
Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights or other
intellectual property rights of which they may be aware which might be infringed by the implementation of the specification set
forth in this document, and to provide supporting documentation. The technology provided or described herein is subject to updates,
revisions, and extensions by GlobalPlatform. Use of this information is governed by the GlobalPlatform license agreement and any
use inconsistent with that agreement is strictly prohibited.

GlobalPlatform Device Technology

TEE Client API Specification

Version 1.0

Public Release

July 2010

Document Reference: GPD_SPE_007

TEE Client API Specification 2/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table of Contents
1. INTRODUCTION .. 4

1.1. AUDIENCE ... 4
1.2. REFERENCES .. 4

1.2.1. Normative References ... 5
1.2.1. Informative References ... 5

1.3. TERMINOLOGY AND DEFINITIONS .. 5
1.4. ABBREVIATIONS AND NOTATIONS ... 7
1.5. CONVENTIONS ... 7

2. OVERVIEW .. 8

2.1. STANDARDIZATION SCOPE .. 8
2.2. THE TEE CLIENT API ARCHITECTURE .. 8

3. PRINCIPLES AND CONCEPTS .. 10

3.1. DESIGN PRINCIPLES ... 10
3.2. FUNDAMENTAL CONCEPTS .. 11

3.2.1. TEE Contexts .. 11
3.2.2. Sessions ... 11
3.2.3. Commands .. 11
3.2.4. Shared Memory ... 13
3.2.5. Memory References ... 14

3.3. USAGE CONCEPTS ... 16
3.3.1. Operation Instantiation ... 16
3.3.2. Multi-threading ... 17
3.3.3. Resource Cleanup ... 17

3.4. SECURITY .. 18
3.4.1. Security of the TEE and Trusted Applications .. 18
3.4.2. Security of the Rich Operating System .. 18

4. SPECIFICATION ... 19

4.1. IMPLEMENTATION-DEFINED BEHAVIOR AND PROGRAMMER ERRORS ... 19
4.2. HEADER FILE ... 19
4.3. DATA TYPES .. 19

4.3.1. Basic Types ... 19
4.3.2. TEEC_Result ... 20
4.3.3. TEEC_UUID ... 20
4.3.4. TEEC_Context .. 20
4.3.5. TEEC_Session ... 20
4.3.6. TEEC_SharedMemory .. 20
4.3.7. TEEC_TempMemoryReference ... 21
4.3.8. TEEC_RegisteredMemoryReference .. 21
4.3.9. TEEC_Value ... 22
4.3.10. TEEC_Parameter .. 22
4.3.11. TEEC_Operation .. 23

4.4. CONSTANTS ... 24
4.4.1. Configuration Settings .. 24
4.4.2. Return Codes... 24
4.4.3. Return Code Origins ... 25
4.4.4. Shared Memory Control ... 25

3/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4.5. Session Login Methods ... 27
4.5. FUNCTIONS .. 29

4.5.1. Documentation Format ... 29
4.5.2. TEEC_InitializeContext .. 30
4.5.3. TEEC_FinalizeContext ... 31
4.5.4. TEEC_RegisterSharedMemory ... 32
4.5.5. TEEC_AllocateSharedMemory ... 34
4.5.6. TEEC_ReleaseSharedMemory .. 36
4.5.7. TEEC_OpenSession .. 37
4.5.8. TEEC_CloseSession .. 40
4.5.9. TEEC_InvokeCommand .. 41
4.5.10. TEEC_RequestCancellation ... 44
4.5.11. Function-Like Macro: TEEC_PARAM_TYPES .. 45

5. SAMPLE CODE ... 46

5.1. EXAMPLE TRUSTED APPLICATION PROTOCOL ... 46
5.1.1. Login Support ... 46
5.1.2. Standard Return Codes ... 46
5.1.3. Encryption Commands .. 46
5.1.4. Digest Commands ... 47

5.2. EXAMPLE 1: USING THE TEE CLIENT API ... 47
5.2.1. Initializing resources .. 47
5.2.2. Connecting to the desired Trusted Application ... 48
5.2.3. Allocating communications channel Shared Memory ... 48
5.2.4. Registering bulk buffers as Shared Memory ... 49
5.2.5. Initialize operations .. 50
5.2.6. Perform cryptographic operations .. 50
5.2.7. Finalizing the commands .. 51
5.2.8. Cleaning up ... 52

6. APPENDIX: EXAMPLE SOURCE CODE ... 53

TEE Client API Specification 4/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1. Introduction

This specification defines a communications API for connecting Client Applications running in a rich

operating environment with security related Trusted Applications running inside a Trusted Execution

Environment (TEE). For the purposes of this document a TEE is expected to be a trusted environment

within the main device system-on-a-chip, which complements traditional security environments such as a

UICC SIM card, although this is not a requirement of the API.

1.1. Audience

This document is suitable for software developers implementing:

 Client Applications running within the rich operating environment and which use Trusted

Applications

 Trusted Applications running inside the TEE which need to expose an externally visible interface

to Client Applications

 the TEE and the communications infrastructure required to access it

As this API is also the base layer upon which higher level protocols can be built, it will also be of interest to

developers of future specifications providing these high level APIs built on top of the TEE Client API.

1.2. References

This section includes technical and informative references used by this specification.

5/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.2.1. Normative References

Standard / Specification Description Ref

ISO/IEC 9899:1999 ISO C Standard for C99 [1]

RFC4122 A Universally Unique IDentifier (UUID) URN Namespace [2]

RFC2119 Key words for use in RFCs to Indicate Requirement Levels [3]

Table 1-1: Normative References

1.2.1. Informative References

Document Description Ref

OMTP Advanced Trusted

Environment TR1

Open Mobile Terminal Platform (OMTP) Advanced Trusted

Environment TR1
1

[4]

GPD/STIP 2.3 GPD/STIP 2.3, Mobile Profile
2
 [5]

Table 1-2: Informative References

1.3. Terminology and Definitions

The following table defines the expressions used within this specification that use an upper case first letter

in each word of the expression. Expressions within this document that use a lower case first letter in each

word take the common sense meaning.

1
 OMTP TR1 Document: http://www.omtp.org/Publications/Display.aspx?Id=24ad518b-6dba-4155-ad51-3143bd43a234

2
 Global Platform GPD/STIP: http://www.globalplatform.org/specificationsdevice.asp

http://www.omtp.org/Publications/Display.aspx?Id=24ad518b-6dba-4155-ad51-3143bd43a234
http://www.globalplatform.org/specificationsdevice.asp

TEE Client API Specification 6/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Term Definition

Client Application An application running outside of the Trusted Execution

Environment making use of the TEE Client API to access facilities

provided by Trusted Applications inside the Trusted Execution

Environment.

Command A single remote function invocation; the Client Application

accessing a function provided by the Trusted Application.

Commands are issued inside an established Session.

Implementation A specific instantiation of all of the technology which exists

underneath the TEE Client API and upon which its behavior

depends. Typically the behavior of an Implementation will depend

on the rich operating system, the TEE, the Trusted application, and

the hardware platform which is in use.

Memory Reference An Operation Parameter that is either a Registered Memory

Reference or a Temporary Memory Reference.

Operation Parameter One of the parameters passed in an Operation Payload. It may be

either a Memory Reference or a Value Parameter.

Registered Memory

Reference

A region of a Shared Memory buffer being shared within a single

Operation Parameter

Session A Session represents a logical connection between a Client

Application and a specific Trusted Application. Sessions are

established within initialized TEE Contexts, and act as containers

for Commands.

Shared Memory A block of Client Application memory space which is shared with a

Trusted Application running inside the security environment. In

some implementations, this may be directly mapped memory,

enabling zero-copy data transfer.

TEE Context A TEE Context represents a logical connection between a Client

Application and an entire TEE. TEE Contexts are containers for

Sessions.

Temporary Memory

Reference

A buffer of memory temporarily shared for the duration of an

Operation.

Trusted Application An application running inside a Trusted Execution Environment

which exports security related functionality to Client Applications

outside of the trusted environment.

Trusted Execution

Environment

A Trusted Execution Environment (TEE) is an environment which

runs alongside a rich operating system and provides security

services to that rich environment. There are multiple technologies

which can be used to implement a TEE, and the level of security

achieved varies accordingly.

Value Parameter An Operation Parameter that carries a small amount of raw data

(two 32-bit integers).

Table 1-3: Terminology and Definitions

7/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

1.4. Abbreviations and Notations

Abbreviation Meaning

ABI Application Binary Interface

API Application Programming Interface

OMTP Open Mobile Terminal Platform

RFU Reserved for Future Use

SIM Subscriber Identity Module

TEE Trusted Execution Environment

UICC Universal Integrated Circuit Card

Table 1-4: Abbreviations and Notations

1.5. Conventions

Throughout this document, normative requirements are highlighted by use of capitalized key words as

described below.

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in this document are to

be interpreted as described in RFC2119 [3]:

MUST - This word means that the definition is an absolute requirement of the specification.

MUST NOT - This phrase means that the definition is an absolute prohibition of the specification.

SHOULD - This word means that there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and carefully weighed before choosing a

different course.

SHOULD NOT - This phrase means that there may exist valid reasons in particular circumstances when

the particular behavior is acceptable or even useful, but the full implications should be understood and the

case carefully weighed before implementing any behavior described with this label.

MAY - This word mean that an item is truly optional. One vendor may choose to include the item because

a particular marketplace requires it or because the vendor feels that it enhances the product while another

vendor may omit the same item. An implementation which does not include a particular option MUST be

prepared to interoperate with another implementation which does include the option, though perhaps with

reduced functionality. In the same vein an implementation which does include a particular option MUST be

prepared to interoperate with another implementation which does not include the option (except, of course,

for the feature the option provides.)

TEE Client API Specification 8/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

2. Overview

This specification defines a communications API for connecting Client Applications running in a rich

operating environment with security related Trusted Applications running inside a Trusted Execution

Environment (TEE). For the purposes of this document a TEE is expected to be a trusted environment

within the main device system-on-a-chip, which complements traditional security environments such as a

UICC SIM card, although this is not a requirement of the API. A TEE provides an execution environment

with security capabilities, which are either available to Trusted Applications running inside the TEE or

exposed externally to Client Applications. A TEE may, for example, host a GPD/STIP runtime [5], but may

also be based on other technologies such as a small operating system executing native code applications.

See the Open Mobile Trusted Platform (OMTP) Advanced Trusted Environment TR1 specification [4] for a

requirements analysis of Trusted Execution Environments in mobile devices.

2.1. Standardization Scope

Instead of trying to standardize a single monolithic API which covers a significant proportion of the

interactions between a Client Application and the TEE-hosted functionality, the approach of the Global

Platform standardization effort is modular. The TEE Client API covered by this specification concentrates

on the interface to enable efficient communications between a Client Application and a Trusted Application

running inside the TEE. Higher level standards and protocol layers may be built on top of the foundation

provided by the TEE Client API – for example, to cover common tasks such as secure storage,

cryptography, and run-time installation of new Trusted Applications – but these interfaces are outside of

the scope of this specification.

2.2. The TEE Client API Architecture

The relationship between the major system components described in this specification are outlined in the

block architecture below (Figure 2-1).

Figure 2-1: TEE Client API System Architecture

Trusted ApplicationClient Application

TEE Client API

Communications

stack

TEE

Platform (Hardware / Hypervisor)

Shared Memory

Messages

Rich environment Trusted environment

Shared Memory view

9/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Some implementation-defined support is required to provide separation between the rich environment and

the TEE. The mechanisms used to achieve this, and the level of security these mechanisms provide, are

outside of the scope of this specification.

Within the trusted environment this specification identifies two distinct classes of component: the hosting

code of the TEE itself, and the Trusted Applications which run on top of it. There is no definition of the

expected implementation of these blocks in this specification; they are only used as logical concepts inside

this document.

Within the rich environment this specification identifies three distinct classes of component:

 The Client Applications which make use of the TEE Client API.

 The TEE Client API library implementation.

 The communications stack which is shared amongst all Client Applications, and whose role is to

handle the communications between the rich environment and the trusted environment.

As before, there is no mandated architecture for these components and they are only used as logical

constructions within this specification document. Note that the TEE Client API may be exposed to either,

or both, the privileged or user layers of the rich environment. If exposed in the privileged layer, then drivers

or any other privileged components may be considered to take the place of Client Applications.

TEE Client API Specification 10/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3. Principles and Concepts

This section explains the underlying principles and concepts of the TEE Client API in detail, explaining

how each class of features should be used.

3.1. Design Principles

The key design principles of the TEE Client API are:

 C language:

o C is the common denominator for practically all of the application frameworks and

operating systems hosting Client Applications.

o It is accepted that alternative language bindings – such as a Java API – may be needed in

the future, but these are outside of the scope of this specification.

 Blocking functions:

o Most Client Application developers are familiar with synchronous functions which block

waiting for the underlying task to complete before returning to the calling code. An

asynchronous interface is hard to design, hard to port in rich OS environments, and is

generally difficult to use for developers familiar with synchronous APIs.

o In addition it is assumed that multi-threading support is available on all target platforms;

this is required for Implementations to support cancellation of blocking API functions.

 Source-level portability:

o To enable compile-time and design-time optimization, this standard places no requirement

on binary compatibility. Client Application developers will need to recompile their code

against an appropriate implementation-defined version of the TEE Client API headers in

order to function correctly on that Implementation.

 Client-side memory allocations:

o Where possible the design of the TEE Client API has placed the responsibility for memory

allocation on the calling Client Application code. This gives the Client developer choice of

memory allocation locations, enabling simple optimizations such as stack-based allocation

or enhanced flexibility using placements in static global memory or thread-local storage.

o This design choice is evident in the API by the use of pointers to structures rather than

opaque handles to represent any manipulated objects.

 Aim for zero-copy data transfer:

o The features of the TEE Client API are chosen to maximize the possibility of zero-copy

data transfer between the Client Application and the Trusted Application, provided that the

host operating system and hardware implementation can support it. This minimizes

communications overhead and improves software efficiency, especially on cached

processors where data copies are an expensive operation because of the cache pollution

they cause.

o However, short messages can also be passed by copy, which avoids the overhead of

sharing memory.

 Support memory sharing by pointers:

o The TEE Client API will be used to implement higher-level APIs, such as cryptography or

secure storage, where the caller will often provide memory buffers for input or output data

using simple C pointers. The TEE Client API must allow efficient sharing of this type of

memory, and as such does not rely on the Client Application being able to use bulk

memory buffers allocated by the TEE Client API.

11/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Specify only communication mechanisms:

o This API focuses on defining the underlying communications channel. It does not define

the format of the messages which pass over the channel, or the protocols used by specific

Trusted Applications. These must be defined in other specifications.

3.2. Fundamental Concepts

This section outlines the behavior of the TEE Client API, and introduces key concepts and terminology.

3.2.1. TEE Contexts

A TEE Context is an abstraction of the logical connection which exists between a Client Application and a

TEE. A TEE Context must be initialized before a Session can be created between the Client Application

and a Trusted Application running within the TEE which that TEE Context represents. The TEE Context

should be finalized when the connection with the TEE is no longer required, allowing resources to be

released.

It is possible for a Client Application to initialize multiple TEE Contexts concurrently, either with the same

underlying TEE, or with multiple TEEs if they are available. The number of concurrent contexts which may

exist is implementation-defined, and may additionally depend on run-time resource constraints.

3.2.2. Sessions

A Session is an abstraction of the logical connection which exists between a Client Application and a

specific Trusted Application. A Session is opened by the Client Application within the scope of a particular

TEE Context. The number of concurrent Sessions which may exist is implementation-defined, depending

on the design of the TEE and the Trusted Applications in use, and may additionally depend on run-time

resource constraints.

When creating a new Session the Client Application must identify the Trusted Applications which it wishes

to connect to using the Universally Unique IDentifier (UUID) of the Trusted Application. The open session

operation allows an initial data exchange to be made with the Trusted Application, if this is required in the

protocol between the Client Application and the Trusted Application.

Connection Methods: Login

Some Trusted Applications may require the Implementation to identify or authenticate the Client

Application or the user executing it. For example, a Trusted Application may restrict access to the data or

functionality it provides based on the identity of the user running the Client Application in the rich operating

environment. When opening a Session the Client Application can nominate which connection method it

wants to use and hence which login credentials are presented to the TEE or Trusted Application. It is likely

that the connection method will form part of the protocol exposed by the Trusted Application in use;

attempting to open a Session with an incorrect connection method may result in a failed attempt.

3.2.3. Commands

A Command is the unit of communication between a Client Application and a Trusted Application within a

Session. When starting a new Command the Client Application identifies the function in the Trusted

Application which it wishes to execute by passing a numeric identifier, and may also provide an operation

payload in accordance with the protocol the Trusted Application exposes for that function. The Command

invocation blocks the Client Application thread, waiting for an answer from the Trusted Application. A

Client Application may use multiple threads to have multiple Commands which are outstanding

concurrently. The number of concurrent Commands which may exist is implementation-defined,

depending on the design of the TEE and the Trusted Applications in use, and may additionally depend on

run-time resource constraints.

TEE Client API Specification 12/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Operation Payload

An operation to open a Session or to invoke a generic Command can carry an optional payload, the

definition of which is passed inside a set of Operation Parameters (see section 3.2.5) stored in the

operation structure. In this version of the specification up to 4 Parameters can be specified for each

operation.

Each Parameter is either a Memory Reference or a Value Parameter and is associated with a direction: it

can be input, output, or both input and output. For Memory Reference Parameters, the specified direction

of data flow determines when the underlying memory buffers need to be synchronized with the Trusted

Application.

Memory Reference Parameters are used to exchange data through shared memory buffers. Value

Parameters carry a small amount of data in the form of two 32-bit integers without the burden of sharing or

synchronizing memory.

The format of the data structures held in the Memory References or Value Parameters is defined by the

protocol of the Trusted Application function in use, and hence outside of the scope of this specification.

Temporary Shared Memory Registration

Memory References refer either to a Registered Memory Reference or a Temporary Memory Reference:

 a Registered Memory Reference is a region within a block of Shared Memory (see section 3.2.4)

that was created before the operation

 a Temporary Memory Reference directly specifies a buffer of memory owned by the Client

Application, which is temporarily registered by the TEE Client API for the duration of the operation

being performed

A Temporary Memory Reference may be null, which can be used to denote a special case for the

parameter. Output Memory References that are null are typically used to request the required output size.

Return Codes and Return Origins

The answer to an open Session and a invoke Command operation always contains a Return code, which

is a 32-bit numeric value indicating success or the reason for failure, and an Return origin, which is a 32-

bit numeric value indicating the source of the return code in the Implementation. The standard error codes

and return origins are described in sections 4.4.2 and 4.4.3.

When the return origin is TEEC_ORIGIN_TRUSTED_APP then the return code is defined by the Trusted

Application‟s protocol. Note that, critically, this means that a Client Application cannot just test against

TEEC_SUCCESS, as the Trusted Application may use another code to indicate success. To enable simpler

error handling code in the Client Application it is recommended that the Trusted Application developers

choose „0‟ as their literal value of their success return code constant.

Events and Callbacks

This specification does not define a primitive way for a Trusted Application to spontaneously signal an

event to the Client Application or perform callbacks to the Client code. However, these types of usage

patterns can be constructed using Commands. For example, event signals can be implemented by having

the Client Application send a Command which blocks inside the Trusted Application until the event occurs

inside the TEE. When the event occurs the Trusted Application passes control back to the Client

Application; the TEEC_InvokeCommand will return and the Client Application can handle the event which

was signaled.

13/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

3.2.4. Shared Memory

A Shared Memory block is a region of memory allocated in the context of the Client Application memory

space that can be used to transfer data between that Client Application and a Trusted Application.

A Shared Memory block can either be existing Client Application memory which is subsequently registered

with the TEE Client API, or memory which is allocated on behalf of the Client Application using the TEE

Client API. A Shared Memory block can be registered or allocated once and then used in multiple

Commands, and even in multiple Sessions, provided they exist within the scope of the TEE Context in

which the Shared Memory was created. This pre-registration is typically more efficient than registering a

block of memory using temporary registration if that memory buffer is used in more than one Command

invocation.

Figure 3-1: Shared Memory Buffer Lifetime

Zero-copy Data Transfer

When possible the implementation of the communications channel beneath the TEE Client API should try

to directly map Shared Memory in to the Trusted Application memory space, enabling true zero-copy data

transfer. However this is not always possible; for example, the TEE may not have access to the same

physical memory system as the platform running the Client Application, or may only be able to achieve

zero-copy for some types of memory. As a result this specification defines synchronization points where

the TEE Client API Implementation is allowed to synchronize the data in a Shared Memory block with the

TEE to ensure data consistency. The Client Application and Trusted Application must assume that the

data is only synchronized when within the scope of these synchronization points. Otherwise, data

corruption may result. This process is described in more detail in section 3.2.5.

Client Application developers should note that letting the TEE Client API allocate the memory buffers

using the function TEEC_AllocateSharedMemory maximizes the chances that it can be successfully

shared using a zero-copy exchange. If Client Application developers have the option to use this type of

allocated memory in their code, without needing an explicit copy from another buffer, then they should aim

to do so. However, it is not always possible to allocate memory without a copy in the Client Application,

and in these cases registration of the buffer using TEEC_RegisterSharedMemory is the preferred

option as there is still a possibility that it could be zero copy.

TEEC_RegisterSharedMemory TEEC_AllocateSharedMemory

TEEC_ReleaseSharedMemory TEEC_ReleaseSharedMemory

Client Application Allocation

E.g., malloc or stack allocation

Client Application Deallocation

E.g., free, stack out of scope

Registered Memory Lifetime API Allocated Memory Lifetime

TEE Client API Specification 14/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Note that for small amount of data, it is recommended to use a Value Parameter instead of a Memory

Reference to avoid the overhead of memory management.

Overlapping Blocks

The API allows Shared Memory registrations and allocations to overlap. A single region of Client

Application memory may be registered multiple times, or a block may be allocated and then subsequently

registered. The Client is responsible for ensuring that the overlapping regions are consistent and meet any

timing requirements when used by multiple actors; specifying an input buffer to one Trusted Application

which is concurrently used as an output for another can produce undefined results, for example.

The rules which the Client must conform to when overlapping memory ranges are used concurrently are

described in the synchronization sub-section of section 3.2.5.

3.2.5. Memory References

A Memory Reference is a range of bytes which is actually shared for a particular operation. A Memory

Reference is described by either a TEEC_MemoryReference structure (see section 4.3.7) or a

TEEC_TempMemoryReference. It can specify:

 A whole Shared Memory block.

 A range of bytes within a Shared Memory block.

 Or a pointer to a buffer of memory owned by the Client Application, in which case this buffer is

temporarily registered for the duration of the operation. This type of Memory Reference uses the

structure TEEC_TempMemoryReference.

A Memory Reference also specifies the direction in which data flows for that particular command. Memory

References may be marked as input (buffer is transferring data from the Client Application to the Trusted

Application), output (buffer is transferring data from the Trusted Application to the Client Application), or

both input and output.

When a Memory Reference points to a Shared Memory block, the data flow direction must be consistent

with the set of flags defined by the parent Shared Memory block; for example, trying to make an input

Memory Reference with a parent Shared Memory block which has only the TEEC_MEM_OUTPUT flag is

invalid.

Synchronization

As the underlying communications system may not support direct mapping of Client memory into the

Trusted Application, it may be necessary to copy a portion of memory from the Client memory space into

the Trusted Application memory space. Memory References provide a token which indicates what memory

range needs to be synchronized, and their use within an operation indicates the duration of the

synchronization scope. The temporal states in this synchronization process are indicated in Figure 3-2.

Figure 3-2: Memory Reference timing diagram

Client Application

Operation started (1)

Operation completes (2)

A

B C

D

Trusted

Application

T
im

e

15/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

In this figure there are three temporal states for the Client application (A, B, D) and one for the Trusted

application (C), as well as two synchronization operations (1, 2).

When performing synchronization operation 1 – transitioning from state A to states B and C (which exist in

parallel in the two environments) – the Implementation needs to ensure that input buffers are synchronized

from the Client Application‟s view of memory to the Trusted Application‟s view of it. When performing

synchronization operation 2 – transitioning from states B and C (which exist in parallel in the two

environments) to state D – the Implementation needs to ensure that output buffers are synchronized from

the Trusted Application‟s view of memory to the Client Application‟s view of memory.

The range of bytes referenced in a Memory Reference is considered live, for synchronization purposes,

the moment that the containing operation structure is passed in to either TEEC_OpenSession or

TEEC_InvokeCommand; this live period corresponds to the temporal states B and C in the figure. A

Memory Reference is considered to be no longer live when the called API function returns. While a

Memory Reference is live the Client Application and the Trusted Application must obey the following

constraints:

1. For ranges within a Memory Reference marked as input only, the Client Application may read from

the memory range, but must not write within it (states B and C). The Trusted Application may read

from the memory range during state C.

2. For ranges within a Memory Reference marked as input or input and output, the Client Application

must neither read nor write within the memory range (state B). The Trusted Application may read

and write to the memory range (state C).

If these synchronization rules are ignored by the Client Application or the Trusted Application then data

corruption may occur.

Overlapping Ranges

The API allows Memory References to overlap, either within a single operation or across multiple

operations. The Client is responsible for ensuring that the overlapping regions are consistent and meet

any timing requirements when used by multiple actors; specifying an input buffer to one Trusted

Application which is concurrently used as an output for another will produce undefined results, for

example.

It may be necessary for constraints on overlapping ranges to be defined as part of the Trusted

Application‟s protocol. A Trusted Application which accepts an input buffer and an output buffer, but which

writes to the output buffer before using the input, cannot use the same memory for both activities as

writing the output will destroy the input.

Memory Reference Types

The specification supports the following types of Memory Reference which may be encoded in an

operation payload.

 TEEC_MEMREF_TEMP_INPUT, TEEC_MEMREF_TEMP_OUTPUT, or TEEC_MEMREF_TEMP_INOUT:

A temporary Memory Reference indicates that the Parameter points to a buffer of memory to be

shared rather than to a Shared Memory control structure. This Client Application buffer will be

temporarily shared for the duration of the operation being performed. If the buffer pointer is NULL

then no memory buffer is actually referenced. Some Trusted Applications may associate a specific

meaning with a null Memory Reference, so for full details the Client Application developer must

refer to the protocol specification for the Trusted Application they are targeting. A null Memory

Reference can also be used to fetch the required size of an output buffer.

TEE Client API Specification 16/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 TEEC_MEMREF_WHOLE: A whole Memory Reference enables a light-weight mechanism of sharing

an entire parent Shared Memory block without the need to duplicate the content of the Shared

Memory structure control fields inside the Memory Reference. When this memory type is used the

entire Shared Memory region is shared with the direction flags the parent Shared Memory

specifies.

 TEEC_MEMREF_PARTIAL_INPUT, TEEC_MEMREF_PARTIAL_OUTPUT, or

TEEC_MEMREF_PARTIAL_INOUT: A partial Memory Reference refers to a sub-region of a parent

Shared Memory block, allowing any region of bytes within that block to be shared with the Trusted

Application.

Note that an Operation Parameter can also be a Value Parameter, carrying two 32-bit integers.

Variable Length Return Buffers

In many cases the Trusted Application will want to write a variable length of data in to the Shared Memory

buffer. For buffers which are configured as an output buffer, the size of the Memory Reference when

starting an Operation on the TEE is the maximum size of the output data that the Trusted Application may

write into the referenced region. When the Trusted Application responds it may reduce the size of the

referenced memory region to reflect the actual number of bytes it wrote into the output buffer. In this case

the Implementation must update the size field of the Memory Reference in the Client Application

operation structure to indicate the number of bytes which were used by the Trusted Application.

In these cases the Implementation only needs to synchronize the number of bytes which the Trusted

Application has modified when passing control back to the Client Application; other data within the scope

of the originally referenced memory range should be unchanged, although this may depend on Trusted

Application behaving correctly.

Note that output data can only be written in the lowest address in an output Memory Reference; it is not

possible to synchronize a high region in the buffer without synchronizing the lower parts of the buffer.

In any scenario using variable length outputs there is the possibility that the output buffer provided by the

Client Application is not large enough to contain the entire output. In these scenarios the Trusted

Application is allowed to return the required output size to the Client Application. The size field of the

Memory Reference in the operation structure is then updated to reflect the required size, but the

Implementation does not synchronize any data with the Client Application, as this is viewed as an error

condition. It is recommended that a Trusted Application use the defined “short buffer” error code

TEEC_ERROR_SHORT_BUFFER to signal this type of response to the Client Application.

This type of “short buffer” response is allowed for null Memory Reference, enabling a design where a first

invocation uses a null Memory Reference to fetch the required size of output buffer, and then uses a

second invocation with another non-null Memory Reference containing an output buffer of the necessary

size.

3.3. Usage Concepts

The section outlines some of the usage patterns which the design of the TEE Client API makes use of.

3.3.1. Operation Instantiation

To enable reliable multi-threaded implementations of cancellation this specification defines the concept of

Instantiation – a mechanism which can be used to put TEEC_Operation structures in to a known state. If

an Operation may be cancelled by the Client Application then the Client Application must set the started

field of the structure to 0 before calling either the TEEC_OpenSession or TEEC_InvokeCommand

function. If a Client Application is single threaded, or is multi-threaded but will never cancel the operation

by design, then there is no need for the started field to be initialized.

17/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Atomicity of Field Access

To enable multi-threaded TEE Client API implementations to effectively use the started field across

multiple-threads without the need for OS level locking, the underlying processor architecture must allow

atomic operations – such as “test and set”, “swap”, or “exclusive load and store” – to operate on the

started field. For this reason the started field has been chosen to be 32-bits, as this is a commonly

supported data size for atomic operations on the processor architectures of interest.

This atomicity requirement typically means that the started fields must be naturally aligned (aligned on a

4-byte boundary); otherwise the atomic instructions in the processors will not function correctly. This

requirement is automatically met by compliant C code and toolchains, but many toolchains allow

extensions to the C language which allow packed and / or unaligned structures. Client Applications must

not use these extensions; TEE Client API implementations are allowed to assume the started field can

be read or written atomically.

3.3.2. Multi-threading

The TEE Client API is designed to support use from multiple threads concurrently, using a combination of

internal thread safety within the implementation of the API, and explicit locks and serialization in the Client

Application code. Client Application developers can assume that all of the API functions can be used

concurrently unless an exception is documented in this specification. The main exceptions are indicated

below.

Note that the API can be used from multiple processes, but it may not be possible to share contexts and

sessions between multiple processes due to rich OS memory separation mechanisms.

Behavior which is not Thread-safe

TEE Contexts, Sessions, and Shared Memory structures all have an explicit lifecycles defined by pairs of

bounding “start” and “stop” functions:

 TEEC_InitializeContext / TEEC_FinalizeContext

 TEEC_OpenSession / TEEC_CloseSession

 TEEC_RegisterSharedMemory / TEEC_ReleaseSharedMemory

 TEEC_AllocateSharedMemory / TEEC_ReleaseSharedMemory

These functions are not internally thread-safe with respect to the object being initialized or finalized. It is

not valid to call TEEC_OpenSession concurrently using the same TEEC_Session structure, for example.

However, it is valid for the Client Application to concurrently use these functions to initialize or finalize

different objects; in the above example two threads could initialize different TEEC_Session structures.

In cases where global shared structures need to be initialized the Client Application must ensure that the

initialization of each structure only occurs once using appropriate platform-specific locking schemes to

ensure that this requirement is met.

Once the structures described above have been initialized it becomes possible to use them concurrently in

other API functions, provided that the TEE and Trusted Application in use support such concurrent use. A

Client Application can concurrently register two different Shared Memory blocks using the same TEE

Context, or invoke two Commands within the same Session for example.

3.3.3. Resource Cleanup

The specification of the “stop” functions described in section 3.3.2 is stateful and requires clean Client

Application resource unwinding:

 when releasing Shared Memory, the Client code must ensure that it is not referenced in a pending

operation

TEE Client API Specification 18/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 when closing a session, there must be no pending operations within it

 when finalizing a TEE Context there must be no open sessions within its scope

The Client Applications must ensure these conditions are true, using platform-specific locking mechanisms

to synchronize threads if needed. Failing to meet these obligations is a programmer error, and will result in

undefined behavior.

3.4. Security

This section outlines the security policies of the TEE Client API, and highlights some of the design

requirements which are placed on an Implementation.

3.4.1. Security of the TEE and Trusted Applications

The implementation of the TEE and any Trusted Applications must treat any input from the rich

environment as potentially malicious; Client Applications are running outside of the TEE security boundary

and as such it must be assumed that they may be compromised by attack or may be purposefully

malicious.

In particular the following details may be of interest to a TEE or a Trusted Application developer:

 Shared Memory is memory owned by the rich environment and mapped into the TEE memory

space. Code inside the TEE and Trusted Applications must assume that the content of Shared

Memory is both untrusted and volatile; data stored in Shared Memory may be changed maliciously

at any time with respect to the execution of code inside the trusted environment. Note that a well

formed Client Application must follow the conventions for sharing memory, as described in section

3.2.5, in order to run with defined behavior.

Login Connection Methods

This specification defines a number of connection methods which allow an identity token for a Client

Application to be generated by the Implementation and presented to the Trusted Application. This identity

information is generated based on parameters controlled by some trusted entity inside the rich operating

system, such as the OS kernel, and as such it is a valid security model for these login tokens to be

generated by a trusted process within the rich operating system rather than by the TEE itself. Trusted

Application developers must therefore note that the validity of this login token is therefore bounded by the

security of the rich operating system, not the security of the TEE.

3.4.2. Security of the Rich Operating System

In most implementations the TEE is a separate operating system which exists in parallel to the rich

operating system which runs the Client Applications. It is important that the integration of a TEE alongside

the rich operating system cannot be used to weaken the security of the rich operating system itself. The

implementation of the TEE Client API, the TEE, and the Trusted Application must ensure that Client

Applications cannot use the features they expose to bypass the security sandbox used by the rich

operating system to isolate processes.

19/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4. Specification

This section contains the technical specification of the TEE Client API.

4.1. Implementation-Defined Behavior and Programmer Errors

A number of functionalities within this specification are described as either implementation-defined or as

programmer errors.

Implementation-Defined Behavior

When a functional behavior is described as implementation-defined it means that a specific

Implementation of the TEE Client API MUST consistently implement the behavior and MUST document it.

However, the actual behavior is not specified as part of the standard. Client Application developers may

choose to depend on this implementation-defined behavior, but must be aware that their code may not be

portable to another Implementation.

Implementation-Defined Fields

Implementations are allowed to extend some of the data structures defined in this specification to include

a single field of implementation-defined type, named imp. Implementations MUST NOT add new fields

outside of imp. The implementation can use the imp field to hold any private data that it wants to attach to

the context which that structure represents, but the Client Application code MUST NOT directly access the

contents of the imp field.

Programmer Error

There are a number of errors in this specification which can only occur as a result of programmer error, i.e.

they are triggered by incorrect use of the API by a program rather than by run-time errors such as out-of-

memory conditions. In these cases the Implementation is not required to gracefully handle the error, or

even behave consistently, but MAY choose to generate a programmer visible response. This response

could include a failing assertion, an informative return code if the function can return one, a diagnostic log

file, etc. In these cases the Implementation MUST still guarantee the stability and security of the TEE and

the shared communication subsystem in the rich environment because these modules are shared

amongst all Client Applications and must not be affected by the misbehavior of a single Client Application.

4.2. Header File

The header file for the TEE Client API must have the name “tee_client_api.h”.

#include “tee_client_api.h”

4.3. Data Types

4.3.1. Basic Types

This specification makes use of standard C data types, including the fixed width integer types from the ISO

C99 specification update [1]. The following standard C types are used:

 uint32_t: a 32-bit unsigned integer

 uint16_t: a 16-bit unsigned integer

 uint8_t: an 8-bit unsigned integer

 char: a character

 size_t: an unsigned integer large enough to hold the size of an object in memory

TEE Client API Specification 20/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.3.2. TEEC_Result

This type is used to contain return codes which are the results of invoking TEE Client API functions. See

section 4.4.2 for a list of return codes defined by the specification.

typedef uint32_t TEEC_Result;

4.3.3. TEEC_UUID

This type contains a Universally Unique Resource Identifier (UUID) type as defined in RFC4122 [2]. These

UUID values are used to identify Trusted Applications.

typedef struct

{

 uint32_t timeLow;

 uint16_t timeMid;

 uint16_t timeHiAndVersion;

 uint8_t clockSeqAndNode[8];

} TEEC_UUID;

4.3.4. TEEC_Context

This type denotes a TEE Context, the main logical container linking a Client Application with a particular

TEE. Its content is entirely implementation-defined.

typedef struct

{

 <Implementation-Defined Type> imp;

} TEEC_Context;

4.3.5. TEEC_Session

This type denotes a TEE Session, the logical container linking a Client Application with a particular

Trusted Application. Its content is entirely implementation-defined.

typedef struct

{

 <Implementation-Defined Type> imp;

} TEEC_Session;

4.3.6. TEEC_SharedMemory

This type denotes a Shared Memory block which has either been registered with the Implementation or

allocated by it.

typedef struct

{

 void* buffer;

 size_t size;

 uint32_t flags;

 <Implementation-Defined Type> imp;

} TEEC_SharedMemory;

The fields of this structure have the following meaning:

 buffer is a pointer to the memory buffer shared with the TEE

 size is the size of the memory buffer, in bytes

 flags is a bit-vector which can contain the following flags:

o TEEC_MEM_INPUT: the memory can be used to transfer data from the Client Application

to the TEE

21/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o TEEC_MEM_OUTPUT: the memory can be used to transfer data from the TEE to the Client

Application

o All other bits in this field SHOULD be set to zero, and are reserved for future use

 imp contains any additional implementation-defined data attached to the Shared Memory

structure

4.3.7. TEEC_TempMemoryReference

This type defines a Temporary Memory Reference. It is used as a TEEC_Operation parameter when the

corresponding parameter type is one of TEEC_MEMREF_TEMP_INPUT, TEEC_MEMREF_TEMP_OUTPUT, or

TEEC_MEMREF_TEMP_INOUT.

typedef struct

{

 void* buffer;

 size_t size;

} TEEC_TempMemoryReference;

The fields of this structure have the following meaning:

 buffer is a pointer to the first byte of a region of memory which needs to be temporarily

registered for the duration of the Operation. This field can be NULL to specify a null Memory

Reference.

 size is the size of the referenced memory region, in bytes. When the operation completes, and

unless the parameter type is TEEC_MEMREF_TEMP_INPUT, the Implementation must update this

field to reflect the actual or required size of the output:

o If the Trusted Application has actually written some data in the output buffer, then the

Implementation MUST update the size field with the actual number of bytes written.

o If the output buffer was not large enough to contain the whole output, or if it is null, the

Implementation MUST update the size field with the size of the output buffer requested

by the Trusted Application. In this case, no data has been written into the output buffer.

See the paragraph “Variable Length Return Buffers” in section 3.2.5 for more details.

4.3.8. TEEC_RegisteredMemoryReference

This type defines a Registered Memory Reference, i.e., that uses a pre-registered or pre-allocated Shared

Memory block. It is used as a TEEC_Operation parameter when the corresponding parameter type is

one of TEEC_MEMREF_WHOLE, TEEC_MEMREF_PARTIAL_INPUT, TEEC_MEMREF_PARTIAL_OUTPUT, or

TEEC_MEMREF_PARTIAL_INOUT.

typedef struct

{

 TEEC_SharedMemory* parent;

 size_t size;

 size_t offset;

} TEEC_RegisteredMemoryReference;

The fields of this structure have the following meaning:

 parent points to a TEEC_SharedMemory structure. The memory reference refers either to the

whole Shared Memory or to a partial region within the Shared Memory block, depending of the

parameter type. The data flow direction of the memory reference must be consistent with the flags

defined in the parent Shared Memory Block. Note that the parent field MUST NOT be NULL. To

encode a null Memory Reference, the Client Application must use a Temporary Memory

Reference with the buffer field set to NULL.

 size is the size of the referenced memory region, in bytes:

TEE Client API Specification 22/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o The Implementation MUST only interpret this field if the Memory Reference type in the

operation structure is not TEEC_MEMREF_WHOLE. Otherwise, the size is read from the

parent Shared Memory structure.

o When an operation completes, and if the Memory Reference is tagged as “output”, the

Implementation must update this field to reflect the actual or required size of the output.

This applies even if the parameter type is TEEC_MEMREF_WHOLE:

 If the Trusted Application has actually written some data in the output buffer, then

the Implementation MUST update the size field with the actual number of bytes

written.

 If the output buffer was not large enough to contain the whole output, the

Implementation MUST update the size field with the size of the output buffer

requested by the Trusted Application. In this case, no data has been written into

the output buffer. See the paragraph “Variable Length Return Buffers” in section

3.2.5 for more details.

 offset is the offset, in bytes, of the referenced memory region from the start of the Shared

Memory block:

o The Implementation MUST only interpret this field if the Memory Reference type in the

operation structure is not TEEC_MEMREF_WHOLE. Otherwise, the Implementation MUST

use the base address of the Shared Memory block.

4.3.9. TEEC_Value

This type defines a parameter that is not referencing shared memory, but carries instead small raw data

passed by value. It is used as a TEEC_Operation parameter when the corresponding parameter type is

one of TEEC_VALUE_INPUT, TEEC_VALUE_OUTPUT, or TEEC_VALUE_INOUT.

typedef struct

{

 uint32_t a;

 uint32_t b;

} TEEC_Value;

The two fields of this structure do not have a particular meaning. It is up to the protocol between the Client

Application and the Trusted Application to assign a semantic to those two integers.

4.3.10. TEEC_Parameter

This type defines a Parameter of a TEEC_Operation. It can be a Temporary Memory Reference, a

Registered Memory Reference, or a Value Parameter.

typedef union

{

 TEEC_TempMemoryReference tmpref;

 TEEC_RegisteredMemoryReference memref;

 TEEC_Value value;

} TEEC_Parameter;

The field to select in this union depends on the type of the parameter specified in the paramTypes field of

the TEEC_Operation structure:

Parameter Type Field to use

TEEC_VALUE_INPUT

TEEC_VALUE_OUTPUT

TEEC_VALUE_INOUT

value

23/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Parameter Type Field to use

TEEC_MEMREF_TEMP_INPUT

TEEC_MEMREF_TEMP_OUTPUT

TEEC_MEMREF_TEMP_INOUT

tmpref

TEEC_MEMREF_WHOLE

TEEC_MEMREF_PARTIAL_INPUT

TEEC_MEMREF_PARTIAL_OUTPUT

TEEC_MEMREF_PARTIAL_INOUT

memref

4.3.11. TEEC_Operation

This type defines the payload of either an open Session operation or an invoke Command operation. It is

also used for cancellation of operations, which may be desirable even if no payload is passed.

typedef struct

{

 uint32_t started;

 uint32_t paramTypes;

 TEEC_Parameter params[4];

 <Implementation-Defined Type> imp;

} TEEC_Operation;

The fields of this structure have the following meaning:

 started is a field which MUST be initialized to zero by the Client Application before each use in

an operation if the Client Application may need to cancel the operation about to be performed.

 paramTypes encodes the type of each of the Parameters in the operation. The layout of these

types within a 32-bit integer is implementation-defined and the Client Application MUST use the

macro TEEC_PARAMS_TYPE to construct a constant value for this field. As a special case, if the

Client Application sets paramTypes to 0, then the Implementation MUST interpret it as meaning

that the type for each Parameter is set to TEEC_NONE.

The type of each Parameter can take one of the following values, which are defined in Table 4-5

(section 4.4.4):

o TEEC_NONE

o TEEC_VALUE_INPUT

o TEEC_VALUE_OUTPUT

o TEEC_VALUE_INOUT

o TEEC_MEMREF_TEMP_INPUT

o TEEC_MEMREF_TEMP_OUTPUT

o TEEC_MEMREF_TEMP_INOUT

o TEEC_MEMREF_WHOLE

o TEEC_MEMREF_PARTIAL_INPUT

o TEEC_MEMREF_PARTIAL_OUTPUT

o TEEC_MEMREF_PARTIAL_INOUT

 params is an array of four Parameters. For each parameter, one of the memref, tmpref, or

value fields must be used depending on the corresponding parameter type passed in

paramTypes as described in the specification of TEEC_Parameter (section 4.3.9).

 imp contains any additional implementation-defined data attached to the operation structure.

TEE Client API Specification 24/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.4. Constants

The following constants are defined by this specification:

4.4.1. Configuration Settings

The following utility constant, of type size_t, is defined by the specification:

Name Value Comment

TEEC_CONFIG_SHAREDMEM_MAX_SIZE >= 0x80000 The maximum size of a single Shared

Memory block, in bytes, of both API

allocated and API registered memory.

This version of the standard requires

that this maximum size is greater than

or equal to 512kB.

In systems where there is no limit

imposed by the Implementation then

this definition should be defined to be

the size of the address space.

Table 4-1: API Configuration Constants

4.4.2. Return Codes

The following function return codes, of type TEEC_Result (see section 4.3.2), are defined by the

specification:

Name Value Description / Cause

TEEC_SUCCESS 0x00000000 The operation was successful.

TEEC_ERROR_GENERIC 0xFFFF0000 Non-specific cause.

TEEC_ERROR_ACCESS_DENIED 0xFFFF0001 Access privileges are not sufficient.

TEEC_ERROR_CANCEL 0xFFFF0002 The operation was cancelled.

TEEC_ERROR_ACCESS_CONFLICT 0xFFFF0003 Concurrent accesses caused conflict.

TEEC_ERROR_EXCESS_DATA 0xFFFF0004 Too much data for the requested operation

was passed.

TEEC_ERROR_BAD_FORMAT 0xFFFF0005 Input data was of invalid format.

TEEC_ERROR_BAD_PARAMETERS 0xFFFF0006 Input parameters were invalid.

TEEC_ERROR_BAD_STATE 0xFFFF0007 Operation is not valid in the current state.

TEEC_ERROR_ITEM_NOT_FOUND 0xFFFF0008 The requested data item is not found.

TEEC_ERROR_NOT_IMPLEMENTED 0xFFFF0009 The requested operation should exist but

is not yet implemented.

TEEC_ERROR_NOT_SUPPORTED 0xFFFF000A The requested operation is valid but is not

supported in this Implementation.

TEEC_ERROR_NO_DATA 0xFFFF000B Expected data was missing.

TEEC_ERROR_OUT_OF_MEMORY 0xFFFF000C System ran out of resources.

25/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Description / Cause

TEEC_ERROR_BUSY 0xFFFF000D The system is busy working on something

else.

TEEC_ERROR_COMMUNICATION 0xFFFF000E Communication with a remote party failed.

TEEC_ERROR_SECURITY 0xFFFF000F A security fault was detected.

TEEC_ERROR_SHORT_BUFFER 0xFFFF0010 The supplied buffer is too short for the

generated output.

Implementation-Defined 0x00000001 - 0xFFFEFFFF

Reserved for Future Use 0xFFFF0011 – 0xFFFFFFFF

Table 4-2: API Return Code Constants

4.4.3. Return Code Origins

The following function return code origins, of type uint32_t, are defined by the specification. These

indicate where in the software stack the return code was generated for an open-session operation or an

invoke-command operation.

Name Value Comment

TEEC_ORIGIN_API 1 0x00000001 The return code is an error that

originated within the TEE Client API

implementation.

TEEC_ORIGIN_COMMS 1 0x00000002 The return code is an error that

originated within the underlying

communications stack linking the rich

OS with the TEE.

TEEC_ORIGIN_TEE 1 0x00000003 The return code is an error that

originated within the common TEE

code.

TEEC_ORIGIN_TRUSTED_APP 0x00000004 The return code originated within the

Trusted Application code. This includes

the case where the return code is a

success.

All other values Reserved for Future Use

1
 These errors are returned by the TEE or surrounding framework, and the return codes for these error

origins must be one of the explicitly-defined constants in Table 4-2. In these cases, the return code cannot

be TEEC_SUCCESS because a success can only be generated by the Trusted Application itself.

Table 4-3: API Return Code Origin Constants

4.4.4. Shared Memory Control

The following flag constants, of type uint32_t, are defined by the specification. These are used to

indicate the current status and synchronization requirements of Shared Memory blocks.

TEE Client API Specification 26/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Comment

TEEC_MEM_INPUT 0x00000001 The Shared Memory can carry data from the Client

Application to the Trusted Application.

TEEC_MEM_OUTPUT 0x00000002 The Shared Memory can carry data from the

Trusted Application to the Client Application.

All other flag values Reserved for Future Use

Table 4-4: API Shared Memory Control Flags

The following constants, of type uint32_t, are defined by the specification. These are used to indicate

the type of Parameter encoded inside the operation structure.

Name Value Comment

TEEC_NONE 0x00000000 The Parameter is not used

TEEC_VALUE_INPUT 0x00000001 The Parameter is a TEEC_Value tagged

as input.

TEEC_VALUE_OUTPUT 0x00000002 The Parameter is a TEEC_Value tagged

as output.

TEEC_VALUE_INOUT 0x00000003 The Parameter is a TEEC_Value tagged

as both as input and output, i.e., for which

both the behaviors of TEEC_VALUE_INPUT

and TEEC_VALUE_OUTPUT apply.

TEEC_MEMREF_TEMP_INPUT 0x00000005 The Parameter is a

TEEC_TempMemoryReference describing

a region of memory which needs to be

temporarily registered for the duration of

the Operation and is tagged as input.

TEEC_MEMREF_TEMP_OUTPUT 0x00000006 Same as TEEC_MEMREF_TEMP_INPUT,

but the Memory Reference is tagged as

output. The Implementation may update

the size field to reflect the required output

size in some use cases.

TEEC_MEMREF_TEMP_INOUT 0x00000007 A Temporary Memory Reference tagged as

both input and output, i.e., for which both

the behaviors of

TEEC_MEMREF_TEMP_INPUT and

TEEC_MEMREF_TEMP_OUTPUT apply.

TEEC_MEMREF_WHOLE 0x0000000C The Parameter is a Registered Memory

Reference that refers to the entirety of its

parent Shared Memory block. The

parameter structure is a

TEEC_MemoryReference. In this

structure, the Implementation MUST read

only the parent field and MAY update the

size field when the operation completes.

27/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Comment

TEEC_MEMREF_PARTIAL_INPUT 0x0000000D A Registered Memory Reference structure

that refers to a partial region of its parent

Shared Memory block and is tagged as

input.

TEEC_MEMREF_PARTIAL_OUTPUT 0x0000000E A Registered Memory Reference structure

that refers to a partial region of its parent

Shared Memory block and is tagged as

output.

TEEC_MEMREF_PARTIAL_INOUT 0x0000000F The Registered Memory Reference

structure that refers to a partial region of its

parent Shared Memory block and is tagged

as both input and output, i.e., for which

both the behaviors of

TEEC_MEMREF_PARTIAL_INPUT and

TEEC_MEMREF_PARTIAL_OUTPUT apply.

All other values Reserved for Future Use

Table 4-5: API Parameter Types

4.4.5. Session Login Methods

The following constants, of type uint32_t, are defined by the specification. These are used to indicate

what identity credentials about the Client Application are used by the Implementation to determine access

control permissions to functionality provided by, or data stored by, the Trusted Application.

Login types are designed to be orthogonal from each other, in accordance with the identity token(s)

defined for each constant. For example, the credentials generated for TEEC_LOGIN_APPLICATION

MUST only depend on the identity of the application program, and not the user running it. If two users use

the same program, the Implementation MUST assign the same login identity to both users so that they can

access the same assets held inside the TEE. These identity tokens MUST also be persistent within one

Implementation, across multiple invocations of the application and across power cycles, enabling them to

be used to disambiguate persistent storage. Note that this specification does not guarantee separation

based on use of different login types – in many embedded platforms there is no notion of “group” or “user”

so these login types may fall back to TEEC_LOGIN_PUBLIC – these details of generating the credential for

each login type are implementation-defined.

Name Value Comment

TEEC_LOGIN_PUBLIC 0x00000000 No login data is provided.

TEEC_LOGIN_USER 0x00000001 Login data about the user running the

Client Application process is provided.

TEEC_LOGIN_GROUP 0x00000002 Login data about the group running

the Client Application process is

provided.

TEEC_LOGIN_APPLICATION 0x00000004 Login data about the running Client

Application itself is provided.

TEE Client API Specification 28/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Name Value Comment

TEEC_LOGIN_USER_APPLICATION 0x00000005 Login data about the user running the

Client Application and about the

Client Application itself is provided.

TEEC_LOGIN_GROUP_APPLICATION 0x00000006 Login data about the group running

the Client Application and about the

Client Application itself is provided.

Reserved for implementation-defined

connection methods

0x80000000 –

0xFFFFFFFF

Behavior is implementation-defined.

All other constant values Reserved for Future Use

Table 4-6: API Session Login Methods

29/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5. Functions

The following sub-sections specify the behavior of the functions within the TEE Client API.

4.5.1. Documentation Format

Function Prototype

Description

This section describes the behavior of the function.

Parameters

This section describes each of the function parameters.

Return

This section lists the possible return values. Note that this section is not comprehensive, and often leaves

some choice over error returns to the Implementation. However, in cases where restrictions do exist then

this section will document them.

Programmer Error

This section documents the cases of programmer error – error cases which MAY be detected by the

Implementation, but which MAY also perform in an unpredictable manner. This section is not exhaustive,

and does not document cases such as passing of an invalid pointer or a NULL pointer where the body text

states that the pointer must point to a valid structure.

Implementers’ Notes

This section highlights key points about the intended use to the implementer.

TEE Client API Specification 30/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.2. TEEC_InitializeContext

TEEC_Result TEEC_InitializeContext(

 const char* name,

 TEEC_Context* context)

Description

This function initializes a new TEE Context, forming a connection between this Client Application and the

TEE identified by the string identifier name.

The Client Application MAY pass a NULL name, which means that the Implementation MUST select a

default TEE to connect to. The supported name strings, the mapping of these names to a specific TEE,

and the nature of the default TEE are implementation-defined.

The caller MUST pass a pointer to a valid TEEC Context in context. The Implementation MUST assume

that all fields of the TEEC_Context structure are in an undefined state.

Parameters

 name: a zero-terminated string that describes the TEE to connect to. If this parameter is set to

NULL the Implementation MUST select a default TEE.

 context: a TEEC_Context structure that MUST be initialized by the Implementation.

Return

 TEEC_SUCCESS: the initialization was successful.

 Another error code from Table 4-2: initialization was not successful.

Programmer Error

The following usage of the API is a programmer error:

 Attempting to initialize the same TEE Context structure concurrently from multiple threads. Multi-

threaded Client Applications must use platform-provided locking mechanisms to ensure that this

case does not occur.

Implementers’ Notes

It is valid Client Application behavior to concurrently initialize different TEE Contexts, so the

Implementation MUST support this.

31/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.3. TEEC_FinalizeContext

void TEEC_FinalizeContext(

 TEEC_Context* context)

Description

This function finalizes an initialized TEE Context, closing the connection between the Client Application

and the TEE. The Client Application MUST only call this function when all Sessions inside this TEE

Context have been closed and all Shared Memory blocks have been released.

The implementation of this function MUST NOT be able to fail: after this function returns the Client

Application must be able to consider that the Context has been closed.

The function implementation MUST do nothing if context is NULL.

Parameters

 context: an initialized TEEC_Context structure which is to be finalized.

Programmer Error

The following usage of the API is a programmer error:

 Calling with a context which still has sessions opened.

 Calling with a context which contains unreleased Shared Memory blocks.

 Attempting to finalize the same TEE Context structure concurrently from multiple threads.

 Attempting to finalize the same TEE Context structure more than once, without an intervening call

to TEEC_InitalizeContext.

TEE Client API Specification 32/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.4. TEEC_RegisterSharedMemory

TEEC_Result TEEC_RegisterSharedMemory(

 TEEC_Context* context,

 TEEC_SharedMemory* sharedMem)

Description

This function registers a block of existing Client Application memory as a block of Shared Memory within

the scope of the specified TEE Context, in accordance with the parameters which have been set by the

Client Application inside the sharedMem structure.

The parameter context MUST point to an initialized TEE Context.

The parameter sharedMem MUST point to the Shared Memory structure defining the memory region to

register. The Client Application MUST have populated the following fields of the Shared Memory structure

before calling this function:

 The buffer field MUST point to the memory region to be shared, and MUST not be NULL.

 The size field MUST contain the size of the buffer, in bytes. Zero is a valid length for a buffer.

 The flags field indicates the intended directions of data flow between the Client Application and

the TEE.

 The Implementation MUST assume that all other fields in the Shared Memory structure have

undefined content.

An Implementation MAY put a hard limit on the size of a single Shared Memory block, defined by the

constant TEEC_CONFIG_SHAREDMEM_MAX_SIZE. However note that this function may fail to register a

block smaller than this limit due to a low resource condition encountered at run-time.

Parameters

 context: a pointer to an initialized TEE Context

 sharedMem: a pointer to a Shared Memory structure to register:

o the buffer, size, and flags fields of the sharedMem structure MUST be set in

accordance with the specification described above

Return

 TEEC_SUCCESS: the registration was successful.

 TEEC_ERROR_OUT_OF_MEMORY: the registration could not be completed because of a lack of

resources.

 Another error code from Table 4-2: registration was not successful for another reason.

Programmer Error

The following usage of the API is a programmer error:

 Calling with a context which is not initialized.

 Calling with a sharedMem which has not be correctly populated in accordance with the

specification.

 Attempting to initialize the same Shared Memory structure concurrently from multiple threads.

Multi-threaded Client Applications must use platform-provided locking mechanisms to ensure that

this case does not occur.

33/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Implementers’ Notes

This design allows a non-NULL buffer with a size of 0 bytes to allow trivial integration with any

implementations of the C library malloc, in which is valid to allocate a zero byte buffer and receive a non-

NULL pointer which may not be de-referenced in return.

Once successfully registered, the Shared Memory block can be used for efficient data transfers between

the Client Application and the Trusted Application. The TEE Client API implementation and the underlying

communications infrastructure SHOULD attempt to transfer data in to the TEE without using copies, if this

is possible on the underlying implementation, but MUST fall back on data copies if zero-copy cannot be

achieved. Client Application developers should be aware that, if the Implementation requires data copies,

then Shared Memory registration may allocate a block of memory of the same size as the block being

registered.

TEE Client API Specification 34/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.5. TEEC_AllocateSharedMemory

TEEC_Result TEEC_AllocateSharedMemory(

 TEEC_Context* context,

 TEEC_SharedMemory* sharedMem)

Description

This function allocates a new block of memory as a block of Shared Memory within the scope of the

specified TEE Context, in accordance with the parameters which have been set by the Client Application

inside the sharedMem structure.

The context parameter MUST point to an initialized TEE Context.

The sharedMem parameter MUST point to the Shared Memory structure defining the region to allocate.

Client Applications MUST have populated the following fields of the Shared Memory structure:

 The size field MUST contain the desired size of the buffer, in bytes. The size is allowed to be

zero. In this case memory is allocated and the pointer written in to the buffer field on return

MUST not be NULL but MUST never be de-referenced by the Client Application. In this case

however, the Shared Memory block can be used in Registered Memory References.

 The flags field indicates the allowed directions of data flow between the Client Application and

the TEE.

 The Implementation MUST assume that all other fields in the Shared Memory structure have

undefined content.

An Implementation MAY put a hard limit on the size of a single Shared Memory block, defined by the

constant TEEC_CONFIG_SHAREDMEM_MAX_SIZE. However it must be noted that this function may fail to

allocate a block of smaller than this limit due to low resource scenarios encountered at run-time.

If this function returns any code other than TEEC_SUCCESS the Implementation MUST have set the

buffer field of sharedMem to NULL.

Parameters

 context: a pointer to an initialized TEE Context.

 sharedMem: a pointer to a Shared Memory structure to allocate:

o Before calling this function, the Client Application MUST have set the size, and flags

fields.

o On return, for a successful allocation the Implementation MUST have set the pointer

buffer to the address of the allocated block, otherwise it MUST set buffer to NULL.

Return

 TEEC_SUCCESS: the allocation was successful.

 TEEC_ERROR_OUT_OF_MEMORY: the allocation could not be completed due to resource

constraints.

 Another error code from Table 4-2: allocation was not successful for another reason.

Programmer Error

The following usage of the API is a programmer error:

 Calling with a context which is not initialized.

 Calling with sharedMem which has not been populated in accordance with the specification.

35/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Attempting to initialize the same Shared Memory structure concurrently from multiple threads.

Multi-threaded Client Applications must use platform-provided locking mechanisms to ensure that

this case does not occur.

Implementers’ Notes

Once successfully allocated the Shared Memory block can be used for efficient data transfers between the

Client Application and the Trusted Application. The TEE Client API and the underlying communications

infrastructure should attempt to transfer data in to the TEE without using copies, if this is possible on the

underlying implementation, but may have to fall back on data copies if zero-copy cannot be achieved.

The memory buffer allocated by this function must have sufficient alignment to store any fundamental C

data type at a natural alignment. For most platforms this will require the memory buffer to have 8-byte

alignment, but refer to the Application Binary Interface (ABI) of the target platform for details.

TEE Client API Specification 36/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.6. TEEC_ReleaseSharedMemory

void TEEC_ReleaseSharedMemory (

 TEEC_SharedMemory* sharedMem)

Description

This function deregisters or deallocates a previously initialized block of Shared Memory.

For a memory buffer allocated using TEEC_AllocateSharedMemory the Implementation MUST free the

underlying memory and the Client Application MUST NOT access this region after this function has been

called. In this case the Implementation MUST set the buffer and size fields of the sharedMem

structure to NULL and 0 respectively before returning.

For memory registered using TEEC_RegisterSharedMemory the Implementation MUST deregister the

underlying memory from the TEE, but the memory region will stay available to the Client Application for

other purposes as the memory is owned by it.

The Implementation MUST do nothing if the sharedMem parameter is NULL.

Parameters

 sharedMem: a pointer to a valid Shared Memory structure.

Programmer Error

The following usage of the API is a programmer error:

 Attempting to release Shared Memory which is used by a pending operation.

 Attempting to release the same Shared Memory structure concurrently from multiple threads.

Multi-threaded Client Applications must use platform-provided locking mechanisms to ensure that

this case does not occur.

37/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.7. TEEC_OpenSession

TEEC_Result TEEC_OpenSession (

 TEEC_Context* context,

 TEEC_Session* session,

 const TEEC_UUID* destination,

 uint32_t connectionMethod,

 const void* connectionData,

 TEEC_Operation* operation,

 uint32_t* returnOrigin)

Description

This function opens a new Session between the Client Application and the specified Trusted Application.

The Implementation MUST assume that all fields of this session structure are in an undefined state.

When this function returns TEEC_SUCCESS the Implementation MUST have populated this structure with

any information necessary for subsequent operations within the Session.

The target Trusted Application is identified by a UUID passed in the parameter destination.

The Session MAY be opened using a specific connection method that can carry additional connection

data, such as data about the user or user-group running the Client Application, or about the Client

Application itself. This allows the Trusted Application to implement access control methods which separate

functionality or data accesses for different actors in the rich environment outside of the TEE. Standard

connection methods are defined in section 4.4.5, but there MAY be implementation-defined login methods

in addition to these core types. The additional data associated with each connection method is passed in

via the pointer connectionData. For the core login types the following connection data is required:

 TEEC_LOGIN_PUBLIC

o connectionData SHOULD be NULL.

 TEEC_LOGIN_USER

o connectionData SHOULD be NULL.

 TEEC_LOGIN_GROUP

o connectionData MUST point to a uint32_t which contains the group which this Client

Application wants to connect as. The Implementation is responsible for securely ensuring

that the Client Application instance is actually a member of this group.

 TEEC_LOGIN_APPLICATION

o connectionData SHOULD be NULL.

 TEEC_LOGIN_USER_APPLICATION

o connectionData SHOULD be NULL.

 TEEC_LOGIN_GROUP_APPLICATION

o connectionData MUST point to a uint32_t which contains the group which this Client

Application wants to connect as. The Implementation is responsible for securely ensuring

that the Client Application instance is actually a member of this group.

Note: This API intentionally omits any form of support for static login credentials, such as PIN or password

entry. The login methods supported in the API are only those which have been identified as requiring

support by the rich operating environment. If a Trusted Application requires a static login credential then

this can be passed by the Client Application using the standard Shared Memory mechanisms for data

exchange.

TEE Client API Specification 38/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

An open-session operation MAY optionally carry an Operation Payload, and MAY also be cancellable.

When the payload is present the parameter operation MUST point to a TEEC_Operation structure

populated by the Client Application. If operation is NULL then no data buffers are exchanged with the

Trusted Application, and the operation cannot be cancelled by the Client Application. The full behavior of

the Operation Payload handling is described in section 4.5.9, TEEC_InvokeCommand.

The result of this function is returned both in the function TEEC_Result return code and the return origin,

stored in the variable pointed to by returnOrigin:

 If the return origin is different from TEEC_ORIGIN_TRUSTED_APP, then the return code MUST be

one of the error codes defined in Table 4-2. If the return code is TEEC_ERROR_CANCEL then it

means that the operation was cancelled before it reached the Trusted Application.

 If the return origin is TEEC_ORIGIN_TRUSTED_APP, the meaning of the return code depends on

the protocol between the Client Application and the Trusted Application. However, if

TEEC_SUCCESS is returned, it always means that the session was successfully opened and if the

function returns a code different from TEEC_SUCCESS, it means that the session opening failed.

Parameters

 context: a pointer to an initialized TEE Context.

 session: a pointer to a Session structure to open.

 destination: a pointer to a structure containing the UUID of the destination Trusted Application.

 connectionMethod: the method of connection to use. Refer to section 4.4.5 for more details.

 connectionData: any necessary data required to support the connection method chosen.

 operation: a pointer to an Operation containing a set of Parameters to exchange with the

Trusted Application, or NULL if no Parameters are to be exchanged or if the operation cannot be

cancelled. Refer to TEEC_InvokeCommand for more details.

 returnOrigin: a pointer to a variable which will contain the return origin. This field may be NULL

if the return origin is not needed.

Return

 If the returnOrigin is different from TEEC_ORIGIN_TRUSTED_APP, an error code from Table

4-2

 If the returnOrigin is equal to TEEC_ORIGIN_TRUSTED_APP, a return code defined by the

protocol between the Client Application and the Trusted Application. In any case, a return code set

to TEEC_SUCCESS means that the session was successfully opened and a return code different

from TEEC_SUCCESS means that the session opening failed.

Programmer Error

The following usage of the API is a programmer error:

 Calling with a context which is not yet initialized.

 Calling with a connectionData set to NULL if connection data is required by the specified

connection method.

 Calling with an operation containing an invalid paramTypes field, i.e., containing a reserved

parameter type or where a parameter type that conflicts with the parent Shared Memory .

 Encoding Registered Memory References which refer to Shared Memory blocks allocated within

the scope of a different TEE Context.

 Attempting to open a Session using the same Session structure concurrently from multiple

threads. Multi-threaded Client Applications must use platform-provided locking mechanisms, to

ensure that this case does not occur.

 Using the same Operation structure for multiple concurrent operations.

39/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Implementers’ Notes

Trusted Applications MUST use TEEC_SUCCESS (0) to indicate success in their protocol, as this is the only

way for the Implementation to determine success or failure without knowing the protocol of the Trusted

Application.

TEE Client API Specification 40/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.8. TEEC_CloseSession

void TEEC_CloseSession (

 TEEC_Session* session)

Description

This function closes a Session which has been opened with a Trusted Application.

All Commands within the Session MUST have completed before calling this function.

The Implementation MUST do nothing if the session parameter is NULL.

The implementation of this function MUST NOT be able to fail: after this function returns the Client

Application must be able to consider that the Session has been closed.

Parameters

 session: the session to close.

Programmer Error

The following usage of the API is a programmer error:

 Calling with a session which still has commands running.

 Attempting to close the same Session concurrently from multiple threads.

 Attempting to close the same Session more than once.

41/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.9. TEEC_InvokeCommand

TEEC_Result TEEC_InvokeCommand(

 TEEC_Session* session,

 uint32_t commandID,

 TEEC_Operation* operation,

 uint32_t* returnOrigin)

Description

This function invokes a Command within the specified Session.

The parameter session MUST point to a valid open Session.

The parameter commandID is an identifier that is used to indicate which of the exposed Trusted

Application functions should be invoked. The supported command identifiers are defined by the Trusted

Application‟s protocol.

Operation Handling

A Command MAY optionally carry an Operation Payload. When the payload is present the parameter

operation MUST point to a TEEC_Operation structure populated by the Client Application. If

operation is NULL then no parameters are exchanged with the Trusted Application, and only the

Command ID is exchanged.

The operation structure is also used to manage cancellation of the Command. If cancellation is required

then the operation pointer MUST be non-NULL and the Client Application MUST have zeroed the

started field of the operation structure before calling this function. The operation structure MAY contain

no Parameters if no data payload is to be exchanged.

The Operation Payload is handled as described by the following steps, which are executed sequentially:

1. Each Parameter in the Operation Payload is examined. If the parameter is a Temporary Memory

Reference, then it is registered for the duration of the Operation in accordance with the fields set in

the TEEC_TempMemoryReference structure and the data flow direction specified in the parameter

type. Refer to the TEEC_RegisterSharedMemory function for error conditions which can be

triggered during temporary registration of a memory region.

2. The contents of all the Memory Regions which are exchanged with the TEE are synchronized (see

section 3.2.5).

3. The fields of all Value Parameters tagged as input are read by the Implementation. This applies to

Parameters of type TEEC_VALUE_INPUT or TEEC_VALUE_INOUT.

4. The Operation is issued to the Trusted Application. During the execution of the Command, the

Trusted Application may read the data held within the memory referred to by input Memory

References. It may also write data in to the memory referred to by output Memory References, but

these modifications are not guaranteed to be observable by the Client Application until the command

completes.

5. After the Command has completed, the Implementation MUST update the size field of the Memory

Reference structures flagged as output:

TEE Client API Specification 42/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

a. For Memory References that are non-null and marked as output, the updated size field MAY

be less than or equal to original size field. In this case this indicates the number of bytes

actually written by the Trusted Application, and the Implementation MUST synchronize this

region with the Client Application memory space.

b. For all Memory References marked as output, the updated size field MAY be larger than the

original size field. For null Memory References, a required buffer size MAY be specified by

the Trusted Application. In these cases the passed output buffer was too small or absent, and

the returned size indicates the size of the output buffer which is necessary for the operation to

succeed. In these cases the Implementation SHOULD NOT synchronize any shared data with

the Client Application.

This behavior is described in more detail in section 3.2.5, “Variable Length Return Buffers”.

6. When the Command completes, the Implementation MUST update the fields of all Value Parameters

tagged as output, i.e., of type TEEC_VALUE_OUTPUT or TEEC_VALUE_INOUT.

7. All memory regions that were temporarily registered at the beginning of the function are deregistered

as if the function TEEC_ReleaseSharedMemory was called on each of them.

8. Control is passed back to the calling Client Application code

The result of this function is returned both in the function TEEC_Result return code and the return origin,

stored in the variable pointed to by returnOrigin:

 If the return origin is different from TEEC_ORIGIN_TRUSTED_APP, then the return code MUST be

one of the error codes defined in Table 4-2. If the return code is TEEC_ERROR_CANCEL then it

means that the operation was cancelled before it reached the Trusted Application.

 If the return origin is TEEC_ORIGIN_TRUSTED_APP, then the meaning of the return code is

determined by the protocol exposed by the Trusted Application. It is recommended that the

Trusted Application developer chooses TEEC_SUCCESS (0) to indicate success in their protocol,

as this means that it is possible for the Client Application developer to determine success or

failure without looking at the return origin.

Parameters

 session: the open Session in which the command will be invoked.

 commandID: the identifier of the Command within the Trusted Application to invoke. The meaning

of each Command Identifier must be defined in the protocol exposed by the Trusted Application

 operation: a pointer to a Client Application initialized TEEC_Operation structure, or NULL if

there is no payload to send or if the Command does not need to support cancellation.

 returnOrigin: a pointer to a variable which will contain the return origin. This field may be NULL

if the return origin is not needed.

Return

 if the return origin is different from TEEC_ORIGIN_TRUSTED_APP, an error code defined in Table

4-2

 if the return origin is TEEC_ORIGIN_TRUSTED_APP, a return code defined by the Trusted

Application protocol

Programmer Error

The following usage of the API is a programmer error:

 Calling with a session which is not an open Session.

43/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 Calling with invalid content in the paramTypes field of the operation structure. This invalid

behavior includes types which are RFU or which conflict with the flags of the parent Shared

Memory block.

 Encoding Registered Memory References which refer to Shared Memory blocks allocated or

registered within the scope of a different TEE Context.

 Using the same operation structure concurrently for multiple operations, whether open Session

operations or Command invocations.

TEE Client API Specification 44/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.10. TEEC_RequestCancellation

void TEEC_RequestCancellation(

 TEEC_Operation* operation)

Description

This function requests the cancellation of a pending open Session operation or a Command invocation

operation. As this is a synchronous API, this function must be called from a thread other than the one

executing the TEEC_OpenSession or TEEC_InvokeCommand function.

This function just sends a cancellation signal to the TEE and returns immediately; the operation is not

guaranteed to have been cancelled when this function returns. In addition, the cancellation request is just

a hint; the TEE or the Trusted Application MAY ignore the cancellation request.

It is valid to call this function using a TEEC_Operation structure any time after the Client Application has

set the started field of an Operation structure to zero. In particular, an operation can be cancelled before

it is actually invoked, during invocation, and after invocation. Note that the Client Application MUST reset

the started field to zero each time an Operation structure is used or re-used to open a Session or invoke

a Command if the new operation is to be cancellable.

Client Applications MUST NOT reuse the Operation structure for another Operation until the cancelled

command has actually returned in the thread executing the TEEC_OpenSession or

TEEC_InvokeCommand function.

Detecting cancellation

In many use cases it will be necessary for the Client Application to detect whether the operation was

actually cancelled, or whether it completed normally.

In some implementations it MAY be possible for part of the infrastructure to cancel the operation before it

reaches the Trusted Application. In these cases the return origin returned by TEEC_OpenSession or

TEEC_InvokeCommand MUST be either TEEC_ORIGIN_API, TEEC_ORIGIN_COMMS, or

TEEC_ORIGIN_TEE, and the return code MUST be TEEC_ERROR_CANCEL.

If the cancellation request is handled by the Trusted Application itself then the return origin returned by

TEEC_OpenSession or TEEC_InvokeCommand MUST be TEE_ORIGIN_TRUSTED_APP, and the return

code is defined by the Trusted Application‟s protocol. If possible, Trusted Applications SHOULD use

TEEC_ERROR_CANCEL for their return code, but it is accepted that this is not always possible due to

conflicts with existing return code definitions in other standards.

Parameters

 operation: a pointer to a Client Application instantiated Operation structure.

45/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

4.5.11. Function-Like Macro: TEEC_PARAM_TYPES

uint32_t TEEC_PARAM_TYPES(param0Type, param1Type, param2Type, param3Type)

Description

This function-like macro builds a constant containing four Parameter types for use in the paramTypes

field of a TEEC_Operation structure. It accepts four parameters which MUST be taken from the constant

values described in Table 4-5.

Note that the way in which the parameter types are packed in a 32-bit integer is implementation-defined

and a Client MUST use this macro to build the content of the paramTypes field. However, the value 0

MUST always be equivalent to all types set to TEEC_NONE.

TEE Client API Specification 46/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5. Sample Code

This section of the specification walks through some example code demonstrating the fundamental usage

principles of the TEE Client API.

5.1. Example Trusted Application Protocol

The Trusted Application used for this example implements some simple cryptographic commands,

exposing the protocol described in this section to the Client Application. For the purposes of this example

it is assumed that each Session opened between the Client Application and the cryptographic Trusted

Application only supports a single concurrent encryption operation and a single concurrent digest

operation.

Note: This set of Commands is not meant to represent a real-life protocol, but it is designed to show the

various ways that the TEE Client API can be used to communicate with a Trusted Application.

5.1.1. Login Support

The Trusted Application supports the TEEC_LOGIN_USER connection method, allowing keys belonging to

different users to be stored in an isolated fashion.

5.1.2. Standard Return Codes

All Commands exposed by the Trusted Application return standard TEEC_SUCCESS or TEEC_ERROR_*

constants, enabling simple error handling as this removes the need to check that the return origin is

TEEC_ORIGIN_TRUSTED_APP.

5.1.3. Encryption Commands

CMD_ENCRYPT_INIT

This function initializes an encryption operation using a previously installed key, identified by the Key ID

encoded in the input data. The following Memory References are used in the operation payload:

 commandID: 1

 params[0]

o Value: a=Encryption Key ID

o Data flow direction: input

 params[1]

o Encryption Initialization Vector: Array of 16-bytes, aligned on 1 byte boundary.

o Data flow direction: input

CMD_ENCRYPT_UPDATE

This function encrypts a buffer of data using the previous encryption state in this session if any chaining

methods are in use. The encrypted data is returned to the caller. The following Parameters are used in the

operation payload:

 commandID: 2

 params[0]

o Input data buffer: a multiple of 16-bytes, aligned on a byte boundary.

o Data flow direction: input

 params[1]

o Output data buffer: same length as input buffer, aligned on a byte boundary.

47/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o Data flow direction: output

CMD_ENCRYPT_FINAL

This function completes an encryption operation which is no longer needed, releasing resources held

inside the Trusted Application:

 commandID: 3

 No Parameters are used for this command.

5.1.4. Digest Commands

CMD_DIGEST_INIT

This function initializes a digest operation:

 commandID: 4

 No Parameters are used for this command.

CMD_DIGEST_UPDATE

This function adds more data to an in-progress digest. The following Parameters are used in the operation

payload:

 commandID: 5

 params[0]

o Input data buffer: a buffer of bytes, aligned on a byte boundary.

o Data flow direction: input

CMD_DIGEST_FINAL

This function completes an in-progress digest. The following Parameters are used in the operation

payload:

 commandID: 6

 params[1]

o Output data buffer: a buffer of 20 bytes, aligned on a byte boundary.

o Data flow direction: output

5.2. Example 1: Using the TEE Client API

This example Client Application implements some library code which encrypts an input buffer, returning

the encrypted buffer and the digest of the encrypted buffer to the caller.

The prototype of this library function is outlined below:

TEEC_Result libraryFunction(

 uint8_t const * inputBuffer,

 uint32_t inputSize,

 uint8_t* outputBuffer,

 uint32_t outputSize,

 uint8_t* digestBuffer)

Full example code for this example, including line numbers, can be found in section 6.

5.2.1. Initializing resources

The first task undertaken by the library function is to allocate the structures needed for the function.

TEE Client API Specification 48/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /* Allocate TEE Client structures on the stack. */

 TEEC_Context context;

 TEEC_Session session;

 TEEC_Operation operation;

 TEEC_Result result;

 TEEC_SharedMemory commsSM;

 TEEC_SharedMemory inputSM;

 TEEC_SharedMemory outputSM;

5.2.2. Connecting to the desired Trusted Application

The next task of the library function is to initiate a connection with the Trusted Application. It first initializes

a TEE Context, and then opens a session.

 /* ==

 [1] Connect to TEE

 == */

 result = TEEC_InitializeContext(

 NULL,

 &context);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup1;

 }

 /* ==

 [2] Open session with TEE application

 == */

 /* Open a Session with the TEE application. */

 result = TEEC_OpenSession(

 &context,

 &session,

 &cryptoTEEApp,

 TEEC_LOGIN_USER,

 NULL, /* No connection data needed for TEEC_LOGIN_USER. */

 NULL, /* No payload, and do not want cancellation. */

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup2;

 }

5.2.3. Allocating communications channel Shared Memory

The next task of the library function is to allocate a block of Shared Memory which can be used for

exchanging command and control data, such as initialization vectors for the encryption operation, key ID

parameters, and for retrieving the digest result. The code uses the function

TEEC_AllocateSharedMemory to maximize the chance that the buffer can be directly mapped and to

share it only once for multiple commands.

The memory buffer will be used in the following ways for the operations invoked by this library:

 Encrypt Initialize:

49/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

o commsSM.buffer[0x0000-0x000F]: IV (input)

 Digest Finalize

o commsSM.buffer[0x0000-0x0013]: Digest (output)

 /* ==

 [3] Initialize the Shared Memory buffers

 == */

 /* [a] Communications buffer. */

 commsSM.size = 20;

 commsSM.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT;

 /* Use TEE Client API to allocate the underlying memory buffer. */

 result = TEEC_AllocateSharedMemory(

 &context,

 &commsSM);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup3;

 }

5.2.4. Registering bulk buffers as Shared Memory

The next task of the library function is to register as Shared Memory the bulk input and output buffers

provided to us as parameters by the calling code. These buffers could be relatively large, so we register

the existing memory with the API rather than allocating memory and then copying data in to / out of it.

Note that the digest operation uses the encryption output buffer as an input, so this is marked with both

TEEC_MEM_INPUT and TEEC_MEM_OUTPUT.

 /* [b] Bulk input buffer. */

 inputSM.size = inputSize;

 inputSM.flags = TEEC_MEM_INPUT;

 /* Use TEE Client API to register the underlying memory buffer. */

 inputSM.buffer = (uint8_t*)inputBuffer;

 result = TEEC_RegisterSharedMemory(

 &context,

 &inputSM);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup4;

 }

 /* [c] Bulk output buffer (also input for digest). */

 outputSM.size = outputSize;

 outputSM.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT;

 outputSM.buffer = outputBuffer;

 /* Use TEE Client API to register the underlying memory buffer. */

 result = TEEC_RegisterSharedMemory(

 &context,

 &outputSM);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup5;

 }

TEE Client API Specification 50/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

5.2.5. Initialize operations

The next task of the library function is to invoke the two cryptographic library initialize commands within

the Trusted Application. The code first populates the operation payload structure for each operation and

then invokes it.

 /* ==

 [4] Perform cryptographic operation initialization commands

 == */

 /* [a] Start the encrypt operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_VALUE_INPUT,

 TEEC_MEMREF_PARTIAL_INPUT,

 TEEC_NONE,

 TEEC_NONE);

 /* Write key ID (example uses key ID = 1) in the parameter #0 */

 operation.params[0].value.a = 1;

 operation.params[1].memref.parent = &commsSM;

 operation.params[1].memref.offset = 0;

 operation.params[1].memref.size = 16;

 /* Write IV (example uses an IV of all zeros) in to Memory buffer. */

 ivPtr = (uint8_t*)commsSM.buffer;

 memset(ivPtr, 0, 16);

 /* Start the encrypt operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_ENCRYPT_INIT,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

 /* [b] Start the digest operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_DIGEST_INIT,

 NULL,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

5.2.6. Perform cryptographic operations

The next task of the library function is to actually perform the encryption operation and the digest operation

on the encrypted result.

 /* ==

 [5] Perform the cryptographic update commands

 == */

 /* [a] Start the encrypt operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

51/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 TEEC_MEMREF_WHOLE,

 TEEC_MEMREF_PARTIAL_OUTPUT,

 TEEC_NONE,

 TEEC_NONE);

 operation.params[0].memref.parent = &inputSM;

 /* Note that the other fields of operation.params[0].memref need not be

 initialized because the parameter type is TEEC_MEMREF_WHOLE */

 operation.params[1].memref.parent = &outputSM;

 operation.params[1].memref.offset = 0;

 operation.params[1].memref.size = outputSize;

 /* Start the encrypt operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_ENCRYPT_UPDATE,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

 /* [b] Start the digest operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_MEMREF_PARTIAL_INPUT,

 TEEC_NONE,

 TEEC_NONE,

 TEEC_NONE);

 /* Note: we use the updated size in the MemRef output by the encryption. */

 operation.params[0].memref.parent = &outputSM;

 operation.params[0].memref.offset = 0;

 operation.params[0].memref.size = operation.params[1].memref.size;

 /* Start the digest operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_DIGEST_UPDATE,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

5.2.7. Finalizing the commands

The next task of the library function is to finalize the cryptographic commands, which releases the

resources held by the encryption operation inside the Trusted Application, and fetches the digest result.

TEE Client API Specification 52/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /* ==

 [6] Perform the cryptographic finalize commands

 == */

 /* [a] Finalize the encrypt operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_ENCRYPT_FINAL,

 NULL,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

 /* [b] Finalize the digest operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_MEMREF_PARTIAL_OUTPUT,

 TEEC_NONE,

 TEEC_NONE,

 TEEC_NONE);

 operation.params[0].parent = &commsSM;

 operation.params[0].offset = 0;

 operation.params[0].size = 20;

 result = TEEC_InvokeCommand(

 &session,

 CMD_DIGEST_FINAL,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

 /* Transfer digest in to user buffer. */

 memcpy(digestBuffer, commsSM.buffer, 20);

5.2.8. Cleaning up

By this point in the code all activity with the Trusted Application has completed, and we can release any

resources which we hold. The following command sequence is used to cleanup for this function,

unwinding the resource allocations in the order in which they occurred.

 /* ==

 [7] Tidyup resources

 == */

cleanup6:

 TEEC_ReleaseSharedMemory(&outputSM);

cleanup5:

 TEEC_ReleaseSharedMemory(&inputSM);

cleanup4:

 TEEC_ReleaseSharedMemory(&commsSM);

cleanup3:

 TEEC_CloseSession(&session);

cleanup2:

 TEEC_FinalizeContext(&context);

53/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

6. Appendix: Example Source Code

This section contains the full example code of the example described in the walkthrough found in section

5.2.

#include "tee_client_api.h"

#include <string.h>

/* ==

Store the TEE application UUID in non-volatile memory (code ROM). 5

== */

static const TEEC_UUID cryptoTEEApp =

{

 0x3E93632E, 0xA710, 0x469E,

 { 0xAC, 0xC8, 0x5E, 0xDF, 0x8C, 0x85, 0x90, 0xE1 } 10

};

/* ==

Definitions of the Trusted Application Command IDs

== */ 15

#define CMD_ENCRYPT_INIT 1

#define CMD_ENCRYPT_UPDATE 2

#define CMD_ENCRYPT_FINAL 3

#define CMD_DIGEST_INIT 4

#define CMD_DIGEST_UPDATE 5 20

#define CMD_DIGEST_FINAL 6

/* ==

Implement our library function where the buffers of memory are pre-allocated

by the calling entity. This is a common paradigm when interfacing with other 25

libraries provided by other providers.

== */

TEEC_Result libraryFunction(

 uint8_t const * inputBuffer,

 uint32_t inputSize, 30

 uint8_t* outputBuffer,

 uint32_t outputSize,

 uint8_t* digestBuffer

)

{ 35

 /* Allocate TEE Client structures on the stack. */

 TEEC_Context context;

 TEEC_Session session;

 TEEC_Operation operation;

 40

 TEEC_Result result;

 TEEC_SharedMemory commsSM;

 TEEC_SharedMemory inputSM;

 TEEC_SharedMemory outputSM; 45

 uint8_t* ivPtr;

 50

TEE Client API Specification 54/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /* ==

 [1] Connect to TEE

 == */

 result = TEEC_InitializeContext(55

 NULL,

 &context);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup1; 60

 }

 /* ==

 [2] Open session with TEE application

 == */ 65

 /* Open a Session with the TEE application. */

 result = TEEC_OpenSession(

 &context,

 &session,

 &cryptoTEEApp, 70

 TEEC_LOGIN_USER,

 NULL, /* No connection data needed for TEEC_LOGIN_USER. */

 NULL, /* No payload, and do not want cancellation. */

 NULL);

 if (result != TEEC_SUCCESS) 75

 {

 goto cleanup2;

 }

 /* == 80

 [3] Initialize the Shared Memory buffers

 == */

 /* [a] Communications buffer. */

 commsSM.size = 20;

 commsSM.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT; 85

 /* Use TEE Client API to allocate the underlying memory buffer. */

 result = TEEC_AllocateSharedMemory(

 &context,

 &commsSM); 90

 if (result != TEEC_SUCCESS)

 {

 goto cleanup3;

 }

 95

 /* [b] Bulk input buffer. */

 inputSM.size = inputSize;

 inputSM.flags = TEEC_MEM_INPUT;

 /* Use TEE Client API to register the underlying memory buffer. */ 100

 inputSM.buffer = (uint8_t*)inputBuffer;

 result = TEEC_RegisterSharedMemory(

 &context,

 &inputSM); 105

 if (result != TEEC_SUCCESS)

 {

 goto cleanup4;

 }

 110

55/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /* [c] Bulk output buffer (also input for digest). */

 outputSM.size = outputSize;

 outputSM.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT;

 outputSM.buffer = outputBuffer;

 115

 /* Use TEE Client API to register the underlying memory buffer. */

 result = TEEC_RegisterSharedMemory(

 &context,

 &outputSM);

 if (result != TEEC_SUCCESS) 120

 {

 goto cleanup5;

 }

 /* == 125

 [4] Perform cryptographic operation initialization commands

 == */

 /* [a] Start the encrypt operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_VALUE_INPUT, 130

 TEEC_MEMREF_PARTIAL_INPUT,

 TEEC_NONE,

 TEEC_NONE);

 135

 /* Write key ID (example uses key ID = 1) in parameter #1 */

 operation.params[0].value.a = 1;

 operation.params[1].memref.parent = &commsSM;

 operation.params[1].memref.offset = 0; 140

 operation.params[1].memref.size = 16;

 /* Write IV (example uses an IV of all zeros) in to Memory buffer. */

 ivPtr = (uint8_t*)commsSM.buffer;

 memset(ivPtr, 0, 16); 145

 /* Start the encrypt operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session,

 CMD_ENCRYPT_INIT, 150

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6; 155

 }

 /* [b] Start the digest operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session, 160

 CMD_DIGEST_INIT,

 NULL,

 NULL);

 if (result != TEEC_SUCCESS) 165

 {

 goto cleanup6;

 }

TEE Client API Specification 56/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 /* == 170

 [5] Perform the cryptographic update commands

 == */

 /* [a] Start the encrypt operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_MEMREF_WHOLE, 175

 TEEC_MEMREF_PARTIAL_OUTPUT,

 TEEC_NONE,

 TEEC_NONE);

 operation.params[0].memref.parent = &inputSM; 180

 /* Note that the other fields of operation.params[0].memref need not be

 initialized because the parameter type is TEEC_MEMREF_WHOLE */

 /* Note: Even though we share the entire block we do so with less flags, so

 * fallback on the TEEC_MEMREF_PARTIAL method. */ 185

 operation.params[1].memref.parent = &outputSM;

 operation.params[1].memref.offset = 0;

 operation.params[1].memref.size = outputSize;

 /* Start the encrypt operation within the TEE application. */ 190

 result = TEEC_InvokeCommand(

 &session,

 CMD_ENCRYPT_UPDATE,

 &operation,

 NULL); 195

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6;

 }

 200

 /* [b] Start the digest operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_MEMREF_PARTIAL_INPUT,

 TEEC_NONE,

 TEEC_NONE, 205

 TEEC_NONE);

 /* Note: we use the updated size in the MemRef output by the encryption. */

 operation.params[0].memref.parent = &outputSM;

 operation.params[0].memref.offset = 0; 210

 operation.params[0].memref.size = operation.params[1].memref.size;

 /* Start the digest operation within the TEE application. */

 result = TEEC_InvokeCommand(

 &session, 215

 CMD_DIGEST_UPDATE,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 { 220

 goto cleanup6;

 }

 /* ==

 [6] Perform the cryptographic finalize commands 225

 == */

 /* [a] Finalize the encrypt operation within the TEE application. */

 result = TEEC_InvokeCommand(

57/58 TEE Client API Specification

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

 &session,

 CMD_ENCRYPT_FINAL, 230

 NULL,

 NULL);

 if (result != TEEC_SUCCESS)

 {

 goto cleanup6; 235

 }

 /* [b] Finalize the digest operation within the TEE application. */

 operation.paramTypes = TEEC_PARAM_TYPES(

 TEEC_MEMREF_PARTIAL_OUTPUT, 240

 TEEC_NONE,

 TEEC_NONE,

 TEEC_NONE);

 operation.params[0].memref.parent = &commsSM; 245

 operation.params[0].memref.offset = 0;

 operation.params[0].memref.size = 20;

 result = TEEC_InvokeCommand(

 &session, 250

 CMD_DIGEST_FINAL,

 &operation,

 NULL);

 if (result != TEEC_SUCCESS)

 { 255

 goto cleanup6;

 }

 /* Transfer digest in to user buffer. */

 memcpy(digestBuffer, commsSM.buffer, 20); 260

 /* ==

 [7] Tidyup resources

 == */

cleanup6: 265

 TEEC_ReleaseSharedMemory(&outputSM);

cleanup5:

 TEEC_ReleaseSharedMemory(&inputSM);

cleanup4:

 TEEC_ReleaseSharedMemory(&commsSM); 270

cleanup3:

 TEEC_CloseSession(&session);

cleanup2:

 TEEC_FinalizeContext(&context);

 275

cleanup1:

 return result;

}

TEE Client API Specification 58/58

Copyright 2010 GlobalPlatform Inc. All Rights Reserved.
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly
prohibited.

Table of Figures and Tables

Figure 2-1: TEE Client API System Architecture ... 8

Figure 3-1: Shared Memory Buffer Lifetime .. 13

Figure 3-2: Memory Reference timing diagram ... 14

Table 1-1: Normative References .. 5

Table 1-2: Informative References .. 5

Table 1-3: Terminology and Definitions ... 6

Table 1-4: Abbreviations and Notations .. 7

Table 4-1: API Configuration Constants .. 24

Table 4-2: API Return Code Constants ... 25

Table 4-3: API Return Code Origin Constants .. 25

Table 4-4: API Shared Memory Control Flags .. 26

Table 4-5: API Parameter Types ... 27

Table 4-6: API Session Login Methods ... 28

END OF DOCUMENT

	Introduction
	Audience
	References
	Normative References
	Table 1-1: Normative References

	Informative References
	Table 1-2: Informative References

	Terminology and Definitions
	Table 1-3: Terminology and Definitions

	Abbreviations and Notations
	Table 1-4: Abbreviations and Notations

	Conventions

	Overview
	Standardization Scope
	The TEE Client API Architecture
	Figure 2-1: TEE Client API System Architecture

	Principles and Concepts
	Design Principles
	Fundamental Concepts
	TEE Contexts
	Sessions
	Connection Methods: Login

	Commands
	Operation Payload
	Temporary Shared Memory Registration
	Return Codes and Return Origins
	Events and Callbacks

	Shared Memory
	Figure 3-1: Shared Memory Buffer Lifetime
	Zero-copy Data Transfer
	Overlapping Blocks

	Memory References
	Synchronization
	Figure 3-2: Memory Reference timing diagram

	Overlapping Ranges
	Memory Reference Types
	Variable Length Return Buffers

	Usage Concepts
	Operation Instantiation
	Atomicity of Field Access

	Multi-threading
	Behavior which is not Thread-safe

	Resource Cleanup

	Security
	Security of the TEE and Trusted Applications
	Login Connection Methods

	Security of the Rich Operating System

	Specification
	Implementation-Defined Behavior and Programmer Errors
	Implementation-Defined Behavior
	Implementation-Defined Fields
	Programmer Error

	Header File
	Data Types
	Basic Types
	TEEC_Result
	TEEC_UUID
	TEEC_Context
	TEEC_Session
	TEEC_SharedMemory
	TEEC_TempMemoryReference
	TEEC_RegisteredMemoryReference
	TEEC_Value
	TEEC_Parameter
	TEEC_Operation

	Constants
	Configuration Settings
	Table 4-1: API Configuration Constants

	Return Codes
	Table 4-2: API Return Code Constants

	Return Code Origins
	Table 4-3: API Return Code Origin Constants

	Shared Memory Control
	Table 4-4: API Shared Memory Control Flags
	Table 4-5: API Parameter Types

	Session Login Methods
	Table 4-6: API Session Login Methods

	Functions
	Documentation Format
	Description
	Parameters
	Return
	Programmer Error
	Implementers’ Notes

	TEEC_InitializeContext
	Description
	Parameters
	Return
	Programmer Error
	Implementers’ Notes

	TEEC_FinalizeContext
	Description
	Parameters
	Programmer Error

	TEEC_RegisterSharedMemory
	Description
	Parameters
	Return
	Programmer Error
	Implementers’ Notes

	TEEC_AllocateSharedMemory
	Description
	Parameters
	Return
	Programmer Error
	Implementers’ Notes

	TEEC_ReleaseSharedMemory
	Description
	Parameters
	Programmer Error

	TEEC_OpenSession
	Description
	Parameters
	Return
	Programmer Error
	Implementers’ Notes

	TEEC_CloseSession
	Description
	Parameters
	Programmer Error

	TEEC_InvokeCommand
	Description
	Operation Handling
	Parameters
	Return
	Programmer Error

	TEEC_RequestCancellation
	Description
	Detecting cancellation
	Parameters

	Function-Like Macro: TEEC_PARAM_TYPES
	Description

	Sample Code
	Example Trusted Application Protocol
	Login Support
	Standard Return Codes
	Encryption Commands
	CMD_ENCRYPT_INIT
	CMD_ENCRYPT_UPDATE
	CMD_ENCRYPT_FINAL

	Digest Commands
	CMD_DIGEST_INIT
	CMD_DIGEST_UPDATE
	CMD_DIGEST_FINAL

	Example 1: Using the TEE Client API
	Initializing resources
	Connecting to the desired Trusted Application
	Allocating communications channel Shared Memory
	Registering bulk buffers as Shared Memory
	Initialize operations
	Perform cryptographic operations
	Finalizing the commands
	Cleaning up

	Appendix: Example Source Code

