GL-BALPLATFORM®

THE STANDARD FOR MANAGING APPLICATIONS ON SECURE CHIP TECHNOLOGY

GlobalPlatform Device Technology

Trusted User Interface API
Version 1.0

Public Release
June 2013
Document Reference: GPD_SPE_020

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights or other intellectual property rights
of which they may be aware which might be necessarily infringed by the implementation of the specification or other work product set forth in this
document, and to provide supporting documentation. The technology provided or described herein is subject to updates, revisions, and extensions
by GlobalPlatform. Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is
strictly prohibited.

Trusted User Interface API — Public Release v1.0

This page intentionally left blank.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 3/48

Contents
N 1 1 8 o Yo LU o o 7
11 F B0 =T ot PR 7
1.2 1] = BTl F= 11 1 1= SRR PRRTRRPPN 7
1.3 R Ey (=] (= o1 PP O PRPTRRRPN 7
1.4 Terminology and DEfINITIONS. it e e e e e e s ab bt e e e e e e e e annbnaeeeaeas 8
1.5 PaX o] o] =V T=aTo] g ES3= g To I AN o] v= L1 o] o F- 9
1.6 (@0 g 1Y7=T 1T} o S 10
1.7 VIS o] o I RS (o] Y ORI 10
2 Trusted User INterface ODJECTIVESuuiiiiiii s 11
2.1 L= 1110 =3 P 11
2.2 PUIIDIOSE ..tttk f R Rttt ettt e e e e b e b e bnn e 11
2.3 FUNCHIONAIItIES ANA USE CaASES. ... uuuuuiuiuiiiiiiiiiiiiiiiitutatatatararararararara———.—a—a——————.————a—ararrararrarararnrrrnsrnsnnnnnnns 12
2.3.1 PIN ENtry FUNCHONAITYcoiieiiiiiei ettt ettt e e e e e et e e e e e e e s sannbeneeeaens 12
2.3.2 Login/ Password Entry FUNCHONAILYoevieiiiiiiieiiie e e e e e e 12
2.3.3 MeSSAQE FUNCHONAIILYccciiiiiieiie et e s e e e e e s e s e e e e e s s e nnn e e e e e e e annrnneeeeeas 12
2.4 External Source for Input of Displayed MESSAQEcuuieiiiiiiriiiiiie e iiccieer e e s e r e e e re e e e e 13
2.4 1 REIMOLE SEBIVEIS ..uittiiiiiiiiiiietiii ettt e e e e ettt e e et et e et et e e et e e e te bt e e e e et eeetaba s e eeaaeesesaanneeeeas 13
2.4.2 Simple Remote TermMiNal DEVICES..........uuuiiiiiiaiiiititie ettt a e e e snbraeeeaeas 13
2.4.3 DEViICE LOCAI MESSATESuueeiiiiiiaeieiiittiet e e e e e ettt e e e e e st ettt e e e e e e e e abb e et e e aeessaanbbbeeeeaaeesannbeneeeaans 13
3 Trusted User INterface PriNCIPIES i e 14
3.1 01V =T = 1| A ol o1 (T ox (1] SRR 14
3.2 Trusted USEr INEIfACE SCIEEMSciiiiiiiiie ittt ettt ettt e e s st e e s sabe e e e s arbeeeessabeeeeaas 15
32,1 PIN ENITY SCIEEIM ... 16
3.2.2 Login and PasSWOrd ENLIY SCIEEM.......cciiuuuiiiiii ettt ettt e e et e e e e e e e s sanbbee e e e e e e e e annneees 17
3.2.3 MESSAQE SCIEEIN ... 18
3.3 Authorized BUtton COMDINALIONS.........uuiiiiiiiiie ittt ettt e et e e s sebe e e e s srbreeessnbeeeeans 20
3.4 == IS5 {0 ol (1= ORI 21
3.5 Y C Yol U1 Y20 1 o o (o SRR 22
3.6 QLIS 1 RS T= S [o PP 22
3.7 IMAGES FOIMIAL ... etttk nbnbnn e 23
3.8 Minimum Number Of INPUL FIEIASeeeieiee e e e e e 23
3.9 T 0T LB = 24
3.9.1 Input Field AIPRABELeeeeeee e 24
3.10 L 1011 o | A =4 24
3.10.1 Default AIPRADET...... ... et e e e e e e e r e e e e e e 24
70 0 B2 YW o] o o] g (=10 [N =T g To [0 F= Vo [LS TP RUPT 24
0 T8 0 T o] 1 ¢ - PSPPI 25
3.10.4 Minimum Text Area for SCreen LabelS.........cooo i 25
3.10.5 Markup Capabilities and Text AQJUSIMENTccoiiiiiiiiiiee e e e e 25
3.11 Power and OS EVENIS MaNAGEMENT.......uuiiiieeiiiiiieireieeeissietieereeeeesssnteeereaeeessassreeeeeaeesannssnreereeeessanns 26
3.12 SCreen OrieNtationcoooiiiii i, 26
3.13 F ot ol 2SS o] 12T PPPUPT 26
4 Trusted USEr INTEITACE AP 27
4.1 IMPIEMENLALION PrOPEITIESviiiiiie e ittt e e s e e e e e e s e e e e e e s s e e e e e e e s sarsntteeeeeeeesansnnreeneeeeenanns 27
4.2 (L= To (=] O PP 27
4.3 (D= 1r= W 0] 0153 =T o | £ TP RPP P POUPPPPPPPP 28
4.4 D= U= B Y/ 01T ST TPPPTRPRPRPRPRN 29
4.4.1 TEE_TUIENIYFIEIAMOUEcoiiiiiiiiieiiie ettt e et e e e e e e s nba e e e e e e e e e aans 29

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

4/48

Trusted User Interface API — Public Release v1.0

4.4.2 TEE TUIENYFIEIATYPE ..eteiiiiee ittt e s st e e e e e e s s st re e e e e e e s e nnnnteeeeeaeeeannnnrenneaeeeennns 29
4.4.3 TEE_TUISCreeNOIENTALIONcciiiieiieieiee e e sietttieie e e e e e ssteteeeeeeesssnnnterereeeesasasnreneeeaeeeasansnreneeaeessanns 30
444 TEE_TUIBULONTYPE . tteiieiitiiie ettt ettt ettt e ettt e sttt e e e sttt e e s sabt e e e s sabe e e e s sabeeeesstbeeeesanbeeeessnreeeena 30
445 TEE_TUIHMAGESOUICTEo 31
446 TEE_TUIMAGE. ... tttieiitieeeiitiieeeiiteee e sttee e e staeeesstaeeeesstaeeeessbaeeesastaeaesssteeeeaasbeeeeaasbeeeesasbeeeesnsseeenans 31
4,47 TEE _TUISCreenLabel ... 32
448 TEE_TUIBULIONtiiiiiitiie ettt ettt sttt e sttt e e s ettt e e s sabe e e e s sabe e e e s abbeeeesabbeeeesabbeeeenn 33
4.4.9 TEE_TUISCreenCONfIQUIALION.uuiiiieee e e i ccitiieie e e e e e ssttiee e e e e e s s st e e e e e e sssnnreeeeeaeeesnnnnnreeeeaeessanns 34
4,410 TEE_TUISCreeNBUHONINTO....ciiii ittt e s s s e e e e e e s s s e e e e e e e annnnreeneaeeeeanns 35
4,411 TEE TUISCIEeNINfO oo 36
4.4.12 TEE_TUIENITYFIEI .ooiiiiiiie ettt ettt et e e st e e e st e e e snta e e e e ssbaeaesssbaeeesasbaeaesssraeeenas 37
4.5 FUNCIIONS .ottt oottt e e e oo ook bbbt e e e e e e e e ek bt be e e e e e e e e e nbbbbeeeaaeeeeannbabaeeaaaeaeanns 38
451 TEE _TUICHECKTEXIFOIMAL........iiiiiieeiiee e e e icttiie e e e e e s st e e e e e e s s st ee e e e e e e sssnnnreeeeeaeeeannnnrneeeaeeeeanns 38
452 TEE _TUIGEISCIEENINTO ...uuiiiiiie ettt e s st e e e e s s st e e e e e e s e san e eeeeaeeesnnnnreeeeaeeeeanns 39
e T I Y U1V} 6= T o o USSR 39
454 TEE TUICIOSESESSION ...ccoeiiieieeeee e, 40
455 TEE_TUIDISPIAYSCIEENeeiiiiiiiiiiitiiieee e ettt e e e ettt et e e e s s saa bttt e e e e e e s e aanbbeseeaaeeeaanbebeeeaaaeaaanns 41
Annex A QLS LN o B U LT Vo PP 43
Annex B Panicked Function Identification ..o 48

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 5/48

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:

Figures

TEE With TUT AFCRITECTUIEeei ittt et e e e e 14
Example of a Typical PIN ENtrY SCrEEN.......ccciiiiiiieieee e e ieetite e e e e e e st e e e e e e s st e e e e e e e s snnrnaeeeeees 16
Example of a Typical Login/Password ENtry SCrEENc..uvveveeeiiiiiiiiieeee e s escieeee e e e e e ssrnvneeeeae e 17
Example of a Typical Message Screen for INformationccccceeevveciviiiiee e 18
Example of a Typical Message Screen for Validation ... 19
Example of Typical Message Screens for Validation with Previous and Next Buttons 19
LBDEI SITUCTUIE ...ttt e sa e e e e sk e e e e ek b e e e sk b et e e s b be e e e s abb e e e e abneeeean 21

Label CompoSsItion EXAMPIEcoviiiiiiiieieeee e e e e e s e e e e e e ae e 21

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

6/48

Trusted User Interface API — Public Release v1.0

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 1-5:
Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:

Tables

NOIMALIVE RETEIENCES. ...ttt et e s bt sb et e e st b et e e aabr e e e e annneeas 7
INFOrMAtIVE REFEIENCES ...t 8
Terminology and DefiNItIONSuuiiiie e e e e s s r e e e e s s e e e e e e s e snnrrnereeees 8
Abbreviations and NOTALIONScciiiiii i 9
REVISION HISTOTY ..ottt et e e e et e e e e e e s bbbt e e e e e e e e e eanbbeaeeeaeeeaannnaees 10
Authorized Button Combinations (Excluding CORRECTION)ccuiiiiiiiiiiiiiiieeeiiiiieee e 20
IMPlEMENLAtION PrOPEITIEScoiiiiieiiee ettt e e e et e e e e e e e esbb e e e e e e e e e e nnneees 27
T o] g oo [OOSR PRSP 28
DaAta CONSTANTS......eeeiiiiiie ittt s e s e e e e e s e e e s e e e s asr e e e e e nnnreeenennes 28

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 7148

1 Introduction

Many sensitive use cases lead to an interaction with the user. They are mainly, but not exclusively, related to
financial services and corporate usages: bill payment, money transfer, document signature validation,
privacy, etc.

While the TEE Internal Core API [TEE Internal API] offers the possibility to execute all sensitive operations
within a Trusted Application (TA) running in the Trusted Execution Environment (TEE), certain applications
need to expose sensitive information to the user for validation or to get sensitive information from the user.
Entering a PIN and signing a document are examples of operations that need to be handled inside the TEE
for the Trusted Application and not to rely on facilities in the Rich Execution Environment (REE).

This document defines and specifies a Trusted User Interface (TUI) API for Trusted Application developers.

It is not the role of this interface to provide security for streaming media display or to secure other device
interfaces such as audio or camera components.

This document is an addendum to [TEE Internal API].

1.1 Audience

This document is intended to support software developers implementing Trusted Applications running inside
the TEE which need to display sensitive information to the user or retrieve sensitive data from the user.

This document is also intended for implementers of the Trusted User Interface in the TEE itself.

1.2 IPR Disclaimer

GlobalPlatform draws attention to the fact that claims that compliance with this specification may involve the
use of a patent or other intellectual property right (collectively, “IPR") concerning this specification may be
published at https://www.globalplatform.org/specificationsipdisclaimers.asp. GlobalPlatform takes no position
concerning the evidence, validity, and scope of these IPR claims.

1.3 References

Table 1-1: Normative References

Standard / Specification | Description Ref

GPD_SPE_010 GlobalPlatform Device Technology [TEE Internal API]
TEE Internal API Specification

ISO 639-1 Codes for the representation of names of languages — | [ISO 639-1]
Part 1: Alpha-2 code

PNG ISO/IEC 15948:2004 - Information technology -- [1ISO 15948]
Computer graphics and image processing -- Portable
Network Graphics (PNG): Functional specification

RFC 2119 Key words for use in RFCs to Indicate Requirement [RFC 2119]
Levels
Unicode The Unicode Standard; available at: [Unicode]

http://www.unicode.org/versions/Unicode6.2.0/

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

https://www.globalplatform.org/specificationsipdisclaimers.asp
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29581
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29581
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29581

8/48 Trusted User Interface API — Public Release v1.0

Table 1-2: Informative References

Standard / Specification | Description Ref

GPD_SPE_007 GlobalPlatform Device Technology [TEE Client API]
TEE Client API Specification

GPD_SPE_009 GlobalPlatform Device Technology [TEE Sys Arch]
TEE System Architecture

GPD_SPE_025 GlobalPlatform Device Technology [TEE Debug]
TEE TA Debug Specification

1.4 Terminology and Definitions

Table 1-3: Terminology and Definitions

Term Definition

Client Application (CA) An application running outside of the Trusted Execution Environment
(TEE) making use of the TEE Client API [TEE Client API] to access
facilities provided by Trusted Applications inside the TEE.

Contrast Trusted Application (TA).

Data Object An object containing a data stream but no key material.

Object Identifier A variable-length binary buffer identifying a persistent object.

Panic An exception that kills a whole TA instance as a result of calling one of
the API functions.

Property An immutable value identified by a name.

Rich Execution Environment An environment that is provided and governed by a Rich OS,

(REE) potentially in conjunction with other supporting operating systems and

hypervisors; it is outside of the TEE. This environment and applications
running on it are considered un-trusted.

Contrast Trusted Execution Environment (TEE).

Rich OS Typically an OS providing a much wider variety of features than that of
the OS running inside the TEE. It is very open in its ability to accept
applications. It will have been developed with functionality and
performance as key goals, rather than security. Due to the size and
needs of the Rich OS it will run in an execution environment outside of
the TEE hardware (often called an REE — Rich Execution Environment)
with much lower physical security boundaries. From the TEE viewpoint,
everything in the REE has to be considered un-trusted, though from the
Rich OS point of view there may be internal trust structures.

Contrast Trusted OS.

Secure Element (SE) A tamper resistant component which is used in a device to provide the
security, confidentiality, and multiple application environment required
to support various business models. May exist in any form factor, such
as embedded SE, SIM, UICC, smartSD, smart microSD, etc.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 9/48

Term Definition

Session Logically connects multiple commands invoked on a Trusted
Application.

Task The entity that executes any code executed in a Trusted Application.

Trusted Application (TA)

An application running inside the Trusted Execution Environment (TEE)
that provides security related functionality to Client Applications outside
of the TEE or to other Trusted Applications inside the TEE.

Contrast Client Application (CA).

(TEE)

Trusted Execution Environment | An execution environment that runs alongside but isolated from an

REE. A TEE has security capabilities and meets certain security-
related requirements: It protects TEE assets from general software
attacks, defines rigid safeguards as to data and functions that a
program can access, and resists a set of defined threats. There are
multiple technologies that can be used to implement a TEE, and the
level of security achieved varies accordingly.

Contrast Rich Execution Environment (REE).

Trusted OS

An operating system running in the TEE providing [TEE Internal API] to
Trusted Applications.

Trusted Storage

Storage accessible only to Trusted Applications.

Trusted User Interface
(Trusted Ul or TUI)

A user interface that ensures that the screen is controlled by the TEE
and isolated from the REE and even the TAs.

1.5 Abbreviations and Notations

Table 1-4: Abbreviations and Notations

Abbreviation / Notation | Meaning

API Application Programming Interface

ASCII American Standard Code for Information Interchange
ID IDentifier

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

ISO International Organization for Standardization

LED Light Emitting Diode

NFC Near Field Communication

(OF] Operating System

PIN Personal Identification Number

PNG Portable Network Graphics

REE Rich Execution Environment

RFC Request For Comments; may denote a memorandum published by the IETF

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

10/48

Trusted User Interface API — Public Release v1.0

Abbreviation / Notation | Meaning

RGB Red Green Blue; an additive color model
SD Secure Digital

SE Secure Element

SIM Subscriber Identity Module

TA Trusted Application

TEE Trusted Execution Environment
TUI Trusted User Interface

UCSsS Universal Character Set

ul User Interface

uiccC Universal Integrated Circuit Card
UTF-8 UCS Transformation Format — 8-bit

1.6 Conventions

Throughout this document, normative requirements are highlighted by use of capitalized key words as
described below.

The key words “MUST”, “MUST NOT”, “SHOULD”, “SHOULD NOT", and “MAY” in this document are to be
interpreted as described in [RFC 2119]:

MUST - This word means that the definition is an absolute requirement of the specification.
MUST NOT - This phrase means that the definition is an absolute prohibition of the specification.

SHOULD - This word means that there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and carefully weighed before choosing a different
course.

SHOULD NOT - This phrase means that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with this label.

MAY — This word means that an item is truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it enhances the product while another
vendor may omit the same item. An implementation which does not include a particular option MUST be
prepared to interoperate with another implementation which does include the option, though perhaps with
reduced functionality. In the same vein an implementation which does include a particular option MUST be
prepared to interoperate with another implementation which does not include the option (except, of course,
for the feature the option provides.)

1.7 Revision History

Table 1-5: Revision History

Date Version

June 2013 1.0

Description

Initial release

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 11/48

2 Trusted User Interface Objectives

2.1 Target

This specification is targeted at a TEE running within a smartphone or a tablet. A Trusted User Interface API
can be envisaged for other devices hosting a TEE but facilities specific to supporting such devices are out of
scope of this specification.

Supported smartphones and tablets in this document have at least one touchscreen or one screen and one
keyboard which MUST be wired and integral to the device. Remote peripherals are not considered in this
specification.

2.2 Purpose

The Trusted User Interface API permits the display of screens to the user and achieves three objectives:

e Secure Display — Information displayed to the user cannot be accessed, modified, or obscured by any
software within the REE or by an unauthorized application in the TEE.

e Secure Input — Information entered by the user cannot be derived or modified by any software within
the REE or by an unauthorized application in the TEE.

e Secure Indicator — The user can be confident that the screen displayed is actually a screen displayed
by a TA.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

12/48 Trusted User Interface API — Public Release v1.0

2.3 Functionalities and Use Cases
This section describes the objectives of the Trusted User Interface API in terms of functionalities. It also
gives examples of the use cases foreseen to be coupled with those functionalities.

While additional functionality can be required to cover a larger set of use cases, such functions have been
removed in this version of the specification. This decision was made for three reasons:

e They are not realistic technically — e.g. management of peripherals such as the voice or the camera as
inputs.

e They cannot yet be easily standardized due to fragmentation — e.g. video rendering.
e The use cases they cover were not considered of sufficient importance to be included in this first
version of the specifications — e.g. display of complex formats.
2.3.1 PIN Entry Functionality
The Trusted User Interface API permits the user to validate an operation by entering a numeric identifier
such as a PIN. PIN security is very common and is used to authorize operations all over the world.

Many use cases are in the scope of this functionality, in particular those requiring user authentication to
validate or authorize a sensitive operation.

PIN entry screens can be triggered by different use cases:

e Mobile financial services such as consulting a bank account or paying a bill from an application require
correct PIN entry to verify that a user is requesting an operation.

e Payment: TUI PIN entry can be used in conjunction with Secure Element (SE) applications to reduce
the risk of payments by providing a level of indication of user presence.

e Authorization to view sensitive data

e Authorization to change device state and other capabilities
2.3.2 Login/Password Entry Functionality

Entering a login and the corresponding password in a protected manner is covered by the Trusted User
Interface API. While several sensitive operations can require authentication using this functionality, the
definitive use case is the need to authorize access to personal account data in particular through the
Internet.

2.3.3 Message Functionality

The Trusted User Interface APl permits the display of sensitive information to the user and optionally
enables the user to indicate acceptance or rejection of that displayed data. Such screens can be triggered by
different use cases, such as:

e Room number access code
e Contract validation
e One time password token

e Medical information

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 13/48

2.4 External Source for Input of Displayed Message

TUI screens are displayed by the TEE on behalf of TAs. While often the backgrounds and text structuring of
the TUI screens will likely be already contained by the TA itself, it is perceived that three sources can directly
or indirectly customize the message to display.

2.4.1 Remote Servers

Such servers are presumed for the purpose of this API to be able to compose complicated graphic or text
based messages. In this case functionality such as internationalization of the message can be performed by
the remote server before download to the TA and finally the TUI.

2.4.2 Simple Remote Terminal Devices

This case covers NFC-like terminals, which will typically deliver very simple concepts (number of items,
name of items, cost of items) and expect the supporting device to structure those concepts into a more user
friendly interaction. In this case the TA can be expected to perform functionality such as internationalization.

2.4.3 Device Local Messages
This case covers the need for services installed as basic functionality of the device to provide trusted

interface capability.

This case can fall into either of the above two cases as far as the contents delivered. In some instances it
can make use of complex but predefined messages that are installed during manufacturing. In other cases it
can want to compose messages from simple concepts.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

14/48 Trusted User Interface API — Public Release v1.0

3 Trusted User Interface Principles

3.1 Overall Architecture

Figure 3-1: TEE with TUI Architecture

REE TEE
QS _ Trusted
Application Application
TEE Client API TEE Internal API
OS Components Trusted OS Components
OS Kernel Trusted Kernel
Platform ‘ REE perioherals ‘ ‘ Touchscreen/ ‘ ‘ Display ‘ ‘ Other trusted ‘
hardware perip keyboard peripherals peripheral peripherals

In this specification, peripherals related to the user interface MUST be wired to the device. Remote
peripherals are not considered in this specification.

A typical architecture implementing the Trusted User Interface feature consists of either a touchscreen or
keyboard peripheral and a display controller peripheral. When a Trusted User Interface screen is displayed,
those peripherals MUST NOT be accessible for reading or writing by the REE and indication of associated
events MUST NOT be received by the REE. At other times, it is up to a specific platform or a specific TEE
implementation as to whether to give back the control of those peripherals to the REE or to provide some
other method to allow the REE access to those peripherals.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 15/48

3.2 Trusted User Interface Screens

TUI screens rely on exclusive access to Ul resources from the TEE, they MUST always be displayed in
foreground, and they MUST always have the focus. It is highly recommended to have the trusted part of the
screen close to the full screen size and not to deal with overlays in order to avoid confusion and a bad user
experience. TUI screens imply critical and sensitive data and operations that need to be immediate and
exclusive.

Hereafter, typical screens managed by the Trusted User Interface API are described.

Important Notice: The following sections describe the different functionalities that MUST be
supported by the TUI screens; nevertheless, the proposed figures are for reference only. For
instance, if an implementation prefers to get user inputs using a physical keyboard rather than a
virtual keyboard and virtual buttons, screen figures with a virtual keyboard and buttons are not
accurate in that case. Likewise, labels of entry fields and texts of buttons are examples and MAY be
customized by TAs.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

16/48 Trusted User Interface API — Public Release v1.0

3.2.1 PIN Entry Screen

Typically, a PIN entry screen is composed of:
e A label, holding branding information and usually detailing the operation to be validated by a PIN entry
e An entry field to indicate entered digits
e A keyboard that permits entry of digits
e Buttons:
0 CORRECTION which allows the digit previously entered to be corrected
0 CANCEL which allows the operation to be canceled and exits the screen
o VALIDATE which triggers validation of the PIN entry and exits the screen

e A security indicator (text, image, LED, ...)

Figure 3-2: Example of a Typical PIN Entry Screen

Label
PIN
{ *hkk } [< correction j
1 2 3
4 5 6
7 8 9
cancel 0 validate
\ Security Indicator

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 17/48

3.2.2

Login and Password Entry Screen

Typically, a login/password entry screen is composed of:

A label, holding branding information and usually detailing the operation requiring a password
An entry field to display the entered alphanumeric characters for the login

An entry field to display the entered alphanumeric characters for the password

A keyboard that permits entry of alphanumeric characters

Buttons:

0 CORRECTION which allows the digit previously entered to be corrected

0 CANCEL which allows the operation to be canceled and exits the screen

o VALIDATE which triggers validation of the field entries and exits the screen

A security indicator (text, image, LED, ...)

Figure 3-3: Example of a Typical Login/Password Entry Screen

Label

login

{ mylogin } { < correction }

password

[F*kkk } [< correction }

OOOOOOOOOOOOO
OOOOOOOOOOOOOD
OOOOOOOOOOOOOD
OOOCOOOOOOOOOOD

Virtual Keyboard

cancel validate

\ Security Indicator

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

18/48 Trusted User Interface API — Public Release v1.0

3.2.3 Message Screen

Typically, a message screen is composed of:
e Alabel area containing the message to be displayed to the user and any associated branding
e Depending on the usage, up to five buttons:
0 OK which exits the screen and informs the TA of the button ID
0 CANCEL which exits the screen and informs the TA of the button ID
0 VALIDATE which exits the screen and informs the TA of the button ID

o0 NEXT which exits the screen and informs the TA of the button ID. It requires the TA to display
another screen which is the continuation of the current displayed screen.

o PREVIOUS which exits the screen and informs the TA of the button ID. It requires the TA to
display the screen previously seen.

e A security indicator (text, image, LED, ...)

Figure 3-4: Example of a Typical Message Screen for Information

Label

[Security Indicator

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0

19/48

Figure 3-5: Example of a Typical Message Screen for Validation

r

~

Figure 3-6: Example of Typical Message Screens for Validation with Previous and Next Buttons

Ve

NS

~

-

~

Copyright ©2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

20/48 Trusted User Interface API — Public Release v1.0

3.3 Authorized Button Combinations

As described in the previous sections, six buttons are managed by the TUI APIl: CORRECTION, OK,
CANCEL, VALIDATE, PREVIOUS, and NEXT.

The CORRECTION button is mandatory and MUST be available when at least one entry field is present. For
the other cases, Table 3-1 described the authorized combinations:

Table 3-1: Authorized Button Combinations (Excluding CORRECTION)

OK CANCEL VALIDATE PREVIOUS | NEXT
X
X X
X
X
X X

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 21/48

3.4 Label Structure

The label is structured from a background canvas, overlaid with two additional displays:
e A settable and discoverable overall label area canvas color

e An optional image, equal to or smaller than the canvas, can be positioned anywhere inside the Label
area. Typically, it will contain the logo of a service provider.

e On top of that image can be placed optional text which is also positioned anywhere inside the Label
area.

The origin point for the screen co-ordinates of image and text areas inside the label field is the top left corner
of the label, with the offset value increasing from 0,0 towards the bottom right corner of the label area. These
offset value indicate the top left corner of the relevant image or text area.

The combination of these three areas gives a simple but flexible display area.

Figure 3-7: Label Structure

Image
Text
Label
Figure 3-8: Label Composition Example

1 Packet

HedgeHog Crisps
____—" Total Price $0.50 D ——

1 Packet GLSBALPLATFORM

HedgeHog Crisps

Total Price $0.50 ((< comecten | GLSBALPLATFORM
e) =]
ENENEN
)l e]
[cancel M 0 Mvalidate}

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

22148 Trusted User Interface API — Public Release v1.0

3.5 Security Indicator

The security indicator is a specific indication that the displayed screen can be considered trusted by the user,
i.e. that the screen is controlled by the TEE and isolated from the REE and even the TAs. It can be either or
both of:

e A hardware controlled security indication such as an LED state or the use of an area of screen under
permanent TEE control.

e A piece of personal information only known by the user such as an image or a personal question with
the corresponding answer. This information MUST NOT be known or accessible by the REE. It is
preferable that this security indicator is uniquely associated with a user and not with a device.

It is highly recommended that the security indicator be managed directly by the TEE itself: The TEE
SHOULD provide by default a security indicator when a TUI screen is displayed. If it is not the case, then the
property value gpd.tee.tui.securitylndicator is set to Ffalse, the functionality of the security
indicator MUST be provided by the TA itself either through a hardware controlled peripheral if available (and
if a specific TEE implementation allows that) or through the label information of the TUI screen. In that last
case, the image and/or the text of the label MUST be such as could reasonably be expected to make the
user confident that the displayed screen can be trusted, i.e. that it is displayed by the TEE.

3.6 TUI Session

When a TA requests a TUI screen to be displayed, its access to the Ul resources MUST be exclusive and
this means it is not possible to display several TUI screens simultaneously. A session mechanism permits a
TA to reserve exclusive access to TUI resources and in particular to guarantee that a particular sequence of
TUI screens is atomic. This screen ownership atomicity is limited by overriding events such as described in
section 3.11.

When the TUI resources are reserved by a TA, that MUST NOT interfere with the REE Ul behavior. Only
when the effective first actual display of a TUI screen starts does the TA take the control of the input and the
output of the UI.

While there is no timeout associated with a TUI screen, there is a timeout associated with a TUI session:
It applies to the time spent not displaying a TUI screen within a TUI session; it is started when the session is
opened and when a TUI screen is ended. If this timeout is reached, the TUI session is automatically closed.
The timeout value is specified by the property gpd.tee.tui.session.timeout.

! A TUI screen is ended when, for example:
e The user presses a button.
e A programmed cancel call occurs.

¢ An external event such as a phone call or a Backlight Off event occurs.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 23/48

3.7 Images Format
The only format of images supported by the specification is the Portable Network Graphics (PNG) format
[ISO 15948]. It MUST be pre-scaled to fit inside the canvas area of the label.

While an implementation might support full features of PNG standard, in this specification the mandatory
support is reduced. It MUST be at least the following:

e Two color types:
o0 Grayscale (0) up to 8 bits depth
0 Truecolor (2) up to 24 bits

¢ Interlacing method 0 (no interlacing)

e Ancillary chunks are ignored.

3.8 Minimum Number of Input Fields

The TUI API allows the TA to customize a TUI screen by selecting the number of entry fields to display. The
minimal number of input fields that SHALL be supported is two as it is mandatory to support the
login/password use case. However, an implementation can specify that it supports more entry fields per
screen for a given orientation, and communicate this with the TA through the function
TEE_TUIlGetScreenlinfo.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

24148 Trusted User Interface API — Public Release v1.0

3.9 Input Text

3.9.1 Input Field Alphabet

The platform MUST support input characters for an input field with at least the following subset of the
characters of the ASCII table:

e Characters in the interval [Unicode (U+0020) — Unicode (U+007D)].

This subset is sufficient to match most country standards for PIN entry and login password entries.

3.10 Output Text
This section concerns the text that can be written within a label.
3.10.1 Default Alphabet
By default, a subset of the characters of the Unicode table ([Unicode]) MUST be supported by an
implementation:
e Character for carriage return: Unicode (U+000D)

e Characters in the interval [Unicode (U+0020) — Unicode (U+007D)]
e TUI Markup: Unicode (U+E000) — (U+E003) as specified in Section 3.10.5

3.10.2 Supported Languages

It is specific to an implementation to define which languages are supported. The strings retained by this
specification are UTF-8 based.

The property gpd.tee.tui.languages permits a TA to indicate which languages are supported by an
implementation. This is informative only as there is no direct mapping between a language and the
corresponding subset of UTF-8 characters that needs to be supported. To deal with this, the function
TEE_TUICheckTextFormat permits the TA to know precisely which UTF-8 characters are supported by
an implementation.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 25/48

3.10.3 Format

It is specific to an implementation to define the fonts and the size of the text displayed to the user as long as
they meet a minimum set of character display capabilities as defined in Section 3.10.1 by providing those
fonts and sizes.

The text displayed on the Trusted User Interface can contain sensitive information such as monetary
amounts or a text to be signed. The TA calling the user interface must be sure that the graphical rendering of
the screen reflects exactly the text provided to the display function. A normal display interface can affect the
rendering in two ways:

¢ If some Unicode characters cannot be graphically displayed, a default rendering is provided.

o |If aline of text is too long to be displayed on a single screen line, the text can be truncated or
displayed on several lines, with or without hyphenating the words.

This behavior is not acceptable for a Trusted User Interface and the TUI API will reject any string containing
characters that cannot be rendered by an implementation. To prevent the problem of text line rendering, the
TUI API requires the calling TA to cut the lines to match the screen before display. If a line is too large, the
display operation SHALL be rejected.

This formatting operation can be achieved by using the TUI APl which offers a way to know the exact width
and height that a string will occupy using the function TEE_TUICheckTextFormat. It is up to an
implementation to have a fixed width and height for all characters or to have a fine tuned implementation that
MAY adapt width and height depending on the text to render.

3.10.4 Minimum Text Area for Screen Labels
The text area has both a minimum vertical and horizontal size. This minimum is expressed in numbers of
characters of the minimal ASCII font. It MUST be at least:

e 4lines

e 25 characters per line
If a device supports more complex fonts with a higher information density per symbol, such as many Asian
Unicode fonts, then it MUST support at least 4 lines of 10 characters per line, in those fonts, in readable text.

3.10.5 Markup Capabilities and Text Adjustment

It is possible to mark up text to be in bold and or to be underlined. This markup capability is based on private
Unicode characters. The same value is used to mark the starting point of a special formatting section and the
ending of that formatting section. It is possible to overlap them.

e Unicode (U+E000) for bold
e Unicode (U+E001) for underline

It is possible to insert multiples of one pixel wide space or one pixel height space. This permits the TA to
perform its own justification on text blocks, or to adjust to text fit against a specific background image.
Justification (right or left) is the same as the one followed by the language of the text.

e Unicode (U+E002) moves the current cursor right by one pixel.

e Unicode (U+E003) moves the current cursor down by one pixel.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

26/48 Trusted User Interface API — Public Release v1.0

3.11 Power and OS Events Management

TUI screens often display critical and sensitive data and operations that need to be immediate and exclusive.
They must lead to an experience that makes the user confident of the data displayed and entered. On the
other hand, some events that occur on the platform in the REE, such as those related to power management
or incoming calls, are also critical. This section clarifies the expected behavior of the TUI session in such a
situation. The overall rule is that an individual TUI screen (in a TUI session) must be considered as an
atomic operation that is valid only when it has not been interrupted.

When the following power management events occur during a TUI session, the device MUST trigger the TUI
session to terminate:

¢ Device Reset event

e Device Turn Off event

e Sleep mode Turn On event
e Backlight Off event

When an OS specific event occurs during a TUI session, the TUI session MAY terminate. Typical OS
specific events are incoming calls, calendar events, email notifications, etc. The choice to terminate a TUI
session on particular OS specific events is implementation specific.

When a TUI session is terminated, the TUI screen MUST disappear from the display to make sure that the
user is not confused and the control of its screen area is given back to the REE. It is acceptable for the TEE
TUI to display a warning that the trusted display mode is being left before handing the display control back to
the REE. The TA MAY replay the interrupted TUI screen when the REE event has been resolved. Most
likely, the TA and its Client Application will decide which behavior to apply in this case.

3.12 Screen Orientation

By default, the specification allows display of a screen in a fixed manner either vertically or horizontally. An
implementation MUST support one of the two operations and MAY support both of them.

Knowledge of the current orientation is not critical and can be considered as informative. It is not supplied by
this APl and MAY be obtained by the Client Application of the TA that wishes to display a TUI screen.

3.13 Accessibility

This specification provides limited support for accessibility considerations through use of service defined
images, however as providing accessibility is an end to end problem set it is believed that existing systems
will cater for current needs using methods outside of this limited scope. If a particular device design requires
accessibility extensions (for example audio text or large font control) then these can always be added in a
proprietary manner.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 27148

4 Trusted User Interface API

4.1 Implementation Properties

The following table defines the implementation properties regarding the TUI API.

Table 4-1: Implementation Properties

Property Name Type Meaning

gpd.tee.tui.securitylndicator bool true if a security indicator is present on
TUI screens by default. It means that a
security indicator is managed by the TEE.
If false, a security indicator MUST be
managed by the TA itself.

gpd.tee.tui.languages string The list of supported languages
separated by “:”. The language names
are based on the ISO 639-1 codes
[1ISO 639-1].

gpd.tee.tui.orientation integer 0x00000001 if it is possible to request
the display of TUI screens with portrait
orientation, i.e. vertical orientation only.
0x00000002 ifitis possible to request
the display of TUI screens with landscape
orientation, i.e. horizontal orientation only.
0x00000003 if it is possible to request
the display of TUI screens with portrait or
landscape orientation, i.e. vertical or
horizontal orientation.

gpd.tee. tui.session.timeout integer Duration of the timeout associated with a
TUI session in milliseconds. Typical value
is around 10 seconds.

4.2 Header File

The header file for the TEE Internal API must have the name “tee_tui_api .h"

‘ #include 'tee tui_api.h"

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

28/48 Trusted User Interface API — Public Release v1.0

4.3 Data Constants

In addition to the error codes specified in [TEE Internal API], a new one is used throughout this specification.

Table 4-2: Error Code

Constant Name Value

TEE_ERROR_EXTERNAL_CANCEL OxFFFFO011

A constant is used to specify the number of button types.

Table 4-3: Data Constants

Constant Name Value

TEE_TUI_NUMBER_BUTTON_TYPES 0x00000006

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 29/48

4.4 Data Types

4.4.1 TEE_TUIEntryFieldMode

typedef enum
{
TEE_TUl _HIDDEN_ MODE=0,
TEE_TUl CLEAR _MODE,
TEE_TUI TEMPORARY_CLEAR_MODE
} TEE TUIEntryFieldMode;

The TEE_TUIEntryFieldMode enumeration enumerates the modes supported when displaying
characters within an input entry field:

e TEE_TUI_HIDDEN_MODE when the displayed characters are never visible in clear.
e TEE _TUIl CLEAR _MODE when the displayed characters are always visible in clear.

e TEE_TUI_TEMPORARY_CLEAR_MODE when the displayed characters are visible for a short amount of
time when entered and then are hidden.

Values in the enumeration greater than or equal to 0x8000 are reserved for implementation-defined field
modes.

4.4.2 TEE_TUIEntryFieldType

typedef enum
{
TEE_TUI _NUMERICAL=0,
TEE_TUI_ALPHANUMERICAL
} TEE TUIEntryFieldType;

The TEE_TUIEntryFieldType enumeration enumerates the possible types of entry fields:
e TEE_TUI _NUMERICAL when the field accepts only digits as inputs.
e TEE_TUI_ALPHANUMERICAL when the field accepts characters and digits as inputs.

Values in the enumeration greater than or equal to 0x8000 are reserved for implementation-defined field
types.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

30/48 Trusted User Interface API — Public Release v1.0

4.4.3 TEE_TUIScreenOrientation

typedef enum

{
TEE_TUIl_PORTRAIT=0,
TEE_TUI1_LANDSCAPE

} TEE _TUIlScreenOrientation;

The TEE_TUIScreenOrientation enumeration enumerates the supported screen orientations:
e TEE_TUI_PORTRAIT when the TUI screen is requested to be displayed as a portrait, i.e. vertically.

e TEE_TUIl_LANDSCAPE when the TUI screen is requested to be displayed as a landscape, i.e.
horizontally.

Values in the enumeration greater than or equal to 0x8000 are reserved for implementation-defined screen
orientations.

4.44 TEE_TUIButtonType

typedef enum

{
TEE_TUI CORRECTION=0,
TEE_TUIl OK,
TEE_TUI_CANCEL,
TEE_TUI _VALIDATE,
TEE_TUI _PREVIOUS,
TEE_TUI_NEXT

} TEE_TUIButtonType;

The TEE_TUIButtonType enumeration enumerates the six types of buttons that can be associated with
TUI screens:

e TEE _TUI _CORRECTION represents the value for the CORRECTION button.
e TEE_TUIl_OK represents the value for the OK button.

e TEE_TUI_CANCEL represents the value for the CANCEL button.

e TEE_TUI_VALIDATE represents the value for the VALIDATE button.

e TEE_TUI_PREVIOUS represents the value for the PREVIOUS button.

e TEE_TUI _NEXT represents the value for the NEXT button.

Values in the enumeration greater than or equal to Ox8000 are reserved for implementation-defined button
types.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0

31/48

445 TEE_TUllmageSource

typedef enum

{
TEE_TUI_NO_SOURCE=0,
TEE_TUl_REF_SOURCE,
TEE_TUI_OBJECT_SOURCE

} TEE_TUl ImageSource;

The TEE_TUI ImageSource enumeration enumerates the possible sources of an image:
e TEE_TUI_NO_SOURCE if no image is provided as input.

e TEE_TUIl_REF_SOURCE if the image source is provided as a memory reference.

e TEE _TUI_OBJECT_SOURCE if the image source is provided as a Data Object in the Trusted Storage.

446 TEE_TUllmage

typedef struct
{
TEE_TUI ImageSource source;
union
{
struct
{
[inbuf] void* image; size_t imagelLength;
}
ref;
struct
{
uint32_t storagelD;
[in(objectiDLength)] void* objectlD; size_t objectliDLen;
}
object;
};
uint32_t width;
uint32_t height;
} TEE_TUl Image;

The TEE_TUlImage structure defines a way to handle an image for label area and buttons. An image

source can be a buffer or an object in the Trusted Storage:

e source indicates the source of the image.

o Ifsetto TEE_TUI_NO_SOURCE actually the structure does not refer to an image and all other

fields are ignored.
o Ifsetto TEE TUl _REF_SOURCE the field ref MUST be selected.

o Ifsetto TEE_TUI OBJECT_SOURCE the field object MUST be selected.

e 1Image, imagelLength is a buffer containing the image. The referenced memory MUST contain the

whole of the image in PNG format.
e storagelD is the storage to use. It MUST be TEE_STORAGE_PRIVATE [TEE Internal API].

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is

governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

32/48 Trusted User Interface API — Public Release v1.0

objectlID, objectlIDLen is the Object Identifier which refers to a Data Object containing the
image in PNG format.

width represents the number of pixels of the width of the image.

height represents the number of pixels of the height of the image.

The width and height MUST match the values set within the image in PNG format.

4.4.7

TEE_TUIScreenLabel

typedef struct

{
char * text;
uint32_t textXOffset;
uint32_t textYOffset;
uint8_t textColor[3];
TEE_TUllmage image;
uint32_t imageXOffset;
uint32_t imageYOffset;

} TEE _TUIScreenLabel;

The TEE_TUlScreenLabel structure defines the contents of the TA defined label area, which is provided
to support TA branding and a TA defined message:

For all

text is the string to put in the label area. It can be NULL.
textXOffset represents the x-coordinate for the top left corner of the text to render.
textYOffset represents the y-coordinate for the top left corner of the text to render.

textColor defines the color of the text in RGB form. Red is index 0, Green index 1, and Blue

index 2. All components are specified in the range 0...255 but an implementation MAY re-interpret
these values to suit its screen provided it makes the best possible match to the requested color.

image is the image to be put in the label area.
imageXOffset represents the x-coordinate for the top left corner of the image to display.
imageYOffset represents the y-coordinate for the top left corner of the image to display.

coordinates described above, the coordinate origin is the top left corner of the label canvas.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 33/48

4.4.8 TEE_TUIButton

The TEE_TUIButton structure defines the content of a button. The TA SHALL provide language or usage
specific prompts or make use of the defaults. It is recommended that the defaults are graphical in nature to
be as language agnostic as possible.

typedef struct
{
char* text;
TEE_TUllmage image;
} TEE_TUIButton;

e text is the string to associate with the button. It MAY be NULL.
e 1Image is the image to associate with the button.

If an image is set as an input, its width and height MUST match the ones returned by
TEE_TUIlGetScreeninfo.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

34/48

Trusted User Interface API — Public Release v1.0

4.4.9

TEE_TUIScreenConfiguration

typedef struct
{

} TEE TUIlScreenConfiguration;

TEE_TUIlScreenOrientation screenOrientation;

TEE_TUIlScreenLabel label;

TEE_TUIButton* buttons[TEE_TUI NUMBER _BUTTON_TYPES];

bool requestedButtons[TEE_TUI NUMBER BUTTON_TYPES];

The TEE_TUIScreenConfiguration structure enables configuration of a TUI screen:

e screenOrientation is the requested screen orientation.

o label specifies the label of the screen

e buttons customizes the buttons compared to the default configuration.

(0]

(o}

buttons[TEE_TUI_CORRECTION] is the CORRECTION button. If NULL, the default button
configuration is used.

buttons[TEE_TUI _OK] is the OK button. If NULL, the default button configuration is used.

buttons[TEE_TUI_CANCEL] is the CANCEL button. If NULL, the default button configuration is
used.

buttons[TEE_TUI_VALIDATE] is the VALIDATE button. If NULL, the default button
configuration is used.

buttons[TEE_TUI_PREVIOUS] is the PREVIOUS button. If NULL, the default button
configuration is used.

buttons[TEE_TUI NEXT] isthe NEXT button. If NULL, the default button configuration is used.

e requestedButtons specifies which buttons to be displayed. Each entry corresponds to a type of
button and is setto true if the button is required to be displayed.

[0}

(o}

(o}

requestedButtons[TEE_TUI CORRECTION] is related to the CORRECTION button.
requestedButtons[TEE_TUI_OK] is related to the OK button.
requestedButtons[TEE_TUI_CANCEL] is related to the CANCEL button.
requestedButtons[TEE_TUI_VALIDATE] is related to the VALIDATE button.
requestedButtons[TEE_TUI_PREVIOUS] is related to the PREVIOUS button.
requestedButtons[TEE_TUI_NEXT] is related to the NEXT button.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 35/48

4.4.10 TEE_TUIScreenButtoninfo

typedef struct
{
char* buttonText;
uint32_t buttonWidth;
uint32_t buttonHeight;
bool buttonTextCustom;
bool buttonlImageCustom;
} TEE _TUlScreenButtonlinfo;

The TEE_TUIScreenButtonlInfo structure represents button information associated with a TUI screen
for a given orientation:

buttonText: The value of the default label. NULL if not available.

buttonWidth: The width in pixels of the button. MAY be @ if the text and the image of the button
cannot be customized.

buttonHeight: The height in pixels of the button. MAY be @ if the text and the image of the button
cannot be customized.

buttonTextCustom: true if the text of the button can be customized. false otherwise.

buttonlmageCustom: true if the image of the button can be customized. false otherwise.

Text and image cannot both be customized and buttonTextCustom and buttonlmageCustom cannot
both be setto true.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

36/48

Trusted User Interface API — Public Release v1.0

4.4.11 TEE_TUlScreenlinfo

typedef struct

{
uint32_t grayscaleBitsDepth;
uint32_t redBitsDepth;
uint32_t greenBitsDepth;
uint32_t blueBitsDepth;
uint32_t widthinch;
uint32_t heightlnch;
uint32_t maxEntryFields;
uint32_t entryFieldLabelWidth;
uint32_t entryFieldLabelHeight;
uint32_t maxEntryFieldLength;
uint8_t labelColor[3];
uint32_t labelWidth;
uint32_t labelHeight;

TEE_TUlScreenButtoninfo buttonIlnfo[TEE TUI_NUMBER BUTTON_TYPES];
} TEE TUlScreenlnfo;

The TEE_TUIScreenlnfo structure represents screen information for a given orientation:

grayscaleBitsDepth: Available grayscale depth.
redBitsDepth: Available Red bit depth.
greenBitsDepth: Available Green bit depth.
blueBitsDepth: Available Blue bit depth.
widthInch: Width in pixels per inch.
heightlnch: Height in pixels per inch.

maxEntryFields: Maximum number of entry fields that can be displayed on the screen. This is
implementation dependent but the support of two entry fields at a minimum is mandatory.

entryFieldLabelWidth: Width in pixels of the label of an entry field.
entryFieldLabelHeight: Height in pixels of the label of an entry field.

maxEntryFieldLength: The maximum number of characters that can be entered within an entry
field.

labelColor: The RGB values of the default label canvas. Red is index 0, Green index 1, and Blue
index 2. All components are specified in the range 0...255 but an implementation MAY re-interpret
these values to suit its screen provided it makes the best possible match to the requested color.

labelWidth: Width in pixels of the label canvas.

labelHeight: Height in pixels of the label canvas.

buttonlnfo: Information defining the buttons of the screens:

o buttonInfo[TEE_TUI_CORRECTION] is the CORRECTION button.
0 buttonInfo[TEE_TUIl OK] is the OK button.

0 buttonInfo[TEE_TUIl CANCEL] is the CANCEL button.

0 buttonInfo[TEE_TUIl_ VALIDATE] is the VALIDATE button.

0 buttonInfo[TEE_TUIl_PREVIOUS] is the PREVIOUS button.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 37148

0 buttonInfo[TEE_TUI_NEXT] is the NEXT button.

4.4.12 TEE_TUIEntryField

typedef struct

{
char* label;
TEE_TUIEntryFieldMode mode;
TEE_TUIEntryFieldType type;

uint32_t minExpectedLength;
uint32_t maxExpectedLength;
[outstring] char* buffer; size_ t bufferLength,

} TEE_TUIEntryField;

The TEE_TUIEntryField structure represents an entry field which acquires user inputs:

label: The label associated with the entry field.
mode: The mode to be used when displaying characters.
type: The type of inputs accepted by the entry field.

minExpectedLength: The minimum number of characters expected for the entry field. It is not

possible to exit a TUI screen if the entry field does not contain this number of characters except to
cancel it. If value is 0, it is ignored.

maxExpectedLength: The maximum number of characters expected for the entry field. Beyond this
limit, characters entered by the user are ignored. If value is 9, it is ignored. If value is different
from 0, it MUST be equal to or greater than minExpectedLength.

buffer, bufferLength: Contains the input entered by the user. It MUST be big enough to contain
characters specified by:

0 minExpectedLength and maxExpectedLength when those fields are different from @

o maxEntryFieldLength ofthe TEE TUIScreenlnfo structure when maxExpectedLength
issetto @

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

38/48 Trusted User Interface API — Public Release v1.0

45 Functions

45.1 TEE_TUICheckTextFormat

TEE_Result TEE_TUICheckTextFormat(
[in] char* text,

[out] uint32_t* width,

[out] uint32_t* height,

[out] uint32_t* lastlndex

)

Description

The TEE_TUICheckTextFormat function allows a TA to check whether a given text can be rendered by
the current implementation and retrieves information about the size and width that is needed to render it.

TEE_TUlInitSession does not have to be called before using this function.

Parameters
e text: The string to be checked.
e width: Width in pixels needed to render the text.
e height: Height in pixels needed to render the text.

o lastlndex: Indicates the last character that has been checked. In case of success, it corresponds to
the last character of the text string. In case of failure, it indicates the index of the character which

causes the failure. The index starts at 0.
Return Value
e TEE SUCCESS: In case of success
e TEE_ERROR_NOT_SUPPORTED: If at least one of the characters present in the text string cannot be
rendered.
Panic Reasons

o If any of the output parameters width, height, or lastlndex is NULL or points to an invalid
region.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 39/48

45.2 TEE_TUIGetScreeninfo

TEE_Result TEE_TUIlGetScreeninfo(
[in] TEE_TUIlScreenOrientation screenOrientation,
[in] uint32_t nbEntryFields,
[out] TEE_TUIlScreenlnfo* screenlnfo
)

Description

The TEE_TUIlGetScreenlnfo function retrieves information about the screen depending on its orientation
and the number of required entry fields.

TEE_TUlInitSession does not have to be called before using this function.

Parameters
e screenOrientation: Defines for which orientation screen information is requested.
e nbEntryFields: Defines how many entry fields are requested.

e screenlnfo: Returns information on the requested screen for a given orientation.

Return Value
e TEE_SUCCESS: In case of success
e TEE_ERROR_NOT_SUPPORTED: if the requested number of entry fields is not supported. In that case,

the field maxEntryFields of the screenlnfo output parameter is set to the maximum number of
entry fields supported for the given orientation.
Panic Reasons

o |If the parameter screenlnfo is NULL or points to an invalid region.

o If the requested orientation is not supported as stated by the property gpd.tee.tui.orientation.

45.3 TEE_TUIInitSession

| TEE_Result TEE_TUlInitSession(void)

Description

The TEE_TUllnitSession function claims an exclusive access to TUI resources for the current TA.
Control of screen and keyboard MAY be taken over by the TEE at this stage. This just reserves the ability to
use the TUI for this particular TA and will notify other TAs that this reservation has been made and the
resource is busy (i.e. those other TAs will receive TEE_ERROR_BUSY when attempting this operation).

As a limited resource, the TUI session will be closed automatically whenever the TA does not display a TUI
screen to interact with the user for a period of time. This period of time is equal to the value of the property
gpd.tee.tui.session.timeout.

This function MUST be called before a screen can be displayed with TEE_TUIDisplayScreen.

Return Value
e TEE_ SUCCESS: In case of success.
e TEE_ERROR_BUSY: If the TUI resources cannot be reserved.
e TEE_ERROR_OUT_OF_MEMORY: If the system ran out of resources.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

40/48 Trusted User Interface API — Public Release v1.0

454 TEE_TUICloseSession

‘TEE_Result TEE_TUICloseSession(void)

Description

The TEE_TUICloseSession function releases TUI resources previously acquired. This function SHOULD
be called as soon as possible after the last TUI screen of the TUI session has ended in order to avoid a bad
user experience.

Return Value
e TEE_ SUCCESS: In case of success

e TEE ERROR_BAD_STATE: If the current TA is not within a TUI session initially started by a successful
callto TEE_TUIl InitSession. In particular, it will be returned if a TUI session has been closed
automatically because the TUI session timeout has been reached or if a TUI session has been closed
due to an OS specific external event such as an incoming call as described in section 3.11.

e TEE_ERROR_BUSY: If the TUI resources are currently in use, i.e. a TUI screen is displayed. This error
code can only be returned by a TEE implementation supporting multi-threading within a TA and will
occur when a thread tries to close a TUI session that is displaying a TUI screen in another thread.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 41/48

455 TEE_TUIDisplayScreen

TEE_Result TEE_TUIDisplayScreen(
[in] TEE TUlScreenConfiguration* screenConfiguration,
[in] bool closeTUlSession,
[in] TEE_TUIEntryField* entryFields,uint32_t entryFieldCount,
[out] TEE_TUIlButtonType* selectedButton
)
Description

The TEE_TUIDisplayScreen function displays a TUI screen. The display order of the requested entry
fields is from top to bottom.

This function is cancellable, i.e., if the current task’s cancelled flag is set and the TA has unmasked the
effects of cancellation, then this function returns earlier than the requested timeout with the error code
TEE_ERROR_CANCEL. See [TEE Internal API] section 4.10 for more details about cancellations.

In a given session, once the first call to TEE_TUIDisplayScreen has been made and if the parameter
closeTUlSession was set to false, the screen will not be handed back to the REE until
TEE_TUICloseSession is called. When not displaying a particular TEE_TUIDisplayScreen the TEE
MAY continue to display the current TUI screen or MAY display a screen indicating a security TUI session is
in progress. Input events that occurred before the call to TEE_TUIDisplayScreen SHALL be ignored.

Parameters
e screenConfiguration: Configures the label of the screen and optionally the buttons of the screen.

e closeTUlSession: If true the TUI session is automatically closed when exiting the function.

o entryFields, entryFieldCount: Array of entry fields. It contains the entry fields to display on
the screen and enables input from the user by filling the buffer field of the corresponding
TEE_TUIlEntryField structure. Itis ignored if entryFieldCount is setto ©.

o selectedButton: In case of success, it indicates which button has been selected by the user to exit
the TUI screen.

Note that all in and out parameters, as well as the buffers they refer to, MUST NOT reside in shared
memory.

Return Value
e TEE SUCCESS: In case of success.

e TEE_ERROR_OUT_OF_ MEMORY: If the system ran out of resources.

e TEE_ERROR_ITEM_NOT_FOUND: If at least one image provided by the TA refers to a storage denoted
by a storagelD which does not exist or if the corresponding Object Identifier cannot be found in the
storage.

e TEE ERROR_ACCESS CONFLICT: If at least one image provided by the TA refers to a Data Object in
the Trusted Storage and an access right conflict was detected while opening the object.

e TEE_ERROR_BAD_FORMAT: If at least one input image is not compliant with PNG format.

e TEE _ERROR_BAD_STATE: If the current TA is not within a TUI session initially started by a successful
callto TEE_TUl InitSession. In particular, it will be returned if a TUI session has been closed
automatically because the TUI session timeout has been reached or if a TUI session has been closed
due to an OS specific external event such as an incoming call as described in section 3.11.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

42148 Trusted User Interface API — Public Release v1.0

e TEE_ERROR_BUSY: If the TUI resources are currently in use, i.e. a TUI screen is displayed. This error
code can only be returned by a TEE implementation supporting multi-threading within a TA and will
occur when a thread tries to display a TUI screen while a TUI screen is already displayed.

e TEE_ERROR_CANCEL: If the operation has been cancelled while a TUI screen is currently displayed.

0 The current Ul session acquired by TEE_TUl InitSession is automatically closed as if
TEE_TUICloseSession had been called.

0 The implementation MAY have started to fill out entry fields. In that case, entry fields will be
returned with the last values entered by the user and it is up to the TA as to how it makes use of
these.

e TEE_ERROR_EXTERNAL_CANCEL: If the operation has been cancelled by an external event which
occurred in the REE while a TUI screen is currently displayed.

0 The current Ul session acquired by TEE_TUl InitSession is automatically closed as if
TEE_TUICloseSession had been called.

o The implementation MAY have started to fill out entry fields. In that case, entry fields MAY be
returned with the last values entered by the user and it is up to the TA as to how it makes use of
these.

Panic Reasons
o |If at least one of the in or out parameters, or one of the buffers they refer to, is in shared memory.
o |If the parameter screenConfiguration is NULL.
e |[f the parameter selectedButton is NULL.

o |If label fields do not match the values returned by the function TEE_TUlGetScreenlInfo for the
corresponding orientation and number of entry fields.

o If button fields do not match the values returned by the function TEE _TUlGetScreenlInfo for the
corresponding orientation and number of entry fields.

¢ If entry fields do not match the values returned by the function TEE_TUIGetScreenlnfo for the
corresponding orientation and number of entry fields. In particular if the length of at least one output
string of an entry field does not follow the rules in section 4.4.12.

o |If the requested buttons to be displayed do not match one of the authorized combinations described in
section 3.3.

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 43/48

Annex A TUI APl Usage

The following example code is informative. No guarantee is made as to its quality or correctness.

TEE_TUIScreenlnfo myScreenlnfo;
TEE_TUIlScreenConfiguration myScreenConfig;
TEE_TUIEntryField myEntryFields[2];
char myLogin[26];

char myPassword[26] ;
TEE_TUIButtonType myKeyPressed;
uint8_t * myLabellmage;

size_t myLabellmageLength;

uint32_t width, height, lastindex;
char myObjectID1[1] = {1};

char myObjectID2[1] = {2};

/* Check fTirst if properties allow to apply a given TUl policy:
- gpd.tee.tui.securitylndicator

- gpd.tee.tui.languages

- gpd.tee.tui.orientation

- gpd.tee.tui.session.timeout (optionally)
*/

/ /

/* Display of login/password screen */

/ /

iT (TEE_TUlGetScreenInfo(TEE_TUI_PORTRAIT,2,&myScreenlnfo) != TEE_SUCCESS)

{

/* The screen cannot be displayed. 1 probably input a non supported screen orientation ! */
3

/* Process label image: Access it and adapt it to offered possibilities (size, color) */

processMyLabel Image(myScreenlnfo.grayscaleBitsDepth,
myScreenlnfo.redBitsDepth,
myScreenlnfo.greenBitsDepth,
myScreeninfo.widthlnch,
myScreenlnfo._heightlinch,
myScreenlnfo. labelColor,
myScreenlnfo. labelHeight,
myScreeninfo. labelWidth,
&myLabel Image,
&myLabel ImageLength) ;

/* Adjust text of buttons if possible/needed */
T (myScreeninfo.buttonInfo[TEE_TUI_CORRECTION].buttonText != NULL)

/* Check it matches expectations (verify with a server ...) */

A

T (myScreenlnfo.buttonInfo[TEE_TUI_VALIDATE].buttonText != NULL)

/* Check it matches expectations (verify with a server ...) */

A=

T (myScreenlnfo.buttonInfo[TEE_TUI_CANCEL] -buttonText I= NULL)

/* Check it matches expectations (verify with a server ...) */

-~ =

/* Adjust screen label text */
T (TEE_TUICheckTextFormat(‘'logon the cloud",&width,&height,&lastlindex) != TEE_SUCCESS)

/*check which character was wrong with lastlndex.*/

A

f (width > myScreenlinfo.labelWidth || height > myScreenlnfo.labelHeight)

/* Change the text to adapt */

A

/*Prepare the screen*/
myScreenConfig.screenOrientation = TEE_TUI_PORTRAIT;

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

44148

Trusted User Interface API — Public Release v1.0

myScreenConfig.
myScreenConfig-
myScreenConfig.-
myScreenConfig-
myScreenConfig.
myScreenConfig.
myScreenConfig.-
myScreenConfig.-
myScreenConfig.
myScreenConfig.
myScreenConfig.-
myScreenConfig.-
myScreenConfig.

myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig

myScreenConfig.
myScreenConfig-
myScreenConfig.-
myScreenConfig.
myScreenConfig.
myScreenConfig.-

label . textColor[0]=0;

label .textColor[1]=0;

label .textColor[2]=0;

label .text = "logon the cloud";

label . textXOffset = myScreenlnfo.labelWidth - width;
label .textYOffset = myScreenlnfo.labelHeight /7 2 - height;
label . imageXOffset = 0;

label . imageYOffset = O;

label . image.source = TEE_TUI_REF_SOURCE;

label .image.ref.image = myLabel Image;

label .image.ref.imageLength = myLabellmageLength;
label _.image.width = myScreenlnfo.labelWidth;

label .image.height = myScreenlnfo.labelHeight;

-buttons[TEE_TUI_VALIDATE] = NULL;
-buttons[TEE_TUI_CANCEL] = NULL;
-buttons[TEE_TUI_CORRECTION] = NULL;
-buttons[TEE_TUI_NEXT] = NULL;
-buttons[TEE_TUI_PREVIOUS] = NULL;
-buttons[TEE_TUI_OK] = NULL;

requestedButtons[TEE_TUI_VALIDATE] = true;
requestedButtons[TEE_TUI_CANCEL] = true;
requestedButtons[TEE_TUI_CORRECTION] = true;
requestedButtons[TEE_TUI_NEXT] = false;
requestedButtons[TEE_TUI_PREVIOUS] = false;
requestedButtons[TEE_TUl_OK] = false;

/* Adjust first entry field label text */
if (TEE_TUICheckTextFormat(*‘Please enter your login',

&width,
&height,
&lastlindex) != TEE_SUCCESS)

/*check which character was wrong with lastlndex.*/

if (width > myScreenlnfo.entryFieldLabelWidth ||
height > myScreenInfo.entryFieldLabelHeight)

/* Change the text to adapt */

/* 1s the minimum length myScreenlnfo.maxEntryFieldLength acceptable ? Then ...

iT (myScreenlnfo.maxEntryFieldLength <25)

/* This is a problem

3
myEntryFields[0]-type
myEntryFields[0] -mode

1 x/

TEE_TUI_ALPHANUMERICAL ;
TEE_TUI_CLEAR_MODE;

myEntryFields[0]-label = "Please enter your login';
myEntryFields[0] -minExpectedLength = O;
myEntryFields[0] -maxExpectedLength = 25;

myEntryFields[0] -buffer = mylLogin;
myEntryFields[0] .bufferLength = 26;

/* Adjust second entry field label text */
ifT (TEE_TUICheckTextFormat(*‘Please enter your password®,

&width,
&height,
&lastlndex) != TEE_SUCCESS)
{
/*check which character was wrong with lastindex.*/
3

ifT (width > myScreeninfo.entryFieldLabelWidth ||
height > myScreenlnfo.entryFieldLabelHeight)

{

/* Change the text to adapt */

}

myEntryFields[1]-type
myEntryFields[1] -mode

TEE_TUI_ALPHANUMERICAL ;
TEE_TUI_HIDDEN_MODE;

*/

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.

The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0 45/48

myEntryFields[1]-label = "Please enter your password";
myEntryFields[1] -minExpectedlLength = 0;
myEntryFields[1] -maxExpectedLength = 25;
myEntryFields[1] -buffer = myPassword;

myEntryFields[1] -bufferLength = 26;

if (TEE_TUlInitSession() != TEE_SUCCESS)
{

}

switch(TEE_TUIDisplayScreen(&myScreenConfig,
true,
myEntryFields,
28
&myKeyPressed))

/* Denial of Service. Wait and retry...*/

case TEE_SUCCESS:
break;
case TEE_ERROR_OUT_OF MEMORY:
case TEE_ERROR_BAD_STATE:
case TEE_ERROR BUSY:
case TEE_ERROR_CANCEL:
case TEE_ERROR_ACCESS CONFLICT:
case TEE_ERROR_ITEM_NOT_FOUND:
case TEE_ERROR_EXTERNAL_CANCEL:
/* Handle error case */
break;
default:
/* Instant trouble */
break;

¥
iT (myKeyPressed == TEE_TUIl_VALIDATE)
{

/* Process login / password */

3
else
{ _
/* Operation has been cancelled by the user */
3
/ /
/* Display two screens info to the user */
/ /
if (TEE_TUlIGetScreenInfo(TEE_TUI_PORTRAIT,0,&nyScreenlnfo) != TEE_SUCCESS)
{
/* The screen cannot be displayed. 1 probably input a non supported screen orientation ! */
3

/* Process label image for two screens */

/* Actually, in that case, put them into files */

processMylLabel Image2(myScreenlnfo.grayscaleBitsDepth,
myScreenlnfo.redBitsDepth,
myScreenlnfo.greenBitsDepth,
myScreeninfo.widthlnch,
myScreenlnfo.heightlinch,
myScreenlnfo. labelColor,
myScreenlnfo. labelHeight,
myScreeninfo. labelWidth);

/* Adjust text of buttons iIf possible/needed */
iT (myScreeninfo.buttonInfo[TEE_TUI_NEXT].buttonText != NULL)

/* Check it matches expectations (verify with a server ...) */

3
iT (myScreenlnfo.buttonInfo[TEE_TUI_PREVIOUS] .buttonText != NULL)

/* Check it matches expectations (verify with a server ...) */

3
iT (myScreenlnfo.buttonInfo[TEE_TUI_CANCEL] -buttonText != NULL)
{

/* Check it matches expectations (verify with a server ...) */

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

46/48

Trusted User Interface API — Public Release v1.0

}

iT (myScreenlnfo.buttonInfo[TEE_TUI_OK].-buttonText I= NULL)

/* Check it matches expectations (verify with a server ..

}

D/

/*Prepare the First screen*/

myScreenConfig

myScreenConfig.
myScreenConfig.
myScreenConfig.-
myScreenConfig.-
myScreenConfig.
myScreenConfig.
myScreenConfig.-
myScreenConfig.-
myScreenConfig.

myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig
myScreenConfig

myScreenConfig.
myScreenConfig.-
myScreenConfig.-
myScreenConfig.-
myScreenConfig.
myScreenConfig.

-buttons[TEE_TUI
-buttons[TEE_TUI_CANCEL] = NULL;
-buttons[TEE_TUI_CORRECTION] = NULL;
-buttons[TEE_TUI_NEXT] = NULL;
-buttons[TEE_TUI_PREVIOUS] = NULL;
-buttons[TEE_TUI_OK] = NULL;

-screenOrientation = TEE_TUI_PORTRAIT;

label
label
label
label
label
label
label
label
label

-text = NULL;
- imageXOffset
-imageYOffset = 0;

-image.source = TEE_TUI_OBJECT_SOURCE;
-image.object.storagelD = TEE_STORAGE_PRIVATE;
-image.object.objectlD = myObjectlD1;
-image.object.objectiDLen = 1;

-image.width = myScreenlnfo.labelWidth;
-image.-height = myScreenlnfo. labelHeight;

0;

TUI_VALIDATE] = NULL;

requestedButtons[TEE_TUI_VALIDATE] = false;
requestedButtons[TEE_TUI_CANCEL] = true;
requestedButtons[TEE_TUI_CORRECTION] = false;
requestedButtons[TEE_TUI_NEXT] = true;
requestedButtons[TEE_TUI_PREVIOUS] = false;
requestedButtons[TEE_TUI_OK] = false;

if (TEE_TUllInitSession() != TEE_SUCCESS)

{
}

/* DoS.

Wait and retry...*/

switch(TEE_TUIDisplayScreen(&myScreenConfig,

case

case
case
case
case
case
case
case

false,

o,

NULL,
&myKeyPressed))

TEE_SUCCESS:

break;

TEE_ERROR_OUT_OF_MEMORY:
TEE_ERROR_BAD_STATE:
TEE_ERROR_BUSY:
TEE_ERROR_CANCEL :
TEE_ERROR_ACCESS_CONFLICT:
TEE_ERROR_ITEM_NOT_FOUND:
TEE_ERROR_EXTERNAL_CANCEL :

/* Handle error case */
break;

default:

}

/* Instant trouble */
break;

iT (myKeyPressed != TEE_TUI_NEXT)
{

/* Operation has been cancelled by the user */
TEE_TUICloseSession();

/*exit ..

}

myScreenConfig.
myScreenConfig-

myScreenConfig.
myScreenConfig.
myScreenConfig-
myScreenConfig.

4

label .image.object.objectID = myObjectlID2;
label .image.object.objectlIDLen = 1;

requestedButtons[TEE_TUI_VALIDATE] = false;
requestedButtons[TEE_TUI_CANCEL] = true;
requestedButtons[TEE_TUI_CORRECTION] = false;
requestedButtons[TEE_TUI_NEXT] = false;

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

Trusted User Interface API — Public Release v1.0

47/48

myScreenConfig.requestedButtons[TEE_TUl_PREVIOUS] = true;
myScreenConfig.requestedButtons[TEE_TUl_OK] = true;

switch(TEE_TUIDisplayScreen(&myScreenConfig,
false,
NULL,
0,
&myKeyPressed))

case TEE_SUCCESS:
break;
case TEE_ERROR_OUT_OF_ MEMORY :
case TEE_ERROR_BAD_STATE:
case TEE_ERROR BUSY:
case TEE_ERROR_CANCEL:
case TEE_ERROR_ACCESS_CONFLICT:
case TEE_ERROR_ITEM_NOT_FOUND:
case TEE_ERROR_EXTERNAL_CANCEL:
/* Handle error case */
break;
default:
/* Instant trouble */
break;

3
iT (myKeyPressed == TEE_TUI_OK || myKeyPressed == TEE_TUI_CANCEL)

TEE_TUICloseSession();

3
else
{ _
/* go to previous screen */
3
/* ../

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is
governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

48/48

Trusted User Interface API — Public Release v1.0

Annex B

Panicked Function Identification

If this specification is used in conjunction with the TEE Debug Specification [TEE Debug] then the
specification number is 20 and the following values MUST be associated with the function declared.

Table B-1: Function Identification Values

Function Number

Function Number

Category atctel in hexadecimal in decimal
TUI implementation
information
TEE_TUICheckTextFormat 0x0101 257
TEE_TUIlGetScreenlInfo 0x0102 258
TUI session
TEE_TUlInitSession 0x0201 513
TEE_TUICloseSession 0x0202 514
TEE_TUIDisplayScreen 0x0203 515

Copyright © 2012-2013 GlobalPlatform, Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this information is

governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited.

	Contents
	Figures
	Tables
	1 Introduction
	1.1 Audience
	1.2 IPR Disclaimer
	1.3 References
	1.4 Terminology and Definitions
	1.5 Abbreviations and Notations
	1.6 Conventions
	1.7 Revision History

	2 Trusted User Interface Objectives
	2.1 Target
	2.2 Purpose
	2.3 Functionalities and Use Cases
	2.3.1 PIN Entry Functionality
	2.3.2 Login / Password Entry Functionality
	2.3.3 Message Functionality

	2.4 External Source for Input of Displayed Message
	2.4.1 Remote Servers
	2.4.2 Simple Remote Terminal Devices
	2.4.3 Device Local Messages

	3 Trusted User Interface Principles
	3.1 Overall Architecture
	3.2 Trusted User Interface Screens
	3.2.1 PIN Entry Screen
	3.2.2 Login and Password Entry Screen
	3.2.3 Message Screen

	3.3 Authorized Button Combinations
	3.4 Label Structure
	3.5 Security Indicator
	3.6 TUI Session
	3.7 Images Format
	3.8 Minimum Number of Input Fields
	3.9 Input Text
	3.9.1 Input Field Alphabet

	3.10 Output Text
	3.10.1 Default Alphabet
	3.10.2 Supported Languages
	3.10.3 Format
	3.10.4 Minimum Text Area for Screen Labels
	3.10.5 Markup Capabilities and Text Adjustment

	3.11 Power and OS Events Management
	3.12 Screen Orientation
	3.13 Accessibility

	4 Trusted User Interface API
	4.1 Implementation Properties
	4.2 Header File
	4.3 Data Constants
	4.4 Data Types
	4.4.1 TEE_TUIEntryFieldMode
	4.4.2 TEE_TUIEntryFieldType
	4.4.3 TEE_TUIScreenOrientation
	4.4.4 TEE_TUIButtonType
	4.4.5 TEE_TUIImageSource
	4.4.6 TEE_TUIImage
	4.4.7 TEE_TUIScreenLabel
	4.4.8 TEE_TUIButton
	4.4.9 TEE_TUIScreenConfiguration
	4.4.10 TEE_TUIScreenButtonInfo
	4.4.11 TEE_TUIScreenInfo
	4.4.12 TEE_TUIEntryField

	4.5 Functions
	4.5.1 TEE_TUICheckTextFormat
	4.5.2 TEE_TUIGetScreenInfo
	4.5.3 TEE_TUIInitSession
	4.5.4 TEE_TUICloseSession
	4.5.5 TEE_TUIDisplayScreen

	Annex A TUI API Usage
	Annex B Panicked Function Identification

		2015-02-04T20:16:55-0700
	Document Management

