

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patents
or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be
necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. The technology provided or described herein is
subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is governed by
the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Technology
Open Mobile API Specification
Version 3.3

Public Release
July 2018
Document Reference: GPD_SPE_075

 Open Mobile API Specification – Public Release v3.3

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY
OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER
WORK PRODUCT.

Open Mobile API Specification – Public Release v3.3 3 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Contents
1 Introduction .. 9
1.1 Audience .. 9
1.2 IPR Disclaimer ... 9
1.3 References ... 9
1.4 Terminology and Definitions .. 11
1.5 Abbreviations and Notations .. 12
1.6 Revision History ... 12

2 Architecture .. 15

3 API Description ... 18
3.1 Programming Language vs. ISO 7816-4 Language Conventions ... 18
3.2 Value Types ... 19
3.3 Error Types .. 20
3.4 Constants ... 21
3.5 Asynchronous Notifications .. 22

4 Transport API.. 23
4.1 Overview .. 23

4.1.1 General Rules for Handling of Status Word .. 24
4.1.2 Handling of Events .. 25

4.2 Object Interface .. 26
4.2.1 Usage Pattern ... 27
4.2.2 Class: SEService .. 28

4.2.2.1 Constructor: SEService(Context context, SEService.CallBack listener) 28
4.2.2.2 Method: Reader[] getReaders() .. 28
4.2.2.3 Method: Boolean isConnected() ... 28
4.2.2.4 Method: Void shutdown() .. 29
4.2.2.5 Method: String getVersion() .. 29

4.2.3 Class (or Interface): SEService:CallBack ... 29
4.2.3.1 Method: Void serviceConnected(SEService service) ... 29

4.2.4 Class (or Interface): Reader:EventCallBack ... 29
4.2.4.1 Method: Void notify(Reader:Event event) .. 29

4.2.5 Class: Reader:Event ... 30
4.2.5.1 Method: Reader getReader() .. 30
4.2.5.2 Method: Int getEventType() .. 30

4.2.6 Class: Reader ... 31
4.2.6.1 Method: String getName() .. 31
4.2.6.2 Method: SEService getSEService().. 31
4.2.6.3 Method: Boolean isSecureElementPresent() ... 31
4.2.6.4 Method: Session openSession()... 32
4.2.6.5 Method: Void closeSessions() .. 32
4.2.6.6 Method: Void registerReaderEventCallback(Reader:EventCallBack callback) 32
4.2.6.7 Method: Boolean unregisterReaderEventCallback(Reader:EventCallBack callback) 33

4.2.7 Class: Session .. 34
4.2.7.1 Method: Reader getReader() .. 34
4.2.7.2 Method: Byte[] getATR() ... 34
4.2.7.3 Method: Void close() ... 34
4.2.7.4 Method: Boolean isClosed() ... 34
4.2.7.5 Method: Void closeChannels() ... 34
4.2.7.6 Method: Channel openBasicChannel(Byte[] aid, Byte P2) ... 35

Open Mobile API Specification – Public Release v3.3 4 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.7.7 Method: Channel openBasicChannel(Byte[] aid) ... 36
4.2.7.8 Method: Channel openLogicalChannel(Byte[] aid, Byte P2) .. 37
4.2.7.9 Method: Channel openLogicalChannel(Byte[] aid) ... 38

4.2.8 Class: Channel .. 39
4.2.8.1 Method: Void close() ... 39
4.2.8.2 Method: Boolean isBasicChannel() .. 39
4.2.8.3 Method: Boolean isClosed() ... 39
4.2.8.4 Method: Byte[] getSelectResponse() .. 40
4.2.8.5 Method: Session getSession() .. 40
4.2.8.6 Method: Void setTransmitBehaviour(Boolean expectDataWithWarningSW) 41
4.2.8.7 Method: Byte[] transmit(Byte[] command) .. 42
4.2.8.8 Method: Boolean selectNext() .. 43

5 Service Layer APIs (Deprecated)... 44
5.1 Overview .. 44
5.2 Class Diagram .. 45
5.3 Usage Pattern .. 47
5.4 Service API Framework ... 48

5.4.1 Class: Provider .. 48
5.4.1.1 Constructor: Provider(Channel channel) .. 48
5.4.1.2 Method: Channel getChannel() .. 48

5.5 Crypto API .. 49
5.5.1 Extensibility ... 50
5.5.2 Extending by Shared Libraries .. 50
5.5.3 Extending Functionality via Applications ... 51
5.5.4 Integration with the Transport API .. 52

5.6 Discovery API ... 53
5.6.1 Class: SEDiscovery ... 54

5.6.1.1 Constructor: SEDiscovery (SEService service, SERecognizer recognizer)....................... 54
5.6.1.2 Method: Reader getFirstMatch() ... 54
5.6.1.3 Method: Reader getNextMatch() .. 55

5.6.2 Class: SERecognizer .. 55
5.6.2.1 Method: Boolean isMatching(Session session) .. 55

5.6.3 Class: SERecognizerByATR ... 56
5.6.3.1 Constructor: SERecognizerByATR (byte[] atr, byte[] mask) .. 56

5.6.4 Class: SERecognizerByHistoricalBytes .. 56
5.6.4.1 Constructor: SERecognizerByHistoricalBytes (byte[] values) .. 56

5.6.5 Class: SERecognizerByAID .. 56
5.6.5.1 Constructor: SERecognizerByAID (byte[] aid) .. 56

5.7 File Management ... 57
5.7.1 Class: FileViewProvider .. 57

5.7.1.1 Constant: CURRENT_FILE .. 58
5.7.1.2 Constant: INFO_NOT_AVAILABLE.. 58
5.7.1.3 Constructor: FileViewProvider(Channel channel) .. 58
5.7.1.4 Method: FCP selectByPath(String path, Boolean fromCurrentDF) 59
5.7.1.5 Method: FCP selectByFID(int fileID)... 60
5.7.1.6 Method: FCP selectParent() ... 61
5.7.1.7 Method: Record readRecord(int sfi, int recID) .. 62
5.7.1.8 Method: void writeRecord(int sfi, Record rec) .. 63
5.7.1.9 Method: int[] searchRecord(int sfi, byte[] searchPattern) ... 64
5.7.1.10 Method: byte[] readBinary(int sfi, int offset, int length) ... 65
5.7.1.11 Method: void writeBinary(int sfi, byte[] data, int offset, int length) 66

5.7.2 Class: FileViewProvider:FCP .. 67

Open Mobile API Specification – Public Release v3.3 5 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2.1 Method: byte[] getFCP() ... 67
5.7.2.2 Method: int getFileSize() ... 67
5.7.2.3 Method: int getTotalFileSize() ... 67
5.7.2.4 Method: int getFID() .. 68
5.7.2.5 Method: int getSFI() .. 68
5.7.2.6 Method: int getMaxRecordSize() .. 68
5.7.2.7 Method: int getNumberOfRecords() ... 68
5.7.2.8 Method: int getFileType() .. 69
5.7.2.9 Method: int getFileStructure() ... 69
5.7.2.10 Method: int getLcS() .. 70

5.7.3 Class: FileViewProvider:Record ... 71
5.7.3.1 Constructor: Record(int id, byte[] data) .. 71
5.7.3.2 Method: int getID() .. 71
5.7.3.3 Method: byte[] getData() ... 71

5.8 Authentication Service ... 72
5.8.1 Class: AuthenticationProvider ... 72

5.8.1.1 Constructor: AuthenticationProvider(Channel channel) ... 73
5.8.1.2 Method: Boolean verifyPin(PinID pinID, byte[] pin) .. 73
5.8.1.3 Method: void changePin(PinID pinID, byte[] oldPin, byte[] newPin) 74
5.8.1.4 Method: void resetPin(PinID pinID, byte[] resetPin, byte[] newPin) 74
5.8.1.5 Method: int getRetryCounter(PinID pinID) .. 75
5.8.1.6 Method: void activatePin(PinID pinID, byte[] pin) ... 75
5.8.1.7 Method: void deactivatePin(PinID pinID, byte[] pin) ... 76

5.8.2 Class: AuthenticationProvider:PinID ... 77
5.8.2.1 Constructor: PinID(int id, Boolean local) .. 77
5.8.2.2 Method: int getID() .. 77
5.8.2.3 Method: Boolean isLocal() .. 77

5.9 PKCS #15 API .. 78
5.9.1 Class: PKCS15Provider .. 79

5.9.1.1 Constant: byte[] AID_PKCS15 .. 79
5.9.1.2 Constructor: PKCS15Provider(Channel channel) .. 79
5.9.1.3 Method: byte[] getODF() ... 80
5.9.1.4 Method: byte[] getTokenInfo() .. 80
5.9.1.5 Method: Path[] getPrivateKeyPaths() ... 80
5.9.1.6 Method: Path[] getPublicKeyPaths()... 80
5.9.1.7 Method: Path[] getCertificatePaths() .. 80
5.9.1.8 Method: Path[] getDataObjPaths() ... 81
5.9.1.9 Method: Path[] getAuthObjPaths().. 81
5.9.1.10 Method: byte[] readFile(Path path) ... 81
5.9.1.11 Method: byte[] searchOID(byte[] dodf, String oid) .. 82
5.9.1.12 Method: Path decodePath(byte[] der) ... 82

5.9.2 Class: PKCS15Provider:Path ... 83
5.9.2.1 Constructor: Path(byte[] path) .. 83
5.9.2.2 Constructor: Path(byte[] path, int index, int length) .. 83
5.9.2.3 Method: byte[] getPath() ... 83
5.9.2.4 Method: Boolean hasIndexLength() ... 83
5.9.2.5 Method: int getIndex() ... 84
5.9.2.6 Method: int getLength() .. 84
5.9.2.7 Method: byte[] encode() .. 84

5.10 Secure Storage .. 85
5.10.1 Class: SecureStorageProvider .. 85

5.10.1.1 Constructor: SecureStorageProvider(Channel channel) .. 86

Open Mobile API Specification – Public Release v3.3 6 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.1.2 Method: void create(String title, byte[] data) ... 86
5.10.1.3 Method: void update(String title, byte[] data) .. 86
5.10.1.4 Method: byte[] read(String title)... 87
5.10.1.5 Method: Boolean exist(String title) .. 87
5.10.1.6 Method: Boolean delete(String title) ... 88
5.10.1.7 Method: void deleteAll() .. 88
5.10.1.8 Method: String[] list() ... 89

5.10.2 Secure Storage APDU Interface ... 90
5.10.2.1 CREATE SS ENTRY Command Message ... 90
5.10.2.2 CREATE SS ENTRY Response Message ... 91
5.10.2.3 DELETE SS ENTRY Command Message .. 91
5.10.2.4 DELETE SS ENTRY Response Message .. 92
5.10.2.5 SELECT SS ENTRY Command Message .. 92
5.10.2.6 SELECT SS ENTRY Response Message .. 93
5.10.2.7 PUT SS ENTRY DATA Command Message .. 94
5.10.2.8 PUT SS ENTRY DATA Response Message .. 95
5.10.2.9 GET SS ENTRY DATA Command Message .. 95
5.10.2.10 GET SS ENTRY DATA Response Message .. 96
5.10.2.11 GET SS ENTRY ID Command Message .. 96
5.10.2.12 GET SS ENTRY ID Response Message .. 97
5.10.2.13 DELETE ALL SS ENTRIES Command Message ... 97
5.10.2.14 DELETE ALL SS ENTRIES Response Message ... 98

5.10.3 Secure Storage APDU Transfer .. 99
5.10.3.1 Create Operation .. 99
5.10.3.2 Update Operation .. 100
5.10.3.3 Read Operation ... 100
5.10.3.4 List Operation .. 101
5.10.3.5 Delete Operation ... 101
5.10.3.6 Delete All Operation .. 101
5.10.3.7 Exist Operation ... 102

5.10.4 Secure Storage PIN Protection ... 102

6 Minimum Set of Functionality .. 103

7 Plug-ins ... 104

8 Access Control ... 105

Open Mobile API Specification – Public Release v3.3 7 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Tables
Table 1-1: Informative References ... 9

Table 1-2: Terminology and Definitions .. 11

Table 1-3: Abbreviations and Notations ... 12

Table 1-4: Revision History .. 12

Table 3-1: Language Conventions: Java-like and ISO 7816-4 ... 18

Table 3-2: Value Types .. 19

Table 3-3: Error/Return Types .. 20

Table 5-1: CREATE SS ENTRY Command Message ... 90

Table 5-2: CREATE SS ENTRY Response Data ... 91

Table 5-3: CREATE SS ENTRY Response Code .. 91

Table 5-4: DELETE SS ENTRY Command Message .. 91

Table 5-5: DELETE SS ENTRY Response Code .. 92

Table 5-6: SELECT SS ENTRY Command Message .. 92

Table 5-7: SELECT SS ENTRY Response Data ... 93

Table 5-8: SELECT SS ENTRY Response Code .. 93

Table 5-9: PUT SS ENTRY Data Command Message .. 94

Table 5-10: PUT SS ENTRY DATA Response Code... 95

Table 5-11: GET SS ENTRY DATA Command Message .. 95

Table 5-12: GET SS ENTRY DATA Response Data ... 96

Table 5-13: GET SS ENTRY DATA Response Code .. 96

Table 5-14: GET SS ENTRY ID Command Message .. 96

Table 5-15: GET SS ENTRY ID Response Data ... 97

Table 5-16: GET SS ENTRY ID Response Code .. 97

Table 5-17: DELETE ALL SS ENTRIES Command Message ... 97

Table 5-18: DELETE ALL SS ENTRIES Response Code ... 98

Open Mobile API Specification – Public Release v3.3 8 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figures
Figure 2-1: An Example of Possible Open Mobile API Architecture .. 16

Figure 4-1: Transport API Overview ... 23

Figure 4-2: Transport API Class Diagram .. 26

Figure 5-1: Service API Overview .. 44

Figure 5-2: Service API Class Diagram with Provider Classes .. 45

Figure 5-3: Service API Class Diagram with SEDiscovery Classes ... 46

Figure 5-4: Crypto API Architecture.. 50

Figure 5-5: Crypto API Architecture with Plug-in Applications ... 51

Figure 5-6: Discovery Mechanism .. 53

Figure 5-7: File Management Overview ... 57

Figure 5-8: Authentication Service Overview ... 72

Figure 5-9: PKCS #15 Service Overview ... 79

Figure 5-10: Secure Storage Service Overview ... 85

Figure 5-11: Secure Storage Applet Overview ... 90

Figure 5-12: Create SS Entry Operation .. 99

Figure 5-13: Update SS Entry Operation ... 100

Figure 5-14: Read SS Entry Operation .. 100

Figure 5-15: List SS Entries Operation ... 101

Figure 5-16: Delete SS Entry Operation ... 101

Figure 5-17: Delete All SS Entries Operation ... 101

Figure 5-18: Exist SS Entry Operation ... 102

Open Mobile API Specification – Public Release v3.3 9 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1 Introduction
The API specified in this document enables mobile applications to access different SEs in mobile devices,
such as SIMs or embedded SEs.

This specification provides interface definitions and UML diagrams to allow implementation on various mobile
platforms and in different programming languages.

If the programming language supports namespace, it SHALL be org.simalliance.openmobileapi,
except where explicitly changed in a Platform Binding document. For the procedural interface, the prefix
‘OMAPI_’ is used instead.

Editor’s Note: GlobalPlatform intends, in a future version of this specification, to split this document so
that there will be a high-level functional API description with a set of platform/language bindings as a
means to address ambiguities around Platform Bindings that have arisen in the past.
In particular, it is planned that the existing TEE SE API and WebAPI for Accessing SE should become
Platform Bindings of OMAPI in future, with a new and separate document describing the widely deployed
Java/Android binding.
Some text in this document – particularly in the area of Event Handlers – is intended to pave the way for
such a split. This text is not intended to be used in the future to justify backward-incompatible changes to
Platform Bindings of the Open Mobile API which have been deployed in the market.

1.1 Audience

This specification is intended for:

• Device manufacturers wishing to implement the interface in a device.

• Service providers developing an REE application in connection with a Secure Element application.

1.2 IPR Disclaimer

Attention is drawn to the possibility that some of the elements of this GlobalPlatform specification or other work
product may be the subject of intellectual property rights (IPR) held by GlobalPlatform members or others. For
additional information regarding any such IPR that have been brought to the attention of GlobalPlatform,
please visit https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform shall not be held
responsible for identifying any or all such IPR, and takes no position concerning the possible existence or the
evidence, validity, or scope of any such IPR.

1.3 References
Table 1-1: Informative References

Standard / Specification Description Ref

GPC_SPE_034 GlobalPlatform Technology
Card Specification v2.3

[GPCS]

GPD_SPE_013 GlobalPlatform Technology
Secure Element Access Control v1.1
Specification for controlling access to SEs based on
access policies that are stored in the SEs

[SEAC]

https://www.globalplatform.org/specificationsipdisclaimers.asp

Open Mobile API Specification – Public Release v3.3 10 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Standard / Specification Description Ref
GPD_SPE_024 GlobalPlatform Technology

TEE Secure Element API v1.1.1
[TEE SE API]

GPP_SPE_002 GlobalPlatform Technology
Open Mobile API – Android Binding

[Android Binding]

ISO/IEC 8825-1:2002 |
ITU-T Recommendation
X.690 (2002)

Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding
Rules (DER)

[ASN.1]

ISO/IEC 7816-3:2006 Identification cards – Integrated circuit cards – Part 3:
Cards with contacts – Electrical interface and
transmission protocols

[ISO 7816-3]

ISO/IEC 7816-4:2013 Identification cards – Integrated circuit cards – Part 4:
Organization, security and commands for interchange

[ISO 7816-4]

ISO/IEC 7816-5:2004 Identification cards – Integrated circuit cards – Part 5:
Registration of application providers

[ISO 7816-5]

ISO/IEC 7816-15:2004 Identification cards – Integrated circuit cards with
contacts – Part 15: Cryptographic information
application

[ISO 7816-15]

Java™ Cryptography
Architecture API
Specification &
Reference

Go to the following website for JCA documentation:
https://docs.oracle.com/javase/8/docs/technotes/guides/
security/crypto/CryptoSpec.html

[Java Crypto]

PKCS #11 v2.20 Cryptographic Token Interface Standard [PKCS #11]

PKCS #15 v1.1 Cryptographic Token Information Syntax Standard [PKCS #15]

RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels

[RFC 2119]

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

Open Mobile API Specification – Public Release v3.3 11 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.4 Terminology and Definitions

The following meanings apply to SHALL, SHALL NOT, MUST, MUST NOT, SHOULD, and MAY in this
document (refer to [RFC 2119]):

• SHALL indicates an absolute requirement, as does MUST.

• SHALL NOT indicates an absolute prohibition, as does MUST NOT.

• SHOULD indicates a recommendation.

• MAY indicates an option.

Table 1-2: Terminology and Definitions

Term Definition

Applet A general term for an SE application. An application as described in
[GPCS] which is installed in the SE and runs within the SE. For example
a Java Card™ application or a native application.

Application Device/terminal/mobile application. An application which is installed in
and runs within the mobile device.

Channel An open connection between an application on the device (e.g. mobile
phone) and an applet on the SE.

Execution Environment An environment hosting and executing software. This could be an REE
such as Android, Linux, or Windows; it could be a GlobalPlatform TEE; or
it could be an abstract platform such as a Web Browser.

Platform Binding A concrete implementation of the Open Mobile API. This will typically fix
some or all of the following characteristics:
• The Execution Environment hosting the Open Mobile API
• The programming language used to implement Applications. The

Platform Binding will expose the APIs described in this specification as
an API in this programming languages.

Secure Element A tamper-resistant secure hardware component which is used in a device
to provide the security, confidentiality, and multiple application
environment required to support various business models. May exist in
any form factor, such as embedded or integrated SE, SIM/UICC,
smart card, smart microSD, etc.

Session An open connection between an application on the device (e.g. mobile
phone) and an SE.

Tamper-resistant secure
hardware

Hardware designed to isolate and protect embedded software and data
by implementing appropriate security measures. The hardware and
embedded software meet the requirements of the latest Security IC
Platform Protection Profile (BSI-PP-0084) including resistance to physical
tampering scenarios described in that Protection Profile.

Open Mobile API Specification – Public Release v3.3 12 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.5 Abbreviations and Notations
Table 1-3: Abbreviations and Notations

Abbreviation / Notation Meaning

AID Application Identifier

APDU Application Protocol Data Unit (as per ISO/IEC 7816)

API Application Programming Interface

ASN.1 Abstract Syntax Notation One (as per [ASN.1])

ATR Answer to Reset (as per ISO/IEC 7816)

CLF Contactless Front-end

DER Distinguished Encoding Rules of ASN.1

DF Dedicated File

DM Device Management

EF Elementary File

FCP File Control Parameters

FID File Identifier

ISO International Organization for Standardization

JCE Java Crypto Extension

MF Master File

REE Rich Execution Environment

SFI Short File Identifier

SPI Serial Peripheral Interface bus

SS Secure Storage

TEE Trusted Execution Environment

1.6 Revision History

Note: This specification was developed by SIMalliance and transferred to GlobalPlatform in November 2016.

GlobalPlatform technical documents numbered n.0 are major releases. Those numbered n.1, n.2, etc., are
minor releases where changes typically introduce supplementary items that do not impact backward
compatibility or interoperability of the specifications. Those numbered n.n.1, n.n.2, etc., are maintenance
releases that incorporate errata and precisions; all non-trivial changes are indicated, often with revision marks.

Table 1-4: Revision History

Date Version Description

28.02.2011 1.0 Initial Release 1.0

16.03.2011 1.01 Minor corrections

04.05.2011 1.1 Clarifications for several functions in the transport layer

Open Mobile API Specification – Public Release v3.3 13 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Date Version Description
12.07.2011 1.2 Correction for open Basic Channel

30.09.2011 2.0 Adding descriptions of the service layer, corrections in the transport
layer, adding getSelectResponse() to channel class

14.10.2011 2.01 Minor corrections

4.11.2011 2.02 Corrections in diagrams of the transport layer

19.06.2012 2.03 Clarification on Chapter 10 (since GlobalPlatform SEAC spec is
released), on 6.4.4. and 6.7.6 / 6.7.7

15.07.2013 2.04 Clarification on Chapter 5, 6.2, 6.7.6, 6.7.7, 6.8.6, 7.1, 7.6.1, 7.6.3,
7.6.4, 7.6.5, 7.8.1 and Chapter 8. Added 6.4.5, 6.8.7

28.01.2014 2.05 Chapter 3, clarification on the namespace; Chapter 6.4.2:
IllegalStateError added; Chapter 6.6.1 changed definition of reader
name according request from GSMA; Chapter 6.8.6: clarification on
handling of status words

26.08.2014 3.0 Procedural interface added to chapter 6; reference header for Ansi-C
defined in Annex; P2 parameter added for openBasicChannel and
openLogicalChannel (previous interface without P2 is kept)

16.04.2015 3.1 Updates in Chapter 1.1; Informative reference added in Chapter 2,
Updates added in Chapter 6.1; The definition of getVersion method is
changed; The definition of SEService constructor, openSession,
openBasicChannel, openLogicalChannel and transmit methods is
updated; Chapter 8 renamed; UML diagrams updated; Annex A
updated.

03.02.2016 3.2 Updates in
-6.2.1, 6.2.7f, 6.2.7h, 6.2.8a, 6.2.8g, 6.2.8h and 8
-new methods introduced: 6.2.6f, 6.2.6g, 6.2.8 f
-Chapter 6.1.1 updated
-Chapter 2 updated
-new Chapters 6.1.2, 6.2.4, 6.2.5 are introduced for Handling of Events
-matching updates in Procedural interface
-UML diagrams are updated
-Annex A updated

November 2016 3.2 Transfer of the technology from SIMalliance to GlobalPlatform
Integration of SIMalliance Open Mobile API specification: Second
Errata for v3.2
Service API now obsolete

Open Mobile API Specification – Public Release v3.3 14 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Date Version Description
July 2018 3.3 Public Release; changes include:

• Comment on the future split of the OMAPI specification into a main
specification and appendices.

• Text defining plug-ins.
• Modified Architecture Overview.
• Text giving implementation guidance for non-OO targets.
• More detailed definitions of the Types used in the abstract

specification.
• Note that Reader.openSession() may not involve

communication with SE.
• Note that UICC may restrict the use of the Basic Channel.
• Removed the C language binding.
• Changed the architecture diagram to better reflect device

connectivity options.
• Clarified channel management behavior with openLogicalChannel.
• Clarified illegal AID lengths which might lead to

IllegalParameterError.

Open Mobile API Specification – Public Release v3.3 15 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2 Architecture
Figure 2-1 provides an overview of the Open Mobile API architecture.

The architecture is divided into the following functional layers:

• The Transport Layer, when accessed via the Transport API, provides an application with general
access to SEs. The Transport Layer uses APDUs to communicate with an SE (see section 4 for
details).

Beneath the Transport Layer are plug-ins which provide an interface abstraction between the core
functionality of the Open Mobile API and low-level mechanisms for communication with Secure
Elements.

o Concrete bindings of the Open Mobile API to specific programming languages or software
platforms may provide specific guidelines on plug-in implementations.

o There is one instance of a plug-in per Reader.

o Some plug-ins may offer direct and unmediated communication with the associated Secure
Element. However, other plug-ins may communicate via intermediary subsystems, such as a
modem or RIL.

o There may be aspects of the behavior of plug-ins that are out of scope of this document; for
example: error handling, power management, and recovery strategies. Plug-in developers are
responsible for ensuring that such strategies do not impact applications using the Open Mobile
API.

o Plug-in functionality and behavior are discussed further in section 7.

• The Service Layer provides a more abstract interface to various functions on the SE. They may be
easier to use by application developers than the generic Transport API. One example could be an
email application that uses a sign() function of the Crypto API and lets the Crypto API do all the
APDU exchange with the SE (rather than handle all the required APDUs directly in the email
application).

Note: The Service Layer in this document is deprecated.

• The Application Layer represents the various applications that make use of the Open Mobile API.

Open Mobile API Specification – Public Release v3.3 16 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 2-1: An Example of Possible Open Mobile API Architecture

A possible architecture for implementing the Open Mobile API on a Mobile Device is shown in Figure 2-1.
Since aspects of an Open Mobile API implementation on a given device are REE and hardware dependent,
some aspects of this architecture might look different depending on the REE.

The description of the APIs uses an abstract object-oriented execution environment supporting aggregation,
exception handling, concurrency, callbacks, and inner classes. Some guidance is provided on mappings for
environments that do not support some or all of these features.

In Figure 2-1, we show that plug-ins enabling connection to a Secure Element may communicate with
Execution Environments other than the one hosting the Open Mobile API:

• A Secure Element may be connected to the Transport API via a plug-in which uses a physical
interface which is hosted and controlled by the REE. Examples of such interfaces include I2C, SPI, or
an APDU gate hosted by the REE Service supporting a CLF.

• A Secure Element (generally supporting UICC functionality) may be connected to the Transport API
via a plug-in which uses a physical interface, such as that defined in ISO/IEC 7816, which is hosted
and controlled by a modem. In the diagram, a Radio Interface Layer provides a proxy for
communication between the REE and the Modem.

Open Mobile API Specification – Public Release v3.3 17 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

• A Secure Element may be connected to the Transport API via a plug-in which uses a physical
interface which is owned and controlled by a TEE, such as I2C or SPI. The arrangement presented
shows a way of allowing both Trusted Applications using the TEE Secure Element API specification
[TEE SE API] and Mobile Applications using either the Service APIs or the Transport API to access
the Secure Element. Note that in this scenario an REE Application may also communicate indirectly
with the Secure Element via a Trusted Application which itself uses the TEE SE API (e.g. using the
TEE Client API). Such communication is out of scope of this document.

Other arrangements of Secure Element connectivity from the REE or other Execution Environments are valid.

Secure Elements exist in many form factors including Embedded Secure Element, smartSD, smart microSD,
UICC, eUICC, and integrated Secure Elements. When we refer to a Secure Element in Figure 2-1, we are
referring to a GlobalPlatform compliant Secure Element in any form factor.

The Transport API includes an implementation of an Access Control Enforcer. In conjunction with ARA applets
and/or and ARF in the connected Secure Elements, this enables the Open Mobile API to use the
GlobalPlatform Secure Element Access Control specification ([SEAC]) to ensure, to the level of security
provided by the Execution Environment hosting the Access Control Enforcer, that only applications authorized
by the SE issuer or authorized SD owners can communicate with applets on the SE.

Open Mobile API Specification – Public Release v3.3 18 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3 API Description
In general, the API described in this specification defines an abstract interface which enables a software
platform that supports object-oriented concepts, such as exceptions or objects and instances, to access a SE.

The interface and data types are not bound to a specific software platform or programming language. Instead,
they are defined through a logical type that can be mapped accordingly to the corresponding platform
representation.

The methods are described as follows:

<return value type> <method name> (<parameter1 type> <parameter1 name> …)

Concrete bindings of this specification for particular software platforms may be defined, for example:

• The Open Mobile API – Android Binding specification [Android Binding] defines the concrete binding
of this specification on the Android platform.

• [TEE SE API] defines the concrete binding for this specification on a GlobalPlatform TEE.

The following types are used to describe return values, parameters, and errors. If supported by the platform,
errors may be mapped to exceptions.

3.1 Programming Language vs. ISO 7816-4 Language Conventions

This document describes an API that can be used to implement use cases involving a device and an SE.

In this document, API definitions use Java-like language conventions.

Interactions with the SE use the conventions found in ISO/IEC 7816-4 [ISO 7816-4]. The following
conventions, in particular, should be noted:

• The use of 'XX' or 'xx' denotes a byte, represented as a pair of hexadecimal digits, where each x can
take one of the following values: ‘0’..‘9’ for the decimal values 0 to 9; ‘A’..‘F’ for the decimal values 10
to 15; ‘X’ for any decimal value between 0 and 15.

• To guarantee an unambiguous mapping to bytes, this syntax can only be used with an even number
of hexadecimal digits (e.g. 'A34' is illegal).

• An unlimited number of bytes can be concatenated within a pair of straight single quotes.

Table 3-1 includes examples of the correspondence between C language and [ISO 7816-4].

Table 3-1: Language Conventions: Java-like and ISO 7816-4

Java-like convention ISO 7816-4 Meaning
0x2A '2A' A single byte with hexadecimal value 2A

{0x4E, 0x2A} '4E2A' Two bytes, the first with the hexadecimal value 4E and the
second with the hexadecimal value 2A

{0x61, 0xXX} '61XX' Two bytes, the first with the hexadecimal value 61 and the
second with any legal value for a byte.
Application developers should note that 0xXX is not legal
syntax in most programming languages but is used here for
correspondence with ISO 7816-4.

Open Mobile API Specification – Public Release v3.3 19 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2 Value Types

The value types in Table 3-2 are used during interactions with the API. These will be mapped to appropriate
concrete types for any specific language or software Platform Binding.

Table 3-2: Value Types

Type Definition
Boolean A primitive type, can be true or false.

Int A primitive type, mapped to the integer of the platform. No assumption is made
about the endianness of the platform representation of the Int type.

Byte[] An array (ordered sequence) of single byte (8 bit) values.

String A string of characters

Context An abstract representation of the execution context of an application

Void Not a type, indicates that the method has no return value.

Open Mobile API Specification – Public Release v3.3 20 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.3 Error Types

The error types in Table 3-3 are propagated by the API to the caller using appropriate concrete mechanisms
for any specific language binding.

Different mechanisms may be chosen for error propagation to the calling application:

• Errors can be mapped to exceptions in environments where this is the idiomatic mechanism for error
propagation and handling (e.g. Java, C++, C#, Python)

 E.g. (Java language) public Session openSession() throws IOError

• Errors can be mapped to function return values in environments where this is the idiomatic
mechanism for error propagation and handling (e.g. C)

 E.g. (C language) TEE_Result TEE_SEReaderOpenSession(…)

• Errors can be propagated via abstract data types in environments where this is the idiomatic
mechanism for error propagation and handling

 E.g. (F# language) Either<’Session, ‘Error> openSession()

Note: The Success value is generally used only with the function return value idiom – other idioms usually
do not require it to be used.

Table 3-3: Error/Return Types

Type Definition
Success No error was encountered.

NullPointerError Null was given where data is required.

IllegalParameterError A function or method was given an incorrect parameter (e.g. bad
format for an APDU).

IllegalStateError A function or method was used in the wrong context (e.g. being
closed).

SecurityError Security conditions were not satisfied.

ChannelNotAvailableError The basic channel was blocked/busy or no logical channel was
available.

NoSuchElementError An AID could not be found.

IllegalReferenceError A reference could not be found.

OperationNotSupportedError An operation is not supported.

IOError An error related to communication (I/O).

GeneralError A general error occurred – no further diagnosis available.

Open Mobile API Specification – Public Release v3.3 21 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.4 Constants

• Boolean constants

o The Boolean type can hold two values: true and false.

• Int constants

o The Int type can hold signed values that fall within at least the range (-231 to 231 – 1).

o Int constants can be expressed in a hexadecimal format by preceding them with ‘0x’, e.g.
0x3F0A.

• String constants

o Constants of String type consist of characters within quotations, e.g. “Hello World!”.

o No assumption is made regarding the character set that can be represented by a String.

• Byte constants

o The Byte type can hold unsigned values between 0 and 255.

o Byte constants can be expressed in a hexadecimal format by preceding them with ‘0x’, e.g.
0x3A.

• Byte arrays

o Constant Byte arrays can be initialized by placing the individual values of each element between
curly brackets (aka braces) ‘{’ and ‘}’, e.g. {0x63, 0x02}.

o Unknown or don’t care values can be represented by ‘XX’, e.g. {0x63, 0xXX}

• Null

o The Null value indicates that no value is provided. String, Byte[], and Context types can
take Null values in this specification.

Open Mobile API Specification – Public Release v3.3 22 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.5 Asynchronous Notifications

This specification defines APIs to enable asynchronous notifications. The essential behavior that is captured
by these APIs is that of the Observer pattern:

• A mechanism whereby observer objects can register with, or deregister with, some subject object.

• A mechanism whereby observer objects are asynchronously notified of changes in the state of some
subject object.

• A mechanism whereby subject objects initiate notification to the observer objects.

In this document, asynchronous notifications are defined in terms of callbacks. While these are widely
supported, they are not necessarily a preferred asynchronous notification mechanism on some systems and
may not even be supportable in the form defined here. In such cases, the concrete binding for this specification
to a particular software platform or programming language MAY provide an equivalent alternative
implementation of the Observer pattern. Some examples include:

• Single threaded/co-operative multitasking software platforms could implement asynchronous
notifications using an event queue.

• Platforms offering lightweight asynchronous broadcast mechanisms might use these in preference to
callbacks.

• Message-passing systems might implement asynchronous notifications by sending messages with the
required contents.

Open Mobile API Specification – Public Release v3.3 23 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4 Transport API
The Transport API, as part of the Open Mobile API, provides a communication framework to SEs available in
the Open Mobile device.

4.1 Overview

The role of the Transport API is to provide the means for applications to access the SE(s) available on the
device. The access provided is based on the concepts defined by ISO/IEC 7816-4 [ISO 7816-4]:

• APDUs: The format of the messages that are exchanged with the SE, basically a sequence of bytes,
is sent to the SE (or more precisely to an applet in the SE) and the SE responds with another
sequence of bytes. For details of the exact formatting of such byte sequences, refer to [ISO 7816-4].

• Basic and Logical Channels: These channels provide a logical link between an entity on the device
and an applet on the SE. Multiple Logical Channels may be opened at any time, and the OMAPI
Transport Layer is responsible for any necessary access serialization.

This API relies on a ‘connection’ pattern. The client application (running on the device connected to the SE,
e.g. the phone) opens a connection to the SE (a ‘session’) and then opens a logical or basic channel to an
applet running in the SE.

On top of this pattern, there are a number of constraints that are enforced by the system.

A major benefit of the Transport API is that it abstracts the management of communication channels across
multiple relying applications using the channel management APDUs defined in [ISO 7816-4]. Applications are
therefore forbidden from sending ‘channel management’ APDUs themselves, as this would break the isolation
feature given by the channel. Once a channel is opened, it is allocated to communicate with one and only one
applet in the SE. In the same manner, the SELECT by DF name APDU cannot be sent by the terminal
application.

The restrictions for the system should be implemented in the modules that are directly handling the
communication with the SE and not in the API itself, to ensure that attackers cannot overcome the APDU
filters. Thus if possible, the baseband should take care of the filtering or at least the RIL that communicates
with the baseband.

Once a logical channel is allocated to a mobile application, only APDU commands coming from this mobile
application SHOULD be transmitted on this logical channel.

Figure 4-1: Transport API Overview

Secure Element (SE)

Applet

Mobile Device

Open Mobile API

Transport API

Device Application

Open Mobile API Specification – Public Release v3.3 24 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.1.1 General Rules for Handling of Status Word

This specification is based on ISO specifications, in order to behave correctly with any applet across different
sectors and applications (banking, transport, identity, etc.).

Besides ISO 7816, the OMAPI Specification does not integrate the specific behaviors of any other
specifications. This is intentional and ensures compliant behavior with any type of applications.

Using Transport Layer T=1
The API or the underlying implementation SHALL handle the protocol T=1 as specified in ISO/IEC 7816-3
[ISO 7816-3] and returns data (if available) and received status word to the application. The API or underlying
implementation SHALL NOT automatically issue GET-RESPONSE APDU on reception of any status word.

Using Transport Layer T=0
Unless otherwise specified, when sending a command APDU, this specification requires the following status
word management for all methods defined in this document:

• For status word {0x61, 0xXX}, the API or underlying implementation SHALL issue a GET
RESPONSE command as specified in [ISO 7816-3]. The same behavior has to be applied for the
scenario where the SE returns overall response data of more than 256 bytes to the APDU. If an Error
SW is received to GET RESPONSE command, all data received so far SHALL be discarded and the
Error SW SHALL be returned.

• For the status word matching {0x6C, 0xXX}, the API or underlying implementation SHALL reissue
the input command as specified in [ISO 7816-3]. If an Error SW is received to the reissued command,
all data received so far SHALL be discarded and the Error SW SHALL be returned.

• For status words other than {0x61, 0xXX} and {0x6C, 0xXX}, the API (or underlying
implementation) SHALL NOT handle the received status words internally (e.g. it SHALL NOT send
GET RESPONSE automatically). The API (or underlying implementation) SHALL provide the status
word together with data, if data is also received with the SW to the calling Mobile Application.

• Specific rules for handling of status word Warning ({0x62, 0xXX} and {0x63, 0xXX})

o In case of transmit() method for the status words {0x62, 0xXX} and {0x63, 0xXX}, the
API or underlying implementation SHALL handle these status words according to the behavior set
by the setTransmitBehaviour(Boolean expectDataWithWarningSW) method.

o In case of any of the following:

• openBasicChannel(byte[] aid)

• openBasicChannel(byte[] aid, byte P2)

• openLogicalChannel(byte[] aid)

• openLogicalChannel(byte[] aid, byte P2)

• selectNext()

the GET RESPONSE with Le = 0x00 SHALL be sent also in case of SW warning ({0x62, 0xXX},
{0x63, 0xXX}) received as first response for the SELECT command and independently of the
setting in the setTransmitBehaviour(Boolean expectDataWithWarningSW) method.

Note that the handling of GET RESPONSE specified above implies that the API (or underlying implementation)
SHALL handle response data even if it is more than 256 bytes.

Open Mobile API Specification – Public Release v3.3 25 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note: Developers of Card Applets intended to be used from the Open Mobile API SHOULD avoid
implementation of warning behavior which requires the use of expectDataWithWarningSW to avoid possible
confusion on the part of device application developers on the operation of this special-case handling for case 4
APDU.

4.1.2 Handling of Events

The Open Mobile API provides mechanisms to notify Mobile Applications of changes to the availability of
functionality hosted on SEs.

Most target platforms provide mechanisms which support notification of external events. The preferred
embodiment of such mechanisms is often platform specific and this specification acknowledges that it is
desirable that a platform mapping of the Open Mobile API is best implemented using the idioms of that platform.

Event handling is mandatory if the platform supports it. The mechanism and API used SHALL be documented
in the Platform Binding.

Using the Event API, applications can be notified of asynchronous events that may occur on the Reader.

IOErrorEvent
When IOError occurs, the API SHALL implement the following behavior: Before returning the IOError,
the API SHALL close ALL the opened sessions and channels of ALL applications on the related reader. When
all the sessions and channels are closed, the API SHALL asynchronously notify all applications that registered
to receive Open Mobile API Event notifications from the related reader.

Note: IOError is generally not recoverable as it is the consequence of an I/O failure. Some SE are
removable and may become available on reinsertion into the device. Others are fixed in the device, in which
case IOError may indicate a hardware problem.

SEInsertedEvent and SERemovalEvent
SEInsertedEvent and SERemovalEvent occurs upon insertion/removal of SE on a specific reader. With
these events, applications can be notified about insertion/removal without polling the SE presence. Before
issuing SERemovalEvent, the API SHALL close ALL the opened sessions and channels of ALL applications
on the related reader. When all the sessions and channels are closed, the API SHALL asynchronously notify
all applications that registered to receive Open Mobile API Event notifications from the related reader.

Reader instances for which the SE is not removable are not required to support SEInsertedEvent and
SERemovalEvent.

Open Mobile API Specification – Public Release v3.3 26 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2 Object Interface

This class diagram contains all classes of the Transport API. The SEService class realizes a connector to
the SE framework system and can be used to retrieve all SE readers available in the system. The Reader
class can be used to access the SE connected with the selected reader. The Session class represents a
session to an SE established by the reader and allows different communication channels to be opened
represented by the Channel class.

Figure 4-2: Transport API Class Diagram

Open Mobile API Specification – Public Release v3.3 27 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.1 Usage Pattern

The usage pattern of the Transport API is as follows:

1. The application gets access to the SE service(s):

It creates an instance of SEService according to the Platform Binding API definition. Some Platform
Bindings require the caller to provide an entity implementing the asynchronous notification API when
creating the SEService instance.

Application developers should note that the SEService instance does not represent a connection with
the SE itself, but with the subsystem implementing the SE access functionality.

2. The Application enumerates the available readers.

Readers are the slots where SEs are connected (in a removable or non-removable manner), and a
device may support several Readers. There is usually one Reader instance for each SE. Many
Platform Bindings enforce a naming convention for Readers to assist Application developers in selecting
the required SE when there is more than one on the platform.

Once the user or an application-specific algorithm has selected a Reader, then the application opens
a session on this Reader.

3. Where the Platform Binding supports it, the Application may register for asynchronous notifications
from the Reader, e.g. by registering Reader.EventCallback on Reader instances.

4. With the session opened in step 2, the application can retrieve the ATR of the SE, and if it matches
with one of the known ATRs, it can start opening channels with applets in the SE.

5. To open a channel, the application will use the AID of the applet or use the default applet on the newly
opened channel.

6. Then the terminal application can start transmitting APDUs to the applet.

7. Once done, the application can close any existing channels or even sessions, and its connection to
the SEService.

Open Mobile API Specification – Public Release v3.3 28 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.2 Class: SEService

The SEService realizes the communication to available SEs on the device.

This is the entry point of this API. It is used to connect to the infrastructure and get access to a list of SE
readers.

4.2.2.1 Constructor: SEService(Context context, SEService.CallBack listener)

Establishes a new connection that can be used to connect to all the SEs available in the system. The
connection process can be quite long, so it happens in an asynchronous way. It is usable only if the specified
listener is called or if isConnected() returns true.

The call-back object passed as a parameter will have its serviceConnected() method called when the
connection actually happens.

Parameters

context The context of the calling application. Cannot be Null.

listener An SEService:CallBack object. Can be Null.

Errors

NullPointerError If context is Null.

4.2.2.2 Method: Reader[] getReaders()

Returns the list of available SE readers. There must be no duplicated objects in the returned list. All available
readers SHALL be listed even if no card is inserted.

Return value
The readers list, as an array of readers. If there are no readers, the returned array is of length 0.

Errors

NullPointerError If context is Null.

IllegalStateError If the SEService object is not connected.

4.2.2.3 Method: Boolean isConnected()

Tells whether or not the service is connected.

Return value
True if the service is connected.

Open Mobile API Specification – Public Release v3.3 29 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.2.4 Method: Void shutdown()

Releases all SE resources allocated by this SEService (including any binding to an underlying service). As
a result isConnected() will return false after shutdown() was called. After this method call, the
SEService object is not connected.

It is recommended to call this method in the termination method of the calling application (or part of this
application) which is bound to this SEService.

4.2.2.5 Method: String getVersion()

Returns the version of the Open Mobile API Specification this implementation is based on.

Return value
String containing the Open Mobile API version (e.g. “3.3” for Open Mobile API Specification
version 3.3).

4.2.3 Class (or Interface): SEService:CallBack

Interface to receive asynchronous notifications when the service is connected.

If the Platform Binding supports it, then this SHOULD be an inner interface of the SEService class.

Note: Device/target bindings for the Open Mobile API MAY provide alternative asynchronous notification
mappings where the use of callbacks is discouraged or not possible.

4.2.3.1 Method: Void serviceConnected(SEService service)

Called by the framework when the service is connected.

Parameters

service The connected service.

4.2.4 Class (or Interface): Reader:EventCallBack

Interface to receive event when asynchronous event occurs on the specified reader.

If the Platform Binding supports it, then this SHOULD be an inner interface of the Reader class.

Note: Device/target bindings for the Open Mobile API MAY provide alternative asynchronous notification
mappings where the use of callbacks is discouraged or not possible.

4.2.4.1 Method: Void notify(Reader:Event event)

Called by the framework when the event occurs.

Parameters

event The event instance generated by the framework.

Open Mobile API Specification – Public Release v3.3 30 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.5 Class: Reader:Event

An instance of that class is generated by the framework

4.2.5.1 Method: Reader getReader()

Return value
Return the reader on which the event occurred.

4.2.5.2 Method: Int getEventType()

Return value
Return the value corresponding to the type of the event, as shown below.

EventType

0x1001 for Reader:IOErrorEventType An IOError occurred on the reader.

0x2001 for Reader:SEInsertedEventType An SE has been inserted in the reader.

0x2002 for Reader:SERemovalEventType An SE has been removed from the reader.

Open Mobile API Specification – Public Release v3.3 31 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.6 Class: Reader

Instances of this class represent SE readers supported by this device. These readers can be physical devices
or virtual devices. They can be removable or not. They can contain one SE that can or cannot be removed.

4.2.6.1 Method: String getName()

Return the name of this reader.

• If this reader is a SIM reader, then its name must be “SIM[Slot]”.

• If the reader is a SD or micro SD reader, then its name must be “SD[slot]”.

• If the reader is an embedded SE reader, then its name must be “eSE[slot]”.

Slot is a decimal number without leading zeros. The numbering must start with 1 (e.g. SIM1, SIM2, … or SD1,
SD2, … or eSE1, eSE2, …). The slot number 1 for a reader is optional (SIM and SIM1 are both valid for the
first SIM reader, but if there are two readers then the second reader must be named SIM2). This applies also
for other SD or SE readers.

Return value
The reader name, as a String.

4.2.6.2 Method: SEService getSEService()

Return the SE service this reader is bound to.

Return value
The SEService object.

4.2.6.3 Method: Boolean isSecureElementPresent()

Check if a SE is present in this reader.

Return value
True if the SE is present, false otherwise.

Open Mobile API Specification – Public Release v3.3 32 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.6.4 Method: Session openSession()

Connects to a SE in this reader.

This method prepares (initializes) the SE for communication before the session object is returned (i.e. powers
the SE by ICC ON if it is not already on).

There might be multiple sessions opened at the same time on the same reader. The system ensures the
interleaving of APDUs between the respective sessions.

A Reader instance might not communicate with the SE during calls to openSession(), depending on the
implementation.

Return value
A Session object to be used to create channels. The creation of a Session object SHALL NOT depend
upon the availability of the basic or logical channels.

Errors

IOError If something went wrong when communicating with the SE or the reader.
Note: Implementations which do not communicate with the SE during
openSession() MAY NOT generate an IOError.

4.2.6.5 Method: Void closeSessions()

Close all the sessions opened on this reader. All the channels opened by all these sessions will be closed.

4.2.6.6 Method: Void registerReaderEventCallback(Reader:EventCallBack callback)

Register to receive asynchronous notifications from the Reader.

Where the Platform Binding uses callbacks, register the specified callback in the set of Reader callbacks.

In general, the order of dispatch of asynchronous notifications is undetermined.

If the asynchronous notification has been already registered the method does nothing.

Parameters

callback The event callback to be notified when an event occurs.

Return value
Void

Open Mobile API Specification – Public Release v3.3 33 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.6.7 Method: Boolean unregisterReaderEventCallback(Reader:EventCallBack
callback)

Unregister to receive asynchronous notifications from the Reader.

Parameters

callback The event callback to be unregistered from the callback set.

Return value

True The callback has been previously registered and has been
unregistered.

False The callback has not been previously registered.

Open Mobile API Specification – Public Release v3.3 34 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.7 Class: Session

Instances of this class represent a connection session to one of the SEs available on the device. These objects
can be used to get a communication channel with an applet in the SE. This channel can be the basic channel
or a logical channel.

4.2.7.1 Method: Reader getReader()

Get the reader that provides this session.

Return value
The Reader object.

4.2.7.2 Method: Byte[] getATR()

Get the ATR of this SE.

A Null value SHALL be returned if the ATR for this SE is not available.

Return value
The ATR as a byte array or Null.

4.2.7.3 Method: Void close()

Close the connection with the SE. This will close any channels opened by this application with this SE.

4.2.7.4 Method: Boolean isClosed()

Tells if this session is closed.

Return value
True if the session is closed, false otherwise.

4.2.7.5 Method: Void closeChannels()

Close any channels opened on this session.

Open Mobile API Specification – Public Release v3.3 35 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.7.6 Method: Channel openBasicChannel(Byte[] aid, Byte P2)

Get access to the basic channel, as defined in [ISO 7816-4] (the one that has number 0). The obtained object
is an instance of the channel class.

Once this channel has been opened by a device application, it is considered as ‘locked’ by this device
application, and other calls to this method SHALL return Null, until the channel is closed.

Some SE plug-ins, such as those handling UICC, may prevent the use of the Basic Channel. In these cases,
a Null value SHALL be returned.

When the SE plug-in supports use of the Basic Channel, the method SHALL be implemented as follows:

• If the AID is defined (the AID is not Null and the length of the AID is not 0) and the channel is not
locked then the corresponding applet SHALL be selected by sending a SELECT command as defined
below with the requested AID.

• If the AID is a 0 length AID and the channel is not locked, the method will select the Issuer Security
Domain of the SE by sending a SELECT command with a 0 length AID as defined in the
GlobalPlatform Card Specification [GPCS].

• If the AID is Null and the channel is not locked, then there are four possibilities:

o No applet has previously been selected (either explicitly by its AID or by selecting the Issuer
Security Domain as described above) on this channel since the SE was powered on. The implicit
default applet is therefore selected on the SE. In this case, the method SHALL NOT send a
SELECT command to the SE and it SHALL lock the channel for the calling application.

o An applet has previously been selected on this channel but a channel.close() (as defined in
section 4.2.8.1) has been executed successfully using a MANAGE CHANNEL Reset (P1 = 0x40)
command (i.e. if this command is supported by the SE). The implicit default applet is therefore
already selected on the SE. In this case, the method SHALL NOT send a SELECT command to the
SE and it SHALL lock the channel for the calling application.

o An applet has previously been selected on this channel but a channel.close() (as defined in
section 4.2.8.1) has been executed successfully using a SELECT command with 0 length AID (i.e.
because the MANAGE CHANNEL Reset command is not supported by the SE). The Issuer
Security Domain is therefore implicitly selected and it is not possible to reselect the implicit default
applet except by resetting the SE1. The method SHALL therefore return Null.

o If an applet was selected on this channel and no channel.close() has been executed
successfully, it is not possible to reselect the implicit default applet except by resetting the SE, so
the method does nothing and returns Null.

Note: Some types of SE plug-in, such as UICC, may restrict the use of the Basic Channel at lower layers. In
these cases a Null value SHALL be returned.

Note: Application developers using the Open Mobile API are advised not to rely on implicit selection due to
potentially different behavior depending on SE configuration (as defined above). Explicit selection by AID
avoids such issues.

P2 is normally 0x00. The device SHOULD allow any value for P2 and SHALL allow the following values:
0x00, 0x04, 0x08, 0x0C (as defined in [ISO 7816-4]).

1 [ISO 7816-4] allows the implicit default applet to be selected in the case where the SE is configured with
the ISD as the implicit default applet. However, the application using OMAPI cannot determine which applet
is selected by default; without this restriction, behavior seen by applications using OMAPI would depend on
SE configuration.

Open Mobile API Specification – Public Release v3.3 36 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

The implementation of the underlying SELECT command within this method SHALL be based on [ISO 7816-4]
with the following options:

CLA = 0x00

INS = 0xA4

P1 = 0x04 (Select by DF name/application identifier)

The select response data can be retrieved with getSelectResponse().

For the SELECT command, the API handles the received status word as defined in section 4.1.1, except that
for T=0 protocol, if an SW warning is received as the first response to the SELECT command, then the GET
RESPONSE with Le = 0x00 SHALL also be sent. If the status word for the SELECT command indicates that
the SE was able to open a channel (status word {0x90, 0x00} or status words referencing a warning {0x62,
0xXX} or {0x63, 0xXX}), the API SHALL keep the channel open and the next getSelectResponse()
SHALL return the status word for the SELECT command together with data, if any data is received.

Other status words for the SELECT command which indicate that the SE was not able to open a channel
indicate error conditions and the corresponding channel SHALL NOT be opened.

When a basic channel is opened the value of the attribute expectDataWithWarningSW SHALL be false.

The function without P2 as parameter is provided for backwards compatibility and will fall back to a select
command with P2 = 0x00.

Parameters

aid The AID of the applet to be selected on this channel, as a byte array,
or Null if no applet is to be selected.

P2 The P2 parameter of the SELECT APDU executed on this channel.

Return value
An instance of channel if available or Null.

Errors

IllegalParameterError If the AID length is not zero and is not within the range
(5 to 16).

IllegalStateError If an attempt is made to use an SE session that has been
closed.

SecurityError If the calling application cannot be granted access to this AID
or the default applet on this session.

NoSuchElementError If the AID on the SE is not available or cannot be selected.

OperationNotSupportedError If the given P2 parameter is not supported by the device.

IOError If there is a communication problem to the reader or the SE.

4.2.7.7 Method: Channel openBasicChannel(Byte[] aid)

This method is provided to ease the development of mobile applications and for backward compatibility with
existing applications. This method is equivalent to openBasicChannel(aid, P2=0x00).

Open Mobile API Specification – Public Release v3.3 37 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.7.8 Method: Channel openLogicalChannel(Byte[] aid, Byte P2)

Open a logical channel with the SE, selecting the applet represented by the given AID (when the AID is not
Null and the length of the AID is not 0).

This method SHALL first issue a MANAGE CHANNEL Open command followed, optionally, by a SELECT
command.

If the length of the AID is 0, the method will select the Issuer Security Domain of the SE by sending a SELECT
command with 0 length AID as defined in [GPCS].

If the AID is Null, the method SHALL only send a MANAGE CHANNEL Open and SHALL NOT send a
SELECT command. In this case, the default applet associated to the logical channel will be selected by default.

The MANAGE CHANNEL Open command SHALL be issued on basic channel (CLA encoding zero as channel
number).

P2 is normally 0x00. The device SHOULD allow any value for P2 and SHALL allow values: 0x00, 0x04,
0x08, 0x0C (as defined in [ISO 7816-4]).

In the case of a UICC, calls to openLogicalChannel() without a specific AID SHALL be rejected by
returning Null. This requirement does not apply to other types of Secure Element.

The implementation of the underlying SELECT command within this method SHALL be based on [ISO 7816-4]
with the following options:

CLA = 0x01 to 0x03, 0x40 to 0x4F

INS = 0xA4

P1 = 0x04 (Select by DF name/application identifier)

The select response data can be retrieved with Byte[] getSelectResponse().

For the SELECT command, the API SHALL handle received status word as defined in section 4.1.1, except
that for T=0 protocol the GET RESPONSE with Le = 0x00 SHALL also be sent in case of SW warning received
as first response of the SELECT command. If the status word for the SELECT command indicates that the SE
was able to open a channel (status word {0x90, 0x00} or status words referencing a warning {0x62, 0xXX}
or {0x63, 0xXX}), the API SHALL keep the channel open and the next getSelectResponse() SHALL
return the status word for the SELECT command together with data, if any data is received.

Other status words for the SELECT command which indicate that the SE was not able to open a channel
indicate error conditions and the corresponding channel SHALL NOT be opened.

When a logical channel is opened, the value of the attribute expectDataWithWarningSW SHALL be false.

The function without P2 as parameter is provided for backwards compatibility and will fall back to a select
command with P2 = 0x00.

Parameters

aid The AID of the applet to be selected on this channel, as a byte array.

P2 The P2 parameter of the SELECT APDU executed on this channel.

Return value
An instance of channel. Null if the SE is unable to provide a new logical channel or is unable to
retrieve Access Control rules due to the lack of an available logical channel.

Open Mobile API Specification – Public Release v3.3 38 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Errors

IllegalParameterError If the length of aid is not zero and is not within 5 to 16
(inclusive).

IllegalStateError If the SE is used after being closed.

SecurityError If the calling application cannot be granted access to this AID or
the default applet on this session.
Note: Failure in retrieving rules due to the lack of an available
logical channel (and only this failure) SHALL result in a Null
return value and not a security exception. This is in line with
[GPCS], as the access to the SE applet will be denied anyway.

NoSuchElementError If the AID on the SE is not available or cannot be selected or a
logical channel is already open to a non-multiselectable applet.

OperationNotSupportedError If the given P2 parameter is not supported by the device.

IOError If there is a communication problem to the reader or the SE.

4.2.7.9 Method: Channel openLogicalChannel(Byte[] aid)

This method is provided to ease the development of mobile applications and for backward compatibility with
existing applications. This method is equivalent to openLogicalChannel(aid, P2=0x00).

Open Mobile API Specification – Public Release v3.3 39 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.8 Class: Channel

Instances of this class represent an [ISO 7816-4] channel opened to a SE. It can be either a logical channel
or the basic channel.

They can be used to send APDUs to the SE. Channels are opened by calling the
Session.openBasicChannel() or Session.openLogicalChannel()methods.

4.2.8.1 Method: Void close()

Closes this channel to the SE. If the method is called when the channel is already closed, this method SHALL
be ignored.

The close() method SHALL wait for completion of any pending transmit(byte[] command) before
closing the channel.

If the channel is not the basic channel, then a MANAGE CHANNEL Close (P1 = 0x80) command SHALL be
sent to the Secure Element for closing the channel.

If the channel is the basic channel, then the following procedure must be followed for closing the channel:

1. Send a MANAGE CHANNEL Reset (P1 = 0x40) command, as defined by [ISO 7816-4].

2. If previous command is not supported by the card (i.e. card returns an error SW), then SELECT by DF
Name (P1 = 0x04; P2 = 0x00) command SHALL be sent with an empty AID (Lc = 0x00). All data
returned for the SELECT by DF Name command SHALL be discarded.

In all cases, the last SW of the MANAGE CHANNEL Close; MANAGE CHANNEL Reset or SELECT by DF
Name command SHALL be ignored and the channel object SHALL be closed by the API.

4.2.8.2 Method: Boolean isBasicChannel()

Returns a Boolean indicating whether this channel is the basic channel.

Return value
True if this channel is a basic channel.

False if this channel is a logical channel.

4.2.8.3 Method: Boolean isClosed()

Tells if this channel is closed.

Return value
True if the channel is closed, false otherwise.

Open Mobile API Specification – Public Release v3.3 40 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.8.4 Method: Byte[] getSelectResponse()

Returns the data as received from the application select command, including the status word received at applet
selection.

The returned byte array contains the data bytes in the following order:

[<first data byte>, …, <last data byte>, <sw1>, <sw2>]

Return value
• The data as returned by the application select command inclusive of the status word.

• Only the status word if the application select command has no returned data.

• Null if an application select command has not been performed or the selection response cannot be
retrieved by the reader implementation.

4.2.8.5 Method: Session getSession()

Get the session that has opened this channel.

Return value
The Session object this channel is bound to.

Open Mobile API Specification – Public Release v3.3 41 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.8.6 Method: Void setTransmitBehaviour(Boolean expectDataWithWarningSW)

Sets the expected behavior of the transmit() method for handling the first received warning SW ({0x62,
0xXX} or {0x63, 0xXX}). The method applies only for T=0 protocol and only when transmitting case 4
APDU and only for the first received SW warning ({0x62, 0xXX} or {0x63, 0xXX}). It applies only for this
channel object. When opening a new channel object the default value of the expectDataWithWarningSW
attribute SHALL be false.

Note: Developers of Card Applets intended to be used from the Open Mobile API SHOULD avoid
implementation of warning behavior which requires the use of expectDataWithWarningSW to avoid possible
confusion on the part of device application developers on the operation of this special-case handling for case 4
APDU.

Some Platform Bindings might not implement setTransmitBehaviour(). When a Platform Binding does
not implement this API, the Platform Binding SHALL behave as though the expectDataWithWarningSW
attribute is false.

Parameter

expectDataWithWarningSW • When set to false: The underlying implementation of the
transmit() method SHALL issue a GET RESPONSE
command only after receiving a {0x61, 0xXX} SW (as defined
in section 4.1.1).

• When set to true:
o If the SE returns data and warning SW ({0x62, 0xXX} or

{0x63, 0xXX}), the returned data and the warning SW
SHALL be provided to the calling Mobile Application and GET
RESPONSE SHALL NOT be sent.

o If the SE returns a warning SW ({0x62, 0xXX} or {0x63,
0xXX}) without data, the API SHALL issue a GET
RESPONSE with Le = 0x00. After sending the GET
RESPONSE with Le = 0x00, general rules specified in
section 4.1.1 SHALL apply for retrieving the data. If all the
available data was successfully retrieved – i.e. the last status
word is {0x90, 0x00} or a warning status word
({0x63, 0xXX}, {0x63, 0xXX}) – then the API SHALL
return the data together with the first received warning status
word (i.e. the warning status word received for the command
APDU sent in the transmit() method). In consequence the
last success or warning status word SHALL be ignored.
Note: If the SE has no data to provide back after sending the
warning SW, the GET RESPONSE will trigger an error on the
SE. So, when setting the value to true, it is strongly
recommended to check that the SE applet will have data to
provide back to the calling application in case of any warning
status word returned by the applet.

Open Mobile API Specification – Public Release v3.3 42 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.2.8.7 Method: Byte[] transmit(Byte[] command)

Transmit an APDU command (as per ISO/IEC 7816) to the SE. The underlying layers generate as many
TPDUs as necessary to transport this APDU. The transport part is invisible from the application. The generated
response is the response of the APDU which means that all protocol related responses are handled inside the
API or the underlying implementation.

The system ensures the synchronization between all the concurrent calls to this method, and that only one
APDU will be sent at a time, irrespective of the number of TPDUs that might be required to transport it to the
SE. The entire APDU communication to this SE is locked during the execution of the transmit() method.

The API SHALL ensure that all available data returned from the SE, including concatenated responses, are
retrieved and made available to the calling application, as defined by ISO 7816. The OMAPI implementation,
or underlying layer, SHALL handle the received status words as defined in section 4.1.1 and according to the
attribute expectDataWithWarningSW – see section 4.2.8.6. The channel SHALL NOT be closed even if the
SE answers with an error status word.

The API (or underlying implementation) will manage all the required information to ensure the APDU is
transmitted on the appropriate channel:

• the channel information in the class byte of the APDU provided by the mobile application will be
ignored.

• class byte will be updated with the correct channel information.

The API implementation SHALL be able to send all valid APDU commands as defined by ISO 7816. The only
restrictions on the set of commands that can be sent by the transmit() method are:

• MANAGE_CHANNEL commands are not allowed.

• SELECT by DF Name (P1 = 0x04) commands are not allowed.

• Invalid APDU commands according to ISO 7816 are not allowed.

The transmit() method SHALL support extended length APDU commands with a length of at least
2048 bytes.

Parameters

command The APDU command to be transmitted, as a byte array.

Return value
The response received, as a byte array. The returned byte array contains the data bytes in the following
order: {<first data byte>, …, <last data byte>, <sw1>, <sw2>}.

Open Mobile API Specification – Public Release v3.3 43 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Errors

NullPointerError If command is Null.

IllegalParameterError • The command byte array is less than 4 bytes long.
• Lc byte is inconsistent with the length of the byte array.
• CLA byte is invalid according to [ISO 7816-4] (0xFF).
• INS byte is invalid according to [ISO 7816-4] (0x6X or 0x9X).

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the command is filtered by the security policy.

IOError If there is a communication problem to the reader or the SE.

4.2.8.8 Method: Boolean selectNext()

Performs a selection of the next applet on this channel that matches to the partial AID specified in the
openBasicChannel() or openLogicalChannel() method. This mechanism can be used by a device
application to iterate through all applets matching to the same partial AID.

If selectNext() returns true, a new applet was successfully selected on this channel. If no further applet
exists with matches to the partial AID, this method returns false and the applet already selected stays
selected.

Since the API cannot distinguish between a partial and full AID, the API SHALL rely on the response of the
SE for the return value of this method.

The implementation of the underlying SELECT command within this method SHALL use the same values as
the corresponding openBasicChannel() or openLogicalChannel() command with the option:

P2 = 0x02 (Next occurrence)

For the SELECT command, the API SHALL handle received status word as defined in section 4.1.1, except
that for T=0 protocol the GET RESPONSE SHALL also be sent in case of SW warning. If the status word for
the SELECT command is {0x90, 0x00}, {0x62, 0xXX}, or {0x63, 0xXX}, the API SHALL keep the
channel open and the next getSelectResponse() SHALL return the status word for the SELECT command
together with data, if any data is received.

The select response stored in the channel object, SHALL be updated with the APDU response of the SELECT
command.

Return value
True if a new applet was selected on this channel.

False if the applet already selected stays selected on this channel.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

OperationNotSupportedError If this operation is not supported by the card.

IOError If there is a communication problem to the reader or the SE.

Open Mobile API Specification – Public Release v3.3 44 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5 Service Layer APIs (Deprecated)
The Service APIs as part of the Open Mobile API provide a framework to access SEs available in the mobile
device with high level interfaces. The Service APIs are deprecated, and will be removed from a future version
of the Specification.

5.1 Overview

The Open Mobile API contains a Service API on top of the Transport API for providing high level API methods
for different purposes. The Service API relies on the Transport API to establish communication with the applets
within the SE. The Service API consists of different APIs specialized for different purposes. Normally each
specialized API requires a counterpart on the SE side (e.g. an SE applet providing a defined set of APDUs).

Figure 5-1: Service API Overview

Note:

The use of the Service Layer API requires SE access rights (see section 8 for more information on SE
access rights).

Since all operations within the Service API layer are based on the Transport API, all error conditions of the
corresponding transport classes can be thrown in the service layer although they are not explicitly named.
For example, a call to AuthenticationProvider::verifyPin() can cause an IOError because the
implementation uses the Channel.transmit() API call internally.

Secure Element (SE)

Applet or OS with ISO/
IEC7816-4 file system

Mobile Device

Open Mobile API

Transport API

Service API

File Service

Applet or OS with ISO/
IEC7816-4 PIN commands

Authentication Service

Applet or OS with PKCS#15
structures

PKCS#15 Service

Secure Storage Applet

Secure Storage Service ...

Open Mobile API Specification – Public Release v3.3 45 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2 Class Diagram

This class diagram contains the Service API besides the Transport API. The Service API consists of a set of
classes derived from the base class Provider. The Crypto API is not part of this diagram, but it is also a
component of the Service API. The Crypto API relies on existing APIs in the REE and realizes SE
communication via the Transport API.

Figure 5-2: Service API Class Diagram with Provider Classes

*

Reader

String getName()
Session openSession()
void closeSessions()
boolean isSecureElementPresent()
SEService getSEService()
void registerReaderEventCallback(ReaderEventCallback)
boolean unregisterReaderEventCallback(ReaderEventCallback)

SEService
SEService()
int getVersion()
boolean isServiceConnected()
Reader getReaders()
void shutdown()

Callback

serviceConnected(SEService)

Session
Reader getReader()
Channel openBasicChannel(byte[] aid)
Channel openBasicChannel(byte[] aid)
Channel openLogicalChannel(byte[] aid, byte P2)
Channel openLogicalChannel(byte[] aid, byte P2)
void close()
boolean isClosed()
byte getATR()
void closeChannels()

Channel
void close()
boolean isBasicChannel()
void setTransmitBehaviour (boolean expectDataWithWarningSW)
byte[] transmit(byte[] command)
Session getSession()
boolean isClosed()
byte[] getSelectResponse()
boolean selectNext()

Provider

Provider(Channel channel)
Channel getChannel()

PKCS15Provider

PKCS15Provider(Channel channel)

Path decodePath(byte[] der)
Path[] getAuthObjPaths()
Path[] getCertificatePaths()
Path[] getDataObjPaths()
byte[] getODF()
Path[] getPrivateKeyPaths()
Path[] getPublicKeyPaths()
byte[] getTokenInfo()
byte[] readFile (Path path)
byte[] searchOID(byte[] dodf, String oid)

AuthenticationProvider

AuthenticationProvider(Channel)

void activatePin(PinID pinID, byte[] pin)
void changePin(PinID pinID, byte[] oldPin, byte[] newPin)
void deactivatePin(PinID pinID, byte[] pin)
int getRetryCounter(PinID pinID)
void resetPin(PinID pinID, byte[] resetPin, byte[] newPin)
boolean verifyPin(PinID pinID, byte[] pin)

FileViewProvider
FileViewProvider(Channel channel)

byte[] readBinary(int sfi, int offset, int length)
Record readRecord(int sfi, int recID)
int[] searchRecord(int sfi, byte[] searchPattern)
FCP selectByFID(int fileID)
FCP selectByPath(String path, boolean fromCurrentDF)
FCP selectParent()
void writeRecord(int sfi, Record rec)
void writeBinary(int sfi, byte[] data, int offset, int length)

SecureStorageProvider

SecureStorageProvider(Channel channel)

void create(String title, byte[] data)
void update(String title, byte[] data)
byte[] read(String title)
boolean exist(String title)
boolean delete(String title)
void deleteAll()
String[]list()

Path

Path(byte[] path)
Path (byte[] path, int index, int length)

byte[] encode()
int getIndex()
int getLength()
byte[] getPath()
Boolean hasIndexLength()

PinID

PinID(int id, boolean local)

int getID()
boolean isLocal()

FCP

byte[] getFCP()
int getFID()
int getFileSize()
int getFileStructure()
int getFileType()
int getLCS()
int getMaxRecordSize()
int getNumberOfRecords()
int getSFI()
int getTotalFileSize()

Record

Record(int id, byte[] data)
byte[] getData()
int getID()

*

*

ReaderEventCallback

Reader getReader()
int getEventType()

Open Mobile API Specification – Public Release v3.3 46 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Besides these Provider classes, the Service API contains a SEDiscovery class which provides a discovery
mechanism that can be used for SE selection by defined criteria.

Figure 5-3: Service API Class Diagram with SEDiscovery Classes
Reader

String getName()
Session openSession()
void closeSessions()
boolean isSecureElementPresent()
SEService getSEService()
void registerReaderEventCallback(ReaderEventCallback)
boolean unregisterReaderEventCallback(ReaderEventCallback)

SEService
SEService()
int getVersion()
boolean isServiceConnected()
Reader getReaders()
void shutdown()

Callback

serviceConnected(SEService)

Session
Reader getReader()
Channel openBasicChannel(byte[] aid)
Channel openBasicChannel(byte[] aid)
Channel openLogicalChannel(byte[] aid, byte P2)
Channel openLogicalChannel(byte[] aid, byte P2)
void close()
boolean isClosed()
byte getATR()
void closeChannels()

Channel
void close()
boolean isBasicChannel()
void setTransmitBehaviour

(boolean expectDataWithWarningSW)
byte[] transmit(byte[] command)
Session getSession()
boolean isClosed()
byte[] getSelectResponse()
boolean selectNext()

*

SERecognizer

boolean isMatching(Session session))

SERecognizerByAID

SERecognizerByAID(byte[] aid)

boolean isMatching(Session session)

SERecognizerByHistoricalBytes

SERecognizerByHistoricalBytes(byte[] values)

boolean isMatching(Session session)

SERecognizerByATR

SERecognizerByATR(byte[] atr, byte[] mask)

boolean isMatching(Session session)

SEDiscovery

SEDiscovery(SEService service, SERecognizer rec)

Reader getFirstMatch()
Reader getNextMatch()

ReaderEventCallback

Reader getReader()
int getEventType()

*

*

Open Mobile API Specification – Public Release v3.3 47 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.3 Usage Pattern

The usage pattern of the Service API is as follows:

1. The application gets access to the SE service(s):

It creates a SEService class, passing an object implementing the SEService.Callback interface, whose
serviceConnected() method is called asynchronously when the connection is established. This does
not represent a connection with the SE itself, but with the subsystem implementing the SE access
functionality.

2. The application enumerates the available readers.

Readers are the slots where SEs are connected (in a removable or non-removable manner).

Once the user or an application-specific algorithm has selected a reader, then the application opens a
session on this reader. The right reader can also be chosen by using the Discovery API. The Discovery
API allows different criteria to be defined (ATR, AID, …) for finding an appropriate SE and applet in an
SE. Finally, the Discovery API allows iterating through the readers containing an SE with the defined
criteria.

3. With this session, the application can retrieve the ATR of the SE, and if it matches with one of the
known ATRs, it can start opening channels with applets in the SE.

4. To open a channel, the application will use the AID of the applet or use the default applet on the newly
opened channel. The application is in charge of selecting an applet which fits the specific Provider
class that will be chosen in the next step for SE operations.

5. The application creates an instance of a certain Provider class depending on the application’s
intention. If the intention is to read files from the SE’s file system, the FileViewProvider has to be
chosen. The application has to consign the communication channel (established in the step before) to
the Provider before the Provider instance can be used for SE operations.

6. Then the terminal application can start performing operations on the selected applet in the SE with the
help of the provider’s methods. If a FileViewProvider instance was created for reading files from the
SE’s file system, the application can use the FileViewProvider’s methods readBinary() or
readRecord().

7. The terminal application can also use several Provider instances alternately on the same channel or it
can use the transmit() method of the Transport Layer to send any APDUs directly to the SE on
that channel. This option is especially useful if the application needs to perform different operations on
the same channel. This could happen for example if the application needs to read a file from the SE’s
file system that requires a successful PIN verification on the same channel as before. In this case, the
terminal application can instantiate an Authentication class which provides the verifyPin()
method. After the successful PIN verification via the AuthenticationProvider, the FileViewProvider can
be used to read the file from the SE’s file system. Since the SE usually manages the PIN verification
individually for each logical channel, it is important to apply the AuthenticationProvider and
FileViewProvider on the same channel.

8. Once done, the application can close any existing channels, or even sessions, and its connection to
the SEService.

Open Mobile API Specification – Public Release v3.3 48 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.4 Service API Framework

The Open Mobile API provides a set of service layer classes with high level methods for SE operations.

5.4.1 Class: Provider

This Provider class (realized as interface or abstract class) is the base class for all service layer classes. Each
service layer class provides a set of methods for a certain aspect (file management, PIN authentication,
[PKCS #15] structure handling, etc.) and acts as a provider for service routines. All Provider classes need an
open channel for communication with the SE. As such, before a certain Provider class can be used for SE
operations, the channel has to be consigned. For performing different operations (PIN authentication, file
operation, etc.) the Provider classes can be easily combined by using the same channel for different Provider
classes and alternately calling methods of these different providers. It has to be considered that each Provider
class needs a counterpart on the SE side (e.g. an applet with a standardized APDU interface as required by
the Provider class). The application using a Provider class for SE interactions is in charge of assigning a
channel to the Provider where the Provider’s SE counterpart applet is already preselected.

5.4.1.1 Constructor: Provider(Channel channel)

Encapsulates the defined channel by a Provider object that can be used for performing a service operation on
it. This constructor has to be called by derived Provider classes during the instantiation.

Parameters

channel The channel to be used by this Provider for service operations.

Errors

IllegalStateError If an attempt is made to use an SE session that has been closed.

5.4.1.2 Method: Channel getChannel()

Returns the channel that is used by this provider.

This returned channel can also be used by other providers.

Return value
The channel instance that is used by this provider.

Open Mobile API Specification – Public Release v3.3 49 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5 Crypto API

The Crypto API that is native to the mobile operating system SHALL be used.

For SE vendors, it guarantees that the crypto functionality offered by the SEs will be seen at the same level
as others.

Application developers should be careful to choose the crypto functionality provided by the SE when
enumerating the available crypto providers.

For example, in a Java environment, it is recommended to use the Java Crypto Extension as the Java binding
of the Crypto API. More information on the JCE can be found in [Java Crypto].

[Java Crypto] serves two purposes:

• It contains information about the API side of the Java Cryptography Architecture, that may be used by
developers to learn how to use this API.

• It contains information about the SPI (Service Provider Interface) side of the Java Cryptography
Architecture, i.e. how to add new cryptography capabilities to a Java platform, by implementing a
Provider, and how to declare and use the new providers.

In a native environment, where C/C++ is used as the programming language, it is recommended to use
PKCS #11 as the native binding of the Crypto API. More information on PKCS #11 can be found in the
PKCS #11 standard [PKCS #11].

In a mixed environment where Java and C/C++ are cohabiting, the PKCS #11 implementations should be
made available to the Java applications. This is typically done by defining a JCE Provider for PKCS #11, that
behaves as a Java binding for PKCS #11.

The following is an example of such a mixed architecture.

Open Mobile API Specification – Public Release v3.3 50 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-4: Crypto API Architecture

5.5.1 Extensibility

A requirement of this API is to provide the functionality to add system wide crypto providers during runtime
(without flashing the device) to support the different card implementations in the field.

For example, in a Java environment, the JCE provider architecture should be used to declare new providers
(by SE vendors) and to lookup for JCE providers (by application developers).

In a native environment, a mechanism to declare new PKCS #11 implementation (typically as shared libraries)
must be available (to be used by PKCS #11 implementers), and reciprocally a mechanism to choose between
the available PKCS #11 libraries must be available (to be used by application developers).

5.5.2 Extending by Shared Libraries

On systems that support the use of shared libraries, this mechanism can be used to provide new
implementations of crypto providers. For example, PKCS #11 implementations can be provided as shared
libraries. The mechanism to register and discover these shared libraries is yet to be defined (it is not part of
PKCS #11).

 Native
Application

Java
Application

Java
Application

SE1 SE3SE2

Transport API

P11 for
SE2

P11 for
SE1

Java JCE interface

Generic P11
JCE

Provider

SE3
JCE

Provider

Native Code

Java Code

System provided
code

Secure
Element

Open Mobile API Specification – Public Release v3.3 51 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.3 Extending Functionality via Applications

On systems where extensibility can only be achieved by installing new applications, and which provide a way
to perform inter-application communication (e.g. IPC), a plug-in mechanism can be used.

A generic provider based on the IPC capabilities can be offered by the system, to be used by the applications.
The role of this generic provider is to lookup for plug-in applications implementing a specific crypto service
interface, list them to the crypto-aware applications (enumerated as regular crypto providers), and when a
crypto-aware application selects a particular provider, establish the connection to the plug-in application
actually implementing the crypto operations and forward all the requests thanks to the IPC mechanism.

The following is an illustration of such an implementation on a Java-based environment, using a JCE provider
(the same could apply to a native-based environment, using a PKCS #11 library):

Figure 5-5: Crypto API Architecture with Plug-in Applications

With this architecture, when support for a new type of SE providing crypto services has to be added to the
system, it is just a matter of installing a new plug-in application implementing the protocol to interact properly
with this new type of crypto provider.

Java

Application
Java

Application

SE1 SE3SE2

Transport API

Java JCE interface

Generic IPC
JCE

Provider

SE3
JCE

Provider

IPC

IP
C

Java Code

System provided
code

Secure Element

SE1 Plugin
Application

SE1 Plugin
Application

Application
implementing the crypto
plugin interface

Open Mobile API Specification – Public Release v3.3 52 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.5.4 Integration with the Transport API

The Crypto API(s) should be implemented on top of the Transport API; if it is not, the system should behave
as if it was. For example, if the Crypto API requires access to the basic channel of a SE, then it is subject to
the same rules as the other applications: access to the basic channel is provided only if the application calling
the Crypto API is authorized to access the basic channel, and if it is currently not locked. In the same way, if
the basic channel is locked by the Crypto API, it is not available to other applications.

If the PKCS #11 libraries are implemented on top of a PC/SC layer or an equivalent layer that gives a reader-
access level, then it is recommended that APDUs sent over this layer are filtered and processed to be
translated into commands for the Transport API.

For example, if a native application sends a MANAGE_CHANNEL command and then a
SELECT_BY_DF_NAME command, this should be translated into a call to openLogicalChannel().

Open Mobile API Specification – Public Release v3.3 53 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6 Discovery API

This API provides means for the applications to lookup a SE, based on a search criterion. The rationale behind
such an API is to factorize this lookup code in a system-provided API, reducing the development cost of this
part of each application.

This API relies on an object-oriented approach: the lookup method is shared, but the criterion is implemented
as a separate class that can be derived. A set of basic criterion class is provided, they include:

• Search by ATR

• Search by historical bytes

• Search by AID

If these basic research criteria are not sufficient to fulfil a specific application’s needs, then the application can
provide its own criterion object. This object will have its isMatching() method called for each SE present
in the system, and will be able to use the Transport API (or any other Service API) to implement a specific
matching algorithm. Examples of such specific algorithm are:

• Analysis of EFdir file (if available)

• Analysis of GlobalPlatform Status information (if available)

Figure 5-6: Discovery Mechanism

d = SEDiscovery(<SE matching criteria>)

Reader = d.getFirstMatch()

Reader = d.getNextMatch()

Open Mobile API Specification – Public Release v3.3 54 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.1 Class: SEDiscovery

Instances of this class must be created by the applications to start a discovery process.

When created, they are configured with a SEService and an object that will perform the recognition algorithm.

5.6.1.1 Constructor: SEDiscovery (SEService service, SERecognizer recognizer)

Creates a discovery object that will perform a discovery algorithm specified by the recognizer object, and will
be applied to the given SEService.

Parameters

service The SEService used to perform the discovery. Cannot be Null.

recognizer An SERecognizer instance, whose isMatching() will be called.
Cannot be Null.

Errors

IllegalParameterError If one of the parameters is Null.

5.6.1.2 Method: Reader getFirstMatch()

Returns the first SE reader containing a SE that matches the search criterion.

Actually starts a full discovery process:

• SE readers are enumerated.

• For the first reader, if a SE is present, open a session.

• On this session, call the isMatching() method of the SERecognizer object given at construction
time.

• Close the session.

• If the isMatching() method returns false, the process is continued with the next reader.

• If the isMatching() method returns true, the reader object is returned.

The sessions used by the discovery process are closed to avoid the risk of leaks: if they were opened and
returned to the caller, there would be a risk that the caller would forget to close them.

Calling getFirstMatch() twice simply restarts the discovery process (e.g. probably returns the same result,
unless a SE has been removed).

Return Value
The first matching SE reader, or Null if there is none.

Errors
NONE. All errors must be caught within the implementation.

Open Mobile API Specification – Public Release v3.3 55 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.1.3 Method: Reader getNextMatch()

Returns the next SE reader containing a SE that matches the search criterion.

Actually continues the discovery process:

• For the next reader in the enumeration, if a SE is present, open a session.

• On this session, call the isMatching() method of the SERecognizer object given at construction
time.

• The session is closed.

• If the isMatching() method returns false, the process is continued with the next reader.

• If the isMatching() method returns true, the reader object is returned.

Return Value
The next matching SE reader, or Null if there is none.

Errors

IllegalStateError If the getNextMatch() method is called without having previously
called getFirstMatch() since the creation of the SEDiscovery
object or since the last call to getFirstMatch() or
getNextMatch() that returned Null.

5.6.2 Class: SERecognizer

Base class for recognizer classes.

Extended by system-provided recognizers, or by custom recognizers.

5.6.2.1 Method: Boolean isMatching(Session session)

This method will be called during the discovery process, once for each SE that is present. Application
developers can use the given session object to perform any discovery algorithm they think is appropriate. They
can use the Transport API or any other API, conforming to access control rules and policy, as they would with
regular application code (i.e. this is not privileged code).

Parameters

session A session object that is used to perform the discovery. Never Null.

Return value
A Boolean indicating whether the SE to which the given session has been open is matching with the recognition
criterion implemented by this method.

Errors
NONE. All errors must be caught within the implementation of the method, and must be indicated by
returning false.

Open Mobile API Specification – Public Release v3.3 56 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.6.3 Class: SERecognizerByATR

Instances of this class can be used to find a SE with a specific ATR (or ATR pattern).

5.6.3.1 Constructor: SERecognizerByATR (byte[] atr, byte[] mask)

Parameters

atr Byte array containing the ATR bytes values that are searched for.

mask Byte array containing an AND-mask to be applied to the SE ATR
values before comparing them with the parameter atr.

Errors

IllegalParameterError If ATR is invalid.

5.6.4 Class: SERecognizerByHistoricalBytes

Instances of this class can be used to find a SE with a specific value in their historical bytes.

5.6.4.1 Constructor: SERecognizerByHistoricalBytes (byte[] values)

Parameters

values Byte array, to be checked for presence in the historical bytes.

Errors

IllegalParameterError If historical bytes are invalid.

5.6.5 Class: SERecognizerByAID

Instances of this class can be used to find a SE implementing a specific applet, identified by its AID. The
presence of such an applet is verified by trying to open a channel to this applet. The opened channel, if any,
is closed before the end of the isMatching() method.

5.6.5.1 Constructor: SERecognizerByAID (byte[] aid)

Parameters

aid Byte array holding the AID to be checked for presence.

Errors

IllegalParameterError If AID is invalid.

Open Mobile API Specification – Public Release v3.3 57 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7 File Management

API for file management to read and write the content of files in an [ISO 7816-4] compliant file system provided
by the SE’s REE or applet (installed in the SE).

Figure 5-7: File Management Overview

5.7.1 Class: FileViewProvider

This Provider class simplifies file operations on SEs with a file structure specified in [ISO 7816-4].

Methods are provided that allow file content to be read or written. If the read or write operation is not allowed
because security conditions are not satisfied, a SecurityError will be returned. It must be considered that a file
operation can only be applied onto a file which has a corresponding structure.

Prerequisites
This Provider requires an [ISO 7816-4] compliant file system on the SE. If this file system is implemented by
an applet within the SE then this applet must be preselected before this Provider can be used, in case that the
applet is not already selected (e.g. the GSM Applet as a default selected applet on a UICC).

Notes:

• If used by multiple threads, synchronization is up to the application.

• Each operation needs access to the SE. If access cannot be granted because of a closed channel or
a missing security condition, the called method will return an error.

• Using the basic channel for accessing the file system of the UICC (provided by the default selected
GSM Applet) implies the risk of interferences from the baseband controller, as the baseband controller
works internally on the basic channel and can modify the current file selected state on the basic
channel anytime. This means a file selection performed by this FileViewProvider does not guarantee a
permanent file selection state on the UICC’s basic channel and care has to be taken to ensure the
application using the FileViewProvider has the needed file selection state. The FileViewProvider itself
cannot avoid interferences from the baseband controller on the basic channel, but the risk could be
minimized if the application using the FileViewProvider performs implicit selections for the file
operation or performs the file selection immediately before the file operation.

Secure Element (SE)

Applet or OS with ISO/
IEC7816-4 file system

Mobile Device

Open Mobile API

Transport API

Service API

File Service

Open Mobile API Specification – Public Release v3.3 58 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.1 Constant: CURRENT_FILE

Indicates for file operation methods that the currently selected file SHALL be used for the file operation.

5.7.1.2 Constant: INFO_NOT_AVAILABLE

Indicates that the demanded information is not available.

5.7.1.3 Constructor: FileViewProvider(Channel channel)

Encapsulates the defined channel by a FileViewProvider object that can be used for performing file operations
on it.

Parameters

channel The channel to be used by this Provider for file operations.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

Note: A file must be selected before a file operation can be performed. The file can be implicitly selected via
a short file identifier (SFI), by the file operation method itself, or explicitly by defining the file ID (FID) with
selectByFID() or path with selectByPath().

Open Mobile API Specification – Public Release v3.3 59 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.4 Method: FCP selectByPath(String path, Boolean fromCurrentDF)

Selects the file specified by a path.

The path references the SE file by a path (concatenation of file IDs and the order of the file IDs is always in
the direction ‘parent to child’) in the following notation: “DF1:DF2:EF1”; e.g. “0023:0034:0043”. The defined
path is applied to the SE as specified in [ISO 7816-4].

Note: For performing read or write operations on a file, the last node in the path must reference an EF that
can be read or written.

Parameters

path The path that references a file (DF or EF) on the SE. This
path SHALL NOT contain the current DF or MF at the
beginning of the path.

fromCurrentDF If true then the path is selected from the current DF,
if false then the path is selected from the MF.

Return value
The FCP containing information about the selected file.

Errors

IllegalParameterError If the defined path is invalid.

IllegalStateError If an attempt is made to use an SE session or channel that
has been closed.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected.

OperationNotSupportedError If this operation is not supported.

Notes:

• A file must be selected before a file operation can be performed.

• This method is based on the [ISO 7816-4] command SELECT.

Open Mobile API Specification – Public Release v3.3 60 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.5 Method: FCP selectByFID(int fileID)

Selects the file specified by the FID.

The fileID references the SE file (DF or EF) by a FID. The FID consists of a two-byte value as defined in
[ISO 7816-4].

Parameters

fileID The FID that references the file (DF or EF) on the SE. The FID must
be in the range of (0x0000-0xFFFF).

Return value
The FCP containing information about the selected file.

Errors

IllegalParameterError If fileID is not valid.

IllegalStateError If an attempt is made to use an SE session or channel that
has been closed.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected.

OperationNotSupportedError If this operation is not supported.

Notes:

• A file must be selected before a file operation can be performed.

• This method is based on the [ISO 7816-4] command SELECT.

Open Mobile API Specification – Public Release v3.3 61 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.6 Method: FCP selectParent()

Selects the parent DF of the current DF.

The parent DF of the currently selected file is selected according to [ISO 7816-4].

If the currently selected file has no parent, then nothing will be done.

Return value
The FCP containing information about the selected file.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected.

OperationNotSupportedError If this operation is not supported.

Notes:

• A file must be selected before a file operation can be performed.

• This method is based on the [ISO 7816-4] command SELECT.

Open Mobile API Specification – Public Release v3.3 62 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.7 Method: Record readRecord(int sfi, int recID)

Returns the record which corresponds to the specified record ID. If the record is not found, then Null will be
returned.

Parameters

sfi The SFI of the file to be selected for this read operation.
CURRENT_FILE can be applied if the file is already selected.
sfi must be in the range of (1-30).

recID The record ID that references the record to be read.

Return value
The record which corresponds to the specified record ID.

Errors

IllegalStateError • If the used channel is closed.
• If no file is currently selected.
• If the currently selected file is not a record based file.
• If the record could not be read.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected via SFI.

IllegalParameterError • If the defined SFI is not valid.
• If the defined record ID is invalid.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command READ RECORD.

Open Mobile API Specification – Public Release v3.3 63 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.8 Method: void writeRecord(int sfi, Record rec)

Writes a record into the specified file.

Parameters

sfi The SFI of the file to be selected for this write operation.
CURRENT_FILE can be applied if the file is already selected.
sfi must be in the range of (1-30).

rec The Record to be written.

Errors

IllegalStateError • If the used channel is closed.
• If no file is currently selected.
• If the currently selected file is not a record based file.
• If the record could not be written.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected via SFI.

IllegalParameterError • If the defined record is invalid.
• If the defined SFI is not valid.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command APPEND RECORD and UPDATE RECORD
(which replaces existing bytes).

Open Mobile API Specification – Public Release v3.3 64 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.9 Method: int[] searchRecord(int sfi, byte[] searchPattern)

Returns the record numbers that contain the defined search pattern.

Parameters

sfi The SFI of the file to be selected for this search operation.
CURRENT_FILE can be applied if the file is already selected. sfi
must be in the range of (1-30).

searchPattern The pattern to be matched with records.

Return value
A list of record numbers (position 1..n of the record in the file) of the records that match the search
pattern. If no record matches, then Null will be returned.

Errors

IllegalParameterError If the defined SFI is not valid.

IllegalStateError • If the used channel is closed.
• If no file is currently selected.
• If the currently selected file is not a record based file.
• If the search pattern is empty.
• If the search pattern is too long.
• If the data could not be searched.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected via SFI.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command SEARCH RECORD with simple search.

Open Mobile API Specification – Public Release v3.3 65 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.10 Method: byte[] readBinary(int sfi, int offset, int length)

Reads content of the selected transparent file at the position specified by offset and length.

Parameters

sfi The SFI of the file to be selected for this read operation.
CURRENT_FILE can be applied if the file is already selected. sfi
must be in the range of (1-30).

offset Defines the start point of the file where the data should be read.

length Defines the length of the data which should be read.

Return value
The data read from the file or Null if no content is available.

Errors

IllegalParameterError • If the defined SFI is not valid.
• If the defined offset and length could not be applied.

IllegalStateError • If the used channel is closed.
• If no file is currently selected.
• If the currently selected file is not a transparent file.
• If the data could not be read.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected via SFI.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command READ BINARY.

Open Mobile API Specification – Public Release v3.3 66 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.1.11 Method: void writeBinary(int sfi, byte[] data, int offset, int length)

Writes the defined data into the selected file at the position specified by offset and length.

Parameters

sfi The SFI of the file to be selected for this write operation.
CURRENT_FILE can be applied if the file is already selected. sfi
must be in the range of (1-30).

data The data to be written.

offset Defines the position in the file where the data should be stored.

length Defines the length of the data to be written.

Errors

IllegalParameterError • If the defined SFI is not valid.
• If the defined data array is empty or too short.
• If the defined offset and length could not be applied.

IllegalStateError • If the used channel is closed.
• If no file is currently selected.
• If the currently selected file is not a transparent file.
• If the data could not be written.

SecurityError If the operation is not allowed because the security conditions
are not satisfied.

IllegalReferenceError If the file could not be selected via SFI.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command UPDATE BINARY.

Open Mobile API Specification – Public Release v3.3 67 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2 Class: FileViewProvider:FCP

File control parameter contains information of a selected file. FCPs are returned after a file select operation.
This class is based on the [ISO 7816-4] FCP returned by the SELECT command as specified in [ISO 7816-4]
section 5.3.3 (File control information) table 12 (File control parameter data objects).

5.7.2.1 Method: byte[] getFCP()

Returns the complete FCP as byte array.

Return value
The complete FCP as byte array.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

5.7.2.2 Method: int getFileSize()

Returns the file size of the selected file (number of data bytes in the file, excluding structural information).

Return value
The file size depending on the file type:

• Transparent EF: The length of the body part of the EF.

• Linear fixed or cyclic EF: Record length multiplied by the number of records of the EF.

INFO_NOT_AVAILABLE if the information is not available.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

5.7.2.3 Method: int getTotalFileSize()

Returns the total file size of the selected file (number of data bytes in the file, including structural information
if any).

Return value
The total file size depending on the file type:

• DF/MF: the total file size represents the sum of the file sizes of all the EFs and DFs contained in this
DF, plus the amount of available memory in this DF. The size of the structural information of the
selected DF itself is not included.

• EF: the total file size represents the allocated memory for the content and the structural information (if
any) of this EF.

INFO_NOT_AVAILABLE if the information is not available.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

Open Mobile API Specification – Public Release v3.3 68 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2.4 Method: int getFID()

Returns the file identifier of the selected file.

Return value
The file identifier of the selected file.

INFO_NOT_AVAILABLE if the FID of the selected file is not available.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

5.7.2.5 Method: int getSFI()

Returns the short file identifier of the selected EF file.

Return value
The short file identifier of the selected file.

INFO_NOT_AVAILABLE if selected file is not an EF or an SFI is not available.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

5.7.2.6 Method: int getMaxRecordSize()

Returns the maximum record size in case of a record based EF.

Return value
The maximum record size in case of a record based EF.

INFO_NOT_AVAILABLE if the currently selected file is not record based or the information cannot be fetched.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

5.7.2.7 Method: int getNumberOfRecords()

Returns the number of records stored in the EF in case of a record based EF.

Return value
The number of records stored in the EF in case of a record based EF.

INFO_NOT_AVAILABLE if the currently selected file is not record based or the information cannot be fetched.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects).

Open Mobile API Specification – Public Release v3.3 69 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2.8 Method: int getFileType()

Returns the file type of the currently selected file.

Return value
The file type:

• (0) DF

• (1) EF

INFO_NOT_AVAILABLE if the information cannot be fetched.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects). The file type is based on the definition in
table 14 (File descriptor byte).

5.7.2.9 Method: int getFileStructure()

Returns the structure type of the selected EF.

Return value
The structure type of the selected file:

• (0) NO_EF

• (1) TRANSPARENT

• (2) LINEAR_FIXED

• (3) LINEAR_VARIABLE

• (4) CYCLIC

INFO_NOT_AVAILABLE if the information cannot be fetched.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects). The file structure is based on the definition
in table 14 (File descriptor byte).

Open Mobile API Specification – Public Release v3.3 70 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.2.10 Method: int getLcS()

Returns the lifecycle state of the currently selected file.

Return value
The lifecycle state:

• (0) NO_INFORMATION_GIVEN

• (1) CREATION_STATE

• (2) INITIALISATION_STATE

• (3) OPERATIONAL_STATE_ACTIVATED

• (4) OPERATIONAL_STATE_DEACTIVATED

• (5) TERMINATION_STATE

INFO_NOT_AVAILABLE if the information is not available.

Note: This method is based on the FCP control parameter as specified in [ISO 7816-4] section 5.3.3 (File
control information) table 12 (File control parameter data objects). The lifecycle status is based on the definition
in table 13 (Life cycle status byte).

Open Mobile API Specification – Public Release v3.3 71 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.7.3 Class: FileViewProvider:Record

Record class serves as a container for record data. The created record (as immutable object) can be used to
read record data from a file or to write record data to a file.

5.7.3.1 Constructor: Record(int id, byte[] data)

Creates a record instance which can be used to store record data.

Parameter

id The record id to be stored.

data The data to be stored.

5.7.3.2 Method: int getID()

Returns the record ID of this record.

Return value
The record ID of this record.

5.7.3.3 Method: byte[] getData()

Returns the data of this record.

Return value
The data of this record.

Open Mobile API Specification – Public Release v3.3 72 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8 Authentication Service

Provides an API to perform a PIN authentication on the SE to enable an authentication state.

Use cases:

• Performing an operation on the SE which requires a user authentication.

o For example, reading a file from the SE’s file system which is PIN protected.

o For example, using a key from the SE which requires a PIN authentication.

• Moreover, the API allows the management of SE PINs with management commands such as reset,
change, activate, and deactivate.

Figure 5-8: Authentication Service Overview

5.8.1 Class: AuthenticationProvider

This Authentication class can be used to privilege a certain communication channel to the SE for operations
that require a PIN authentication. Besides the PIN verification for authentication, this class also provides PIN
management commands for changing, deactivating or activating PINs.

Prerequisites
The PIN operations performed by this AuthenticationProvider class are based on the [ISO 7816-4]
specification and require a preselected applet on the specified communication channel to the SE that
implements [ISO 7816-4] compliant PIN commands.

Notes
• If used by multiple threads, synchronization is up to the application.

• Each operation needs access to the SE. If access cannot be granted because of a closed channel or
a missing security condition, the called method will return an error.

Secure Element (SE)

Applet or OS with ISO/
IEC7816-4 PIN commands

Mobile Device

Open Mobile API

Transport API

Service API

Authentication Service

Open Mobile API Specification – Public Release v3.3 73 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.1.1 Constructor: AuthenticationProvider(Channel channel)

Encapsulates the defined channel by an AuthenticationProvider object that can be used for applying PIN
commands on it.

Parameters

channel The channel that should be privileged for operations which require a
PIN authentication.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

5.8.1.2 Method: Boolean verifyPin(PinID pinID, byte[] pin)

Performs a PIN verification.

Parameters

pinID A reference to the PIN in the SE to be used for the verification.

pin The PIN to be verified.

Return value
True if the authentication was successful.

False if the authentication fails.

Errors

IllegalParameterError If the PIN value has bad coding or wrong length (empty or too
long).

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported.

Note:

This method is based on the [ISO 7816-4] command VERIFY.

When the PIN is blocked, the method returns false. Clients have to use getRetryCounter() to check
for a blocked PIN.

Open Mobile API Specification – Public Release v3.3 74 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.1.3 Method: void changePin(PinID pinID, byte[] oldPin, byte[] newPin)

Changes the PIN.

Parameters

pinID A reference to the PIN in the SE to be changed.

oldPin The old PIN to be changed.

newPin The PIN to be set as the new PIN.

Errors

IllegalParameterError If oldPin or newPIN has bad coding or wrong length (empty
or too long).

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

SecurityError If oldPin does not match the PIN stored in the SE. The PIN
is not changed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command CHANGE REFERENCE DATA.

5.8.1.4 Method: void resetPin(PinID pinID, byte[] resetPin, byte[] newPin)

Resets the PIN with the reset PIN or just resets the retry counter.

Parameters

pinID A reference to the PIN in the SE to be reset.

resetPin The reset PIN to be used for reset.

newPin The PIN to be set as new PIN. Can be Null if only the reset
counter is to be reset.

Errors

IllegalParameterError If resetPin or newPIN has bad coding or wrong length
(empty or too long).

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

SecurityError If resetPIN does not match the “reset PIN” stored in the SE.
The PIN and reset counter are not changed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported (e.g. PIN is not defined).

Open Mobile API Specification – Public Release v3.3 75 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note: This method is based on the [ISO 7816-4] command RESET RETRY COUNTER.

5.8.1.5 Method: int getRetryCounter(PinID pinID)

Returns the retry counter of the referenced PIN.

Parameters

pinID A reference to the PIN in the SE and its retry counter.

Return value
The retry counter of the referenced PIN.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command VERIFY.

5.8.1.6 Method: void activatePin(PinID pinID, byte[] pin)

Activates the PIN. Thus a deactivated PIN can be used again.

Parameters

pinID A reference to the PIN in the SE to be activated.

pin The verification PIN for activating the PIN if required. Can be
Null if not required.

Errors

IllegalParameterError If pin has bad coding or wrong length (empty or too long).

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

SecurityError If pin does not match the PIN needed for the activation. The
PIN state will not be changed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command ENABLE VERIFICATION REQUIREMENT.

Open Mobile API Specification – Public Release v3.3 76 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.1.7 Method: void deactivatePin(PinID pinID, byte[] pin)

Deactivates the PIN. Thus the objects which are protected by the PIN can now be used without this restriction
until activatePin() is called.

Parameters

pinID A reference to the PIN in the SE to be deactivated.

pin The verification PIN for deactivating the pin if required. Can be
Null if not required.

Errors

IllegalParameterError If pin has bad coding or wrong length (empty or too long).

IllegalStateError If an attempt is made to use an SE session or channel that has
been closed.

SecurityError If the defined PIN does not match the PIN needed for the
deactivation. The PIN state will not be changed.

IllegalReferenceError If the PIN referenced by pinID could not be found in the SE.

OperationNotSupportedError If this operation is not supported.

Note: This method is based on the [ISO 7816-4] command DISABLE VERIFICATION REQUIREMENT.

Open Mobile API Specification – Public Release v3.3 77 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.8.2 Class: AuthenticationProvider:PinID

This PIN ID uniquely identifies a PIN in the SE system. The PIN ID is defined as specified in [ISO 7816-4] and
can be used to reference a PIN in an [ISO 7816-4] compliant system.

5.8.2.1 Constructor: PinID(int id, Boolean local)

Creates a PIN ID (reference) to identify a PIN within a SE. The created PIN ID (as immutable object) can be
specified on all PIN operation methods provided by the AuthenticationProvider class.

Parameters

id The ID of the PIN (value from 0x00 to 0x1F).

local Defines the scope (global or local). True if the PIN is local.
Otherwise, false.

Errors

IllegalParameterError If id is invalid.

Note: This constructor is based on the P2 reference data for PIN related commands as specified in
[ISO 7816-4] section 7.5 (basic security handling). Local set to true indicates specific reference data and
local set to false indicates global reference data according to [ISO 7816-4]. The ID indicates the number of
the reference data (qualifier) according to [ISO 7816-4].

5.8.2.2 Method: int getID()

Returns the PIN ID.

Return value
The PIN ID.

Note: This method is based on the P2 reference data for PIN related commands as specified in [ISO 7816-4]
section 7.5 (basic security handling). The ID indicates the number of the reference data (qualifier) according
to [ISO 7816-4].

5.8.2.3 Method: Boolean isLocal()

Identifies if the PIN is local or global.

Return value
True if the PIN is local. Otherwise, false.

Note: This method is based on the P2 reference data for PIN related commands as specified in [ISO 7816-4]
section 7.5 (basic security handling). Local set to true indicates specific reference data and local set to
false indicates global reference data according to [ISO 7816-4].

Open Mobile API Specification – Public Release v3.3 78 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9 PKCS #15 API

The PKCS #15 standard ([PKCS #15]) is a structured way to store and organize data. The PKCS #15 service
API simplifies access to PKCS #15 file systems according to v1.1 of the PKCS #15 specification. Classes and
methods are provided to retrieve the elementary PKCS #15 data structures, such as ODF (Object Directory
File) and TokenInfo.

PKCS #15 file systems can be used to store cryptographic data, but also, any kind of data using application-
specific files and OIDs. For example in the OMA-DM use case, the bootstrap data can be stored in the SE’s
file system using a dedicated PKCS #15 file structure. This PKCS #15 API can be used by an OMA-DM client
application to retrieve the bootstrap data from a SE.

The preferred way to select a PKCS #15 file system is through the PKCS #15 AID (A0 00 00 00 63 50 4B 43
53 2D 31 35), however, a legacy file system can reference a PKCS #15 data structure though the EF(DIR).

Example of a typical PKCS #15 file system:
 ADF(PKCS#15) : AID = A0 00 00 00 63 50 4B 43 53 2D 31 35

 |-EF(ODF) : FID = 5031

 |-EF(TokenInfo) : FID = 5032

 |-EF(PrKDF) : optional, referenced by EF(ODF)

 |-EF(PuKDF) : optional, referenced by EF(ODF)

 |-EF(CDF) : optional, referenced by EF(ODF)

 |-EF(DODF) : optional, referenced by EF(ODF)

 |-EF(AODF) : optional, referenced by EF(ODF)

Example of a legacy file system with a PKCS #15 structure:
 MF : FID = 3F00

 |-EF(DIR) : FID = 2F00

 |-DF(PKCS#15) : referenced by EF(DIR)

 |-EF(ODF) : FID = 5031

 |-EF(TokenInfo) : FID = 5032

Open Mobile API Specification – Public Release v3.3 79 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Figure 5-9: PKCS #15 Service Overview

5.9.1 Class: PKCS15Provider

This Provider class offers basic services to access a PKCS #15 file system. This Provider requires a PKCS #15
data structure on the SE and a channel instance allowing access to this PKCS #15 data structure.

5.9.1.1 Constant: byte[] AID_PKCS15

Default PKCS #15 AID (A0 00 00 00 63 50 4B 43 53 2D 31 35).

5.9.1.2 Constructor: PKCS15Provider(Channel channel)

Encapsulates the defined channel by a PKCS #15 file system object. This method checks the presence of the
EF(ODF) (Object Directory File) with file identifier 5031 and of the EF(TokenInfo) with file identifier 5032. Both
files are mandatory and must be present in a valid PKCS #15 file system.

This method must first try to select EF(ODF) and EF(TokenInfo) on the provided channel. If the select fails,
this method must try to locate a DF(PKCS #15) in the legacy file system using the EF(DIR) according to the
data structure described in section 5.4 of [PKCS #15].

Parameters

channel The channel to be used by this Provider for file operations.

Errors

IOError If no PKCS #15 file system is detected on the provided channel.

Secure Element (SE)

File system with PKCS#15
structures

Mobile Device

Open Mobile API

Transport API

Service API

PKCS#15 Service

Open Mobile API Specification – Public Release v3.3 80 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.1.3 Method: byte[] getODF()

Returns the raw content of the EF(ODF) (Object Directory File).

Return value
The EF(ODF) as a byte array. Must not be null.

5.9.1.4 Method: byte[] getTokenInfo()

Returns the raw content of the EF(TokenInfo).

Return value
The EF(TokenInfo) as a byte array. Must not be null.

5.9.1.5 Method: Path[] getPrivateKeyPaths()

Returns an array of EF(PrKDF) paths (Private Key Directory Files). The PKCS #15 file system may contain
zero, one or several EF(PrKDF).

Return value
The array of EF(PrKDF) paths. May be null if empty.

5.9.1.6 Method: Path[] getPublicKeyPaths()

Returns an array of EF(PuKDF) paths (Public Key Directory Files). The PKCS #15 file system may contain
zero, one or several EF(PuKDF).

Return value
The array of EF(PuKDF) paths. May be null if empty.

5.9.1.7 Method: Path[] getCertificatePaths()

Returns an array of EF(CDF) paths (Certificate Directory Files). The PKCS #15 file system may contain zero,
one or several EF(CDF).

Return value
The array of EF(CDF) paths. May be null if empty.

Open Mobile API Specification – Public Release v3.3 81 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.1.8 Method: Path[] getDataObjPaths()

Returns an array of EF(DODF) paths (Data Object Directory Files). The PKCS #15 file system may contain
zero, one or several EF(DODF).

Return value
The array of EF(DODF) paths. May be null if empty.

5.9.1.9 Method: Path[] getAuthObjPaths()

Returns an array of EF(AODF) paths (Authentication Object Directory Files). The PKCS #15 file system may
contain zero, one or several EF(AODF).

Return value
The array of EF(AODF) paths. May be null if empty.

5.9.1.10 Method: byte[] readFile(Path path)

Selects and reads a PKCS #15 file. The file may be a transparent or linear fixed EF. The ‘index’ and ‘length’
fields of the path instance will be used according to section 6.1.5 of [PKCS #15]. In the case of a transparent
EF, ‘index’ is the start offset in the file and ‘length’ is the length to read. In the case of a linear fixed EF, ‘index’
is the record to read.

Parameters

path Path of the file.

Return value
The file content as a byte array. Or null if the referenced path does not exist.

Errors

SecurityError If the operation cannot be performed, if a security condition is
not satisfied.

OperationNotSupportedError If this operation is not supported.

IOError If the PKCS #15 file cannot be selected or read.

Open Mobile API Specification – Public Release v3.3 82 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.1.11 Method: byte[] searchOID(byte[] dodf, String oid)

Parses the raw content of an EF(DODF) and searches for a specific OID Data Object. This method is a
convenience method to simplify the access to OID Data Objects by applications, as described in section 6.7.4
of [PKCS #15]. In many cases, the EF(DODF) contains a simple OID Data Object with a Path object, in order
to reference an application-specific EF. For example, the OMA-DM specification requires a EF(DODF)
containing the OID 2.23.43.7.1, followed by a path object, referencing the EF(DM_Bootstrap).

Parameters

dodf The raw content of an EF(DODF) to parse.

oid The searched OID value (e.g. OMA-DM bootstrap OID is
2.23.43.7.1).

Return value
The raw object value if OID has been found, null if not found.

Errors

IllegalParameterError If the OID is not correct.

OperationNotSupportedError If this operation is not supported.

5.9.1.12 Method: Path decodePath(byte[] der)

Builds a path object using a DER-encoded (see ITU X.690 for DER-Coding) buffer.

Parameters

der The DER-encoded path object as a byte array.

Return value
The path object.

Errors

IllegalParameterError If the defined path is not a correctly DER-encoded buffer.

OperationNotSupportedError If this operation is not supported.

Open Mobile API Specification – Public Release v3.3 83 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.2 Class: PKCS15Provider:Path

This class represents a path object as defined in [PKCS #15] section 6.1.5.

5.9.2.1 Constructor: Path(byte[] path)

Builds a path object without index and length (the path can be absolute as well as relative).

Parameters

path The path as a byte array.

Errors

IllegalParameterError If the path is not correct.

5.9.2.2 Constructor: Path(byte[] path, int index, int length)

Builds a path object with index and length (the path can be absolute as well as relative).

Parameters

path The path as a byte array.

index The index value.

length The length value.

Errors

IllegalParameterError If path, index, or length is not correct.

5.9.2.3 Method: byte[] getPath()

Returns the path field of this path object.

Return value
The path field.

5.9.2.4 Method: Boolean hasIndexLength()

Checks whether this path object has an index and length fields.

Return value
True if the index and length field is present, false otherwise.

Open Mobile API Specification – Public Release v3.3 84 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.9.2.5 Method: int getIndex()

Returns the index field of this path object. The value of this field is undefined if the method
hasIndexLength() returns false.

Return value
The index field.

5.9.2.6 Method: int getLength()

Returns the length field of this path object. The value of this field is undefined if the method
hasIndexLength() returns false.

Return value
The length field.

5.9.2.7 Method: byte[] encode()

Encodes this path object according to DER (see ITU X.690 for DER-Coding).

Return value
This path object as a DER-encoded byte array.

Open Mobile API Specification – Public Release v3.3 85 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10 Secure Storage

The Secure Storage (SS) Service can be used to store and retrieve sensitive data on the SE. This API requires
a SS applet on the SE with an APDU interface as defined below.

Data is stored in a dictionary format (string, value). It is simpler to store data in the SS than with a
PKCS#15Provider or FileViewProvider, which can, in principle, also be used to store data securely but in a
more elaborate way.

Figure 5-10: Secure Storage Service Overview

5.10.1 Class: SecureStorageProvider

This class provides an API to store and retrieve data on the SE which is protected in a secure environment. A
default set of functionality that is always provided on every platform enables application developers to rely on
this interface for secure data storage (e.g. credit card numbers, private phone numbers, passwords etc.). The
interface should encapsulate any SE specifics as it is intended for device application developers who might
not be familiar with SE or APDU internals.

Security Notes
PIN verification is required to grant access to the SS applet where the Authentication Provider can be reused
for the PIN operations. The SS applet must separate the PIN verification on all logical channels to ensure that
each device application needs to verify the PIN individually.

Prerequisites
The SS operations performed by this Provider class are based on a SS located in the SE. The SS is usually
realized by an applet (providing the defined SS APDU interface) that must be preselected on the specified
communication channel to the SE before this Provider can be used.

Notes:
• If used by multiple threads, synchronization is up to the application.

• Each operation needs access to the SE. If access cannot be granted because of a closed channel or
a missing security condition, the called method will return an error.

Secure Element (SE)

Secure Storage (SS) Applet

Mobile Device

Open Mobile API

Transport API

Service API

Secure Storage (SS) Service

Open Mobile API Specification – Public Release v3.3 86 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.1.1 Constructor: SecureStorageProvider(Channel channel)

Creates a SecureStorageProvider instance which will be connected to the preselected SE SS applet on a
defined channel.

Parameters

channel The channel to be used by this Provider for operations on the SS.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

5.10.1.2 Method: void create(String title, byte[] data)

This command creates a SS entry with the defined title and data. The data can contain an uninterpreted byte
stream of an undefined max length (e.g. names, numbers, image, media data, etc.).

Parameters

title The title of the entry to be written. The maximum title length is 60. All
characters must be supported by UTF-8.

data The data of the entry to be written. If data is empty or null then only
the defined title will be assigned to the new entry.

Errors

IllegalParameterError • If the title already exists. All entry titles must be unique within the
SS.

• If the title is incorrect: bad encoding or wrong length (empty or too
long).

• If the data chain is too long.

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

IOError If the entry could not be created because of an incomplete write
procedure.

5.10.1.3 Method: void update(String title, byte[] data)

This command updates the data of the SS entry referenced by the defined title. The data can contain an
uninterpreted byte stream of an undefined max length (e.g. names, numbers, image, media data, etc.).

Parameters

title The title of the entry that must already exist. The maximum title length
is 60. All characters must be supported by UTF-8.

Open Mobile API Specification – Public Release v3.3 87 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

data The data of the entry to be written. If data is empty or null then the
data of the existing entry (referenced by the title) will be deleted.

Errors

IllegalParameterError • If title does not already exist.
• If title is incorrect: bad encoding or wrong length (empty or too

long).
• If the data chain is too long.

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

IOError If the entry could not be updated because of an incomplete write
procedure.

5.10.1.4 Method: byte[] read(String title)

This command reads and returns the byte stream of a data entry stored in the SE referenced by the title.

Parameters

title The title of the entry to be read. The maximum title length is 60. All
characters must be supported by UTF-8.

Return value
The data retrieved from the referenced entry. If the data does not exist in the SS entry referenced by
the title then an empty byte array will be returned.

Errors

IllegalParameterError If title is incorrect: bad encoding or wrong length (empty or too
long).

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

IOError If the entry could not be read because of an incomplete read
procedure.

5.10.1.5 Method: Boolean exist(String title)

This command checks if the SS entry with the defined title exists.

Parameters

title The title of the entry to be checked. The maximum title length is 60. All
characters must be supported by UTF-8.

Open Mobile API Specification – Public Release v3.3 88 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Errors

IllegalParameterError If title is incorrect: bad encoding or wrong length (empty or too
long).

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

Return value
True if the entry with the defined title exists. False if the entry does not exist.

5.10.1.6 Method: Boolean delete(String title)

This command deletes the SS entry referenced by the title. If the entry does not exist, nothing will be done.

Parameters

title The title of the entry to be deleted. The maximum title length is 60. All
characters must be supported by UTF-8.

Errors

IllegalParameterError If title is incorrect: bad encoding or wrong length (empty or too
long).

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

Return value
True if the entry with the defined title is deleted. False if the entry does not exist.

5.10.1.7 Method: void deleteAll()

This command deletes all SS entry referenced. If no entries exist nothing will be done.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

Open Mobile API Specification – Public Release v3.3 89 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.1.8 Method: String[] list()

This command returns an entry list with all title-identifiers. The title is intended for the users to identify and to
reference the SS entries.

Return value
A list of titles of all entries located in SS. An empty list will be returned if no entries exist in the SS.

Errors

IllegalStateError If an attempt is made to use an SE session or channel that has been
closed.

SecurityError If the PIN to access the SS applet was not verified.

Open Mobile API Specification – Public Release v3.3 90 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2 Secure Storage APDU Interface

The SS applet has to provide this APDU command interface for adding entries to the SS and deleting entries
from the SS. Each SS entry is a container for a SS data record consisting of a title and data attribute. The
attribute title identifies the SS entry with a user readable text and must be unique. The SS entry title SHALL
be defined by the user before the SS entry is created. Thus the user can identify the created SS entry within
the SS afterwards. The data attribute contains the sensitive data which has to be stored into the SS. Besides
the title, each SS entry can also be identified with a unique ID which is generated by the SS during the creation
and has to be used to reference an SS entry within the SS. The title and ID must be unique within a SS, as
each entry can be referenced by either the title or the ID.

Figure 5-11: Secure Storage Applet Overview

5.10.2.1 CREATE SS ENTRY Command Message

The CREATE SS ENTRY command can be used to create an entry in the SS. Each entry requires a unique
title which must be specified in the command.

The CREATE SS ENTRY command message SHALL be coded according to the following table:

Table 5-1: CREATE SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'E0' CREATE SS ENTRY

P1 P2 '00 00'

Lc Length of title

Data Title Title of the new entry in UTF-8.
This title must be unique within the SS. If the defined title already exists in
the SS, then the error code '6A 80' will be returned.

Le 2

 Secure Element (SE)

Secure Storage (SS) Applet

Title DataID

Title DataID

Title DataIDSS Entry #1

….

SS Entry #2

SS Entry #3

Open Mobile API Specification – Public Release v3.3 91 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.2 CREATE SS ENTRY Response Message

The CREATE SS ENTRY response SHALL contain a data field with response code '90 00' (successful
operation) or an error response code.

Table 5-2: CREATE SS ENTRY Response Data

Value Meaning Presence

ID The ID of the new entry created in the SS. This ID can be used to
reference an SS entry. The length of this ID is always 2 bytes.

Mandatory

Table 5-3: CREATE SS ENTRY Response Code

SW1 SW2 Meaning

'6A' '80' Incorrect values in the command data (if the defined title does already exist)

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'67' '00' Wrong length in Lc

'6A' '86' Incorrect P1 P2

'6D' '00' Invalid instruction

'6E' '00' Invalid class

'65' '81' Memory failure (if the creation of the entry fails due to memory issues)

'6A' '84' Not enough memory space (if not enough memory resources are available)

5.10.2.3 DELETE SS ENTRY Command Message

The DELETE SS ENTRY command can be used to delete an entry from the SS. The entry referenced in this
command by an ID must exist in the SS otherwise an error code will be returned.

The DELETE SS ENTRY command message shall be coded according to the following table:

Table 5-4: DELETE SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'E4' DELETE SS ENTRY

P1 P2 P1: ID high byte
P2: ID low byte

The ID of the SS entry which has to be deleted.
If the SS entry couldn’t be found, then '6A 88' is returned.

Lc -

Data -

Le -

Open Mobile API Specification – Public Release v3.3 92 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.4 DELETE SS ENTRY Response Message

The DELETE SS ENTRY response shall contain a response code '90 00' (successful operation) or an error
response code.

Table 5-5: DELETE SS ENTRY Response Code

SW1 SW2 Meaning

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6A' '88' Referenced data not found (if the referenced SS entry does not exist)

'6D' '00' Invalid instruction

'6E' '00' Invalid class

'65' '81' Memory failure (if the operation fails due to memory issues)

5.10.2.5 SELECT SS ENTRY Command Message

The SELECT SS ENTRY has to be used to select an SS ENTRY in the SS for a write or read operation.

The SELECT SS ENTRY command message shall be coded according to the following table:

Table 5-6: SELECT SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'A5' SELECT SS ENTRY

P1 P2 P1: Reference parameter
P2: '00'

Reference parameter:
Select ID('00'): Select the entry referenced by the ID
Select First('01'): Select the first SS entry
Select Next('02'): Select the next available SS entry

Lc 2 or - The length of the ID of the SS entry
(only needed with P1 = Select ID)

Data ID or - The ID of the SS entry to be selected
(only needed with P1 = Select ID)

Le '00'

Open Mobile API Specification – Public Release v3.3 93 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.6 SELECT SS ENTRY Response Message

The SELECT SS ENTRY response shall contain a data field with response code '90 00' (successful operation)
or an error response code.

Table 5-7: SELECT SS ENTRY Response Data

Value Meaning Presence

Title The title of the referenced SS entry in UTF-8. Mandatory

Table 5-8: SELECT SS ENTRY Response Code

SW1 SW2 Meaning

'6A' '80' Incorrect values in the command data (if the data field has a length other than
2 bytes)

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6A' '88' Referenced data not found (if the referenced SS entry does not exist)

'67' '00' Wrong length in Lc

'6A' '86' Incorrect P1 P2

'6D' '00' Invalid instruction

'6E' '00' Invalid class

Open Mobile API Specification – Public Release v3.3 94 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.7 PUT SS ENTRY DATA Command Message

The PUT SS ENTRY DATA command message can be used to store sensitive data into the currently selected
SS entry. An SS entry can be selected with the command SELECT SS ENTRY DATA. For very long data the
command PUT SS ENTRY DATA can be used iteratively by applying the command several times with an
appropriate P1 parameter (first) and (next).

Note:

Before data can be stored into the SS entry with PUT SS ENTRY DATA, the data size has to be specified.
Otherwise an error code will be returned.

The transmitted data will only be stored into the SS entry if all data parts are transferred (this means the sum
of all transferred parts fits exactly to the defined data length). As long as the transferred data is not complete,
the data has to be temporarily buffered within the SS application. If the succeeding APDU is not a PUT SS
ENTRY DATA command or the succeeding PUT SS ENTRY DATA command does not contain the following
data as expected, then the buffered data has to be discarded.

The PUT SS ENTRY DATA command message shall be coded according to the following table:

Table 5-9: PUT SS ENTRY Data Command Message

Code Value Meaning

CLA '80'

INS 'DA' PUT SS ENTRY DATA

P1 P2 P1: size (0), first (1), next (2)
P2: '00'

size (0): The whole size of the data to be stored.
first (1): DATA contains the first data part.
next (2): DATA contains the next data part (append mode).

Lc Data length

Data Data P1 = size (0): Defines the data size.
P1 = first (1) or next (2): Sensitive data (or a part of the data)
to be stored to the currently selected SS entry.

Le -

Open Mobile API Specification – Public Release v3.3 95 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.8 PUT SS ENTRY DATA Response Message

The PUT SS ENTRY ID response shall contain a response code '90 00' (successful operation) or an error
response code.

Table 5-10: PUT SS ENTRY DATA Response Code

SW1 SW2 Meaning

'6A' '80' Incorrect values in the command data

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6A' '88' Referenced data not found (if no SS entry is currently selected)

'67' '00' Wrong length in Lc

'6A' '86' Incorrect P1 P2 (if the defined P1/P2 are invalid or cannot be applied)

'6D' '00' Invalid instruction

'6E' '00' Invalid class

'65' '81' Memory failure (if the defined data exceeds the defined size or a size was not
defined)

'6A' '84' Not enough memory space (if not enough memory resources are available)

5.10.2.9 GET SS ENTRY DATA Command Message

The GET SS ENTRY DATA command message can be used to retrieve data from the currently selected SS
entry. An SS entry can be selected with the command SELECT SS ENTRY DATA. For very long data, the
command GET SS ENTRY DATA can be used iteratively by applying the command several times with an
appropriate P1 parameter (first) and (next). If the succeeding APDU is not a GET SS ENTRY DATA command,
then an outstanding retrieve procedure must be reset by the SS application.

The GET SS ENTRY DATA command message shall be coded according to the following table:

Table 5-11: GET SS ENTRY DATA Command Message

Code Value Meaning

CLA '80'

INS 'CA' GET SS ENTRY DATA

P1 P2 P1: size (0), first (1), next (2)
P2: '00'

size (0): Response contains the whole size of the data to be
read.
first (1): Response contains the first data part.
next (2): Response contains the next data part.

Lc -

Data -

Le '00'

Open Mobile API Specification – Public Release v3.3 96 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.10 GET SS ENTRY DATA Response Message

The GET SS ENTRY DATA response shall contain a data field with response code '90 00' (successful
operation) or an error response code.

Table 5-12: GET SS ENTRY DATA Response Data

Value Meaning Presence

Data The data (or a part) of the currently selected SS entry.
or

Whole size of the data stored in the currently selected SS entry.

Mandatory

Table 5-13: GET SS ENTRY DATA Response Code

SW1 SW2 Meaning

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6A' '86' Incorrect P1 P2 (if the defined P1/P2 are invalid or cannot be applied)

'6A' '88' Referenced data not found (if no SS entry is currently selected)

'6D' '00' Invalid instruction

'6E' '00' Invalid class

'65' '81' Memory failure (if further data is demanded but no further data exists).

5.10.2.11 GET SS ENTRY ID Command Message

The GET SS ENTRY ID command message can be used to retrieve the ID of an SS entry referenced by the
title.

The GET SS ENTRY ID command message shall be coded according to the following table:

Table 5-14: GET SS ENTRY ID Command Message

Code Value Meaning

CLA '80'

INS 'B2' GET ENTRY ID

P1 P2 '00 00'

Lc Length of title

Data Title Title of the entry

Le '02'

Open Mobile API Specification – Public Release v3.3 97 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.12 GET SS ENTRY ID Response Message

The READ SS ENTRY ID response shall contain a data field with response code '90 00' (successful operation)
or an error response code.

Table 5-15: GET SS ENTRY ID Response Data

Value Meaning Presence

ID The ID of the entry in the SS referenced by the defined
title. The length of this ID is always 2 bytes.

Mandatory

Table 5-16: GET SS ENTRY ID Response Code

SW1 SW2 Meaning

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6A' '88' Referenced data not found (if the referenced SS entry does not exist)

'6A' '86' Incorrect P1 P2

'6D' '00' Invalid instruction

'6E' '00' Invalid class

5.10.2.13 DELETE ALL SS ENTRIES Command Message

The DELETE ALL SS ENTRIES command can be used to delete all entries from the SS.

The DELETE ALL SS ENTRIES command message shall be coded according to the following table:

Table 5-17: DELETE ALL SS ENTRIES Command Message

Code Value Meaning

CLA '80'

INS 'E5' DELETE ALL SS ENTRIES

P1 P2 '00 00'

Lc -

Data -

Le -

Open Mobile API Specification – Public Release v3.3 98 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.2.14 DELETE ALL SS ENTRIES Response Message

The DELETE SS ENTRIES response shall contain a response code '90 00' (successful operation) or an error
response code.

Table 5-18: DELETE ALL SS ENTRIES Response Code

SW1 SW2 Meaning

'6A' '82' Security status not satisfied (if PIN verified state is not set)

'6D' '00' Invalid instruction

'6E' '00' Invalid class

'65' '81' Memory failure (if the operation fails due to memory issues)

Open Mobile API Specification – Public Release v3.3 99 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.3 Secure Storage APDU Transfer

This section describes how the SS APDU interface has to be applied for performing the SS service operations
provided by the SecureStorageProvider.

Note: All SS operations have to be realized in an atomic way. This means if an error occurs during a SS
operation (e.g. if an error occurs on a certain APDU) all modifications made on the SS (in the previous steps
within a SS operation) have to be reversed.

5.10.3.1 Create Operation

The create method includes the creation and selection of an SS entry with a succeeding SS entry data update.
The following steps are needed:

• CREATE SS ENTRY (title) creates the SS entry in the SS with the defined title.

• SELECT SS ENTRY (ID) selects the SS entry in the SS for the data update.

• PUT SS ENTRY DATA (size) to define the data size.

• PUT SS ENTRY DATA (data) writes the data to the selected SS entry. A long data chain (which
cannot be transferred via one APDU command) can be written by applying the command iteratively by
using PUT SS ENTRY DATA(P1P2=NEXT) several times after performing PUT SS ENTRY
DATA(P1P2=FIRST).

Figure 5-12: Create SS Entry Operation

Note: If an error occurs during the create operation, all previous steps must be reversed to obtain the same
SS state as before. For example, if the creation of the SS entry was successful but the storage of the SS entry
data fails, then this newly created SS entry has to be deleted again.

 void create(String title, byte[] data)
ID = CREATE SS ENTRY (title)
SELECT SS ENTRY (ID)

PUT SS ENTRY DATA (size)

PUT SS ENTRY DATA (FIRST, data first part)

PUT SS ENTRY DATA (NEXT, data next part)

Open Mobile API Specification – Public Release v3.3 100 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.3.2 Update Operation

The update() method includes the selection of an SS entry with a succeeding SS entry data update. The
following steps are needed:

• GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

• SELECT SS ENTRY (ID) selects the SS entry in the SS for the data update.

• PUT SS ENTRY DATA (size) to define the data size.

• PUT SS ENTRY DATA (data) writes the data to the selected SS entry. A long data chain (which
cannot be transferred via one APDU command) can be written by applying the command iteratively by
using PUT SS ENTRY DATA (P1P2=NEXT) several times after performing PUT SS ENTRY DATA
(P1P2=FIRST).

Figure 5-13: Update SS Entry Operation

Note: If an error occurs during the update operation, all previous steps must be reversed to obtain the same
SS state as before. For example, if the update of some data parts was successful but the update of a following
data part fails then the SS entry has to be set to the previous state (e.g. by reassigning the previously stored
data to the SS entry).

5.10.3.3 Read Operation

The read method includes the selection of an SS entry with a succeeding read SS entry data operation. The
following steps are needed:

• GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

• SELECT SS ENTRY (ID) selects the SS entry in the SS for the read operation.

• GET SS ENTRY DATA (size) to determine the whole size of the data to be read.

• GET SS ENTRY DATA (data) reads the data to the selected SS entry. A long data chain (which
cannot be transferred via one APDU command) can be read by applying the command iteratively by
using GET SS ENTRY DATA (P1P2=NEXT) several times after performing GET SS ENTRY DATA
(P1P2=FIRST).

Figure 5-14: Read SS Entry Operation

 void update(String title, byte[] data)
ID = GET SS ENTRY ID (title)
SELECT SS ENTRY (ID)

PUT SS ENTRY DATA (SIZE, size)

PUT SS ENTRY DATA (FIRST, data first part)

PUT SS ENTRY DATA (NEXT, data next part)

 byte[] read(String title)
ID = GET ENTRY ID (title)
SELECT SS ENTRY (ID)

data =+ GET SS ENTRY DATA (NEXT)

data = GET SS ENTRY DATA (FIRST)

size = GET SS ENTRY DATA (SIZE)

Open Mobile API Specification – Public Release v3.3 101 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.3.4 List Operation

The list method includes an iterative selection of all SS entries. The following steps are needed:

• SELECT SS ENTRY (FIRST) selects the first SS entry and returns its title.

• SELECT SS ENTRY (NEXT) selects the next SS entry and returns its title. This command has to be
applied iteratively until all SS entry titles are retrieved.

Figure 5-15: List SS Entries Operation

5.10.3.5 Delete Operation

The delete method includes a delete operation. The following steps are needed:

• GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

• DELETE SS ENTRY (ID) deletes the SS entry referenced by the defined ID.

Figure 5-16: Delete SS Entry Operation

5.10.3.6 Delete All Operation

The delete all method includes a delete operation which deletes all entries from the SS. The following steps
are needed:

• DELETE ALL SS ENTRIES

Figure 5-17: Delete All SS Entries Operation

 String[] list()

title list = SELECT SS ENTRY (FIRST)

title list =+ SELECT SS ENTRY (NEXT)

 boolean delete(String title)
ID = GET ENTRY ID (title)
DELETE SS ENTRY (ID)

 void deleteAll()

DELETE ALL SS ENTRIES

Open Mobile API Specification – Public Release v3.3 102 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.10.3.7 Exist Operation

The exist method checks if a certain SS entry exists. The following steps are needed:

• GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

• SELECT SS ENTRY (ID) indicates if the SS entry to the defined ID exists or not.

Figure 5-18: Exist SS Entry Operation

5.10.4 Secure Storage PIN Protection

Before a SS command can be performed, PIN verification has to be performed towards the SS applet. The SS
applet allows the execution of an APDU command only after a successful PIN verification. Therefore the SS
applet stores an internal PIN verified state for each logical channel. Thus an established logical channel has
to be authorized with PIN verification before this channel can be used for the SecureStorageService. The
internal PIN verified state for a channel is kept until this channel is closed. If a SS APDU command is used
without being authorized with a PIN, the SS applet has to return an error code indicating the missing privilege.

To provide the SS access restriction based on PIN authentication, the SS applet must provide the [ISO 7816-4]
commands VERIFY, CHANGE REFERENCE DATA, and RESET RETRY COUNTER to support the following
Authentication Service methods: verifyPin(), changePin(), resetPin().

The SS can also provide other PIN related [ISO 7816-4] commands such as DISABLE VERIFICATION
REQUIREMENT and ENABLE VERIFICATION REQUIREMENT to allow extended PIN management with the
Authentication Service methods deactivatePin() and activatePin().

 boolean exist(String title)
ID = GET ENTRY ID (title)
SELECT SS ENTRY (ID)

Open Mobile API Specification – Public Release v3.3 103 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6 Minimum Set of Functionality
Applications running on other environments often use the Secure Element as a means of enhancing system
security. As a result, any mobile device compliant with the Open Mobile API SHOULD provide access to all
SEs on the device. The Transport API is therefore mandatory for Open Mobile API compliant devices.

The most common SEs today are SIM cards, smart SD cards, and embedded SEs, but new SEs may emerge
in the future. The SE provider interface is therefore mandatory, to ensure that the device can support future
SEs.

The Transport API SHALL support the maximum number of extended logical channels according to
[ISO 7816-4] (19 logical channels in addition to the basic channel).

In case the ATR is not available, or the ATR is available and indicates support of 8 or more channels (including
the basic channel), the API SHALL try to open logical channels, provided no error is indicated.

In case the ATR is available and indicates support of 7 or less channels (including the basic channel), the API
SHALL manage as many logical channels as indicated by the ATR, either by using the ATR information or by
opening logical channels, provided no error is indicated.

The Transport API SHALL support extended length APDU commands with a length of at least 2048 bytes.2

2 Developers using OMAPI should be aware that not all Secure Elements support extended length APDU commands.

Open Mobile API Specification – Public Release v3.3 104 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

7 Plug-ins
Section 2 defines plug-ins as providing an interface abstraction between the core functionality of the Open
Mobile API and low-level mechanisms for communication with Secure Elements.

There is a plug-in instance associated with each Reader.

The role of the plug-in is to abstract platform-specific behavior from the core functionality of the Open Mobile
API specification, as described in this document, so that the core functionality is independent of the hardware
on which it executes.

In practice, this may include some or all of the following:

• Power management for the Secure Element.

• Handling lower-layer protocol implementation details (e.g. T=0 or T=1 protocol for communication with
the Secure Element – this is completely abstracted by the Open Mobile API)

• Interfacing with device drivers for physical interfaces (e.g. SPI, I2C, APDU gate in an HCI network) to a
Secure Element.

• Communicating with a modem abstraction layer such as a RIL, when the Secure Element is a UICC.
Since different modem implementations behave differently, this might include handling for the
expectDataWithWarningSW attribute.

• Supporting “Plug-and-Play” mechanisms that provide a way to add and remove drivers for SEs at
runtime, by installing or removing downloadable application and/or driver packages.

The API of such a plug-in interface might be implementation-specific or might be defined in a Platform Binding
document for a specific programming language or software platform.

The following aspects SHOULD be considered in the concrete definition of a plug-in interface:

• The implementation SHOULD enforce that it is only accessible from the Transport Layer and not
directly from applications, to ensure that the channel management and security mechanism in the
Transport Layer cannot be bypassed.

• The plug-in API SHOULD allow different types of Secure Element to interface with the same Open
Mobile API Transport Layer. Typical plug-in APIs MAY include

o The API called when a terminal connects to the Secure Element.

o The API called when a terminal disconnects from the Secure Element.

o The API called when a logical channel is opened and/or closed.

o The API called when the basic channel is opened.

o The API called when APDUs are transceived.

o The API called when a plug-in is loaded and/or unloaded.

• The implementation SHOULD ensure that built-in plug-ins cannot be replaced by dynamically loaded
plug-ins.

If the plug-in API is intended to support plug-in authoring by third parties, it is recommended that a reference
plug-in implementation be provided.

Open Mobile API Specification – Public Release v3.3 105 / 105

Copyright 2016-2018 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

8 Access Control
The GlobalPlatform Secure Element Access Control specification [SEAC]) defined a mechanism to prevent
non-authorized device applications from accessing SE applications. Secure Element access rules are stored
in the SE and read and applied by the Access Control Enforcer that is implemented in the Transport layer of
the Open Mobile API.

When a channel is opened, the OMAPI implementation SHALL update the Access Control rules on the device
in compliance with [SEAC].

The APIs in this specification will indicate errors (e.g. declaring security errors) when access control rules are
not met.

	Contents
	Tables
	Figures
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Revision History

	2 Architecture
	3 API Description
	3.1 Programming Language vs. ISO 78164 Language Conventions
	3.2 Value Types
	3.3 Error Types
	3.4 Constants
	3.5 Asynchronous Notifications

	4 Transport API
	4.1 Overview
	4.1.1 General Rules for Handling of Status Word
	4.1.2 Handling of Events

	4.2 Object Interface
	4.2.1 Usage Pattern
	4.2.2 Class: SEService
	4.2.2.1 Constructor: SEService(Context context, SEService.CallBack listener)
	4.2.2.2 Method: Reader[] getReaders()
	4.2.2.3 Method: Boolean isConnected()
	4.2.2.4 Method: Void shutdown()
	4.2.2.5 Method: String getVersion()

	4.2.3 Class (or Interface): SEService:CallBack
	4.2.3.1 Method: Void serviceConnected(SEService service)

	4.2.4 Class (or Interface): Reader:EventCallBack
	4.2.4.1 Method: Void notify(Reader:Event event)

	4.2.5 Class: Reader:Event
	4.2.5.1 Method: Reader getReader()
	4.2.5.2 Method: Int getEventType()

	4.2.6 Class: Reader
	4.2.6.1 Method: String getName()
	4.2.6.2 Method: SEService getSEService()
	4.2.6.3 Method: Boolean isSecureElementPresent()
	4.2.6.4 Method: Session openSession()
	4.2.6.5 Method: Void closeSessions()
	4.2.6.6 Method: Void registerReaderEventCallback(Reader:EventCallBack callback)
	4.2.6.7 Method: Boolean unregisterReaderEventCallback(Reader:EventCallBack callback)

	4.2.7 Class: Session
	4.2.7.1 Method: Reader getReader()
	4.2.7.2 Method: Byte[] getATR()
	4.2.7.3 Method: Void close()
	4.2.7.4 Method: Boolean isClosed()
	4.2.7.5 Method: Void closeChannels()
	4.2.7.6 Method: Channel openBasicChannel(Byte[] aid, Byte P2)
	4.2.7.7 Method: Channel openBasicChannel(Byte[] aid)
	4.2.7.8 Method: Channel openLogicalChannel(Byte[] aid, Byte P2)
	4.2.7.9 Method: Channel openLogicalChannel(Byte[] aid)

	4.2.8 Class: Channel
	4.2.8.1 Method: Void close()
	4.2.8.2 Method: Boolean isBasicChannel()
	4.2.8.3 Method: Boolean isClosed()
	4.2.8.4 Method: Byte[] getSelectResponse()
	4.2.8.5 Method: Session getSession()
	4.2.8.6 Method: Void setTransmitBehaviour(Boolean expectDataWithWarningSW)
	4.2.8.7 Method: Byte[] transmit(Byte[] command)
	4.2.8.8 Method: Boolean selectNext()

	5 Service Layer APIs (Deprecated)
	5.1 Overview
	5.2 Class Diagram
	5.3 Usage Pattern
	5.4 Service API Framework
	5.4.1 Class: Provider
	5.4.1.1 Constructor: Provider(Channel channel)
	5.4.1.2 Method: Channel getChannel()

	5.5 Crypto API
	5.5.1 Extensibility
	5.5.2 Extending by Shared Libraries
	5.5.3 Extending Functionality via Applications
	5.5.4 Integration with the Transport API

	5.6 Discovery API
	5.6.1 Class: SEDiscovery
	5.6.1.1 Constructor: SEDiscovery (SEService service, SERecognizer recognizer)
	5.6.1.2 Method: Reader getFirstMatch()
	5.6.1.3 Method: Reader getNextMatch()

	5.6.2 Class: SERecognizer
	5.6.2.1 Method: Boolean isMatching(Session session)

	5.6.3 Class: SERecognizerByATR
	5.6.3.1 Constructor: SERecognizerByATR (byte[] atr, byte[] mask)

	5.6.4 Class: SERecognizerByHistoricalBytes
	5.6.4.1 Constructor: SERecognizerByHistoricalBytes (byte[] values)

	5.6.5 Class: SERecognizerByAID
	5.6.5.1 Constructor: SERecognizerByAID (byte[] aid)

	5.7 File Management
	5.7.1 Class: FileViewProvider
	5.7.1.1 Constant: CURRENT_FILE
	5.7.1.2 Constant: INFO_NOT_AVAILABLE
	5.7.1.3 Constructor: FileViewProvider(Channel channel)
	5.7.1.4 Method: FCP selectByPath(String path, Boolean fromCurrentDF)
	5.7.1.5 Method: FCP selectByFID(int fileID)
	5.7.1.6 Method: FCP selectParent()
	5.7.1.7 Method: Record readRecord(int sfi, int recID)
	5.7.1.8 Method: void writeRecord(int sfi, Record rec)
	5.7.1.9 Method: int[] searchRecord(int sfi, byte[] searchPattern)
	5.7.1.10 Method: byte[] readBinary(int sfi, int offset, int length)
	5.7.1.11 Method: void writeBinary(int sfi, byte[] data, int offset, int length)

	5.7.2 Class: FileViewProvider:FCP
	5.7.2.1 Method: byte[] getFCP()
	5.7.2.2 Method: int getFileSize()
	5.7.2.3 Method: int getTotalFileSize()
	5.7.2.4 Method: int getFID()
	5.7.2.5 Method: int getSFI()
	5.7.2.6 Method: int getMaxRecordSize()
	5.7.2.7 Method: int getNumberOfRecords()
	5.7.2.8 Method: int getFileType()
	5.7.2.9 Method: int getFileStructure()
	5.7.2.10 Method: int getLcS()

	5.7.3 Class: FileViewProvider:Record
	5.7.3.1 Constructor: Record(int id, byte[] data)
	5.7.3.2 Method: int getID()
	5.7.3.3 Method: byte[] getData()

	5.8 Authentication Service
	5.8.1 Class: AuthenticationProvider
	5.8.1.1 Constructor: AuthenticationProvider(Channel channel)
	5.8.1.2 Method: Boolean verifyPin(PinID pinID, byte[] pin)
	5.8.1.3 Method: void changePin(PinID pinID, byte[] oldPin, byte[] newPin)
	5.8.1.4 Method: void resetPin(PinID pinID, byte[] resetPin, byte[] newPin)
	5.8.1.5 Method: int getRetryCounter(PinID pinID)
	5.8.1.6 Method: void activatePin(PinID pinID, byte[] pin)
	5.8.1.7 Method: void deactivatePin(PinID pinID, byte[] pin)

	5.8.2 Class: AuthenticationProvider:PinID
	5.8.2.1 Constructor: PinID(int id, Boolean local)
	5.8.2.2 Method: int getID()
	5.8.2.3 Method: Boolean isLocal()

	5.9 PKCS #15 API
	5.9.1 Class: PKCS15Provider
	5.9.1.1 Constant: byte[] AID_PKCS15
	5.9.1.2 Constructor: PKCS15Provider(Channel channel)
	5.9.1.3 Method: byte[] getODF()
	5.9.1.4 Method: byte[] getTokenInfo()
	5.9.1.5 Method: Path[] getPrivateKeyPaths()
	5.9.1.6 Method: Path[] getPublicKeyPaths()
	5.9.1.7 Method: Path[] getCertificatePaths()
	5.9.1.8 Method: Path[] getDataObjPaths()
	5.9.1.9 Method: Path[] getAuthObjPaths()
	5.9.1.10 Method: byte[] readFile(Path path)
	5.9.1.11 Method: byte[] searchOID(byte[] dodf, String oid)
	5.9.1.12 Method: Path decodePath(byte[] der)

	5.9.2 Class: PKCS15Provider:Path
	5.9.2.1 Constructor: Path(byte[] path)
	5.9.2.2 Constructor: Path(byte[] path, int index, int length)
	5.9.2.3 Method: byte[] getPath()
	5.9.2.4 Method: Boolean hasIndexLength()
	5.9.2.5 Method: int getIndex()
	5.9.2.6 Method: int getLength()
	5.9.2.7 Method: byte[] encode()

	5.10 Secure Storage
	5.10.1 Class: SecureStorageProvider
	5.10.1.1 Constructor: SecureStorageProvider(Channel channel)
	5.10.1.2 Method: void create(String title, byte[] data)
	5.10.1.3 Method: void update(String title, byte[] data)
	5.10.1.4 Method: byte[] read(String title)
	5.10.1.5 Method: Boolean exist(String title)
	5.10.1.6 Method: Boolean delete(String title)
	5.10.1.7 Method: void deleteAll()
	5.10.1.8 Method: String[] list()

	5.10.2 Secure Storage APDU Interface
	5.10.2.1 CREATE SS ENTRY Command Message
	5.10.2.2 CREATE SS ENTRY Response Message
	5.10.2.3 DELETE SS ENTRY Command Message
	5.10.2.4 DELETE SS ENTRY Response Message
	5.10.2.5 SELECT SS ENTRY Command Message
	5.10.2.6 SELECT SS ENTRY Response Message
	5.10.2.7 PUT SS ENTRY DATA Command Message
	5.10.2.8 PUT SS ENTRY DATA Response Message
	5.10.2.9 GET SS ENTRY DATA Command Message
	5.10.2.10 GET SS ENTRY DATA Response Message
	5.10.2.11 GET SS ENTRY ID Command Message
	5.10.2.12 GET SS ENTRY ID Response Message
	5.10.2.13 DELETE ALL SS ENTRIES Command Message
	5.10.2.14 DELETE ALL SS ENTRIES Response Message

	5.10.3 Secure Storage APDU Transfer
	5.10.3.1 Create Operation
	5.10.3.2 Update Operation
	5.10.3.3 Read Operation
	5.10.3.4 List Operation
	5.10.3.5 Delete Operation
	5.10.3.6 Delete All Operation
	5.10.3.7 Exist Operation

	5.10.4 Secure Storage PIN Protection

	6 Minimum Set of Functionality
	7 Plug-ins
	8 Access Control

		2018-08-06T12:29:20-0500
	Document Management

