2.5 TEE_GetREETime

	8 TEE Arithmetical API
	8.1 Introduction
	8.2 Error Handling and Parameter Checking
	8.3 Data Types
	8.3.1 TEE_BigInt
	8.3.2 TEE_BigIntFMMContext
	8.3.3 TEE_BigIntFMM

	8.4 Memory Allocation and Size of Objects
	8.4.1 TEE_BigIntSizeInU32
	8.4.2 TEE_BigIntFMMContextSizeInU32
	8.4.3 TEE_BigIntFMMSizeInU32

	8.5 Initialization Functions
	8.5.1 TEE_BigIntInit
	8.5.2 TEE_BigIntInitFMMContext
	8.5.3 TEE_BigIntInitFMM

	8.6 Converter Functions
	8.6.1 TEE_BigIntConvertFromOctetString
	8.6.2 TEE_BigIntConvertToOctetString
	8.6.3 TEE_BigIntConvertFromS32
	8.6.4 TEE_BigIntConvertToS32

	8.7 Logical Operations
	8.7.1 TEE_BigIntCmp
	8.7.2 TEE_BigIntCmpS32
	8.7.3 TEE_BigIntShiftRight
	8.7.4 TEE_BigIntGetBit
	8.7.5 TEE_BigIntGetBitCount

	8.8 Basic Arithmetic Operations
	8.8.1 TEE_BigIntAdd
	8.8.2 TEE_BigIntSub
	8.8.3 TEE_BigIntNeg
	8.8.4 TEE_BigIntMul
	8.8.5 TEE_BigIntSquare
	8.8.6 TEE_BigIntDiv

	8.9 Modular Arithmetic Operations
	8.9.1 TEE_BigIntMod
	8.9.2 TEE_BigIntAddMod
	8.9.3 TEE_BigIntSubMod
	8.9.4 TEE_BigIntMulMod
	8.9.5 TEE_BigIntSquareMod
	8.9.6 TEE_BigIntInvMod

	8.10 Other Arithmetic Operations
	8.10.1 TEE_BigIntRelativePrime
	8.10.2 TEE_BigIntComputeExtendedGcd
	8.10.3 TEE_BigIntIsProbablePrime

	8.11 Fast Modular Multiplication Operations
	8.11.1 TEE_BigIntConvertToFMM
	8.11.2 TEE_BigIntConvertFromFMM
	8.11.3 TEE_BigIntComputeFMM

	Annex A Panicked Function Identification
	Annex B Deprecated Functions, Identifiers, and Values
	B.1 Deprecated Functions
	B.1.1 TEE_GetObjectInfo – Deprecated
	B.1.2 TEE_RestrictObjectUsage – Deprecated
	B.1.3 TEE_CopyObjectAttributes – Deprecated
	B.1.4 TEE_CloseAndDeletePersistentObject - Deprecated

	B.2 Deprecated Identifiers

	Annex C Normative References for Algorithms

		2016-08-18T16:24:19-0700
	Document Management

