

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual
property rights (collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of
the specification or other work product set forth in this document, and to provide supporting documentation. The technology
provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Device Technology
TEE Sockets API Specification
Version 1.0.1

Public Release
January 2017
Document Reference: GPD_SPE_100

 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

TEE Sockets API Specification – Public Release v1.0.1 3 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 5
1.1 Audience ... 5
1.2 IPR Disclaimer... 5
1.3 References .. 5
1.4 Terminology and Definitions .. 6
1.5 Abbreviations and Notations ... 7
1.6 Revision History .. 7

2 Background .. 8

3 Requirements for TEE Sockets API... 9
3.1 Assumptions and Scope ... 9

3.1.1 Streams and Boundary of Trust ... 10
3.2 Implementation of Specific Protocols .. 11
3.3 Layered Connections .. 11

4 General Information ... 12
4.1 Error Handling ... 12
4.2 Specification Version Number Property .. 13
4.3 Protocol Identifier .. 13
4.4 Panicked Function Identification ... 14

5 TEE_iSocket (The Generic Interface Socket) API ... 15
5.1 Header File Name ... 15
5.2 Functionality .. 15

5.2.1 TEE_iSocketHandle and Setup.. 17
5.2.2 Fatal Errors ... 17
5.2.3 Timely Manner.. 17
5.2.4 Open ... 18
5.2.5 Close .. 20
5.2.6 Send ... 22
5.2.7 Recv ... 25
5.2.8 Error ... 28
5.2.9 ioctl ... 29

5.3 Global commandCode Definitions for ioctl .. 31
5.4 Example of a TEE_iSocket Protocol Implementation ... 32

5.4.1 The Header File ... 32
5.4.2 The C Implementation File ... 33

Note: Annexes to this specification are provided as separate documents. See section 3.2.

4 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables
Table 1-1: Normative References .. 5

Table 1-2: Informative References .. 6

Table 1-3: Terminology and Definitions ... 6

Table 1-4: Abbreviations and Notations .. 7

Table 1-5: Revision History ... 7

Table 4-1: Error Codes Specific to TEE Sockets API .. 12

Table 4-2: Specification Version Number Property – 32-bit Integer Structure .. 13

Table 4-3: Protocol Identifier Ranges .. 13

Table 4-4: Function Identification Values .. 14

Table 5-1: Structure of the commandCode Parameter .. 29

Table 5-2: Examples of commandCode Interpretations ... 29

Figures
Figure 3-1: TEE iSocket API Exposes Network Client Capabilities to TA ... 9

Figure 3-2: Separation of Security Protocols and Pure Transport Protocols .. 11

TEE Sockets API Specification – Public Release v1.0.1 5 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction
This document, the GlobalPlatform TEE Sockets API Specification, specifies:

• The generic C interface used by a Trusted Application (TA) to establish and utilize network
communications to a remote server using a socket style approach

• Generic error behavior of the functions

This general specification does not specify any particular protocol nor the data structures used to utilize a
particular protocol. Each specific protocol, such as TCP and UDP, is described in detail in a separate Annex
to this general specification.

1.1 Audience

This document is suitable for software developers implementing Trusted Applications running inside the
Trusted Execution Environment (TEE) which need to make socket networking calls.

This document is also intended for implementers of the TEE itself, its Trusted OS, Trusted Core Framework,
the TEE APIs, and the communications infrastructure required to access Trusted Applications.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform,
please visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

1.3 References
Table 1-1: Normative References

Standard / Specification Description Ref

GPD_SPE_007 GlobalPlatform Device Technology
TEE Client API Specification

[TEE Client]

GPD_SPE_009 GlobalPlatform Device Technology
TEE System Architecture

[TEE Sys Arch]

GPD_SPE_010 GlobalPlatform Device Technology
TEE Internal Core API Specification

[TEE Core]

GPD_SPE_025 GlobalPlatform Device Technology
TEE TA Debug Specification

[TEE Debug]

GPD_SPE_101 TEE Sockets API Specification Annex A: TCP/IP
Specification of TEE Sockets API Specification

[Sockets TCP/IP]

GPD_SPE_102 TEE Sockets API Specification Annex B: UDP/IP
Specification of TEE Sockets API Specification

[Sockets UDP/IP]

https://www.globalplatform.org/specificationsipdisclaimers.asp

6 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
GPD_SPE_103 TEE Sockets API Specification Annex C: TLS

Specification of TEE Sockets API Specification
[Sockets TLS]

GPD_SPE_104 TEE Sockets API Specification Annex D:
Example of Using TEE Sockets API Specification

[Socket Example]

IEEE Std 1003.1-2008 The Open Group Base Specifications Issue 7 (referred to
as “the POSIX standard”)

[POSIX]

RFC 5246 The Transport Layer Security (TLS) Protocol [TLS]

RFC 793 / RFC 791 Transmission Control Protocol and Internet Protocol
(referred to as TCP/IP)

[RFC 793]

RFC 768 / RFC 791 User Datagram Protocol and Internet Protocol (referred
to as UDP/IP)

[RFC 768]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels.

[RFC 2119]

Table 1-2: Informative References

Standard / Specification Description Ref

ISO/IEC 7498-1 Information technology – Open Systems Interconnection –
Basic Reference Model: The Basic Model (referred to as
“the OSI model”)

[ISO 7498]

IPsec Base architecture for IPsec compliant systems. [RFC 2401]

IKE Describes version 2 of the Internet Key Exchange (IKE)
protocol. IKE is a component of IPsec used for performing
mutual authentication and establishing and maintaining
Security Associations (SAs).

[RFC 5996]

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, SHOULD NOT, and
MAY in this document (refer to [RFC 2119]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD and SHOULD NOT indicate recommendations.

• MAY indicates an option.

Selected technical terms used in this document are included in Table 1-3. Additional technical terms are
defined in TEE Internal Core API Specification [TEE Core].

Table 1-3: Terminology and Definitions

Term Definition

iSocket Interface Socket

TEE Sockets API Specification – Public Release v1.0.1 7 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition
iSocket instance Instance of Interface Socket

1.5 Abbreviations and Notations

Selected abbreviations and notations used in this document are included in Table 1-4. Additional abbreviations
and notations are defined in [TEE Core].

Table 1-4: Abbreviations and Notations

Abbreviation / Notation Meaning

DRM Digital Rights Management

IKE Internet Key Exchange

IP Internet Protocol

IPsec Internet Protocol Security

PSK Pre-Shared Key

TCP Transmission Control Protocol

TLS Transport Layer Security

1.6 Revision History
Table 1-5: Revision History

Date Version Description

June 2015 1.0 Public Release

January 2017 1.0.1 Public Release showing all non-trivial changes since v1.0.
Changes include:
• Added one error code
• Expanded explanation of error handling
• Redefined TEE_iSocketHandle structure
• Defined the open function as cancellable
• Clarified description of close, send, and recv functions

8 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Background
TAs are commonly required to communicate with remote servers. Such communication is today typically
performed by using the TEE Client API [TEE Client] to route Trusted Application (TA) data to or from a Client
Application (CA), and the CA then manages a sockets interface in the Rich Execution Environment (REE) to
the remote server.

Creating numerous TAs, all performing the same underlying tasks increases code size, risks, and effort and
so it is seen as desirable to provide this common functionality inside the TEE.

Communication is normally depicted as layers of protocols (e.g. the OSI layer model [ISO 7498]), each
performing specific tasks of the communication. For example, the Internet Protocol (IP) is a connectionless
protocol, which enables network nodes to send messages across network boundaries to other nodes using
the IP address. This protocol does not guarantee in-order delivery nor does it provide retransmission facilities
in case of corrupted messages. To provide such features, the Transmission Control Protocol (TCP) can be
utilized. On top of TCP we may choose to add encryption of the messages, and hence a new layer must be
used, for example the Transport Layer Security (TLS) protocol. All these different layers basically provide the
same functions to the user: open a connection, send and receive data, and close the connection.

Of course, there are many means of communication other than the Internet type of protocols. Modern devices
often include short-range communication such as Bluetooth and near field communication but essentially, all
the user needs is a set of functions performing the basic communication tasks.

From this point of view, GlobalPlatform has created a specification that is small and easily layered as the needs
of the user change and new communication media are added to the device.

This version of the TEE Sockets API targets Client functionality. The API specified enables a TA developer to
include basic network client functionality in a Trusted Application.

TEE Sockets API Specification – Public Release v1.0.1 9 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 Requirements for TEE Sockets API

3.1 Assumptions and Scope

The intent of this specification is to provide a common homogeneous interface for the TA to communicate with
other network nodes. The POSIX Sockets interface [POSIX], as provided by many operating systems, has
limitations when it comes to layering different protocols. This specification modularizes the interface to provide
a more flexible solution while sustaining the simplicity of the POSIX interface.

The modular approach also provides a simpler path to upgradable security and additional protocols. Each
protocol is handled by an instance of an “Interface Socket” (iSocket), which can be plugged in on top of another
iSocket to add protocol layers.

In the current version, this API defines mechanisms that allow the TA to act as a network client (i.e. connecting
to external servers via the network).

Figure 3-1: TEE iSocket API Exposes Network Client Capabilities to TA

Trusted Application

Trusted OS Components

TEE iSocket API TEE Internal Core API

Network
client
capabilitiesProprietary

network
connection
interface

10 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.1.1 Streams and Boundary of Trust

The fundamental operation that a network connection performs is to transfer a bi-directional stream of data
bytes (or packets) between entities that are located anywhere in a network.

The code that performs this transport functionality is distributed across the network and hence is not under the
control of the TEE and cannot be trusted. This means that the data received from the network cannot be trusted
and software executing in the TEE must treat it as such.

There is no reason why the network hardware and software (i.e. that which implements low level transport
mechanisms such as TCP/IP and similar) should execute within the TEE1: to do so would not improve the
trusted status of the data (since the data would still originate outside the TEE) and would add significant
complexity to the system.

Network software that changes the level of trust of the data stream SHALL execute within the TEE. Other
network software MAY execute within the TEE. For example, the implementation of the SSL/TLS algorithm
ensures that the data received is that sent by the originator and hence improves its level of trust. Thus, TLS
(or any other security protocol) SHALL be implemented within the Trusted OS component, while pure transport
protocols, which do not change the level of trust of the data stream, MAY be implemented in the REE. See for
example Figure 3-2.

If we remove the mechanics of network transport from the TEE all that remains is a mechanism for transport
of streams of bytes into and out of TAs. Such a mechanism can be used for purposes other than networking
(e.g. DRM data handling) and as such is defined in a non-networking specific manner.

The only part of the design that is network specific is stream setup, where network addresses and protocols
must be specified.

Two types of stream are considered:

• A byte stream where the data is described as a stream of bytes (e.g. TCP/IP [RFC 793])

• A message stream where the data is described as a stream of self-contained messages defined by
the network transfer mechanism (e.g. UDP/IP [RFC 768]), hereafter referred to as datagrams

Both of these stream types are unprotected and additional layers are needed to provide confidentiality and/or
integrity. An example of a protocol that provides this is TLS [TLS].

1 There is an exception to this, which is when IPsec is used to protect the transferred data. Because IPsec is embedded

within the IP framework, it is necessary for the whole IP stack to be embedded within the TEE. It is also necessary to
embed the Internet Key Exchange (IKE) protocol implementation. This is a large volume of code, so support for IPsec
is not specified currently.

TEE Sockets API Specification – Public Release v1.0.1 11 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 3-2: Separation of Security Protocols and Pure Transport Protocols

Trusted Application
Using TLS over TCP/IP

Trusted OS Components

TEE iSocket API

TLS Implementation

TCP/IP proxy

Client Application

Rich OS

TCP/IP
Implementation

Proprietary
ChannelNetwork

Interface

REE TEE

TEE Client API

3.2 Implementation of Specific Protocols

This specification provides the general API for accessing and handling client sockets of various kinds. For
each specific protocol that GlobalPlatform decides to support, an Annex document to this specification will be
created, in which all the protocol specific details are specified. In one sense, the current specification can be
viewed as a virtual class definition, of which the specific protocol specifications are instances. Each specific
protocol (or sometimes a group of closely related protocols) will have its own header file in addition to the
generic one defining the general API.

This specification does not provide support for configuring carrier layer connections and hence, an REE
application (or a proprietary TEE interface) may have to instigate a session before the TEE TA can start a
socket layer protocol session.

This API does not include establishment of a transport layer. This is covered in an iSocket instance defined in
the Annexes to this document.

3.3 Layered Connections

This specification is intended to provide an easy way for protocols to be layered. This means that, for example,
a security protocol such as TLS can be layered on top of a transport protocol such as TCP. To decouple the
different layers, the developer is free to choose the transport layer as appropriate. In a layered configuration,
each protocol is opened and set up individually, starting at the lowest layer. Each protocol is also closed
individually, starting at the highest layer. It is only during send and receive that the higher layers utilize the
lower layers in order to send and receive data packages. Stacks of socket layers are opened in low to high
order, and closed in high to low order. The highest layer is the layer that the TA will mainly interact with, so in
the case of TCP/TLS the high layer is TLS. Once the layering is established it is expected the TA developer
will interact with the highest layer, unless there is an error.

12 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 General Information

4.1 Error Handling

This API follows the TEE Internal Core API philosophy that any programmer avoidable error results in a TA
level Panic. See section 2.2 of [TEE Core].

In addition to the error codes defined in [TEE Core], the following error codes are used throughout this API.

Table 4-1: Error Codes Specific to TEE Sockets API

Name Value
TEE_ISOCKET_ERROR_PROTOCOL 0xF1007001

TEE_ISOCKET_ERROR_REMOTE_CLOSED 0xF1007002

TEE_ISOCKET_ERROR_TIMEOUT 0xF1007003

TEE_ISOCKET_ERROR_OUT_OF_RESOURCES 0xF1007004

TEE_ISOCKET_ERROR_LARGE_BUFFER 0xF1007005

TEE_ISOCKET_WARNING_PROTOCOL 0xF1007006

TEE_ISOCKET_ERROR_HOSTNAME 0xF1007007

Since protocols can be layered, and each protocol may have specific error codes that are only valid for that
protocol, a generic TEE_ISOCKET_ERROR_PROTOCOL and TEE_ISOCKET_WARNING_PROTOCOL error code
is defined. The error function defined in section 5.2.8 can be used to retrieve the specific error or warning
from the last operation. All protocol specific errors SHALL be defined in the instance header file and SHALL
follow the general guidelines in [TEE Core].

As described in section 3.3, Layered Connections, the TA developer is expected to interact with the highest
layer, unless there is an error. If a TEE_ISOCKET_ERROR_PROTOCOL is returned from any function, lower
layer investigation may be required. Calling the error function on a context that has returned a
TEE_ISOCKET_ERROR_PROTOCOL may return TEE_SUCCESS if the error code was propagated and not
caused in that context. Only the context causing a TEE_ISOCKET_ERROR_PROTOCOL shall store the protocol
specific error. If the TA encounters a protocol specific error at the top context, it may use the error function
to investigate each open context in order to determine which context caused the error. See
[Socket Example][Socket Example] for an error handling example.

TEE Sockets API Specification – Public Release v1.0.1 13 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Specification Version Number Property

This specification defines a TEE property containing the version number of the specification the
implementation conforms to. The property can be retrieved using the normal Property Access Functions
defined in [TEE Core]. The property SHALL be named “gpd.tee.sockets.version” and SHALL be of
integer type with the interpretation given below.

The specification version number property consists of four positions; major, minor, maintenance, and RFU.
These four bytes are combined into a 32-bit unsigned integer as follows:

• The major version number of the specification is placed in the most significant byte.

• The minor version number of the specification is placed in the second most significant byte.

• The maintenance version number of the specification is placed in the second least significant byte. If
the supported specification is not a maintenance version, this byte SHALL be set to zero.

• The least significant byte is reserved for future use. Currently this byte SHALL be set to zero.

Table 4-2: Specification Version Number Property – 32-bit Integer Structure

Bits 24-31 (MSB) Bits 16-23 Bits 8-15 Bits 0-7 (LSB)

Major version number
of the specification.

Minor version number
of the specification.

Maintenance version number
of the specification. If not a
maintenance version, SHALL
be set to zero.

Reserved for future
use.
Currently SHALL be
set to zero.

The specification version number is also defined in the iSocket interface (described in section 5.2), stored in
the 32-bit integer TEE_iSocketVersion, interpreted as described in Table 4-2. For a specific protocol,
TEE_iSocketVersion does not need to have the same value as the property gpd.tee.sockets.version.
A lower version number is acceptable and is interpreted as indicating that the specific protocol uses an earlier
version of the iSocket interface.

4.3 Protocol Identifier

Each specific protocol will have a unique protocol identifier. This identifier is a byte and the value is specified
by GlobalPlatform. This identifier is used to identify the protocol to which the TEE_iSocket structure belongs.

Table 4-3 specifies the protocol identifier ranges.

Table 4-3: Protocol Identifier Ranges

Protocol Identifier Range Meaning

0x00 (0) Reserved protocol identifier.

0x01 – 0x63 (1 – 99) Reserved for proprietary protocols.

0x64 – 0xFF (100 – 255) Protocol identifiers assigned by GlobalPlatform. The protocol description
associated with each value can be found in Annexes to this document.

14 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4 Panicked Function Identification

The TEE TA Debug Specification [TEE Debug] mandates that each API function be assigned a specification
number and a function number to be reported through the PRM and Debug functionality. Since TEE iSocket
API is divided into this general API description and Annexes containing the protocol specifics, the functions
defined in this specification are assigned only a function number. The specification number can be derived
from the Annex document reference number.

Example

The open function of this specification is assigned the function number 0x101. If the TLS protocol is
defined in the Annex with document reference number “GPD_SPE_103”, then the Panic identifier of the
TLS open function will be: Specification Number: 103, Function Number: 0x101

If this specification is used in conjunction with the TEE TA Debug Specification ([TEE Debug]), then the
specification number is based on the Annex that specifies the protocol in use (as described above) and the
values listed in Table 4-4 SHALL be associated with the function declared.

Table 4-4: Function Identification Values

Category Function Function Number
in hexadecimal

Function Number
in decimal

Interface Socket open 0x101 257
 close 0x102 258
 send 0x103 259
 recv 0x104 260
 error 0x105 261
 ioctl 0x106 262

TEE Sockets API Specification – Public Release v1.0.1 15 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 TEE_iSocket (The Generic Interface Socket) API
The TEE_iSocket API is designed to supply a generic table of functions regardless of networking layer or
client functionality and hence, the core of the API is a structure, containing function pointers.

5.1 Header File Name

The header file of the TEE_iSocket interface SHALL be named “tee_isocket.h”.

5.2 Functionality

The basic TEE_iSocket interface consists of six functions; open, close, send, recv, error, and ioctl.
Implementations may add other fields provided that the structure begins with the field names, order, and types
as specified here. Implementers of proprietary extensions should note that future versions of this specification
may require additional fields as part of the standard initial segment.

The declaration can be seen below.

16 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

typedef const struct TEE_iSocket_s
{
 uint32_t TEE_iSocketVersion;
 uint8_t protocolID;

 TEE_Result (* open)(
 TEE_iSocketHandle *ctx,
 void *setup,
 uint32_t *protocolError);

 TEE_Result (* close)(
 TEE_iSocketHandle ctx);

 TEE_Result (* send)(
 TEE_iSocketHandle ctx,
 const void *buf,
 uint32_t *length,
 uint32_t timeout);

 TEE_Result (* recv)(
 TEE_iSocketHandle ctx,
 void *buf,
 uint32_t *length,
 uint32_t timeout);

 uint32_t (* error) (
 TEE_iSocketHandle ctx);

 TEE_Result (* ioctl) (
 TEE_iSocketHandle ctx,
 uint32_t commandCode,
 const void *buf,
 uint32_t *length);

} TEE_iSocket;

The structure contains constant function pointers that will implement the specifics of one particular layer of the
communication stack. For a specific supported protocol layer, the Implementation SHOULD provide the
following in the instance specific header file:

• A declaration of the corresponding setup structure as described in section 5.2.1.

• A declaration of a pointer to the specific instance of the TEE_iSocket.

TEE Sockets API Specification – Public Release v1.0.1 17 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.1 TEE_iSocketHandle and Setup

The context that needs to be maintained varies for each connection and protocol, so a generic opaque type
TEE_iSocketHandle is used. This is defined as a pointer to an implementation defined structure:

typedef struct void TEE_iSocketHandle * TEE_iSocketHandle;

In a specific protocol implementation, the handle must keep all data that is needed to maintain the connection
from the time it is opened until it is closed.

The setup parameter given to open is also protocol specific and must contain all the data to open the
connection. For example, a TCP/IP socket must know the address and port of the server to connect to. The
setup parameter must be of a pointer to structure type, known as the setup structure. If no setup data is
necessary for a particular protocol, the value of the setup parameter SHALL be NULL.

If a protocol is intended to be “on top” of a transporting protocol, for example such as TLS over TCP, the setup
structure SHALL contain a pointer to the underlying TEE_iSocket and the instance handle.

5.2.2 Fatal Errors

Errors and the protocol specific errors returned by the functions of the TEE sockets interface can be “fatal” or
“non-fatal”.

• If the open function returns anything other than TEE_SUCCESS, then the TEE_iSocketHandle
equals TEE_HANDLE_NULL. The only valid operation on TEE_HANDLE_NULL is close.

• When a socket returns a fatal error in response to any other function, the only valid operations on that
TEE_iSocketHandle instance are close and error.

• The return values table of each function description specifies whether each error is fatal.

• As TEE Sockets API structures are layered, it is recommended that if the lower layer returns a fatal
error, then so should the current layer. This way the TA can be alerted of the error and can manage it
accordingly. See section 3.3, Layered Connections, for a description of the layered socket structure.

5.2.3 Timely Manner

A number of actions in this API must be performed in a timely manner. It is Implementation defined as to what
this may be but the Implementation should take into account any defined timeouts of the protocol in question.

18 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.4 Open

TEE_Result (* open) (
 [out] TEE_iSocketHandle *ctx,
 [in] void *setup,
 [out] uint32_t *protocolError
);

Description

The open function tries to open the connection according to the prerequisites passed in the setup parameter
(see section 5.2.1). If the connection is successful, it returns a handle to the socket in the out parameter *ctx.
If the connection is not successful, the out parameter *ctx has the value TEE_HANDLE_NULL. After this
function has been successfully called, any changes to the setup parameter SHALL NOT alter the behavior
of the protocol in subsequent calls to the instance TEE_iSocket functions. In other words, the functionality
and behavior of the protocol instance after a successful open function call SHALL only depend on the handle.

The open function call is blocking and should execute in a timely manner (see section 5.2.3, Timely Manner),
which may vary depending on the communication channel and protocol. If the connection cannot be opened
in a time frame appropriate to the protocol, the function returns TEE_ISOCKET_ERROR_TIMEOUT. If a
configurable timeout is appropriate it MAY be specified in the setup structure.

This function is cancellable; i.e. if the current task’s cancelled flag is set and the TA has unmasked the effects
of cancellation, then this function returns earlier than the requested action with the return code
TEE_ERROR_CANCEL. If an annex defines a non-blocking sockets layer, then this function need not be
cancellable.

Protocol specific errors are returned by returning the TEE_ISOCKET_ERROR_PROTOCOL or
TEE_ISOCKET_WARNING_PROTOCOL and updating the out parameter *protocolError with the protocol-
specific error code. If the return code is not TEE_ISOCKET_ERROR_PROTOCOL or
TEE_ISOCKET_WARNING_PROTOCOL the contents of *protocolError will not be changed.

In a layered configuration, each layer must be allocated and initialized starting from the lowest layer, i.e. the
open function must be called for each layer, using the returned handle in the setup of the next layer.

Specification Number: See section 4.4 Function Number: 0x101

Parameters

Name Purpose
TEE_iSocketHandle *ctx Handle to an implementation specific context.

void *setup Protocol specific setup parameter.

uint32_t *protocolError In case of a protocol specific error or warning, this parameter holds
the error value. See specific protocol Annex specifications for the
possible values.

TEE Sockets API Specification – Public Release v1.0.1 19 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No In case of success.

TEE_ERROR_CANCEL No The TA has unmasked the effects of cancellation
and the Client Application has set the task
cancelled flag.

TEE_ERROR_OUT_OF_MEMORY Yes Failed to allocate memory for the socket handle.

TEE_ERROR_BAD_PARAMETERS Yes Error in the setup parameter. The requested
setup cannot be achieved.

TEE_ISOCKET_ERROR_OUT_OF_RESOURCES Yes Failed to allocate resources for the socket.

TEE_ISOCKET_ERROR_TIMEOUT No The connection cannot be opened in a timely
manner.

TEE_ERROR_COMMUNICATION No There is no route to the requested host or the host
did not accept the connection.

TEE_ISOCKET_ERROR_PROTOCOL Yes Protocol specific error. Occurs under conditions
defined in the relevant Annex. The error value is
returned in the *protocolError parameter.

TEE_ISOCKET_WARNING_PROTOCOL No Occurs under conditions defined in the relevant
Annex. The error value is returned in the
*protocolError parameter.

If a value of TEE_SUCCESS is not returned, then the socket will not have been opened and so the fatal state
of these errors (as defined in section 5.2.2) is irrelevant.

Panic Reasons

The open function SHALL panic if the following occurs:

• Any parameter is NULL.

The open function MAY panic if the following occurs:

• The setup parameter pointer does not point to a valid instance specific setup type.

• If the Implementation detects any error which cannot be represented by any defined or
Implementation defined error code.

20 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.5 Close

TEE_Result (* close) (
 TEE_iSocketHandle ctx,
);

Description

The close function closes the socket, de-allocates the context, and frees any resources held by the handle,
after which the handle is not valid anymore. Calling this function with an already closed context is a
programming error and will cause a Panic. Calling this function with a TEE_HANDLE_NULL parameter will
return TEE_SUCCESS.

The close function call is blocking and should execute in a timely manner. In a layered configuration, the
layers must be closed starting from the highest layer. Higher layers SHALL NOT close underlying layers in this
function.

The handle ctx should be considered to be in a state where the only valid operation on it is close or
error.

If the close function cannot close the context in a timely manner, it SHALL return
TEE_ISOCKET_ERROR_TIMEOUT. The handle ctx should be considered to be in a state where the only valid
operation on it is close or error.

If the close function encounters an error specific to the protocol, the return value SHALL be
TEE_ISOCKET_ERROR_PROTOCOL.

The close function may be called on an already closed handle. If it is, the error state SHALL be retained
and the same return value SHALL be returned each time.

Specification Number: See section 4.4 Function Number: 0x102

Parameters

Name Purpose
TEE_iSocketHandle ctx Initialized implementation specific handle or TEE_HANDLE_NULL.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No In case of success. The ctx handle may be invalid

or already closed.

TEE_ISOCKET_ERROR_TIMEOUT Yes The connection could not be closed in a timely
manner. A timeout may be caused by a remote party
that failed to receive all data or failed to transmit all
data in a timely manner.

TEE_ERROR_COMMUNICATION Yes The route to the host is down or an internal network
interface is down.

TEE Sockets API Specification – Public Release v1.0.1 21 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Fatal Reason
TEE_ISOCKET_ERROR_REMOTE_CLOSED Yes The remote host has closed the connection. Some

instances will never return this error due to
statelessness.
TEE_ISOCKET_ERROR_REMOTE_CLOSED is possible
only if a prior data exchange was reported as
successful but the connection was forcibly closed by
the remote host.

TEE_ISOCKET_ERROR_PROTOCOL Yes Protocol specific error. See the error function for
further information. All protocol specific errors
returned from close are fatal errors.

TEE_ISOCKET_ERROR_HOSTNAME Yes Unable to reach the requested remote host.

Panic Reasons

The close function SHALL panic if either of the following occurs:

• The handle is not initialized.

• The handle is not a valid handle of the specific protocol. TEE_HANDLE_NULL is a valid handle.

• The Implementation detects any error which cannot be represented by any defined or implementation
defined error code.

22 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.6 Send

TEE_Result (* send) (
 TEE_iSocketHandle ctx,
 [in] const void *buf,
 [inout] uint32_t *length,
 uint32_t timeout
);

Description

The send function transmits data to the remote network node. If TEE_iSocket instances are layered, the
send function of the topmost protocol calls the send function of its lower layer after processing the message
according to its protocol.

The parameter buf points to a memory region containing the bytes to be transmitted. The number of bytes
to be sent is passed in *length. Unless *length is zero, on return, *length is updated with the actual
number of bytes transmitted or passed on to the next lower layer in the stack.

The send function is a blocking function with a timeout. It tries to send the buffer (or at least propagate the
data to lower level buffers) for a specific amount of time. After it sends or propagates the data, or after the
specified time elapses (whichever comes first), it unconditionally returns. If no data was sent, it returns the
error code TEE_ISOCKET_ERROR_TIMEOUT. If some data was transmitted, it returns TEE_SUCCESS and the
*length parameter SHALL be updated with the number of successfully sent bytes. Note that a successful
transmission does not guarantee that the remote node has received the data, unless the protocol makes
specific guarantees. An error in transmission may be reported as a fatal error in a subsequent call to send,
recv, ioctl, or close.

For a partially sent message, the send function SHALL NOT buffer the remaining bytes. It is the responsibility
of the user to re-send those bytes.

For protocols that operate on a data stream, the send function SHOULD return as soon as at least part of
the buffer has been sent. For protocols that operate on blocks of data, such as some encrypted protocols, it is
the user’s responsibility to provide large enough chunks of data to the send function in order to minimize
fragmentation. It is protocol specific and implementation specific whether the send function internally buffers
data in order to avoid fragmentation and small chunks.

For datagram-based protocols, the send function SHALL map one call to send to one datagram.
If the buffer to transmit is too large for a single datagram, the send function returns
TEE_ISOCKET_ERROR_LARGE_BUFFER, and sets the *length parameter to the maximum number of bytes
that the protocol datagram can send. Furthermore, the send function SHALL NOT transmit any of the bytes
in the buffer, when the error TEE_ISOCKET_ERROR_LARGE_BUFFER is returned.

For protocols that operate on a data stream, the send function SHOULD return as soon as at least part of the
buffer has been sent. For protocols that operate on blocks of data, such as some encrypted protocols, it is the
user’s responsibility to provide large enough chunks of data to the send function, in order to minimize
fragmentation. It is protocol specific and implementation specific whether the send function internally buffers
data in order to avoid fragmentation and small chunks.

The send function is a cancellable function. If a cancel request is received during execution of the send
function, the implementation SHALL behave as if the timeout has been reached but the return code SHALL
be TEE_ERROR_CANCEL and SHALL update the *length with the number of received bytes. If the
transmission was completed, the return code SHALL be TEE_SUCCESS.

TEE Sockets API Specification – Public Release v1.0.1 23 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Specification Number: See section 4.4 Function Number: 0x103

Parameters

Name Purpose
TEE_iSocketHandle ctx Initialized implementation specific handle.

const void *buf The buffer containing the data to be sent or passed on to the next lower
layer in the stack, unless *length is zero.

uint32_t *length A pointer to the length in bytes of the buffer to be sent. On return, this
parameter is updated with the number of bytes sent.

uint32_t timeout The timeout of the operation in milliseconds. If timeout == 0, the function
makes one attempt to send data and returns immediately. If timeout ==
TEE_TIMEOUT_INFINITE (defined in [TEE Core] TEE_Wait), the function
blocks until all bytes are sent or a fatal error occurs.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No In case of success.

TEE_ERROR_CANCEL No The function was cancelled.

TEE_ISOCKET_ERROR_TIMEOUT No The complete buffer could not be sent during the
specified timeout period.

TEE_ERROR_COMMUNICATION No The route to the host is down or an internal
network interface is down.

TEE_ISOCKET_ERROR_REMOTE_CLOSED Yes The remote host has closed the connection.
Some instances will never return this error due to
statelessness.

TEE_ISOCKET_ERROR_PROTOCOL Yes Protocol specific error. See the error function
for further information. Each protocol specific
error is defined in the corresponding Annex.
Underlying protocols can be tested for errors
recursively by applying the struct_setup (see
the Annexes) underlying ctx to the error
function. The error can be parsed individually
depending on the ProtocolID from the
underlying socket.

24 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Fatal Reason
TEE_ISOCKET_WARNING_PROTOCOL No Protocol specific warning. See the error

function for further information. Each protocol
specific warming is defined in the corresponding
Annex. Underlying protocols can be tested for
warnings recursively by applying the
struct_setup (see the Annexes) underlying
ctx to the error function. The warning can be
parsed individually depending on the
ProtocolID from the underlying socket.

TEE_ISOCKET_ERROR_LARGE_BUFFER No The protocol is datagram-based and the buffer is
too large to be sent in one datagram. No bytes
from the buffer are sent.

TEE_ISOCKET_ERROR_OUT_OF_RESOURCES Yes Failed to allocate resources for the operation.

Panic Reasons

The send function SHALL panic if any of the following occurs:

• The handle is not initialized or is NULL.

• The handle is not a valid handle of the specific protocol.

• The parameter buf == NULL.

• The parameter length == NULL.

• The Implementation detects any error which cannot be represented by any defined or Implementation
defined error code.

TEE Sockets API Specification – Public Release v1.0.1 25 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.7 Recv

TEE_Result (* recv) (
 TEE_iSocketHandle ctx,
 [out] void *buf,
 [inout] uint32_t *length,
 uint32_t timeout
);

Description

The recv function receives data from the remote network node. If TEE_iSocket instances are layered, the
recv function of a given protocol layer calls the recv function of the next lower layer, and then processes
the received message according to its protocol.

The parameter buf points to a memory region that will hold the received bytes. The maximum number of
bytes to receive is passed in *length. On return, *length is updated with the actual number of bytes
received.

The recv function is a blocking function with a timeout. It tries to receive data for the specific amount of time.
After it receives the data, or after the specified time elapses (whichever comes first), it unconditionally returns.
If no data was available during the timeout period, the function returns the code
TEE_ISOCKET_ERROR_TIMEOUT. If some data was received during the timeout period, the *length
parameter is updated and the return code is TEE_SUCCESS. The timeout parameter SHALL be passed on to
the lower layer without increasing its value.

If *length == 0, the timeout parameter has no effect and buf may equal NULL, and the function
immediately returns the number of bytes available for transfer in *length.

For datagram-based protocols, the recv function SHALL map one call to recv to one received datagram.
This means that calling the recv function with *length less than the size of the datagram, will not return
the total number of bytes received, but only the length of the next datagram to be delivered. If the recv
function is called with *length less than the size of the datagram and returns *length == 0, that means
that there are no more datagrams to be delivered.

For datagram-based protocols, the recv function SHALL map one call to recv to one received datagram.
This means that calling the recv function with *length == 0, will not return the total amount of bytes
received, but only the length of the next datagram to be delivered. When calling the recv function with
*length == 0, and it returns *length == 0, it means that there are no more datagrams to be delivered.
Datagram handling in this version of TEE Sockets API is different from the handling of conventional datagram
sockets, as it does not handle truncated packets. The TA implementation has to allocate the full buffer for the
entire packet to map one recv call to one received datagram. In order to detect the desired buffer size for
receiving a datagram, call recv with length == 0 and use the [out] length value for buffer memory
allocation. If the defined buffer is too short for the incoming datagram, the superfluous bytes in the incoming
datagram will be lost and recv will return TEE_SUCCESS. By comparing the [out] length value containing
the number of received bytes with the size of the current buffer, an implementer can detect whether and how
many bytes have been lost.

26 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

uint32_t length = 0;
err = udp.recv(ctx, NULL, &length, 0); /* Detect buffer length */
if (err != TEE_SUCCESS) …handle error…
if (length > 0)
{
 char *buffer = TEE_Malloc(length, 1);
 if (buffer != NULL)
 {
 err = udp.recv(ctx, buffer, &length, TIMEOUT);
 }
}

For protocols that operate on a data stream, the recv function SHOULD return as soon as at least part of
the buffer has been received. For protocols that operate on blocks of data, such as some encrypted protocols,
the recv function SHALL internally buffer data from lower layers until a complete block is received to operate
on. In such cases, the recv function SHALL act as though the complete block of data to operate on is
received in one package from the lower layers.

If there is a mismatch between the received data and the protocol specification, the function SHALL discard
the data, set *length = 0, and return the error code TEE_ISOCKET_ERROR_PROTOCOL.

The recv function is a cancellable function. If a cancel request is received during execution of the recv
function, the implementation SHALL behave as if the timeout has been reached but the return code SHALL
be TEE_ERROR_CANCEL. If the complete buffer was received, the return value SHALL be TEE_SUCCESS.

Specification Number: See section 4.4 Function Number: 0x104

Parameters

Name Purpose
TEE_iSocketHandle ctx Initialized implementation specific handle.

void *buf A pointer to an allocated memory buffer where the received bytes will be
stored. If *length == 0, this buffer will not be touched and can be
NULL.

uint32_t *length A pointer to an integer holding the requested number of bytes to receive.
The buffer must have allocated at least this number of bytes. On return,
this parameter holds the actual number of bytes read. If the function is
called with *length == 0, it returns the number of bytes that are ready
to be received in *length.

uint32_t timeout The timeout of the operation in milliseconds. If timeout ==
TEE_TIMEOUT_INFINITE (defined in [TEE Core] TEE_Wait), the
function blocks until all requested bytes are received or a fatal error
occurs. If timeout == 0, the function receives the data that is available
but at most *length bytes.

TEE Sockets API Specification – Public Release v1.0.1 27 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No In case of success.

TEE_ERROR_CANCEL No The function was cancelled.

TEE_ISOCKET_ERROR_TIMEOUT No Nothing was received during the timeout period.
*length is set to zero.

TEE_ERROR_COMMUNICATION Yes The route to the host is down or an internal
network interface is down.

TEE_ISOCKET_ERROR_REMOTE_CLOSED Yes The remote host has closed the connection.
Some instances will never return this error due to
statelessness.

TEE_ISOCKET_ERROR_PROTOCOL Yes Protocol specific error. See the error function
for further information. Each protocol specific
error is defined in the corresponding Annex.

TEE_ISOCKET_WARNING_PROTOCOL No Protocol specific warning. See the error
function for further information. Occurs under
conditions defined in the relevant Annex.

TEE_ISOCKET_ERROR_OUT_OF_RESOURCES Yes Failed to allocate resources for the operation.

Panic Reasons

The recv function SHALL panic if any of the following occurs:

• The handle is not initialized or is NULL.

• The handle is not a valid handle of the specific protocol.

• The parameter length == NULL.

• The parameter *length != 0 and buf == NULL.

• The Implementation detects any error which cannot be represented by any defined or implementation
defined error code.

28 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.8 Error

uint32_t (* error) (
 TEE_iSocketHandle ctx
);

Description

The error function reports any protocol specific error. Some functions in the TEE_iSocket interface must
return protocol specific errors or warnings and in such a case, the function returns the generic error
TEE_ISOCKET_ERROR_PROTOCOL or TEE_ISOCKET_WARNING_PROTOCOL. The error function can be used
to retrieve a more detailed error code. The definitions of the error codes are protocol specific. In a layered
TEE_iSocket configuration, the TA developer needs to call the error function for each layer to find out
where the protocol specific error occurred.

A protocol error is valid and may be retrieved until another operation on the socket has been performed, in
which case the error function returns the status of the last operation. If no protocol specific error occurred
during the last socket operation in that specific layer, the error function SHALL return TEE_SUCCESS.

Specification Number: See section 4.4 Function Number: 0x105

Parameters

Name Purpose
TEE_iSocketHandle ctx Initialized implementation specific handle.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No The last operation on this ctx did not encounter any

protocol errors.

Protocol specific error or
warning value

Depends Each protocol specific error or warning is defined in the
corresponding Annex.
If a function returns a TEE_ISOCKET_ERROR_PROTOCOL,
it is considered fatal and the socket is closed.
If a function returns a
TEE_ISOCKET_WARNING_PROTOCOL, a warning occurred
that is not fatal and the command was successful but
with a warning.

Panic Reasons

The error function SHALL panic if either of the following occurs:

• The handle is not initialized or is NULL.

• The handle is not a valid handle of the specific protocol.

• The Implementation detects any error which cannot be represented by any defined or implementation
defined error code.

TEE Sockets API Specification – Public Release v1.0.1 29 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.9 ioctl

TEE_Result (* ioctl) (
 TEE_iSocketHandle ctx,
 uint32_t commandCode,
 [inout] void *buf,
 [inout] uint32_t *length
);

Description

The ioctl function is a way of extending the interface and providing protocol specific functionality to the
interface. The parameter commandCode identifies what functionality is requested and depending on that, the
buf parameter may be an input parameter, an output parameter, or both.

The most significant byte of the parameter commandCode indicates which protocol the ioctl function
targets. If the most significant byte is zero, the ioctl function call is propagated throughout the stack of
layered protocols.

The commandCode is constructed from a protocolID and a commandID as described in Table 5-1 and
exemplified in Table 5-2.

Table 5-1: Structure of the commandCode Parameter

Bits Function Values

Bits [31:24] protocolID 0 Command is propagated through the stack of
protocols. Each commandCode value that has
this byte set to zero must be defined in this
specification.

 Any other value Command is intended for a specific protocol
currently in the stack. The commandCode
values for a specific protocol are defined in the
instance specification of that protocol.

Bits [23:0] commandID 0x000000 – 0xEFFFFF Reserved for use in GlobalPlatform
specifications.

 0xF00000 – 0xFFFFFF Reserved for Implementation specific
commands.

Table 5-2: Examples of commandCode Interpretations

Value Interpretation

0x00123456 A general command that propagates through the protocol stack. It has a commandID
of 0x123456, which indicates that GlobalPlatform defined it.

0x05F00001 A targeted command for the protocol having protocolID equal to 0x05. It has a
commandID of 0xF00001, which indicates that it is Implementation specific.

30 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The functionality of the ioctl function is as follows:

1. The byte protocolID == 0.

a. If the protocol recognizes the commandID (has an internal function for the command), ioctl
executes the corresponding internal function for the command.

i. If the execution returns no error, ioctl invokes the ioctl function of the next lower protocol
in the stack, using the same set of parameters (exchanging the ctx). The ioctl function
returns with the return code of the lower protocol. If there is no lower layer protocol, it returns
TEE_SUCCESS.

ii. If the execution of the internal function returns an error, ioctl returns with that error.

b. If the protocol does not recognize the commandID, ioctl invokes the ioctl function of the
next lower protocol in the stack, using the same set of parameters (exchanging the ctx). The
ioctl function returns with the return code of the lower protocol. If there is no lower layer
protocol, it returns TEE_SUCCESS.

2. The byte protocolID != 0.

a. If the parameter protocolID matches the protocol identifier of this protocol:

i. If the protocol recognizes commandID (has an internal function for the command), ioctl
executes the corresponding internal function for the command and returns TEE_SUCCESS,
TEE_ISOCKET_ERROR_PROTOCOL, or TEE_ISOCKET_WARNING_PROTOCOL depending on the
internal function.

ii. If the protocol does not recognize commandID, it SHALL panic.

b. If the parameter protocolID does not match the protocol identifier of this protocol, ioctl
invokes the ioctl function of the next lower protocol in the stack, using the same set of
parameters (exchanging the ctx). The ioctl function returns with the return code of the lower
protocol. If there is no lower layer protocol, it SHALL panic.

Depending on the commandCode, the parameter *buf may be an input buffer, an output buffer, or both.

• If *buf is an input buffer, the parameter *length holds the length in bytes of the data in the buffer.

• If *buf is an output buffer, the parameter *length holds the number of bytes available in *buf
for storing the output data, and upon return the *length parameter is updated with the actual
number of bytes written into *buf.

• If *buf is both an input and an output buffer, the parameter *length acts as if it were a pure
output buffer, and it is the responsibility of the internal function to interpret the correct number of bytes
in the buffer to use as input data.

Specification Number: See section 4.4 Function Number: 0x106

TEE Sockets API Specification – Public Release v1.0.1 31 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameters

Name Purpose
TEE_iSocketHandle ctx Initialized implementation specific handle.

uint32_t commandCode The requested command to execute. See section 5.3 and the
accompanying text for a complete description.

void *buf Pointer to a buffer holding input or output data of length *length. May
be NULL if *length == 0.

uint32_t *length Length of input data or allocated size of buffer for output data in bytes.
For output data it is updated on return with the number of bytes written
into *buf.

Return Values

See section 5.2.2 for the meaning of fatal.

Name Fatal Reason
TEE_SUCCESS No In case of success.

TEE_ISOCKET_ERROR_PROTOCOL Yes In case of an error. See the error function for further
details. Each protocol specific error is defined in the
corresponding Annex.

TEE_ISOCKET_WARNING_PROTOCOL No In case of a warning. See the error function for further
details. Each protocol specific warning is defined in the
corresponding Annex.

Panic Reasons

The ioctl function SHALL panic if any of the following occurs:

• The handle is not initialized or is NULL.

• The handle is not a valid handle of the specific protocol.

• The parameter length == NULL.

• The parameter buf == NULL and *length > 0.

• The byte protocolID != 0 and the corresponding protocol or commandID is not found within the
current stack of protocols.

The Implementation detects any error which cannot be represented by any defined or Implementation defined
error code.

5.3 Global commandCode Definitions for ioctl

In this version of the specification, no global ioctl commands are defined.

32 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4 Example of a TEE_iSocket Protocol Implementation

This section provides a short abbreviated example of an implementation of the Foo protocol. It is only meant
as a guideline for how to declare the protocol specific structures and functions required by the TEE_iSocket
interface.

5.4.1 The Header File

/* Header file tee_foosocket.h */
#ifndef TEE_ISOCKET_PROTOCOLID_FOO
#include "tee_isocket.h" /* provides definition for TEE_iSocket */

/* define the protocolID for FOO */
#define ISOCKET_PROTOCOLID_FOO 0x35

typedef struct TEE_fooSocket_Setup_s {
 /*
 * All things needed to setup the FOO protocol.
 */
} TEE_fooSocket_Setup;

extern TEE_iSocket * const TEE_fooSocket;
#endif

TEE Sockets API Specification – Public Release v1.0.1 33 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4.2 The C Implementation File

/* Implementation file tee_foosocket.c */
#include "tee_internal_api.h"
#include "tee_foosocket.h"

typedef struct fooSocket_Context_s {
 /*
 * All things needed to maintain the context
 */
 uint32_t *protocolError;
} fooSocket_Context;

/*
 * FOO_Open
 */
static TEE_Result FOO_open(TEE_iSocketHandle *ctx,
 void *setup,
 uint32_t *protocolError)

{
 fooSocket_Context *context;
 TEE_fooSocket_Setup *mysetup;

 /*
 * Check for panic criteria.
 * NOTE that in real code the correct function ID and
 * document ID need to be returned by the panics.
 */
 if ((ctx == NULL) || (setup == NULL) || (protocolError == NULL)) {
 TEE_Panic(TEE_ERROR_BAD_PARAMETERS);
 }

 mysetup = (TEE_fooSocket_Setup *)setup;
 /*
 * Here we should check the correctness of the mysetup struct
 * and MAY Panic if it's not correct
 */

 /*
 * Allocate memory for context, and get a POINTER
 * in this case the pointer also consitutues the handle
 * used by iSocketHandle.
 */
 context = (fooSocket_Context *) TEE_Malloc(sizeof(fooSocket_Context),
 TEE_MALLOC_FILL_ZERO);
 if (context == NULL) {
 *ctx = TEE_HANDLE_NULL;
 return TEE_ERROR_OUT_OF_MEMORY;
 }

34 / 35 TEE Sockets API Specification – Public Release v1.0.1

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /*
 * Populate the fields in context to maintain the
 * communication channel.
 */
 context = (TEE_fooSocket_Context *) ctx;
 /* Check what is currently in the ctx by assigning it to context. */

 *ctx = (TEE_iSocketHandle) context;

 /* one example is to to store the address used to report protocol errors
 */
 context->protocolError = *protocolError;

 /*
 * Open the communication channel according to the
 * parameters in mysetup.

 * [Done here]

 * There may be more context to be stored in relation
 * to the open channel before we:
 */
 return TEE_SUCCESS;
}

/*
 * FOO_Close
 */
static TEE_Result FOO_close(TEE_iSocketHandle *ctx)
{
 if (ctx == TEE_HANDLE_NULL)
 return TEE_SUCCESS;

 /*
 * Check for panic criteria using helper functions.
 * NOTE that in real code the correct function ID and
 * document ID need to be returned by the panics.
 */
 if (FOO_CtxInvalidInProtocol(ctx) || FOO_CtxNotInitialized(ctx)) {
 TEE_Panic(TEE_ERROR_BAD_PARAMETERS);return TEE_SUCCESS;
 }

 /*
 * Code to clean up context goes here
 */

 TEE_Free(ctx);
 return TEE_SUCCESS;
}

TEE Sockets API Specification – Public Release v1.0.1 35 / 35

Copyright  2013-2017 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

/* Truncated definitions for the remaining functions */

static TEE_Result FOO_send(
 TEE_iSocketHandle *ctx,
 const void *buf,
 uint32_t *length,
 uint32_t timeout) { /* body */ }

static TEE_Result FOO_recv(
 TEE_iSocketHandle *ctx,
 void *buf,
 uint32_t *length,
 uint32_t timeout) { /* body */ }

static uint32_t FOO_error(
 TEE_iSocketHandle *ctx) { /* body */ }

static TEE_Result FOO_ioctl(
 TEE_iSocketHandle *ctx,
 uint32_t commandCode,
 void *buf,
 uint32_t *length) { /* body */ }

/* Instance declaration of the FOO protocol functions */

TEE_iSocket fooSocketInstance = {
 TEE_iSocketVersion,
 ISOCKET_PROTOCOLID_FOO,
 &FOO_open,
 &FOO_close,
 &FOO_send,
 &FOO_recv,
 &FOO_error,
 &FOO_ioctl
};

TEE_iSocket * const TEE_fooSocket = &fooSocketInstance;

	Contents
	Tables
	Figures
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Background
	3 Requirements for TEE Sockets API
	3.1 Assumptions and Scope
	3.1.1 Streams and Boundary of Trust

	3.2 Implementation of Specific Protocols
	3.3 Layered Connections

	4 General Information
	4.1 Error Handling
	4.2 Specification Version Number Property
	4.3 Protocol Identifier
	4.4 Panicked Function Identification

	5 TEE_iSocket (The Generic Interface Socket) API
	5.1 Header File Name
	5.2 Functionality
	5.2.1 TEE_iSocketHandle and Setup
	5.2.2 Fatal Errors
	5.2.3 Timely Manner
	5.2.4 Open
	5.2.5 Close
	5.2.6 Send
	5.2.7 Recv
	5.2.8 Error
	5.2.9 ioctl

	5.3 Global commandCode Definitions for ioctl
	5.4 Example of a TEE_iSocket Protocol Implementation
	5.4.1 The Header File
	5.4.2 The C Implementation File

