
Why The Mobile Industry is Evolving
Towards Security

August 2007

GlobalPlatform’s GPD/STIP Solution for Mobile Security

secretariat@globalplatform.org | www.globalplatform.org | © 2007 GlobalPlatform Inc.

I. Introduction...1

II. Examples of Use Business Cases..2

A. Contactless Payment Use Case...2

B. DRM (Digital Rights Management) Use Case........ ...3

III. The GPD/STIP Solution and its Applicability to Mobile Phones.......................3

IV. The Requirements and their Paradoxes..5

V. GlobalPlatform GPD/STIP Solution..5

VI. Appendices..8

A. History of GPD/STIP...8

B. GPD/STIP API for Mobiles...9

C. References..10

D. Glossary..10

II

© 2007 GlobalPlatform Inc.

Contents

III

© 2007 GlobalPlatform Inc.

I. Introduction

The mobile phone industry is evolving. Mobile phones are now holding critical information, such as end user personal

information (requiring privacy) and operator and OEM information (requiring security) during processing and storage.

On the contrary, mobile phones are becoming more open and complex, utilizing high-level

operating systems largely available on the market today. They offer customers the ability to

download, on demand, applications with heterogeneous security levels.

However, a broad range of applications will only be deployed or enhanced if mobile phones fulfill

market requirements for interoperability, flexibility, reactivity and provability of the relevant security

level. In this environment, contactless transport ticketing, mobile payment involving screen,

keyboard and/or contactless communication, digital rights management (DRM) of high-value

multimedia content and broadcast service protection with conditional access system (CAS) can

all flourish.

Some of these requirements seem to contradict one another and hence the fulfilment of all of them simultaneously

seems impossible. The purpose of this White Paper is to present a practical and well-tested solution to solve this

paradox utilizing GPD/STIP technology specified by the GlobalPlatform consortium (www.globalplatform.org).

The following figure (Figure 1) illustrates the driving need for including security in mobile phones. The illustration shows

the need for operational cost reduction and protection of operator assets, as well as the need for new value-added

secure services deployment.

Figure 1 : Business Drives the Mobile Security Levels

1

© 2007 GlobalPlatform Inc.

DDeevviiccee iinntteeggrriittyy

SSeeccuurree bboooott //
sseeccuurree ffllaasshh

SSeeccuurree eexxeeccuuttiioonn
eennvviirroonnmmeenntt

CCoonntteenntt pprrootteeccttiioonn

OOppeerraattoorr aasssseettss

pprrootteeccttiioonn

DDeevviiccee mmaannaaggeemmeenntt

SSaaffee sseerrvviicceess

CCuussttoommeerr aasssseettss

pprrootteeccttiioonn

OO
pp

ee
rr

aa
tt

oo
rr

 aa
ss

ss
ee

tt
ss

pp
rr

oo
tt

ee
cc

tt
ii
oo

nn

CC
uu

ss
tt

oo
mm

ee
rr

 aa
ss

ss
ee

tt
ss

pp
rr

oo
tt

ee
cc

tt
ii
oo

nn

Mobile phones are

now holding critical

end-user information

requiring both privacy

and security.

II. Examples of Use Business Cases

A. Contactless Payment Use Case

In this example let us assume the mobile phone contains a contactless payment application whereby the customer can

see the transaction activity (e.g. the amount) on the phone display and validate it if needed. The phone software platform

is handling the communication between the different parties involved in the payment transaction (e.g. secure element,

mobile, customer, server, etc.).

Here below are detailed two scenarios:

• The mobile phone is set to emulate a contactless card and it is assumed to securely conduct the exchange

between contactless Point of Sale and the phone’s payment application.

o There is a need to secure the access to the payment application, whether it is in a SIM, a

removable secure element or on the phone’s own memory. This requires a software/hardware

platform providing a high level of security and access controls which will, however, remain open

to execution and download of new applications.

o When the payment application is running, it must itself be controlled and protected.

o The downloading of the payment application and its personalization data onto the mobile phone

must be done by a specific application in a highly secured way.

• The mobile phone is used as an electronic purse and it is assumed to securely store and access electronic

money.

o There is a need to secure the access to the memory where the electronic

money is stored. This requires, as in the first scenario, a

software/hardware platform providing a high level of security and access

controls which will, however, remain open to execution and download of

new applications.

o When the payment application is running, it must itself be controlled and

protected, especially when dealing with user payment authorization

(via keyboard).

o The downloading of electronic money onto the phone must be done by a specific application in a

highly secured way.

What can be deduced from this example?

• The payment application must be highly secured at the time of download and installation. Note this can be a

specific application for a given kind of payment acceptance device, so several similar applications might be

downloaded on the mobile phone at different times, according to the contracts the customer accepts with service

providers.

• When the payment application is running, the underlying platform must secure the relevant means of

communication. If several applications are running, there must be a strict protection and isolation of all payment

application components (User Interface, secure element, wallet application, contactless front-end), such that it

cannot be sniffed nor tampered with by other applications.

2

© 2007 GlobalPlatform Inc.

In the mobile

environment, when the

payment application is

running, it must be

controlled and protected.

B. DRM (Digital Rights Management) Use Case

Digital rights management is used to secure the content against any attempt to copy and reuse it by the customer or

any third party.

One such example would be a customer renting a movie to be downloaded and played on a mobile phone with rights

to play the movie three times within a month.

• The first phase is the purchase transaction , which includes a payment operation between the mobile phone

and some provider’s server.

• The second phase is the download and storage of the DRM protected content and rights.

• The third phase is the rights verification, content decryption and rendering. It requires several operations:

o Access to the DRM file to check if there are still rights to play and update of the DRM file by

decrementing the play count.

o If the play is authorized, then the content is decrypted and sent to the video/audio subsystem for

rendering to the customer.

The rights verification, content decryption and content rendering are security sensitive operations:

• Rights verification must be done in a trusted environment by authorized

application.

• Decryption of the content must be done by an authorized application to

maintain confidentiality during the decryption.

• The rendering must be done by an authorized application to avoid decrypted

content leakage and unauthorized access by a man in the middle application.

III. The GPD/STIP Solution and its Applicability to Mobile Phones

GlobalPlatform’s GPD/STIP virtual platform has been designed to facilitate the environment expressed above, and to

do so at the software level. It is an interoperable and secure open virtual platform answering the related requirements

that we will develop later in this White Paper.

Current mobile phones are far more than just phones. An increasing number of mobile phones

embed open environments and operating systems, allowing the downloading of many new

applications. Security-sensitive applications, such as payment applications, could be vulnerable in

such an environment as they are difficult to protect efficiently. On the other hand, a well-designed

virtual platform in terms of security and interoperability, such as GPD/STIP, allows security-sensitive

applications from various providers to be managed, along with differing levels of rights. However, it

is not intended and cannot protect itself from attacks from the underlying platform it is built upon.

There are two cases allowing a relevant use of the GPD/STIP virtual platform that address the business needs without

compromising the basic security of the virtual platform.

3

© 2007 GlobalPlatform Inc.

Digital rights management is

used to secure the content

against any attempt to copy

and reuse it by the customer

or any third party.

GPD/STIP is an

interoperable and

secure open virtual

platform.

• “Separate” secure execution environment for customer oriented mobile phone

This approach is currently implemented, and tested, on various hardware for mobile phones from different

chipset providers (Figure 2). This approach suggests having two distinct execution environments, one hosting

non-sensitive applications (called the common execution environment) and one dedicated to security-sensitive

operation execution (called the secure execution environment). When an application in the common execution

environment requires a security-sensitive operation, it delegates its execution to the secure execution

environment. This secure execution environment can autonomously execute sensitive applications on its own.

In this environment, it is as if the device would have two hardware processors, however, the GPD/STIP platform and

applications reside and are executed only inside the secure processor.

Figure 2 : Separate secure execution environment

• “Dedicated” secure execution environment for mobile phones

This approach is currently being developed and tested by some device manufacturers. It suggests having mobile

phones with an exclusive and secure GPD/STIP environment. Such phones are not oriented to be open for

downloading any kind of unsecured applications rather they are dedicated to traditional mobile phone modem-

based functions, along with payment functionality.

Each approach delivers benefits for their respective markets and makes use of the GPD/STIP specifications to solve

security and interoperability related issues.

4

© 2007 GlobalPlatform Inc.

HW / secure features

Limited OS

HW

OPERATING

SYSTEM

appl appl

GPD/STIP

VM
API to

GPD/STIP VM

Connect
App

to trusted

app

Peripherals can be

accessed in safe mode

Untrusted appl

Trusted appl

T
ru

s
te

d
 a

p
p

lic
a
tio

n

T
ru

s
te

d
 a

p
p

lic
a
tio

n

T
ru

s
te

d
 a

p
p

lic
a
tio

n

T
ru

s
te

d
 a

p
p

lic
a
tio

n

T
ru

s
te

d
 a

p
p

lic
a
tio

n

T
ru

s
te

d
 a

p
p

lic
a
tio

n

Trusted

Screen

Trusted
Keyboard

IV. The Requirements and their Paradoxes

We will now examine the precise requirements that have to be fulfilled by a virtual software platform.

Interoperability:

For network operators wishing to distribute, manage and control the quality and conformity of various

applications on mobile devices and the devices themselves provided by various manufacturers, a common

interoperable virtual software platform shared by all these devices is extremely compelling. The ability to write

once and execute anywhere corresponds to a real business need. To satisfy this need, a comprehensive API is

required to address all the various peripherals (integrated or remote) that a mobile device can use.

Security:

Providing robust security for security-oriented applications is a profound and difficult

task. When faced with the need to host, and even simultaneously run, different

applications with different levels of trust, security remains a fundamental requirement.

What is highly desired is the ability to perform “fine grain” control of the right to access

any resource of any peripherals by each application. This requirement not only impacts

the execution mechanisms and API of the software platform, but also necessitates a

broader view on the interactions between various actors involved in the making,

downloading and use of an application, and how these can be translated in technical

terms.

Flexibility:

From one particular device to another, the kind of peripherals available and their characteristic features may

change. The complexity of this environment makes it challenging to define a common software platform with a

fixed API. One solution is to limit the API to handle only the common features found on all platforms. A more

flexible solution would allow different peripherals with specific characteristics to be utilized by different security-

oriented applications. The challenge here is to do so without compromising the need for interoperability and

security.

Reactivity:

When several input peripherals are present (smart card readers, Internet connection, keyboard, phone call), it is

necessary to concurrently manage these inputs. One approach is to use explicit multithreading in the

programming of the applications. However, this can be cumbersome, and may conflict with security requirements

that necessitate a rigorous certification of the application behavior.

It would seem impossible to simultaneously fulfill all these requirements. As seen above, there are trade-offs between

interoperability and flexibility, just as there are trade-offs between security and flexibility, and with reactivity and security.

To overcome this paradox, a global solution is required – a solution that takes into account all requirements

simultaneously and is based on the long experience of security-related industries.

5

© 2007 GlobalPlatform Inc.

The required virtual

software platform must

satisfy the needs for

interoperability, security,

flexibility and reactivity

V. GlobalPlatform GPD/STIP Solution

The GPD/STIP solution from GlobalPlatform includes several features which are briefly detailed here below.

• Use of a portable base language

The basis for application interoperability on different hardware platforms is to use a common programming language

with completely defined semantics. The GPD/STIP solution relies on the use of completely typed object-oriented

languages such as Java. The GPD/STIP technology has further defined a subset of the most current base API for

this language in order to provide a common subset usable on all platforms, regardless of the language version

implemented on each platform.

• Notion of service control interface and service control manager

The central difficulty is to provide a flexible API that allows various configurations of peripherals while not

compromising, and even reinforcing, security and interoperability. The solution lies in the following approach: each

possible resource of a platform (peripherals, storage, etc) is considered as a service, which is implemented by a

software library if present on the platform. The GPD/STIP API does not provide any direct access to these libraries.

Instead, an application can only access to a standardized service control interface for each kind of service. To

access and use a service, the application must request the opening of a communication channel between the service

control it handles and the real service hidden behind.

In addition, to obtain a service control object of a given type, the application must first ask a service control manager

to provide a service control object of this type. The application cannot by itself create a service control object. There

are advantages to this approach:

o When a particular type of service is not present on a given platform, there is no need for this platform to

implement the related service control or service library. The GPD/STIP platform only implements the service

control interface declaration but not its implementation. The same API with a maximal set of service control

interfaces can be implemented on each platform but at no particular expense if the service type is not

present at the hardware level. Interoperability is thus possible without sacrificing flexibility.

o Applications do not deal with specific service APIs but with standardized service control APIs. This is also

important for interoperability, as libraries implementing services and service controls can be specific to each

platform but the interface can be common for all platforms.

o Security (the right to use a particular resource) and safety (that the application still behave correctly if a

particular service is not present, unavailable or unauthorized) are smoothly managed by the software

platform, as no resource can be accessed without two specific requests from the application. Those

requests are to obtain a service control instance of a given type through a request to the service control

manager, and to open through this service control a communication channel with a specific service.

This kind of approach offers the major security advantage of having access to services and their features

controlled by the software platform immediately when the request is posted, or even at the time the

application is installed on the platform. This contrasts with current security methods where each resource

has to call a central security manager to check the right of the caller when accessed. With the GPD/STIP

approach, the real service implementations do not have to protect themselves in this way as they are

already protected beforehand from any unauthorized access.

In conclusion, the GPD/STIP simultaneously satisfies the need for flexibility, security and interoperability, and does so in

a way that reinforces each without creating conflict or contradiction.

6

© 2007 GlobalPlatform Inc.

• Concurrent behavior via event-based model

The base language API of the GPD/STIP approach does not contain any explicit thread API. The Java thread API

does not provide any warranty on the underlying behavior of the multithread system, which is

implementation dependent, and is not adequate if one wants to have applications verified and

officially certified (often mandatory in the security-sensitive application world) independent of

the particular platform on which it may run.

The GPD/STIP approach relies on the systematic use of an event-based programming style.

The underlying machinery to request events is simple, completely specified and

implementation independent. This enhances the programming of highly reactive applications

while reinforcing safety, verifiability, and interoperability of applications with various hardware

platforms. Moreover, the GPD/STIP approach provides a specific API to mimic sequential programming to help

programmers for such sequential parts of applications.

• DASM

The Device Application Security Management (DASM) specifications are a new extension of the GPD/STIP

specifications.

The first DASM document, the Concepts and Description Documents Specification, was released in April 2007. It

provides a comprehensive description of all the actors and roles involved in the creation, delivery and control of an

application. It defines various kinds of messages exchanged in XML format between the actors and also defines the

syntax of XML documents that must accompany the application when downloading it on the platform.

This is used to determine the Capabilities the application requires from the platform, and the Protection Domain in

which it will be placed on the platform from which its Rights will be fixed. If there is a discrepancy between the Rights

and Capabilities requested by the application, the application is removed. Also, the knowledge of the Protection

Domain allows the platform to check at run time the right of the application to access particular resources.

Further DASM documents, the Provisioning Specification and the Key and Certificate Management Specification, will

be published later in 2007. Together, the DASM specifications will provide a complete specification of the

provisioning process for GPD/STIP applications on mobile devices.

7

© 2007 GlobalPlatform Inc.

GPD/STIP satisfies the

need for flexibility and

security without creating

conflict or contradiction.

VI. Appendices

A. History of GPD/STIP

The STIP Technology effort started in 2000 with the incorporation of the STIP Consortium.

STIP stands for ‘Small Terminal Interoperable Platform’.

The initial intent was to specify an interoperable open software platform for all types of small terminals integrating

smart card readers, supporting multiple applications and running security sensitive applications. This included

vending machines, ATMs, EFT-POS payment terminals as well as GSM mobile phones or other kind of mobile

devices used to run security sensitive applications.

Nevertheless, the STIP Consortium member companies were initially all related to the EFT-POS payment

terminals. The idea behind this specialization was to focus on providing a way to integrate various applications

with different levels of security and rights, using the same open software platform, but in a controlled environment

already assumed as secure, as required by the payment device industry.

Another point of interest is that EFT-POS payment terminals may have a great variety of peripherals to take into

account in the open software platform, while in practical cases many of these peripherals are not necessarily

present. This required a high degree of flexibility from the interoperable open software platform to adapt to all

these particular cases. Also, the presence of numerous I/O peripherals required a high degree of reactivity from

the applications and hence the underlying software platform.

In 2002, the main features of the STIP technology answering all the challenges cited above were fixed and well

tested. The STIP Consortium provided a comprehensive and flexible open platform specification for EFT-POS

payment terminals based on a generic fundamental technology.

After this first achievement, several new member companies from the mobile phone and mobile device industry

joined the STIP Consortium. Then came the idea to reuse all the well tested and validated fundamental STIP

Technology used in the STIP EFT-POS payment terminal specifications for another set of specifications dedicated

to mobile devices and, more specifically, mobile phones.

In fact, it appeared quickly that for the mobile phone devices, the specifications would be mainly a subset of the

specifications for the EFT-POS payment terminals, plus some very specific extensions.

In 2003, a new set of specifications derived from what was then called an EFT-POS profile and a Mobile profile,

were proposed.

At this time, the STIP Consortium started negotiations to transfer its IP assets to the GlobalPlatform Consortium,

to establish a larger, more visible entity to bring solutions to the mobile phone industry. The combined resources

of both organizations provided a stable, long term environment to host, promote and maintain the mobile profile

(and also the EFT-POS profile).

This transfer was achieved in 2003, and the STIP specifications became the GPD/STIP specifications (GPD:

GlobalPlatform Device).

Since this transfer of assets, a representative of the Mobile Phone industry has taken the head of the

GlobalPlatform Device Committee, and several links with other consortiums such as OMA and OMTP have been

established.

8

© 2007 GlobalPlatform Inc.

B. GPD/STIP API for Mobiles

Here below is the list of resource/peripheral service control Interfaces available for the GPD/STIP mobile profile as of
GPD/STIP version 2.2.0

9

© 2007 GlobalPlatform Inc.

stip.devicecontrol.beeper Provides access to the device’s beeper service.

stip.devicecontrol.chv Provides access to Card Holder Verification services.

stip.devicecontrol.comm Base package providing access to device’s communication

services.
stip.devicecontrol.comm.serial Provides access to the device’s serial port services.

stip.devicecontrol.comm.serial.modem Provides access to the device’s modem services.

stip.devicecontrol.contactless Provides access to contactless services.

stip.devicecontrol.contactless.initiator Provides access to contactless devices in Initiator mode.

stip.devicecontrol.contactless.target Provides access to contactless devices in Target mode.

stip.devicecontrol.crypto Provides access to cryptographic services.

stip.devicecontrol.crypto.certificate Provides access to cryptography operations related to digital

certificates.
stip.devicecontrol.crypto.certificate.x509 Provides access to cryptography operations related to X509

digital certificates.
stip.devicecontrol.date Provides access to the date service.

stip.devicecontrol.file Provides access to the device’s file service.

stip.devicecontrol.led Provides access to LEDs on the device.

stip.devicecontrol.mastervolume Provides access to the master volume management service.

stip.devicecontrol.media Provides access to the media service.

stip.devicecontrol.net Provides access to network services based on socket interfaces

and the HTTP protocol.
stip.devicecontrol.net.datagramsocket Provides access to the datagram socket service.

stip.devicecontrol.net.http Provides access to the HTTP service.

stip.devicecontrol.net.httpserver Provides access to the HTTP server service.

stip.devicecontrol.net.serversocket Provides access to the server socket service.

stip.devicecontrol.net.socket Provides access to the socket service.

stip.devicecontrol.power Provides access to the power management service.

stip.devicecontrol.simpleui Provides access to the device’s Simple User Interface service.

stip.devicecontrol.smartcardslot Provides access to a smart card reader slot.

stip.devicecontrol.speech Provides access to speech recognition services.

stip.devicecontrol.timer Provides access to the device’s timer service.

stip.devicecontrol.ui Provides a high level abstraction of the device’s user interface

elements, including the display, the keyboard, and the printer.

stip.devicecontrol.ui.browser Allows the application to interface with the device’s display and

keyboard on an abstract level.

stip.devicecontrol.ui.printer Allows the application to interface with the device’s printer on an

abstract level.
stip.devicecontrol.vibrator Provides access to the device’s vibrator service.

Package Description

C. References

• The GPD/STIP Specifications, Technical overview, Test-Plan and User’s guide

http://www.globalplatform.org/specificationview.asp?id=device

• The GlobalPlatform Site

http://www.globalplatform.org/

D. Glossary

• API: Application Programming Interface. Defines the library interfaces that an application can use on a given

software platform

• Core API: the part of the API defining the application programming language capabilities (independently of other

resource/peripheral API’s).

• DRM: Digital Rights Management

• EFT-POS Terminal: Electronic Funds Transfer Point of Sales Terminal

• Java: an object oriented programming language. There are several versions of Java core API, the one defined

by GPD/STIP being common to all versions (except the special version defined for Java Card)

• GlobalPlatform: the global leader in smart card infrastructure development and its proven, technical

specifications for cards, devices and systems are known as the standard for smart card infrastructure.

GlobalPlatform is a member driven association with cross-industry representation from all world continents.

• Interoperable Software Platform: a virtual software platform common to different devices from different

manufacturers, allowing thus the same application code to run on these various devices without change.

• OEM: Original Equipment Manufacturer

• OS: Operating System

• STIP: Small Terminal Interoperable Platform

• Virtual Software Platform: the API viewed by an application, independently of the various hardware specificity

of the hardware embedding platform. This term is reserved usually for API’s that are independent of the

underlying OS, as it is the case for Java.

10

© 2007 GlobalPlatform Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005B004200610073006500640020006F006E0020002700480069006700680020005100750061006C0069007400790020005000720069006E00740027005D0020005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-02-11T17:44:36-0700
	Document Management

